1 /* $FreeBSD$ */ 2 3 /*- 4 * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr> 5 * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org> 6 * Copyright (c) 2007-2008 Hans Petter Selasky <hselasky@FreeBSD.org> 7 * Copyright (c) 2015 Andriy Voskoboinyk <avos@FreeBSD.org> 8 * 9 * Permission to use, copy, modify, and distribute this software for any 10 * purpose with or without fee is hereby granted, provided that the above 11 * copyright notice and this permission notice appear in all copies. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 */ 21 22 #include <sys/cdefs.h> 23 __FBSDID("$FreeBSD$"); 24 25 /*- 26 * Ralink Technology RT2501USB/RT2601USB chipset driver 27 * http://www.ralinktech.com.tw/ 28 */ 29 30 #include "opt_wlan.h" 31 32 #include <sys/param.h> 33 #include <sys/sockio.h> 34 #include <sys/sysctl.h> 35 #include <sys/lock.h> 36 #include <sys/mutex.h> 37 #include <sys/mbuf.h> 38 #include <sys/kernel.h> 39 #include <sys/socket.h> 40 #include <sys/systm.h> 41 #include <sys/malloc.h> 42 #include <sys/module.h> 43 #include <sys/bus.h> 44 #include <sys/endian.h> 45 #include <sys/kdb.h> 46 47 #include <machine/bus.h> 48 #include <machine/resource.h> 49 #include <sys/rman.h> 50 51 #include <net/bpf.h> 52 #include <net/if.h> 53 #include <net/if_var.h> 54 #include <net/if_arp.h> 55 #include <net/ethernet.h> 56 #include <net/if_dl.h> 57 #include <net/if_media.h> 58 #include <net/if_types.h> 59 60 #ifdef INET 61 #include <netinet/in.h> 62 #include <netinet/in_systm.h> 63 #include <netinet/in_var.h> 64 #include <netinet/if_ether.h> 65 #include <netinet/ip.h> 66 #endif 67 68 #include <net80211/ieee80211_var.h> 69 #include <net80211/ieee80211_regdomain.h> 70 #include <net80211/ieee80211_radiotap.h> 71 #include <net80211/ieee80211_ratectl.h> 72 73 #include <dev/usb/usb.h> 74 #include <dev/usb/usbdi.h> 75 #include "usbdevs.h" 76 77 #define USB_DEBUG_VAR rum_debug 78 #include <dev/usb/usb_debug.h> 79 80 #include <dev/usb/wlan/if_rumreg.h> 81 #include <dev/usb/wlan/if_rumvar.h> 82 #include <dev/usb/wlan/if_rumfw.h> 83 84 #ifdef USB_DEBUG 85 static int rum_debug = 0; 86 87 static SYSCTL_NODE(_hw_usb, OID_AUTO, rum, CTLFLAG_RW, 0, "USB rum"); 88 SYSCTL_INT(_hw_usb_rum, OID_AUTO, debug, CTLFLAG_RWTUN, &rum_debug, 0, 89 "Debug level"); 90 #endif 91 92 static const STRUCT_USB_HOST_ID rum_devs[] = { 93 #define RUM_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } 94 RUM_DEV(ABOCOM, HWU54DM), 95 RUM_DEV(ABOCOM, RT2573_2), 96 RUM_DEV(ABOCOM, RT2573_3), 97 RUM_DEV(ABOCOM, RT2573_4), 98 RUM_DEV(ABOCOM, WUG2700), 99 RUM_DEV(AMIT, CGWLUSB2GO), 100 RUM_DEV(ASUS, RT2573_1), 101 RUM_DEV(ASUS, RT2573_2), 102 RUM_DEV(BELKIN, F5D7050A), 103 RUM_DEV(BELKIN, F5D9050V3), 104 RUM_DEV(CISCOLINKSYS, WUSB54GC), 105 RUM_DEV(CISCOLINKSYS, WUSB54GR), 106 RUM_DEV(CONCEPTRONIC2, C54RU2), 107 RUM_DEV(COREGA, CGWLUSB2GL), 108 RUM_DEV(COREGA, CGWLUSB2GPX), 109 RUM_DEV(DICKSMITH, CWD854F), 110 RUM_DEV(DICKSMITH, RT2573), 111 RUM_DEV(EDIMAX, EW7318USG), 112 RUM_DEV(DLINK2, DWLG122C1), 113 RUM_DEV(DLINK2, WUA1340), 114 RUM_DEV(DLINK2, DWA111), 115 RUM_DEV(DLINK2, DWA110), 116 RUM_DEV(GIGABYTE, GNWB01GS), 117 RUM_DEV(GIGABYTE, GNWI05GS), 118 RUM_DEV(GIGASET, RT2573), 119 RUM_DEV(GOODWAY, RT2573), 120 RUM_DEV(GUILLEMOT, HWGUSB254LB), 121 RUM_DEV(GUILLEMOT, HWGUSB254V2AP), 122 RUM_DEV(HUAWEI3COM, WUB320G), 123 RUM_DEV(MELCO, G54HP), 124 RUM_DEV(MELCO, SG54HP), 125 RUM_DEV(MELCO, SG54HG), 126 RUM_DEV(MELCO, WLIUCG), 127 RUM_DEV(MELCO, WLRUCG), 128 RUM_DEV(MELCO, WLRUCGAOSS), 129 RUM_DEV(MSI, RT2573_1), 130 RUM_DEV(MSI, RT2573_2), 131 RUM_DEV(MSI, RT2573_3), 132 RUM_DEV(MSI, RT2573_4), 133 RUM_DEV(NOVATECH, RT2573), 134 RUM_DEV(PLANEX2, GWUS54HP), 135 RUM_DEV(PLANEX2, GWUS54MINI2), 136 RUM_DEV(PLANEX2, GWUSMM), 137 RUM_DEV(QCOM, RT2573), 138 RUM_DEV(QCOM, RT2573_2), 139 RUM_DEV(QCOM, RT2573_3), 140 RUM_DEV(RALINK, RT2573), 141 RUM_DEV(RALINK, RT2573_2), 142 RUM_DEV(RALINK, RT2671), 143 RUM_DEV(SITECOMEU, WL113R2), 144 RUM_DEV(SITECOMEU, WL172), 145 RUM_DEV(SPARKLAN, RT2573), 146 RUM_DEV(SURECOM, RT2573), 147 #undef RUM_DEV 148 }; 149 150 static device_probe_t rum_match; 151 static device_attach_t rum_attach; 152 static device_detach_t rum_detach; 153 154 static usb_callback_t rum_bulk_read_callback; 155 static usb_callback_t rum_bulk_write_callback; 156 157 static usb_error_t rum_do_request(struct rum_softc *sc, 158 struct usb_device_request *req, void *data); 159 static usb_error_t rum_do_mcu_request(struct rum_softc *sc, int); 160 static struct ieee80211vap *rum_vap_create(struct ieee80211com *, 161 const char [IFNAMSIZ], int, enum ieee80211_opmode, 162 int, const uint8_t [IEEE80211_ADDR_LEN], 163 const uint8_t [IEEE80211_ADDR_LEN]); 164 static void rum_vap_delete(struct ieee80211vap *); 165 static void rum_cmdq_cb(void *, int); 166 static int rum_cmd_sleepable(struct rum_softc *, const void *, 167 size_t, uint8_t, CMD_FUNC_PROTO); 168 static void rum_tx_free(struct rum_tx_data *, int); 169 static void rum_setup_tx_list(struct rum_softc *); 170 static void rum_reset_tx_list(struct rum_softc *, 171 struct ieee80211vap *); 172 static void rum_unsetup_tx_list(struct rum_softc *); 173 static void rum_beacon_miss(struct ieee80211vap *); 174 static void rum_sta_recv_mgmt(struct ieee80211_node *, 175 struct mbuf *, int, 176 const struct ieee80211_rx_stats *, int, int); 177 static int rum_set_power_state(struct rum_softc *, int); 178 static int rum_newstate(struct ieee80211vap *, 179 enum ieee80211_state, int); 180 static uint8_t rum_crypto_mode(struct rum_softc *, u_int, int); 181 static void rum_setup_tx_desc(struct rum_softc *, 182 struct rum_tx_desc *, struct ieee80211_key *, 183 uint32_t, uint8_t, uint8_t, int, int, int); 184 static uint32_t rum_tx_crypto_flags(struct rum_softc *, 185 struct ieee80211_node *, 186 const struct ieee80211_key *); 187 static int rum_tx_mgt(struct rum_softc *, struct mbuf *, 188 struct ieee80211_node *); 189 static int rum_tx_raw(struct rum_softc *, struct mbuf *, 190 struct ieee80211_node *, 191 const struct ieee80211_bpf_params *); 192 static int rum_tx_data(struct rum_softc *, struct mbuf *, 193 struct ieee80211_node *); 194 static int rum_transmit(struct ieee80211com *, struct mbuf *); 195 static void rum_start(struct rum_softc *); 196 static void rum_parent(struct ieee80211com *); 197 static void rum_eeprom_read(struct rum_softc *, uint16_t, void *, 198 int); 199 static uint32_t rum_read(struct rum_softc *, uint16_t); 200 static void rum_read_multi(struct rum_softc *, uint16_t, void *, 201 int); 202 static usb_error_t rum_write(struct rum_softc *, uint16_t, uint32_t); 203 static usb_error_t rum_write_multi(struct rum_softc *, uint16_t, void *, 204 size_t); 205 static usb_error_t rum_setbits(struct rum_softc *, uint16_t, uint32_t); 206 static usb_error_t rum_clrbits(struct rum_softc *, uint16_t, uint32_t); 207 static usb_error_t rum_modbits(struct rum_softc *, uint16_t, uint32_t, 208 uint32_t); 209 static int rum_bbp_busy(struct rum_softc *); 210 static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t); 211 static uint8_t rum_bbp_read(struct rum_softc *, uint8_t); 212 static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t); 213 static void rum_select_antenna(struct rum_softc *); 214 static void rum_enable_mrr(struct rum_softc *); 215 static void rum_set_txpreamble(struct rum_softc *); 216 static void rum_set_basicrates(struct rum_softc *); 217 static void rum_select_band(struct rum_softc *, 218 struct ieee80211_channel *); 219 static void rum_set_chan(struct rum_softc *, 220 struct ieee80211_channel *); 221 static void rum_set_maxretry(struct rum_softc *, 222 struct ieee80211vap *); 223 static int rum_enable_tsf_sync(struct rum_softc *); 224 static void rum_enable_tsf(struct rum_softc *); 225 static void rum_abort_tsf_sync(struct rum_softc *); 226 static void rum_get_tsf(struct rum_softc *, uint64_t *); 227 static void rum_update_slot_cb(struct rum_softc *, 228 union sec_param *, uint8_t); 229 static void rum_update_slot(struct ieee80211com *); 230 static int rum_wme_update(struct ieee80211com *); 231 static void rum_set_bssid(struct rum_softc *, const uint8_t *); 232 static void rum_set_macaddr(struct rum_softc *, const uint8_t *); 233 static void rum_update_mcast(struct ieee80211com *); 234 static void rum_update_promisc(struct ieee80211com *); 235 static void rum_setpromisc(struct rum_softc *); 236 static const char *rum_get_rf(int); 237 static void rum_read_eeprom(struct rum_softc *); 238 static int rum_bbp_wakeup(struct rum_softc *); 239 static int rum_bbp_init(struct rum_softc *); 240 static void rum_clr_shkey_regs(struct rum_softc *); 241 static int rum_init(struct rum_softc *); 242 static void rum_stop(struct rum_softc *); 243 static void rum_load_microcode(struct rum_softc *, const uint8_t *, 244 size_t); 245 static int rum_set_sleep_time(struct rum_softc *, uint16_t); 246 static int rum_reset(struct ieee80211vap *, u_long); 247 static int rum_set_beacon(struct rum_softc *, 248 struct ieee80211vap *); 249 static int rum_alloc_beacon(struct rum_softc *, 250 struct ieee80211vap *); 251 static void rum_update_beacon_cb(struct rum_softc *, 252 union sec_param *, uint8_t); 253 static void rum_update_beacon(struct ieee80211vap *, int); 254 static int rum_common_key_set(struct rum_softc *, 255 struct ieee80211_key *, uint16_t); 256 static void rum_group_key_set_cb(struct rum_softc *, 257 union sec_param *, uint8_t); 258 static void rum_group_key_del_cb(struct rum_softc *, 259 union sec_param *, uint8_t); 260 static void rum_pair_key_set_cb(struct rum_softc *, 261 union sec_param *, uint8_t); 262 static void rum_pair_key_del_cb(struct rum_softc *, 263 union sec_param *, uint8_t); 264 static int rum_key_alloc(struct ieee80211vap *, 265 struct ieee80211_key *, ieee80211_keyix *, 266 ieee80211_keyix *); 267 static int rum_key_set(struct ieee80211vap *, 268 const struct ieee80211_key *); 269 static int rum_key_delete(struct ieee80211vap *, 270 const struct ieee80211_key *); 271 static int rum_raw_xmit(struct ieee80211_node *, struct mbuf *, 272 const struct ieee80211_bpf_params *); 273 static void rum_scan_start(struct ieee80211com *); 274 static void rum_scan_end(struct ieee80211com *); 275 static void rum_set_channel(struct ieee80211com *); 276 static void rum_getradiocaps(struct ieee80211com *, int, int *, 277 struct ieee80211_channel[]); 278 static int rum_get_rssi(struct rum_softc *, uint8_t); 279 static void rum_ratectl_start(struct rum_softc *, 280 struct ieee80211_node *); 281 static void rum_ratectl_timeout(void *); 282 static void rum_ratectl_task(void *, int); 283 static int rum_pause(struct rum_softc *, int); 284 285 static const struct { 286 uint32_t reg; 287 uint32_t val; 288 } rum_def_mac[] = { 289 { RT2573_TXRX_CSR0, 0x025fb032 }, 290 { RT2573_TXRX_CSR1, 0x9eaa9eaf }, 291 { RT2573_TXRX_CSR2, 0x8a8b8c8d }, 292 { RT2573_TXRX_CSR3, 0x00858687 }, 293 { RT2573_TXRX_CSR7, 0x2e31353b }, 294 { RT2573_TXRX_CSR8, 0x2a2a2a2c }, 295 { RT2573_TXRX_CSR15, 0x0000000f }, 296 { RT2573_MAC_CSR6, 0x00000fff }, 297 { RT2573_MAC_CSR8, 0x016c030a }, 298 { RT2573_MAC_CSR10, 0x00000718 }, 299 { RT2573_MAC_CSR12, 0x00000004 }, 300 { RT2573_MAC_CSR13, 0x00007f00 }, 301 { RT2573_SEC_CSR2, 0x00000000 }, 302 { RT2573_SEC_CSR3, 0x00000000 }, 303 { RT2573_SEC_CSR4, 0x00000000 }, 304 { RT2573_PHY_CSR1, 0x000023b0 }, 305 { RT2573_PHY_CSR5, 0x00040a06 }, 306 { RT2573_PHY_CSR6, 0x00080606 }, 307 { RT2573_PHY_CSR7, 0x00000408 }, 308 { RT2573_AIFSN_CSR, 0x00002273 }, 309 { RT2573_CWMIN_CSR, 0x00002344 }, 310 { RT2573_CWMAX_CSR, 0x000034aa } 311 }; 312 313 static const struct { 314 uint8_t reg; 315 uint8_t val; 316 } rum_def_bbp[] = { 317 { 3, 0x80 }, 318 { 15, 0x30 }, 319 { 17, 0x20 }, 320 { 21, 0xc8 }, 321 { 22, 0x38 }, 322 { 23, 0x06 }, 323 { 24, 0xfe }, 324 { 25, 0x0a }, 325 { 26, 0x0d }, 326 { 32, 0x0b }, 327 { 34, 0x12 }, 328 { 37, 0x07 }, 329 { 39, 0xf8 }, 330 { 41, 0x60 }, 331 { 53, 0x10 }, 332 { 54, 0x18 }, 333 { 60, 0x10 }, 334 { 61, 0x04 }, 335 { 62, 0x04 }, 336 { 75, 0xfe }, 337 { 86, 0xfe }, 338 { 88, 0xfe }, 339 { 90, 0x0f }, 340 { 99, 0x00 }, 341 { 102, 0x16 }, 342 { 107, 0x04 } 343 }; 344 345 static const uint8_t rum_chan_2ghz[] = 346 { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 }; 347 348 static const uint8_t rum_chan_5ghz[] = 349 { 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64, 350 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 351 149, 153, 157, 161, 165 }; 352 353 static const struct rfprog { 354 uint8_t chan; 355 uint32_t r1, r2, r3, r4; 356 } rum_rf5226[] = { 357 { 1, 0x00b03, 0x001e1, 0x1a014, 0x30282 }, 358 { 2, 0x00b03, 0x001e1, 0x1a014, 0x30287 }, 359 { 3, 0x00b03, 0x001e2, 0x1a014, 0x30282 }, 360 { 4, 0x00b03, 0x001e2, 0x1a014, 0x30287 }, 361 { 5, 0x00b03, 0x001e3, 0x1a014, 0x30282 }, 362 { 6, 0x00b03, 0x001e3, 0x1a014, 0x30287 }, 363 { 7, 0x00b03, 0x001e4, 0x1a014, 0x30282 }, 364 { 8, 0x00b03, 0x001e4, 0x1a014, 0x30287 }, 365 { 9, 0x00b03, 0x001e5, 0x1a014, 0x30282 }, 366 { 10, 0x00b03, 0x001e5, 0x1a014, 0x30287 }, 367 { 11, 0x00b03, 0x001e6, 0x1a014, 0x30282 }, 368 { 12, 0x00b03, 0x001e6, 0x1a014, 0x30287 }, 369 { 13, 0x00b03, 0x001e7, 0x1a014, 0x30282 }, 370 { 14, 0x00b03, 0x001e8, 0x1a014, 0x30284 }, 371 372 { 34, 0x00b03, 0x20266, 0x36014, 0x30282 }, 373 { 38, 0x00b03, 0x20267, 0x36014, 0x30284 }, 374 { 42, 0x00b03, 0x20268, 0x36014, 0x30286 }, 375 { 46, 0x00b03, 0x20269, 0x36014, 0x30288 }, 376 377 { 36, 0x00b03, 0x00266, 0x26014, 0x30288 }, 378 { 40, 0x00b03, 0x00268, 0x26014, 0x30280 }, 379 { 44, 0x00b03, 0x00269, 0x26014, 0x30282 }, 380 { 48, 0x00b03, 0x0026a, 0x26014, 0x30284 }, 381 { 52, 0x00b03, 0x0026b, 0x26014, 0x30286 }, 382 { 56, 0x00b03, 0x0026c, 0x26014, 0x30288 }, 383 { 60, 0x00b03, 0x0026e, 0x26014, 0x30280 }, 384 { 64, 0x00b03, 0x0026f, 0x26014, 0x30282 }, 385 386 { 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 }, 387 { 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 }, 388 { 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 }, 389 { 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 }, 390 { 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 }, 391 { 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 }, 392 { 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 }, 393 { 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 }, 394 { 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 }, 395 { 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 }, 396 { 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 }, 397 398 { 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 }, 399 { 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 }, 400 { 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 }, 401 { 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 }, 402 { 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 } 403 }, rum_rf5225[] = { 404 { 1, 0x00b33, 0x011e1, 0x1a014, 0x30282 }, 405 { 2, 0x00b33, 0x011e1, 0x1a014, 0x30287 }, 406 { 3, 0x00b33, 0x011e2, 0x1a014, 0x30282 }, 407 { 4, 0x00b33, 0x011e2, 0x1a014, 0x30287 }, 408 { 5, 0x00b33, 0x011e3, 0x1a014, 0x30282 }, 409 { 6, 0x00b33, 0x011e3, 0x1a014, 0x30287 }, 410 { 7, 0x00b33, 0x011e4, 0x1a014, 0x30282 }, 411 { 8, 0x00b33, 0x011e4, 0x1a014, 0x30287 }, 412 { 9, 0x00b33, 0x011e5, 0x1a014, 0x30282 }, 413 { 10, 0x00b33, 0x011e5, 0x1a014, 0x30287 }, 414 { 11, 0x00b33, 0x011e6, 0x1a014, 0x30282 }, 415 { 12, 0x00b33, 0x011e6, 0x1a014, 0x30287 }, 416 { 13, 0x00b33, 0x011e7, 0x1a014, 0x30282 }, 417 { 14, 0x00b33, 0x011e8, 0x1a014, 0x30284 }, 418 419 { 34, 0x00b33, 0x01266, 0x26014, 0x30282 }, 420 { 38, 0x00b33, 0x01267, 0x26014, 0x30284 }, 421 { 42, 0x00b33, 0x01268, 0x26014, 0x30286 }, 422 { 46, 0x00b33, 0x01269, 0x26014, 0x30288 }, 423 424 { 36, 0x00b33, 0x01266, 0x26014, 0x30288 }, 425 { 40, 0x00b33, 0x01268, 0x26014, 0x30280 }, 426 { 44, 0x00b33, 0x01269, 0x26014, 0x30282 }, 427 { 48, 0x00b33, 0x0126a, 0x26014, 0x30284 }, 428 { 52, 0x00b33, 0x0126b, 0x26014, 0x30286 }, 429 { 56, 0x00b33, 0x0126c, 0x26014, 0x30288 }, 430 { 60, 0x00b33, 0x0126e, 0x26014, 0x30280 }, 431 { 64, 0x00b33, 0x0126f, 0x26014, 0x30282 }, 432 433 { 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 }, 434 { 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 }, 435 { 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 }, 436 { 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 }, 437 { 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 }, 438 { 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 }, 439 { 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 }, 440 { 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 }, 441 { 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 }, 442 { 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 }, 443 { 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 }, 444 445 { 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 }, 446 { 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 }, 447 { 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 }, 448 { 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 }, 449 { 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 } 450 }; 451 452 static const struct usb_config rum_config[RUM_N_TRANSFER] = { 453 [RUM_BULK_WR] = { 454 .type = UE_BULK, 455 .endpoint = UE_ADDR_ANY, 456 .direction = UE_DIR_OUT, 457 .bufsize = (MCLBYTES + RT2573_TX_DESC_SIZE + 8), 458 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 459 .callback = rum_bulk_write_callback, 460 .timeout = 5000, /* ms */ 461 }, 462 [RUM_BULK_RD] = { 463 .type = UE_BULK, 464 .endpoint = UE_ADDR_ANY, 465 .direction = UE_DIR_IN, 466 .bufsize = (MCLBYTES + RT2573_RX_DESC_SIZE), 467 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 468 .callback = rum_bulk_read_callback, 469 }, 470 }; 471 472 static int 473 rum_match(device_t self) 474 { 475 struct usb_attach_arg *uaa = device_get_ivars(self); 476 477 if (uaa->usb_mode != USB_MODE_HOST) 478 return (ENXIO); 479 if (uaa->info.bConfigIndex != 0) 480 return (ENXIO); 481 if (uaa->info.bIfaceIndex != RT2573_IFACE_INDEX) 482 return (ENXIO); 483 484 return (usbd_lookup_id_by_uaa(rum_devs, sizeof(rum_devs), uaa)); 485 } 486 487 static int 488 rum_attach(device_t self) 489 { 490 struct usb_attach_arg *uaa = device_get_ivars(self); 491 struct rum_softc *sc = device_get_softc(self); 492 struct ieee80211com *ic = &sc->sc_ic; 493 uint32_t tmp; 494 uint8_t iface_index; 495 int error, ntries; 496 497 device_set_usb_desc(self); 498 sc->sc_udev = uaa->device; 499 sc->sc_dev = self; 500 501 RUM_LOCK_INIT(sc); 502 RUM_CMDQ_LOCK_INIT(sc); 503 mbufq_init(&sc->sc_snd, ifqmaxlen); 504 505 iface_index = RT2573_IFACE_INDEX; 506 error = usbd_transfer_setup(uaa->device, &iface_index, 507 sc->sc_xfer, rum_config, RUM_N_TRANSFER, sc, &sc->sc_mtx); 508 if (error) { 509 device_printf(self, "could not allocate USB transfers, " 510 "err=%s\n", usbd_errstr(error)); 511 goto detach; 512 } 513 514 RUM_LOCK(sc); 515 /* retrieve RT2573 rev. no */ 516 for (ntries = 0; ntries < 100; ntries++) { 517 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0) 518 break; 519 if (rum_pause(sc, hz / 100)) 520 break; 521 } 522 if (ntries == 100) { 523 device_printf(sc->sc_dev, "timeout waiting for chip to settle\n"); 524 RUM_UNLOCK(sc); 525 goto detach; 526 } 527 528 /* retrieve MAC address and various other things from EEPROM */ 529 rum_read_eeprom(sc); 530 531 device_printf(sc->sc_dev, "MAC/BBP RT2573 (rev 0x%05x), RF %s\n", 532 tmp, rum_get_rf(sc->rf_rev)); 533 534 rum_load_microcode(sc, rt2573_ucode, sizeof(rt2573_ucode)); 535 RUM_UNLOCK(sc); 536 537 ic->ic_softc = sc; 538 ic->ic_name = device_get_nameunit(self); 539 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 540 541 /* set device capabilities */ 542 ic->ic_caps = 543 IEEE80211_C_STA /* station mode supported */ 544 | IEEE80211_C_IBSS /* IBSS mode supported */ 545 | IEEE80211_C_MONITOR /* monitor mode supported */ 546 | IEEE80211_C_HOSTAP /* HostAp mode supported */ 547 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 548 | IEEE80211_C_TXPMGT /* tx power management */ 549 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 550 | IEEE80211_C_SHSLOT /* short slot time supported */ 551 | IEEE80211_C_BGSCAN /* bg scanning supported */ 552 | IEEE80211_C_WPA /* 802.11i */ 553 | IEEE80211_C_WME /* 802.11e */ 554 | IEEE80211_C_PMGT /* Station-side power mgmt */ 555 | IEEE80211_C_SWSLEEP /* net80211 managed power mgmt */ 556 ; 557 558 ic->ic_cryptocaps = 559 IEEE80211_CRYPTO_WEP | 560 IEEE80211_CRYPTO_AES_CCM | 561 IEEE80211_CRYPTO_TKIPMIC | 562 IEEE80211_CRYPTO_TKIP; 563 564 rum_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans, 565 ic->ic_channels); 566 567 ieee80211_ifattach(ic); 568 ic->ic_update_promisc = rum_update_promisc; 569 ic->ic_raw_xmit = rum_raw_xmit; 570 ic->ic_scan_start = rum_scan_start; 571 ic->ic_scan_end = rum_scan_end; 572 ic->ic_set_channel = rum_set_channel; 573 ic->ic_getradiocaps = rum_getradiocaps; 574 ic->ic_transmit = rum_transmit; 575 ic->ic_parent = rum_parent; 576 ic->ic_vap_create = rum_vap_create; 577 ic->ic_vap_delete = rum_vap_delete; 578 ic->ic_updateslot = rum_update_slot; 579 ic->ic_wme.wme_update = rum_wme_update; 580 ic->ic_update_mcast = rum_update_mcast; 581 582 ieee80211_radiotap_attach(ic, 583 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 584 RT2573_TX_RADIOTAP_PRESENT, 585 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 586 RT2573_RX_RADIOTAP_PRESENT); 587 588 TASK_INIT(&sc->cmdq_task, 0, rum_cmdq_cb, sc); 589 590 if (bootverbose) 591 ieee80211_announce(ic); 592 593 return (0); 594 595 detach: 596 rum_detach(self); 597 return (ENXIO); /* failure */ 598 } 599 600 static int 601 rum_detach(device_t self) 602 { 603 struct rum_softc *sc = device_get_softc(self); 604 struct ieee80211com *ic = &sc->sc_ic; 605 606 /* Prevent further ioctls */ 607 RUM_LOCK(sc); 608 sc->sc_detached = 1; 609 RUM_UNLOCK(sc); 610 611 /* stop all USB transfers */ 612 usbd_transfer_unsetup(sc->sc_xfer, RUM_N_TRANSFER); 613 614 /* free TX list, if any */ 615 RUM_LOCK(sc); 616 rum_unsetup_tx_list(sc); 617 RUM_UNLOCK(sc); 618 619 if (ic->ic_softc == sc) { 620 ieee80211_draintask(ic, &sc->cmdq_task); 621 ieee80211_ifdetach(ic); 622 } 623 624 mbufq_drain(&sc->sc_snd); 625 RUM_CMDQ_LOCK_DESTROY(sc); 626 RUM_LOCK_DESTROY(sc); 627 628 return (0); 629 } 630 631 static usb_error_t 632 rum_do_request(struct rum_softc *sc, 633 struct usb_device_request *req, void *data) 634 { 635 usb_error_t err; 636 int ntries = 10; 637 638 while (ntries--) { 639 err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, 640 req, data, 0, NULL, 250 /* ms */); 641 if (err == 0) 642 break; 643 644 DPRINTFN(1, "Control request failed, %s (retrying)\n", 645 usbd_errstr(err)); 646 if (rum_pause(sc, hz / 100)) 647 break; 648 } 649 return (err); 650 } 651 652 static usb_error_t 653 rum_do_mcu_request(struct rum_softc *sc, int request) 654 { 655 struct usb_device_request req; 656 657 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 658 req.bRequest = RT2573_MCU_CNTL; 659 USETW(req.wValue, request); 660 USETW(req.wIndex, 0); 661 USETW(req.wLength, 0); 662 663 return (rum_do_request(sc, &req, NULL)); 664 } 665 666 static struct ieee80211vap * 667 rum_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 668 enum ieee80211_opmode opmode, int flags, 669 const uint8_t bssid[IEEE80211_ADDR_LEN], 670 const uint8_t mac[IEEE80211_ADDR_LEN]) 671 { 672 struct rum_softc *sc = ic->ic_softc; 673 struct rum_vap *rvp; 674 struct ieee80211vap *vap; 675 676 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 677 return NULL; 678 rvp = malloc(sizeof(struct rum_vap), M_80211_VAP, M_WAITOK | M_ZERO); 679 vap = &rvp->vap; 680 /* enable s/w bmiss handling for sta mode */ 681 682 if (ieee80211_vap_setup(ic, vap, name, unit, opmode, 683 flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) { 684 /* out of memory */ 685 free(rvp, M_80211_VAP); 686 return (NULL); 687 } 688 689 /* override state transition machine */ 690 rvp->newstate = vap->iv_newstate; 691 vap->iv_newstate = rum_newstate; 692 vap->iv_key_alloc = rum_key_alloc; 693 vap->iv_key_set = rum_key_set; 694 vap->iv_key_delete = rum_key_delete; 695 vap->iv_update_beacon = rum_update_beacon; 696 vap->iv_reset = rum_reset; 697 vap->iv_max_aid = RT2573_ADDR_MAX; 698 699 if (opmode == IEEE80211_M_STA) { 700 /* 701 * Move device to the sleep state when 702 * beacon is received and there is no data for us. 703 * 704 * Used only for IEEE80211_S_SLEEP state. 705 */ 706 rvp->recv_mgmt = vap->iv_recv_mgmt; 707 vap->iv_recv_mgmt = rum_sta_recv_mgmt; 708 709 /* Ignored while sleeping. */ 710 rvp->bmiss = vap->iv_bmiss; 711 vap->iv_bmiss = rum_beacon_miss; 712 } 713 714 usb_callout_init_mtx(&rvp->ratectl_ch, &sc->sc_mtx, 0); 715 TASK_INIT(&rvp->ratectl_task, 0, rum_ratectl_task, rvp); 716 ieee80211_ratectl_init(vap); 717 ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); 718 /* complete setup */ 719 ieee80211_vap_attach(vap, ieee80211_media_change, 720 ieee80211_media_status, mac); 721 ic->ic_opmode = opmode; 722 return vap; 723 } 724 725 static void 726 rum_vap_delete(struct ieee80211vap *vap) 727 { 728 struct rum_vap *rvp = RUM_VAP(vap); 729 struct ieee80211com *ic = vap->iv_ic; 730 struct rum_softc *sc = ic->ic_softc; 731 732 /* Put vap into INIT state. */ 733 ieee80211_new_state(vap, IEEE80211_S_INIT, -1); 734 ieee80211_draintask(ic, &vap->iv_nstate_task); 735 736 RUM_LOCK(sc); 737 /* Cancel any unfinished Tx. */ 738 rum_reset_tx_list(sc, vap); 739 RUM_UNLOCK(sc); 740 741 usb_callout_drain(&rvp->ratectl_ch); 742 ieee80211_draintask(ic, &rvp->ratectl_task); 743 ieee80211_ratectl_deinit(vap); 744 ieee80211_vap_detach(vap); 745 m_freem(rvp->bcn_mbuf); 746 free(rvp, M_80211_VAP); 747 } 748 749 static void 750 rum_cmdq_cb(void *arg, int pending) 751 { 752 struct rum_softc *sc = arg; 753 struct rum_cmdq *rc; 754 755 RUM_CMDQ_LOCK(sc); 756 while (sc->cmdq[sc->cmdq_first].func != NULL) { 757 rc = &sc->cmdq[sc->cmdq_first]; 758 RUM_CMDQ_UNLOCK(sc); 759 760 RUM_LOCK(sc); 761 rc->func(sc, &rc->data, rc->rvp_id); 762 RUM_UNLOCK(sc); 763 764 RUM_CMDQ_LOCK(sc); 765 memset(rc, 0, sizeof (*rc)); 766 sc->cmdq_first = (sc->cmdq_first + 1) % RUM_CMDQ_SIZE; 767 } 768 RUM_CMDQ_UNLOCK(sc); 769 } 770 771 static int 772 rum_cmd_sleepable(struct rum_softc *sc, const void *ptr, size_t len, 773 uint8_t rvp_id, CMD_FUNC_PROTO) 774 { 775 struct ieee80211com *ic = &sc->sc_ic; 776 777 KASSERT(len <= sizeof(union sec_param), ("buffer overflow")); 778 779 RUM_CMDQ_LOCK(sc); 780 if (sc->cmdq[sc->cmdq_last].func != NULL) { 781 device_printf(sc->sc_dev, "%s: cmdq overflow\n", __func__); 782 RUM_CMDQ_UNLOCK(sc); 783 784 return EAGAIN; 785 } 786 787 if (ptr != NULL) 788 memcpy(&sc->cmdq[sc->cmdq_last].data, ptr, len); 789 sc->cmdq[sc->cmdq_last].rvp_id = rvp_id; 790 sc->cmdq[sc->cmdq_last].func = func; 791 sc->cmdq_last = (sc->cmdq_last + 1) % RUM_CMDQ_SIZE; 792 RUM_CMDQ_UNLOCK(sc); 793 794 ieee80211_runtask(ic, &sc->cmdq_task); 795 796 return 0; 797 } 798 799 static void 800 rum_tx_free(struct rum_tx_data *data, int txerr) 801 { 802 struct rum_softc *sc = data->sc; 803 804 if (data->m != NULL) { 805 ieee80211_tx_complete(data->ni, data->m, txerr); 806 data->m = NULL; 807 data->ni = NULL; 808 } 809 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 810 sc->tx_nfree++; 811 } 812 813 static void 814 rum_setup_tx_list(struct rum_softc *sc) 815 { 816 struct rum_tx_data *data; 817 int i; 818 819 sc->tx_nfree = 0; 820 STAILQ_INIT(&sc->tx_q); 821 STAILQ_INIT(&sc->tx_free); 822 823 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 824 data = &sc->tx_data[i]; 825 826 data->sc = sc; 827 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 828 sc->tx_nfree++; 829 } 830 } 831 832 static void 833 rum_reset_tx_list(struct rum_softc *sc, struct ieee80211vap *vap) 834 { 835 struct rum_tx_data *data, *tmp; 836 837 KASSERT(vap != NULL, ("%s: vap is NULL\n", __func__)); 838 839 STAILQ_FOREACH_SAFE(data, &sc->tx_q, next, tmp) { 840 if (data->ni != NULL && data->ni->ni_vap == vap) { 841 ieee80211_free_node(data->ni); 842 data->ni = NULL; 843 844 KASSERT(data->m != NULL, ("%s: m is NULL\n", 845 __func__)); 846 m_freem(data->m); 847 data->m = NULL; 848 849 STAILQ_REMOVE(&sc->tx_q, data, rum_tx_data, next); 850 STAILQ_INSERT_TAIL(&sc->tx_free, data, next); 851 sc->tx_nfree++; 852 } 853 } 854 } 855 856 static void 857 rum_unsetup_tx_list(struct rum_softc *sc) 858 { 859 struct rum_tx_data *data; 860 int i; 861 862 /* make sure any subsequent use of the queues will fail */ 863 sc->tx_nfree = 0; 864 STAILQ_INIT(&sc->tx_q); 865 STAILQ_INIT(&sc->tx_free); 866 867 /* free up all node references and mbufs */ 868 for (i = 0; i < RUM_TX_LIST_COUNT; i++) { 869 data = &sc->tx_data[i]; 870 871 if (data->m != NULL) { 872 m_freem(data->m); 873 data->m = NULL; 874 } 875 if (data->ni != NULL) { 876 ieee80211_free_node(data->ni); 877 data->ni = NULL; 878 } 879 } 880 } 881 882 static void 883 rum_beacon_miss(struct ieee80211vap *vap) 884 { 885 struct ieee80211com *ic = vap->iv_ic; 886 struct rum_softc *sc = ic->ic_softc; 887 struct rum_vap *rvp = RUM_VAP(vap); 888 int sleep; 889 890 RUM_LOCK(sc); 891 if (sc->sc_sleeping && sc->sc_sleep_end < ticks) { 892 DPRINTFN(12, "dropping 'sleeping' bit, " 893 "device must be awake now\n"); 894 895 sc->sc_sleeping = 0; 896 } 897 898 sleep = sc->sc_sleeping; 899 RUM_UNLOCK(sc); 900 901 if (!sleep) 902 rvp->bmiss(vap); 903 #ifdef USB_DEBUG 904 else 905 DPRINTFN(13, "bmiss event is ignored whilst sleeping\n"); 906 #endif 907 } 908 909 static void 910 rum_sta_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype, 911 const struct ieee80211_rx_stats *rxs, 912 int rssi, int nf) 913 { 914 struct ieee80211vap *vap = ni->ni_vap; 915 struct rum_softc *sc = vap->iv_ic->ic_softc; 916 struct rum_vap *rvp = RUM_VAP(vap); 917 918 if (vap->iv_state == IEEE80211_S_SLEEP && 919 subtype == IEEE80211_FC0_SUBTYPE_BEACON) { 920 RUM_LOCK(sc); 921 DPRINTFN(12, "beacon, mybss %d (flags %02X)\n", 922 !!(sc->last_rx_flags & RT2573_RX_MYBSS), 923 sc->last_rx_flags); 924 925 if ((sc->last_rx_flags & (RT2573_RX_MYBSS | RT2573_RX_BC)) == 926 (RT2573_RX_MYBSS | RT2573_RX_BC)) { 927 /* 928 * Put it to sleep here; in case if there is a data 929 * for us, iv_recv_mgmt() will wakeup the device via 930 * SLEEP -> RUN state transition. 931 */ 932 rum_set_power_state(sc, 1); 933 } 934 RUM_UNLOCK(sc); 935 } 936 937 rvp->recv_mgmt(ni, m, subtype, rxs, rssi, nf); 938 } 939 940 static int 941 rum_set_power_state(struct rum_softc *sc, int sleep) 942 { 943 usb_error_t uerror; 944 945 RUM_LOCK_ASSERT(sc); 946 947 DPRINTFN(12, "moving to %s state (sleep time %u)\n", 948 sleep ? "sleep" : "awake", sc->sc_sleep_time); 949 950 uerror = rum_do_mcu_request(sc, 951 sleep ? RT2573_MCU_SLEEP : RT2573_MCU_WAKEUP); 952 if (uerror != USB_ERR_NORMAL_COMPLETION) { 953 device_printf(sc->sc_dev, 954 "%s: could not change power state: %s\n", 955 __func__, usbd_errstr(uerror)); 956 return (EIO); 957 } 958 959 sc->sc_sleeping = !!sleep; 960 sc->sc_sleep_end = sleep ? ticks + sc->sc_sleep_time : 0; 961 962 return (0); 963 } 964 965 static int 966 rum_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 967 { 968 struct rum_vap *rvp = RUM_VAP(vap); 969 struct ieee80211com *ic = vap->iv_ic; 970 struct rum_softc *sc = ic->ic_softc; 971 const struct ieee80211_txparam *tp; 972 enum ieee80211_state ostate; 973 struct ieee80211_node *ni; 974 usb_error_t uerror; 975 int ret = 0; 976 977 ostate = vap->iv_state; 978 DPRINTF("%s -> %s\n", 979 ieee80211_state_name[ostate], 980 ieee80211_state_name[nstate]); 981 982 IEEE80211_UNLOCK(ic); 983 RUM_LOCK(sc); 984 usb_callout_stop(&rvp->ratectl_ch); 985 986 if (ostate == IEEE80211_S_SLEEP && vap->iv_opmode == IEEE80211_M_STA) { 987 rum_clrbits(sc, RT2573_TXRX_CSR4, RT2573_ACKCTS_PWRMGT); 988 rum_clrbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP); 989 990 /* 991 * Ignore any errors; 992 * any subsequent TX will wakeup it anyway 993 */ 994 (void) rum_set_power_state(sc, 0); 995 } 996 997 switch (nstate) { 998 case IEEE80211_S_INIT: 999 if (ostate == IEEE80211_S_RUN) 1000 rum_abort_tsf_sync(sc); 1001 1002 break; 1003 1004 case IEEE80211_S_RUN: 1005 if (ostate == IEEE80211_S_SLEEP) 1006 break; /* already handled */ 1007 1008 ni = ieee80211_ref_node(vap->iv_bss); 1009 1010 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 1011 if (ic->ic_bsschan == IEEE80211_CHAN_ANYC || 1012 ni->ni_chan == IEEE80211_CHAN_ANYC) { 1013 ret = EINVAL; 1014 goto run_fail; 1015 } 1016 rum_update_slot_cb(sc, NULL, 0); 1017 rum_enable_mrr(sc); 1018 rum_set_txpreamble(sc); 1019 rum_set_basicrates(sc); 1020 rum_set_maxretry(sc, vap); 1021 IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid); 1022 rum_set_bssid(sc, sc->sc_bssid); 1023 } 1024 1025 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1026 vap->iv_opmode == IEEE80211_M_IBSS) { 1027 if ((ret = rum_alloc_beacon(sc, vap)) != 0) 1028 goto run_fail; 1029 } 1030 1031 if (vap->iv_opmode != IEEE80211_M_MONITOR && 1032 vap->iv_opmode != IEEE80211_M_AHDEMO) { 1033 if ((ret = rum_enable_tsf_sync(sc)) != 0) 1034 goto run_fail; 1035 } else 1036 rum_enable_tsf(sc); 1037 1038 /* enable automatic rate adaptation */ 1039 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 1040 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) 1041 rum_ratectl_start(sc, ni); 1042 run_fail: 1043 ieee80211_free_node(ni); 1044 break; 1045 case IEEE80211_S_SLEEP: 1046 /* Implemented for STA mode only. */ 1047 if (vap->iv_opmode != IEEE80211_M_STA) 1048 break; 1049 1050 uerror = rum_setbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP); 1051 if (uerror != USB_ERR_NORMAL_COMPLETION) { 1052 ret = EIO; 1053 break; 1054 } 1055 1056 uerror = rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_ACKCTS_PWRMGT); 1057 if (uerror != USB_ERR_NORMAL_COMPLETION) { 1058 ret = EIO; 1059 break; 1060 } 1061 1062 ret = rum_set_power_state(sc, 1); 1063 if (ret != 0) { 1064 device_printf(sc->sc_dev, 1065 "%s: could not move to the SLEEP state: %s\n", 1066 __func__, usbd_errstr(uerror)); 1067 } 1068 break; 1069 default: 1070 break; 1071 } 1072 RUM_UNLOCK(sc); 1073 IEEE80211_LOCK(ic); 1074 return (ret == 0 ? rvp->newstate(vap, nstate, arg) : ret); 1075 } 1076 1077 static void 1078 rum_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error) 1079 { 1080 struct rum_softc *sc = usbd_xfer_softc(xfer); 1081 struct ieee80211vap *vap; 1082 struct rum_tx_data *data; 1083 struct mbuf *m; 1084 struct usb_page_cache *pc; 1085 unsigned int len; 1086 int actlen, sumlen; 1087 1088 usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL); 1089 1090 switch (USB_GET_STATE(xfer)) { 1091 case USB_ST_TRANSFERRED: 1092 DPRINTFN(11, "transfer complete, %d bytes\n", actlen); 1093 1094 /* free resources */ 1095 data = usbd_xfer_get_priv(xfer); 1096 rum_tx_free(data, 0); 1097 usbd_xfer_set_priv(xfer, NULL); 1098 1099 /* FALLTHROUGH */ 1100 case USB_ST_SETUP: 1101 tr_setup: 1102 data = STAILQ_FIRST(&sc->tx_q); 1103 if (data) { 1104 STAILQ_REMOVE_HEAD(&sc->tx_q, next); 1105 m = data->m; 1106 1107 if (m->m_pkthdr.len > (int)(MCLBYTES + RT2573_TX_DESC_SIZE)) { 1108 DPRINTFN(0, "data overflow, %u bytes\n", 1109 m->m_pkthdr.len); 1110 m->m_pkthdr.len = (MCLBYTES + RT2573_TX_DESC_SIZE); 1111 } 1112 pc = usbd_xfer_get_frame(xfer, 0); 1113 usbd_copy_in(pc, 0, &data->desc, RT2573_TX_DESC_SIZE); 1114 usbd_m_copy_in(pc, RT2573_TX_DESC_SIZE, m, 0, 1115 m->m_pkthdr.len); 1116 1117 vap = data->ni->ni_vap; 1118 if (ieee80211_radiotap_active_vap(vap)) { 1119 struct rum_tx_radiotap_header *tap = &sc->sc_txtap; 1120 1121 tap->wt_flags = 0; 1122 tap->wt_rate = data->rate; 1123 tap->wt_antenna = sc->tx_ant; 1124 1125 ieee80211_radiotap_tx(vap, m); 1126 } 1127 1128 /* align end on a 4-bytes boundary */ 1129 len = (RT2573_TX_DESC_SIZE + m->m_pkthdr.len + 3) & ~3; 1130 if ((len % 64) == 0) 1131 len += 4; 1132 1133 DPRINTFN(11, "sending frame len=%u xferlen=%u\n", 1134 m->m_pkthdr.len, len); 1135 1136 usbd_xfer_set_frame_len(xfer, 0, len); 1137 usbd_xfer_set_priv(xfer, data); 1138 1139 usbd_transfer_submit(xfer); 1140 } 1141 rum_start(sc); 1142 break; 1143 1144 default: /* Error */ 1145 DPRINTFN(11, "transfer error, %s\n", 1146 usbd_errstr(error)); 1147 1148 counter_u64_add(sc->sc_ic.ic_oerrors, 1); 1149 data = usbd_xfer_get_priv(xfer); 1150 if (data != NULL) { 1151 rum_tx_free(data, error); 1152 usbd_xfer_set_priv(xfer, NULL); 1153 } 1154 1155 if (error != USB_ERR_CANCELLED) { 1156 if (error == USB_ERR_TIMEOUT) 1157 device_printf(sc->sc_dev, "device timeout\n"); 1158 1159 /* 1160 * Try to clear stall first, also if other 1161 * errors occur, hence clearing stall 1162 * introduces a 50 ms delay: 1163 */ 1164 usbd_xfer_set_stall(xfer); 1165 goto tr_setup; 1166 } 1167 break; 1168 } 1169 } 1170 1171 static void 1172 rum_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error) 1173 { 1174 struct rum_softc *sc = usbd_xfer_softc(xfer); 1175 struct ieee80211com *ic = &sc->sc_ic; 1176 struct ieee80211_frame_min *wh; 1177 struct ieee80211_node *ni; 1178 struct mbuf *m = NULL; 1179 struct usb_page_cache *pc; 1180 uint32_t flags; 1181 uint8_t rssi = 0; 1182 int len; 1183 1184 usbd_xfer_status(xfer, &len, NULL, NULL, NULL); 1185 1186 switch (USB_GET_STATE(xfer)) { 1187 case USB_ST_TRANSFERRED: 1188 1189 DPRINTFN(15, "rx done, actlen=%d\n", len); 1190 1191 if (len < RT2573_RX_DESC_SIZE) { 1192 DPRINTF("%s: xfer too short %d\n", 1193 device_get_nameunit(sc->sc_dev), len); 1194 counter_u64_add(ic->ic_ierrors, 1); 1195 goto tr_setup; 1196 } 1197 1198 len -= RT2573_RX_DESC_SIZE; 1199 pc = usbd_xfer_get_frame(xfer, 0); 1200 usbd_copy_out(pc, 0, &sc->sc_rx_desc, RT2573_RX_DESC_SIZE); 1201 1202 rssi = rum_get_rssi(sc, sc->sc_rx_desc.rssi); 1203 flags = le32toh(sc->sc_rx_desc.flags); 1204 sc->last_rx_flags = flags; 1205 if (len < ((flags >> 16) & 0xfff)) { 1206 DPRINTFN(5, "%s: frame is truncated from %d to %d " 1207 "bytes\n", device_get_nameunit(sc->sc_dev), 1208 (flags >> 16) & 0xfff, len); 1209 counter_u64_add(ic->ic_ierrors, 1); 1210 goto tr_setup; 1211 } 1212 len = (flags >> 16) & 0xfff; 1213 if (len < sizeof(struct ieee80211_frame_ack)) { 1214 DPRINTFN(5, "%s: frame too short %d\n", 1215 device_get_nameunit(sc->sc_dev), len); 1216 counter_u64_add(ic->ic_ierrors, 1); 1217 goto tr_setup; 1218 } 1219 if (flags & RT2573_RX_CRC_ERROR) { 1220 /* 1221 * This should not happen since we did not 1222 * request to receive those frames when we 1223 * filled RUM_TXRX_CSR2: 1224 */ 1225 DPRINTFN(5, "PHY or CRC error\n"); 1226 counter_u64_add(ic->ic_ierrors, 1); 1227 goto tr_setup; 1228 } 1229 if ((flags & RT2573_RX_DEC_MASK) != RT2573_RX_DEC_OK) { 1230 switch (flags & RT2573_RX_DEC_MASK) { 1231 case RT2573_RX_IV_ERROR: 1232 DPRINTFN(5, "IV/EIV error\n"); 1233 break; 1234 case RT2573_RX_MIC_ERROR: 1235 DPRINTFN(5, "MIC error\n"); 1236 break; 1237 case RT2573_RX_KEY_ERROR: 1238 DPRINTFN(5, "Key error\n"); 1239 break; 1240 } 1241 counter_u64_add(ic->ic_ierrors, 1); 1242 goto tr_setup; 1243 } 1244 1245 m = m_get2(len, M_NOWAIT, MT_DATA, M_PKTHDR); 1246 if (m == NULL) { 1247 DPRINTF("could not allocate mbuf\n"); 1248 counter_u64_add(ic->ic_ierrors, 1); 1249 goto tr_setup; 1250 } 1251 usbd_copy_out(pc, RT2573_RX_DESC_SIZE, 1252 mtod(m, uint8_t *), len); 1253 1254 wh = mtod(m, struct ieee80211_frame_min *); 1255 1256 if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) && 1257 (flags & RT2573_RX_CIP_MASK) != 1258 RT2573_RX_CIP_MODE(RT2573_MODE_NOSEC)) { 1259 wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED; 1260 m->m_flags |= M_WEP; 1261 } 1262 1263 /* finalize mbuf */ 1264 m->m_pkthdr.len = m->m_len = len; 1265 1266 if (ieee80211_radiotap_active(ic)) { 1267 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap; 1268 1269 tap->wr_flags = 0; 1270 tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate, 1271 (flags & RT2573_RX_OFDM) ? 1272 IEEE80211_T_OFDM : IEEE80211_T_CCK); 1273 rum_get_tsf(sc, &tap->wr_tsf); 1274 tap->wr_antsignal = RT2573_NOISE_FLOOR + rssi; 1275 tap->wr_antnoise = RT2573_NOISE_FLOOR; 1276 tap->wr_antenna = sc->rx_ant; 1277 } 1278 /* FALLTHROUGH */ 1279 case USB_ST_SETUP: 1280 tr_setup: 1281 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer)); 1282 usbd_transfer_submit(xfer); 1283 1284 /* 1285 * At the end of a USB callback it is always safe to unlock 1286 * the private mutex of a device! That is why we do the 1287 * "ieee80211_input" here, and not some lines up! 1288 */ 1289 RUM_UNLOCK(sc); 1290 if (m) { 1291 if (m->m_len >= sizeof(struct ieee80211_frame_min)) 1292 ni = ieee80211_find_rxnode(ic, wh); 1293 else 1294 ni = NULL; 1295 1296 if (ni != NULL) { 1297 (void) ieee80211_input(ni, m, rssi, 1298 RT2573_NOISE_FLOOR); 1299 ieee80211_free_node(ni); 1300 } else 1301 (void) ieee80211_input_all(ic, m, rssi, 1302 RT2573_NOISE_FLOOR); 1303 } 1304 RUM_LOCK(sc); 1305 rum_start(sc); 1306 return; 1307 1308 default: /* Error */ 1309 if (error != USB_ERR_CANCELLED) { 1310 /* try to clear stall first */ 1311 usbd_xfer_set_stall(xfer); 1312 goto tr_setup; 1313 } 1314 return; 1315 } 1316 } 1317 1318 static uint8_t 1319 rum_plcp_signal(int rate) 1320 { 1321 switch (rate) { 1322 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1323 case 12: return 0xb; 1324 case 18: return 0xf; 1325 case 24: return 0xa; 1326 case 36: return 0xe; 1327 case 48: return 0x9; 1328 case 72: return 0xd; 1329 case 96: return 0x8; 1330 case 108: return 0xc; 1331 1332 /* CCK rates (NB: not IEEE std, device-specific) */ 1333 case 2: return 0x0; 1334 case 4: return 0x1; 1335 case 11: return 0x2; 1336 case 22: return 0x3; 1337 } 1338 return 0xff; /* XXX unsupported/unknown rate */ 1339 } 1340 1341 /* 1342 * Map net80211 cipher to RT2573 security mode. 1343 */ 1344 static uint8_t 1345 rum_crypto_mode(struct rum_softc *sc, u_int cipher, int keylen) 1346 { 1347 switch (cipher) { 1348 case IEEE80211_CIPHER_WEP: 1349 return (keylen < 8 ? RT2573_MODE_WEP40 : RT2573_MODE_WEP104); 1350 case IEEE80211_CIPHER_TKIP: 1351 return RT2573_MODE_TKIP; 1352 case IEEE80211_CIPHER_AES_CCM: 1353 return RT2573_MODE_AES_CCMP; 1354 default: 1355 device_printf(sc->sc_dev, "unknown cipher %d\n", cipher); 1356 return 0; 1357 } 1358 } 1359 1360 static void 1361 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc, 1362 struct ieee80211_key *k, uint32_t flags, uint8_t xflags, uint8_t qid, 1363 int hdrlen, int len, int rate) 1364 { 1365 struct ieee80211com *ic = &sc->sc_ic; 1366 struct wmeParams *wmep = &sc->wme_params[qid]; 1367 uint16_t plcp_length; 1368 int remainder; 1369 1370 flags |= RT2573_TX_VALID; 1371 flags |= len << 16; 1372 1373 if (k != NULL && !(k->wk_flags & IEEE80211_KEY_SWCRYPT)) { 1374 const struct ieee80211_cipher *cip = k->wk_cipher; 1375 1376 len += cip->ic_header + cip->ic_trailer + cip->ic_miclen; 1377 1378 desc->eiv = 0; /* for WEP */ 1379 cip->ic_setiv(k, (uint8_t *)&desc->iv); 1380 } 1381 1382 /* setup PLCP fields */ 1383 desc->plcp_signal = rum_plcp_signal(rate); 1384 desc->plcp_service = 4; 1385 1386 len += IEEE80211_CRC_LEN; 1387 if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) { 1388 flags |= RT2573_TX_OFDM; 1389 1390 plcp_length = len & 0xfff; 1391 desc->plcp_length_hi = plcp_length >> 6; 1392 desc->plcp_length_lo = plcp_length & 0x3f; 1393 } else { 1394 if (rate == 0) 1395 rate = 2; /* avoid division by zero */ 1396 plcp_length = howmany(16 * len, rate); 1397 if (rate == 22) { 1398 remainder = (16 * len) % 22; 1399 if (remainder != 0 && remainder < 7) 1400 desc->plcp_service |= RT2573_PLCP_LENGEXT; 1401 } 1402 desc->plcp_length_hi = plcp_length >> 8; 1403 desc->plcp_length_lo = plcp_length & 0xff; 1404 1405 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1406 desc->plcp_signal |= 0x08; 1407 } 1408 1409 desc->flags = htole32(flags); 1410 desc->hdrlen = hdrlen; 1411 desc->xflags = xflags; 1412 1413 desc->wme = htole16(RT2573_QID(qid) | 1414 RT2573_AIFSN(wmep->wmep_aifsn) | 1415 RT2573_LOGCWMIN(wmep->wmep_logcwmin) | 1416 RT2573_LOGCWMAX(wmep->wmep_logcwmax)); 1417 } 1418 1419 static int 1420 rum_sendprot(struct rum_softc *sc, 1421 const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate) 1422 { 1423 struct ieee80211com *ic = ni->ni_ic; 1424 struct rum_tx_data *data; 1425 struct mbuf *mprot; 1426 int protrate, flags; 1427 1428 RUM_LOCK_ASSERT(sc); 1429 1430 mprot = ieee80211_alloc_prot(ni, m, rate, prot); 1431 if (mprot == NULL) { 1432 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 1433 device_printf(sc->sc_dev, 1434 "could not allocate mbuf for protection mode %d\n", prot); 1435 return (ENOBUFS); 1436 } 1437 1438 protrate = ieee80211_ctl_rate(ic->ic_rt, rate); 1439 flags = 0; 1440 if (prot == IEEE80211_PROT_RTSCTS) 1441 flags |= RT2573_TX_NEED_ACK; 1442 1443 data = STAILQ_FIRST(&sc->tx_free); 1444 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1445 sc->tx_nfree--; 1446 1447 data->m = mprot; 1448 data->ni = ieee80211_ref_node(ni); 1449 data->rate = protrate; 1450 rum_setup_tx_desc(sc, &data->desc, NULL, flags, 0, 0, 0, 1451 mprot->m_pkthdr.len, protrate); 1452 1453 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1454 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1455 1456 return 0; 1457 } 1458 1459 static uint32_t 1460 rum_tx_crypto_flags(struct rum_softc *sc, struct ieee80211_node *ni, 1461 const struct ieee80211_key *k) 1462 { 1463 struct ieee80211vap *vap = ni->ni_vap; 1464 u_int cipher; 1465 uint32_t flags = 0; 1466 uint8_t mode, pos; 1467 1468 if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) { 1469 cipher = k->wk_cipher->ic_cipher; 1470 pos = k->wk_keyix; 1471 mode = rum_crypto_mode(sc, cipher, k->wk_keylen); 1472 if (mode == 0) 1473 return 0; 1474 1475 flags |= RT2573_TX_CIP_MODE(mode); 1476 1477 /* Do not trust GROUP flag */ 1478 if (!(k >= &vap->iv_nw_keys[0] && 1479 k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) 1480 flags |= RT2573_TX_KEY_PAIR; 1481 else 1482 pos += 0 * RT2573_SKEY_MAX; /* vap id */ 1483 1484 flags |= RT2573_TX_KEY_ID(pos); 1485 1486 if (cipher == IEEE80211_CIPHER_TKIP) 1487 flags |= RT2573_TX_TKIPMIC; 1488 } 1489 1490 return flags; 1491 } 1492 1493 static int 1494 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1495 { 1496 const struct ieee80211_txparam *tp = ni->ni_txparms; 1497 struct ieee80211com *ic = &sc->sc_ic; 1498 struct rum_tx_data *data; 1499 struct ieee80211_frame *wh; 1500 struct ieee80211_key *k = NULL; 1501 uint32_t flags = 0; 1502 uint16_t dur; 1503 uint8_t ac, type, xflags = 0; 1504 int hdrlen; 1505 1506 RUM_LOCK_ASSERT(sc); 1507 1508 data = STAILQ_FIRST(&sc->tx_free); 1509 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1510 sc->tx_nfree--; 1511 1512 wh = mtod(m0, struct ieee80211_frame *); 1513 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 1514 hdrlen = ieee80211_anyhdrsize(wh); 1515 ac = M_WME_GETAC(m0); 1516 1517 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1518 k = ieee80211_crypto_get_txkey(ni, m0); 1519 if (k == NULL) 1520 return (ENOENT); 1521 1522 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) && 1523 !k->wk_cipher->ic_encap(k, m0)) 1524 return (ENOBUFS); 1525 1526 wh = mtod(m0, struct ieee80211_frame *); 1527 } 1528 1529 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1530 flags |= RT2573_TX_NEED_ACK; 1531 1532 dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate, 1533 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1534 USETW(wh->i_dur, dur); 1535 1536 /* tell hardware to add timestamp for probe responses */ 1537 if (type == IEEE80211_FC0_TYPE_MGT && 1538 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1539 IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1540 flags |= RT2573_TX_TIMESTAMP; 1541 } 1542 1543 if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh)) 1544 xflags |= RT2573_TX_HWSEQ; 1545 1546 if (k != NULL) 1547 flags |= rum_tx_crypto_flags(sc, ni, k); 1548 1549 data->m = m0; 1550 data->ni = ni; 1551 data->rate = tp->mgmtrate; 1552 1553 rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen, 1554 m0->m_pkthdr.len, tp->mgmtrate); 1555 1556 DPRINTFN(10, "sending mgt frame len=%d rate=%d\n", 1557 m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, tp->mgmtrate); 1558 1559 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1560 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1561 1562 return (0); 1563 } 1564 1565 static int 1566 rum_tx_raw(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, 1567 const struct ieee80211_bpf_params *params) 1568 { 1569 struct ieee80211com *ic = ni->ni_ic; 1570 struct ieee80211_frame *wh; 1571 struct rum_tx_data *data; 1572 uint32_t flags; 1573 uint8_t ac, type, xflags = 0; 1574 int rate, error; 1575 1576 RUM_LOCK_ASSERT(sc); 1577 1578 wh = mtod(m0, struct ieee80211_frame *); 1579 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 1580 1581 ac = params->ibp_pri & 3; 1582 1583 rate = params->ibp_rate0; 1584 if (!ieee80211_isratevalid(ic->ic_rt, rate)) 1585 return (EINVAL); 1586 1587 flags = 0; 1588 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 1589 flags |= RT2573_TX_NEED_ACK; 1590 if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) { 1591 error = rum_sendprot(sc, m0, ni, 1592 params->ibp_flags & IEEE80211_BPF_RTS ? 1593 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY, 1594 rate); 1595 if (error || sc->tx_nfree == 0) 1596 return (ENOBUFS); 1597 1598 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1599 } 1600 1601 if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh)) 1602 xflags |= RT2573_TX_HWSEQ; 1603 1604 data = STAILQ_FIRST(&sc->tx_free); 1605 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1606 sc->tx_nfree--; 1607 1608 data->m = m0; 1609 data->ni = ni; 1610 data->rate = rate; 1611 1612 /* XXX need to setup descriptor ourself */ 1613 rum_setup_tx_desc(sc, &data->desc, NULL, flags, xflags, ac, 0, 1614 m0->m_pkthdr.len, rate); 1615 1616 DPRINTFN(10, "sending raw frame len=%u rate=%u\n", 1617 m0->m_pkthdr.len, rate); 1618 1619 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1620 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1621 1622 return 0; 1623 } 1624 1625 static int 1626 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni) 1627 { 1628 struct ieee80211vap *vap = ni->ni_vap; 1629 struct ieee80211com *ic = &sc->sc_ic; 1630 struct rum_tx_data *data; 1631 struct ieee80211_frame *wh; 1632 const struct ieee80211_txparam *tp = ni->ni_txparms; 1633 struct ieee80211_key *k = NULL; 1634 uint32_t flags = 0; 1635 uint16_t dur; 1636 uint8_t ac, type, qos, xflags = 0; 1637 int error, hdrlen, rate; 1638 1639 RUM_LOCK_ASSERT(sc); 1640 1641 wh = mtod(m0, struct ieee80211_frame *); 1642 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 1643 hdrlen = ieee80211_anyhdrsize(wh); 1644 1645 if (IEEE80211_QOS_HAS_SEQ(wh)) 1646 qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0]; 1647 else 1648 qos = 0; 1649 ac = M_WME_GETAC(m0); 1650 1651 if (m0->m_flags & M_EAPOL) 1652 rate = tp->mgmtrate; 1653 else if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 1654 rate = tp->mcastrate; 1655 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 1656 rate = tp->ucastrate; 1657 else { 1658 (void) ieee80211_ratectl_rate(ni, NULL, 0); 1659 rate = ni->ni_txrate; 1660 } 1661 1662 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1663 k = ieee80211_crypto_get_txkey(ni, m0); 1664 if (k == NULL) { 1665 m_freem(m0); 1666 return (ENOENT); 1667 } 1668 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) && 1669 !k->wk_cipher->ic_encap(k, m0)) { 1670 m_freem(m0); 1671 return (ENOBUFS); 1672 } 1673 1674 /* packet header may have moved, reset our local pointer */ 1675 wh = mtod(m0, struct ieee80211_frame *); 1676 } 1677 1678 if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh)) 1679 xflags |= RT2573_TX_HWSEQ; 1680 1681 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1682 int prot = IEEE80211_PROT_NONE; 1683 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) 1684 prot = IEEE80211_PROT_RTSCTS; 1685 else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1686 ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) 1687 prot = ic->ic_protmode; 1688 if (prot != IEEE80211_PROT_NONE) { 1689 error = rum_sendprot(sc, m0, ni, prot, rate); 1690 if (error || sc->tx_nfree == 0) { 1691 m_freem(m0); 1692 return ENOBUFS; 1693 } 1694 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS; 1695 } 1696 } 1697 1698 if (k != NULL) 1699 flags |= rum_tx_crypto_flags(sc, ni, k); 1700 1701 data = STAILQ_FIRST(&sc->tx_free); 1702 STAILQ_REMOVE_HEAD(&sc->tx_free, next); 1703 sc->tx_nfree--; 1704 1705 data->m = m0; 1706 data->ni = ni; 1707 data->rate = rate; 1708 1709 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1710 /* Unicast frame, check if an ACK is expected. */ 1711 if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) != 1712 IEEE80211_QOS_ACKPOLICY_NOACK) 1713 flags |= RT2573_TX_NEED_ACK; 1714 1715 dur = ieee80211_ack_duration(ic->ic_rt, rate, 1716 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 1717 USETW(wh->i_dur, dur); 1718 } 1719 1720 rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen, 1721 m0->m_pkthdr.len, rate); 1722 1723 DPRINTFN(10, "sending frame len=%d rate=%d\n", 1724 m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate); 1725 1726 STAILQ_INSERT_TAIL(&sc->tx_q, data, next); 1727 usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]); 1728 1729 return 0; 1730 } 1731 1732 static int 1733 rum_transmit(struct ieee80211com *ic, struct mbuf *m) 1734 { 1735 struct rum_softc *sc = ic->ic_softc; 1736 int error; 1737 1738 RUM_LOCK(sc); 1739 if (!sc->sc_running) { 1740 RUM_UNLOCK(sc); 1741 return (ENXIO); 1742 } 1743 error = mbufq_enqueue(&sc->sc_snd, m); 1744 if (error) { 1745 RUM_UNLOCK(sc); 1746 return (error); 1747 } 1748 rum_start(sc); 1749 RUM_UNLOCK(sc); 1750 1751 return (0); 1752 } 1753 1754 static void 1755 rum_start(struct rum_softc *sc) 1756 { 1757 struct ieee80211_node *ni; 1758 struct mbuf *m; 1759 1760 RUM_LOCK_ASSERT(sc); 1761 1762 if (!sc->sc_running) 1763 return; 1764 1765 while (sc->tx_nfree >= RUM_TX_MINFREE && 1766 (m = mbufq_dequeue(&sc->sc_snd)) != NULL) { 1767 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1768 if (rum_tx_data(sc, m, ni) != 0) { 1769 if_inc_counter(ni->ni_vap->iv_ifp, 1770 IFCOUNTER_OERRORS, 1); 1771 ieee80211_free_node(ni); 1772 break; 1773 } 1774 } 1775 } 1776 1777 static void 1778 rum_parent(struct ieee80211com *ic) 1779 { 1780 struct rum_softc *sc = ic->ic_softc; 1781 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 1782 1783 RUM_LOCK(sc); 1784 if (sc->sc_detached) { 1785 RUM_UNLOCK(sc); 1786 return; 1787 } 1788 RUM_UNLOCK(sc); 1789 1790 if (ic->ic_nrunning > 0) { 1791 if (rum_init(sc) == 0) 1792 ieee80211_start_all(ic); 1793 else 1794 ieee80211_stop(vap); 1795 } else 1796 rum_stop(sc); 1797 } 1798 1799 static void 1800 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len) 1801 { 1802 struct usb_device_request req; 1803 usb_error_t error; 1804 1805 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1806 req.bRequest = RT2573_READ_EEPROM; 1807 USETW(req.wValue, 0); 1808 USETW(req.wIndex, addr); 1809 USETW(req.wLength, len); 1810 1811 error = rum_do_request(sc, &req, buf); 1812 if (error != 0) { 1813 device_printf(sc->sc_dev, "could not read EEPROM: %s\n", 1814 usbd_errstr(error)); 1815 } 1816 } 1817 1818 static uint32_t 1819 rum_read(struct rum_softc *sc, uint16_t reg) 1820 { 1821 uint32_t val; 1822 1823 rum_read_multi(sc, reg, &val, sizeof val); 1824 1825 return le32toh(val); 1826 } 1827 1828 static void 1829 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len) 1830 { 1831 struct usb_device_request req; 1832 usb_error_t error; 1833 1834 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1835 req.bRequest = RT2573_READ_MULTI_MAC; 1836 USETW(req.wValue, 0); 1837 USETW(req.wIndex, reg); 1838 USETW(req.wLength, len); 1839 1840 error = rum_do_request(sc, &req, buf); 1841 if (error != 0) { 1842 device_printf(sc->sc_dev, 1843 "could not multi read MAC register: %s\n", 1844 usbd_errstr(error)); 1845 } 1846 } 1847 1848 static usb_error_t 1849 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val) 1850 { 1851 uint32_t tmp = htole32(val); 1852 1853 return (rum_write_multi(sc, reg, &tmp, sizeof tmp)); 1854 } 1855 1856 static usb_error_t 1857 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len) 1858 { 1859 struct usb_device_request req; 1860 usb_error_t error; 1861 size_t offset; 1862 1863 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1864 req.bRequest = RT2573_WRITE_MULTI_MAC; 1865 USETW(req.wValue, 0); 1866 1867 /* write at most 64 bytes at a time */ 1868 for (offset = 0; offset < len; offset += 64) { 1869 USETW(req.wIndex, reg + offset); 1870 USETW(req.wLength, MIN(len - offset, 64)); 1871 1872 error = rum_do_request(sc, &req, (char *)buf + offset); 1873 if (error != 0) { 1874 device_printf(sc->sc_dev, 1875 "could not multi write MAC register: %s\n", 1876 usbd_errstr(error)); 1877 return (error); 1878 } 1879 } 1880 1881 return (USB_ERR_NORMAL_COMPLETION); 1882 } 1883 1884 static usb_error_t 1885 rum_setbits(struct rum_softc *sc, uint16_t reg, uint32_t mask) 1886 { 1887 return (rum_write(sc, reg, rum_read(sc, reg) | mask)); 1888 } 1889 1890 static usb_error_t 1891 rum_clrbits(struct rum_softc *sc, uint16_t reg, uint32_t mask) 1892 { 1893 return (rum_write(sc, reg, rum_read(sc, reg) & ~mask)); 1894 } 1895 1896 static usb_error_t 1897 rum_modbits(struct rum_softc *sc, uint16_t reg, uint32_t set, uint32_t unset) 1898 { 1899 return (rum_write(sc, reg, (rum_read(sc, reg) & ~unset) | set)); 1900 } 1901 1902 static int 1903 rum_bbp_busy(struct rum_softc *sc) 1904 { 1905 int ntries; 1906 1907 for (ntries = 0; ntries < 100; ntries++) { 1908 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY)) 1909 break; 1910 if (rum_pause(sc, hz / 100)) 1911 break; 1912 } 1913 if (ntries == 100) 1914 return (ETIMEDOUT); 1915 1916 return (0); 1917 } 1918 1919 static void 1920 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val) 1921 { 1922 uint32_t tmp; 1923 1924 DPRINTFN(2, "reg=0x%08x\n", reg); 1925 1926 if (rum_bbp_busy(sc) != 0) { 1927 device_printf(sc->sc_dev, "could not write to BBP\n"); 1928 return; 1929 } 1930 1931 tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val; 1932 rum_write(sc, RT2573_PHY_CSR3, tmp); 1933 } 1934 1935 static uint8_t 1936 rum_bbp_read(struct rum_softc *sc, uint8_t reg) 1937 { 1938 uint32_t val; 1939 int ntries; 1940 1941 DPRINTFN(2, "reg=0x%08x\n", reg); 1942 1943 if (rum_bbp_busy(sc) != 0) { 1944 device_printf(sc->sc_dev, "could not read BBP\n"); 1945 return 0; 1946 } 1947 1948 val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8; 1949 rum_write(sc, RT2573_PHY_CSR3, val); 1950 1951 for (ntries = 0; ntries < 100; ntries++) { 1952 val = rum_read(sc, RT2573_PHY_CSR3); 1953 if (!(val & RT2573_BBP_BUSY)) 1954 return val & 0xff; 1955 if (rum_pause(sc, hz / 100)) 1956 break; 1957 } 1958 1959 device_printf(sc->sc_dev, "could not read BBP\n"); 1960 return 0; 1961 } 1962 1963 static void 1964 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val) 1965 { 1966 uint32_t tmp; 1967 int ntries; 1968 1969 for (ntries = 0; ntries < 100; ntries++) { 1970 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY)) 1971 break; 1972 if (rum_pause(sc, hz / 100)) 1973 break; 1974 } 1975 if (ntries == 100) { 1976 device_printf(sc->sc_dev, "could not write to RF\n"); 1977 return; 1978 } 1979 1980 tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 | 1981 (reg & 3); 1982 rum_write(sc, RT2573_PHY_CSR4, tmp); 1983 1984 /* remember last written value in sc */ 1985 sc->rf_regs[reg] = val; 1986 1987 DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff); 1988 } 1989 1990 static void 1991 rum_select_antenna(struct rum_softc *sc) 1992 { 1993 uint8_t bbp4, bbp77; 1994 uint32_t tmp; 1995 1996 bbp4 = rum_bbp_read(sc, 4); 1997 bbp77 = rum_bbp_read(sc, 77); 1998 1999 /* TBD */ 2000 2001 /* make sure Rx is disabled before switching antenna */ 2002 tmp = rum_read(sc, RT2573_TXRX_CSR0); 2003 rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX); 2004 2005 rum_bbp_write(sc, 4, bbp4); 2006 rum_bbp_write(sc, 77, bbp77); 2007 2008 rum_write(sc, RT2573_TXRX_CSR0, tmp); 2009 } 2010 2011 /* 2012 * Enable multi-rate retries for frames sent at OFDM rates. 2013 * In 802.11b/g mode, allow fallback to CCK rates. 2014 */ 2015 static void 2016 rum_enable_mrr(struct rum_softc *sc) 2017 { 2018 struct ieee80211com *ic = &sc->sc_ic; 2019 2020 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) { 2021 rum_setbits(sc, RT2573_TXRX_CSR4, 2022 RT2573_MRR_ENABLED | RT2573_MRR_CCK_FALLBACK); 2023 } else { 2024 rum_modbits(sc, RT2573_TXRX_CSR4, 2025 RT2573_MRR_ENABLED, RT2573_MRR_CCK_FALLBACK); 2026 } 2027 } 2028 2029 static void 2030 rum_set_txpreamble(struct rum_softc *sc) 2031 { 2032 struct ieee80211com *ic = &sc->sc_ic; 2033 2034 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 2035 rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE); 2036 else 2037 rum_clrbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE); 2038 } 2039 2040 static void 2041 rum_set_basicrates(struct rum_softc *sc) 2042 { 2043 struct ieee80211com *ic = &sc->sc_ic; 2044 2045 /* update basic rate set */ 2046 if (ic->ic_curmode == IEEE80211_MODE_11B) { 2047 /* 11b basic rates: 1, 2Mbps */ 2048 rum_write(sc, RT2573_TXRX_CSR5, 0x3); 2049 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) { 2050 /* 11a basic rates: 6, 12, 24Mbps */ 2051 rum_write(sc, RT2573_TXRX_CSR5, 0x150); 2052 } else { 2053 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */ 2054 rum_write(sc, RT2573_TXRX_CSR5, 0xf); 2055 } 2056 } 2057 2058 /* 2059 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference 2060 * driver. 2061 */ 2062 static void 2063 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c) 2064 { 2065 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; 2066 2067 /* update all BBP registers that depend on the band */ 2068 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; 2069 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; 2070 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2071 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; 2072 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; 2073 } 2074 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 2075 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 2076 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; 2077 } 2078 2079 sc->bbp17 = bbp17; 2080 rum_bbp_write(sc, 17, bbp17); 2081 rum_bbp_write(sc, 96, bbp96); 2082 rum_bbp_write(sc, 104, bbp104); 2083 2084 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 2085 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 2086 rum_bbp_write(sc, 75, 0x80); 2087 rum_bbp_write(sc, 86, 0x80); 2088 rum_bbp_write(sc, 88, 0x80); 2089 } 2090 2091 rum_bbp_write(sc, 35, bbp35); 2092 rum_bbp_write(sc, 97, bbp97); 2093 rum_bbp_write(sc, 98, bbp98); 2094 2095 if (IEEE80211_IS_CHAN_2GHZ(c)) { 2096 rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_2GHZ, 2097 RT2573_PA_PE_5GHZ); 2098 } else { 2099 rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_5GHZ, 2100 RT2573_PA_PE_2GHZ); 2101 } 2102 } 2103 2104 static void 2105 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c) 2106 { 2107 struct ieee80211com *ic = &sc->sc_ic; 2108 const struct rfprog *rfprog; 2109 uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT; 2110 int8_t power; 2111 int i, chan; 2112 2113 chan = ieee80211_chan2ieee(ic, c); 2114 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 2115 return; 2116 2117 /* select the appropriate RF settings based on what EEPROM says */ 2118 rfprog = (sc->rf_rev == RT2573_RF_5225 || 2119 sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226; 2120 2121 /* find the settings for this channel (we know it exists) */ 2122 for (i = 0; rfprog[i].chan != chan; i++); 2123 2124 power = sc->txpow[i]; 2125 if (power < 0) { 2126 bbp94 += power; 2127 power = 0; 2128 } else if (power > 31) { 2129 bbp94 += power - 31; 2130 power = 31; 2131 } 2132 2133 /* 2134 * If we are switching from the 2GHz band to the 5GHz band or 2135 * vice-versa, BBP registers need to be reprogrammed. 2136 */ 2137 if (c->ic_flags != ic->ic_curchan->ic_flags) { 2138 rum_select_band(sc, c); 2139 rum_select_antenna(sc); 2140 } 2141 ic->ic_curchan = c; 2142 2143 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 2144 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 2145 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 2146 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 2147 2148 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 2149 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 2150 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1); 2151 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 2152 2153 rum_rf_write(sc, RT2573_RF1, rfprog[i].r1); 2154 rum_rf_write(sc, RT2573_RF2, rfprog[i].r2); 2155 rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7); 2156 rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10); 2157 2158 rum_pause(sc, hz / 100); 2159 2160 /* enable smart mode for MIMO-capable RFs */ 2161 bbp3 = rum_bbp_read(sc, 3); 2162 2163 bbp3 &= ~RT2573_SMART_MODE; 2164 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527) 2165 bbp3 |= RT2573_SMART_MODE; 2166 2167 rum_bbp_write(sc, 3, bbp3); 2168 2169 if (bbp94 != RT2573_BBPR94_DEFAULT) 2170 rum_bbp_write(sc, 94, bbp94); 2171 2172 /* give the chip some extra time to do the switchover */ 2173 rum_pause(sc, hz / 100); 2174 } 2175 2176 static void 2177 rum_set_maxretry(struct rum_softc *sc, struct ieee80211vap *vap) 2178 { 2179 struct ieee80211_node *ni = vap->iv_bss; 2180 const struct ieee80211_txparam *tp = ni->ni_txparms; 2181 struct rum_vap *rvp = RUM_VAP(vap); 2182 2183 rvp->maxretry = MIN(tp->maxretry, 0xf); 2184 2185 rum_modbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_RETRY(rvp->maxretry) | 2186 RT2573_LONG_RETRY(rvp->maxretry), 2187 RT2573_SHORT_RETRY_MASK | RT2573_LONG_RETRY_MASK); 2188 } 2189 2190 /* 2191 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS 2192 * and HostAP operating modes. 2193 */ 2194 static int 2195 rum_enable_tsf_sync(struct rum_softc *sc) 2196 { 2197 struct ieee80211com *ic = &sc->sc_ic; 2198 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2199 uint32_t tmp; 2200 uint16_t bintval; 2201 2202 if (vap->iv_opmode != IEEE80211_M_STA) { 2203 /* 2204 * Change default 16ms TBTT adjustment to 8ms. 2205 * Must be done before enabling beacon generation. 2206 */ 2207 if (rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8) != 0) 2208 return EIO; 2209 } 2210 2211 tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000; 2212 2213 /* set beacon interval (in 1/16ms unit) */ 2214 bintval = vap->iv_bss->ni_intval; 2215 tmp |= bintval * 16; 2216 tmp |= RT2573_TSF_TIMER_EN | RT2573_TBTT_TIMER_EN; 2217 2218 switch (vap->iv_opmode) { 2219 case IEEE80211_M_STA: 2220 /* 2221 * Local TSF is always updated with remote TSF on beacon 2222 * reception. 2223 */ 2224 tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_STA); 2225 break; 2226 case IEEE80211_M_IBSS: 2227 /* 2228 * Local TSF is updated with remote TSF on beacon reception 2229 * only if the remote TSF is greater than local TSF. 2230 */ 2231 tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_IBSS); 2232 tmp |= RT2573_BCN_TX_EN; 2233 break; 2234 case IEEE80211_M_HOSTAP: 2235 /* SYNC with nobody */ 2236 tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_HOSTAP); 2237 tmp |= RT2573_BCN_TX_EN; 2238 break; 2239 default: 2240 device_printf(sc->sc_dev, 2241 "Enabling TSF failed. undefined opmode %d\n", 2242 vap->iv_opmode); 2243 return EINVAL; 2244 } 2245 2246 if (rum_write(sc, RT2573_TXRX_CSR9, tmp) != 0) 2247 return EIO; 2248 2249 /* refresh current sleep time */ 2250 return (rum_set_sleep_time(sc, bintval)); 2251 } 2252 2253 static void 2254 rum_enable_tsf(struct rum_softc *sc) 2255 { 2256 rum_modbits(sc, RT2573_TXRX_CSR9, RT2573_TSF_TIMER_EN | 2257 RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_DIS), 0x00ffffff); 2258 } 2259 2260 static void 2261 rum_abort_tsf_sync(struct rum_softc *sc) 2262 { 2263 rum_clrbits(sc, RT2573_TXRX_CSR9, 0x00ffffff); 2264 } 2265 2266 static void 2267 rum_get_tsf(struct rum_softc *sc, uint64_t *buf) 2268 { 2269 rum_read_multi(sc, RT2573_TXRX_CSR12, buf, sizeof (*buf)); 2270 } 2271 2272 static void 2273 rum_update_slot_cb(struct rum_softc *sc, union sec_param *data, uint8_t rvp_id) 2274 { 2275 struct ieee80211com *ic = &sc->sc_ic; 2276 uint8_t slottime; 2277 2278 slottime = IEEE80211_GET_SLOTTIME(ic); 2279 2280 rum_modbits(sc, RT2573_MAC_CSR9, slottime, 0xff); 2281 2282 DPRINTF("setting slot time to %uus\n", slottime); 2283 } 2284 2285 static void 2286 rum_update_slot(struct ieee80211com *ic) 2287 { 2288 rum_cmd_sleepable(ic->ic_softc, NULL, 0, 0, rum_update_slot_cb); 2289 } 2290 2291 static int 2292 rum_wme_update(struct ieee80211com *ic) 2293 { 2294 struct chanAccParams chp; 2295 const struct wmeParams *chanp; 2296 struct rum_softc *sc = ic->ic_softc; 2297 int error = 0; 2298 2299 ieee80211_wme_ic_getparams(ic, &chp); 2300 chanp = chp.cap_wmeParams; 2301 2302 RUM_LOCK(sc); 2303 error = rum_write(sc, RT2573_AIFSN_CSR, 2304 chanp[WME_AC_VO].wmep_aifsn << 12 | 2305 chanp[WME_AC_VI].wmep_aifsn << 8 | 2306 chanp[WME_AC_BK].wmep_aifsn << 4 | 2307 chanp[WME_AC_BE].wmep_aifsn); 2308 if (error) 2309 goto print_err; 2310 error = rum_write(sc, RT2573_CWMIN_CSR, 2311 chanp[WME_AC_VO].wmep_logcwmin << 12 | 2312 chanp[WME_AC_VI].wmep_logcwmin << 8 | 2313 chanp[WME_AC_BK].wmep_logcwmin << 4 | 2314 chanp[WME_AC_BE].wmep_logcwmin); 2315 if (error) 2316 goto print_err; 2317 error = rum_write(sc, RT2573_CWMAX_CSR, 2318 chanp[WME_AC_VO].wmep_logcwmax << 12 | 2319 chanp[WME_AC_VI].wmep_logcwmax << 8 | 2320 chanp[WME_AC_BK].wmep_logcwmax << 4 | 2321 chanp[WME_AC_BE].wmep_logcwmax); 2322 if (error) 2323 goto print_err; 2324 error = rum_write(sc, RT2573_TXOP01_CSR, 2325 chanp[WME_AC_BK].wmep_txopLimit << 16 | 2326 chanp[WME_AC_BE].wmep_txopLimit); 2327 if (error) 2328 goto print_err; 2329 error = rum_write(sc, RT2573_TXOP23_CSR, 2330 chanp[WME_AC_VO].wmep_txopLimit << 16 | 2331 chanp[WME_AC_VI].wmep_txopLimit); 2332 if (error) 2333 goto print_err; 2334 2335 memcpy(sc->wme_params, chanp, sizeof(*chanp) * WME_NUM_AC); 2336 2337 print_err: 2338 RUM_UNLOCK(sc); 2339 if (error != 0) { 2340 device_printf(sc->sc_dev, "%s: WME update failed, error %d\n", 2341 __func__, error); 2342 } 2343 2344 return (error); 2345 } 2346 2347 static void 2348 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid) 2349 { 2350 2351 rum_write(sc, RT2573_MAC_CSR4, 2352 bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24); 2353 rum_write(sc, RT2573_MAC_CSR5, 2354 bssid[4] | bssid[5] << 8 | RT2573_NUM_BSSID_MSK(1)); 2355 } 2356 2357 static void 2358 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr) 2359 { 2360 2361 rum_write(sc, RT2573_MAC_CSR2, 2362 addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24); 2363 rum_write(sc, RT2573_MAC_CSR3, 2364 addr[4] | addr[5] << 8 | 0xff << 16); 2365 } 2366 2367 static void 2368 rum_setpromisc(struct rum_softc *sc) 2369 { 2370 struct ieee80211com *ic = &sc->sc_ic; 2371 2372 if (ic->ic_promisc == 0) 2373 rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME); 2374 else 2375 rum_clrbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME); 2376 2377 DPRINTF("%s promiscuous mode\n", ic->ic_promisc > 0 ? 2378 "entering" : "leaving"); 2379 } 2380 2381 static void 2382 rum_update_promisc(struct ieee80211com *ic) 2383 { 2384 struct rum_softc *sc = ic->ic_softc; 2385 2386 RUM_LOCK(sc); 2387 if (sc->sc_running) 2388 rum_setpromisc(sc); 2389 RUM_UNLOCK(sc); 2390 } 2391 2392 static void 2393 rum_update_mcast(struct ieee80211com *ic) 2394 { 2395 /* Ignore. */ 2396 } 2397 2398 static const char * 2399 rum_get_rf(int rev) 2400 { 2401 switch (rev) { 2402 case RT2573_RF_2527: return "RT2527 (MIMO XR)"; 2403 case RT2573_RF_2528: return "RT2528"; 2404 case RT2573_RF_5225: return "RT5225 (MIMO XR)"; 2405 case RT2573_RF_5226: return "RT5226"; 2406 default: return "unknown"; 2407 } 2408 } 2409 2410 static void 2411 rum_read_eeprom(struct rum_softc *sc) 2412 { 2413 uint16_t val; 2414 #ifdef RUM_DEBUG 2415 int i; 2416 #endif 2417 2418 /* read MAC address */ 2419 rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, sc->sc_ic.ic_macaddr, 6); 2420 2421 rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2); 2422 val = le16toh(val); 2423 sc->rf_rev = (val >> 11) & 0x1f; 2424 sc->hw_radio = (val >> 10) & 0x1; 2425 sc->rx_ant = (val >> 4) & 0x3; 2426 sc->tx_ant = (val >> 2) & 0x3; 2427 sc->nb_ant = val & 0x3; 2428 2429 DPRINTF("RF revision=%d\n", sc->rf_rev); 2430 2431 rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2); 2432 val = le16toh(val); 2433 sc->ext_5ghz_lna = (val >> 6) & 0x1; 2434 sc->ext_2ghz_lna = (val >> 4) & 0x1; 2435 2436 DPRINTF("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", 2437 sc->ext_2ghz_lna, sc->ext_5ghz_lna); 2438 2439 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2); 2440 val = le16toh(val); 2441 if ((val & 0xff) != 0xff) 2442 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ 2443 2444 /* Only [-10, 10] is valid */ 2445 if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10) 2446 sc->rssi_2ghz_corr = 0; 2447 2448 rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2); 2449 val = le16toh(val); 2450 if ((val & 0xff) != 0xff) 2451 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ 2452 2453 /* Only [-10, 10] is valid */ 2454 if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10) 2455 sc->rssi_5ghz_corr = 0; 2456 2457 if (sc->ext_2ghz_lna) 2458 sc->rssi_2ghz_corr -= 14; 2459 if (sc->ext_5ghz_lna) 2460 sc->rssi_5ghz_corr -= 14; 2461 2462 DPRINTF("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", 2463 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr); 2464 2465 rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2); 2466 val = le16toh(val); 2467 if ((val & 0xff) != 0xff) 2468 sc->rffreq = val & 0xff; 2469 2470 DPRINTF("RF freq=%d\n", sc->rffreq); 2471 2472 /* read Tx power for all a/b/g channels */ 2473 rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14); 2474 /* XXX default Tx power for 802.11a channels */ 2475 memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14); 2476 #ifdef RUM_DEBUG 2477 for (i = 0; i < 14; i++) 2478 DPRINTF("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]); 2479 #endif 2480 2481 /* read default values for BBP registers */ 2482 rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16); 2483 #ifdef RUM_DEBUG 2484 for (i = 0; i < 14; i++) { 2485 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 2486 continue; 2487 DPRINTF("BBP R%d=%02x\n", sc->bbp_prom[i].reg, 2488 sc->bbp_prom[i].val); 2489 } 2490 #endif 2491 } 2492 2493 static int 2494 rum_bbp_wakeup(struct rum_softc *sc) 2495 { 2496 unsigned int ntries; 2497 2498 for (ntries = 0; ntries < 100; ntries++) { 2499 if (rum_read(sc, RT2573_MAC_CSR12) & 8) 2500 break; 2501 rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */ 2502 if (rum_pause(sc, hz / 100)) 2503 break; 2504 } 2505 if (ntries == 100) { 2506 device_printf(sc->sc_dev, 2507 "timeout waiting for BBP/RF to wakeup\n"); 2508 return (ETIMEDOUT); 2509 } 2510 2511 return (0); 2512 } 2513 2514 static int 2515 rum_bbp_init(struct rum_softc *sc) 2516 { 2517 int i, ntries; 2518 2519 /* wait for BBP to be ready */ 2520 for (ntries = 0; ntries < 100; ntries++) { 2521 const uint8_t val = rum_bbp_read(sc, 0); 2522 if (val != 0 && val != 0xff) 2523 break; 2524 if (rum_pause(sc, hz / 100)) 2525 break; 2526 } 2527 if (ntries == 100) { 2528 device_printf(sc->sc_dev, "timeout waiting for BBP\n"); 2529 return EIO; 2530 } 2531 2532 /* initialize BBP registers to default values */ 2533 for (i = 0; i < nitems(rum_def_bbp); i++) 2534 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val); 2535 2536 /* write vendor-specific BBP values (from EEPROM) */ 2537 for (i = 0; i < 16; i++) { 2538 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff) 2539 continue; 2540 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 2541 } 2542 2543 return 0; 2544 } 2545 2546 static void 2547 rum_clr_shkey_regs(struct rum_softc *sc) 2548 { 2549 rum_write(sc, RT2573_SEC_CSR0, 0); 2550 rum_write(sc, RT2573_SEC_CSR1, 0); 2551 rum_write(sc, RT2573_SEC_CSR5, 0); 2552 } 2553 2554 static int 2555 rum_init(struct rum_softc *sc) 2556 { 2557 struct ieee80211com *ic = &sc->sc_ic; 2558 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2559 uint32_t tmp; 2560 int i, ret; 2561 2562 RUM_LOCK(sc); 2563 if (sc->sc_running) { 2564 ret = 0; 2565 goto end; 2566 } 2567 2568 /* initialize MAC registers to default values */ 2569 for (i = 0; i < nitems(rum_def_mac); i++) 2570 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val); 2571 2572 /* reset some WME parameters to default values */ 2573 sc->wme_params[0].wmep_aifsn = 2; 2574 sc->wme_params[0].wmep_logcwmin = 4; 2575 sc->wme_params[0].wmep_logcwmax = 10; 2576 2577 /* set host ready */ 2578 rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP); 2579 rum_write(sc, RT2573_MAC_CSR1, 0); 2580 2581 /* wait for BBP/RF to wakeup */ 2582 if ((ret = rum_bbp_wakeup(sc)) != 0) 2583 goto end; 2584 2585 if ((ret = rum_bbp_init(sc)) != 0) 2586 goto end; 2587 2588 /* select default channel */ 2589 rum_select_band(sc, ic->ic_curchan); 2590 rum_select_antenna(sc); 2591 rum_set_chan(sc, ic->ic_curchan); 2592 2593 /* clear STA registers */ 2594 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 2595 2596 /* clear security registers (if required) */ 2597 if (sc->sc_clr_shkeys == 0) { 2598 rum_clr_shkey_regs(sc); 2599 sc->sc_clr_shkeys = 1; 2600 } 2601 2602 rum_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr); 2603 2604 /* initialize ASIC */ 2605 rum_write(sc, RT2573_MAC_CSR1, RT2573_HOST_READY); 2606 2607 /* 2608 * Allocate Tx and Rx xfer queues. 2609 */ 2610 rum_setup_tx_list(sc); 2611 2612 /* update Rx filter */ 2613 tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff; 2614 2615 tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR; 2616 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2617 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR | 2618 RT2573_DROP_ACKCTS; 2619 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2620 tmp |= RT2573_DROP_TODS; 2621 if (ic->ic_promisc == 0) 2622 tmp |= RT2573_DROP_NOT_TO_ME; 2623 } 2624 rum_write(sc, RT2573_TXRX_CSR0, tmp); 2625 2626 sc->sc_running = 1; 2627 usbd_xfer_set_stall(sc->sc_xfer[RUM_BULK_WR]); 2628 usbd_transfer_start(sc->sc_xfer[RUM_BULK_RD]); 2629 2630 end: RUM_UNLOCK(sc); 2631 2632 if (ret != 0) 2633 rum_stop(sc); 2634 2635 return ret; 2636 } 2637 2638 static void 2639 rum_stop(struct rum_softc *sc) 2640 { 2641 2642 RUM_LOCK(sc); 2643 if (!sc->sc_running) { 2644 RUM_UNLOCK(sc); 2645 return; 2646 } 2647 sc->sc_running = 0; 2648 RUM_UNLOCK(sc); 2649 2650 /* 2651 * Drain the USB transfers, if not already drained: 2652 */ 2653 usbd_transfer_drain(sc->sc_xfer[RUM_BULK_WR]); 2654 usbd_transfer_drain(sc->sc_xfer[RUM_BULK_RD]); 2655 2656 RUM_LOCK(sc); 2657 rum_unsetup_tx_list(sc); 2658 2659 /* disable Rx */ 2660 rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DISABLE_RX); 2661 2662 /* reset ASIC */ 2663 rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP); 2664 rum_write(sc, RT2573_MAC_CSR1, 0); 2665 RUM_UNLOCK(sc); 2666 } 2667 2668 static void 2669 rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size) 2670 { 2671 uint16_t reg = RT2573_MCU_CODE_BASE; 2672 usb_error_t err; 2673 2674 /* copy firmware image into NIC */ 2675 for (; size >= 4; reg += 4, ucode += 4, size -= 4) { 2676 err = rum_write(sc, reg, UGETDW(ucode)); 2677 if (err) { 2678 /* firmware already loaded ? */ 2679 device_printf(sc->sc_dev, "Firmware load " 2680 "failure! (ignored)\n"); 2681 break; 2682 } 2683 } 2684 2685 err = rum_do_mcu_request(sc, RT2573_MCU_RUN); 2686 if (err != USB_ERR_NORMAL_COMPLETION) { 2687 device_printf(sc->sc_dev, "could not run firmware: %s\n", 2688 usbd_errstr(err)); 2689 } 2690 2691 /* give the chip some time to boot */ 2692 rum_pause(sc, hz / 8); 2693 } 2694 2695 static int 2696 rum_set_sleep_time(struct rum_softc *sc, uint16_t bintval) 2697 { 2698 struct ieee80211com *ic = &sc->sc_ic; 2699 usb_error_t uerror; 2700 int exp, delay; 2701 2702 RUM_LOCK_ASSERT(sc); 2703 2704 exp = ic->ic_lintval / bintval; 2705 delay = ic->ic_lintval % bintval; 2706 2707 if (exp > RT2573_TBCN_EXP_MAX) 2708 exp = RT2573_TBCN_EXP_MAX; 2709 if (delay > RT2573_TBCN_DELAY_MAX) 2710 delay = RT2573_TBCN_DELAY_MAX; 2711 2712 uerror = rum_modbits(sc, RT2573_MAC_CSR11, 2713 RT2573_TBCN_EXP(exp) | 2714 RT2573_TBCN_DELAY(delay), 2715 RT2573_TBCN_EXP(RT2573_TBCN_EXP_MAX) | 2716 RT2573_TBCN_DELAY(RT2573_TBCN_DELAY_MAX)); 2717 2718 if (uerror != USB_ERR_NORMAL_COMPLETION) 2719 return (EIO); 2720 2721 sc->sc_sleep_time = IEEE80211_TU_TO_TICKS(exp * bintval + delay); 2722 2723 return (0); 2724 } 2725 2726 static int 2727 rum_reset(struct ieee80211vap *vap, u_long cmd) 2728 { 2729 struct ieee80211com *ic = vap->iv_ic; 2730 struct ieee80211_node *ni; 2731 struct rum_softc *sc = ic->ic_softc; 2732 int error; 2733 2734 switch (cmd) { 2735 case IEEE80211_IOC_POWERSAVE: 2736 case IEEE80211_IOC_PROTMODE: 2737 case IEEE80211_IOC_RTSTHRESHOLD: 2738 error = 0; 2739 break; 2740 case IEEE80211_IOC_POWERSAVESLEEP: 2741 ni = ieee80211_ref_node(vap->iv_bss); 2742 2743 RUM_LOCK(sc); 2744 error = rum_set_sleep_time(sc, ni->ni_intval); 2745 if (vap->iv_state == IEEE80211_S_SLEEP) { 2746 /* Use new values for wakeup timer. */ 2747 rum_clrbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP); 2748 rum_setbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP); 2749 } 2750 /* XXX send reassoc */ 2751 RUM_UNLOCK(sc); 2752 2753 ieee80211_free_node(ni); 2754 break; 2755 default: 2756 error = ENETRESET; 2757 break; 2758 } 2759 2760 return (error); 2761 } 2762 2763 static int 2764 rum_set_beacon(struct rum_softc *sc, struct ieee80211vap *vap) 2765 { 2766 struct ieee80211com *ic = vap->iv_ic; 2767 struct rum_vap *rvp = RUM_VAP(vap); 2768 struct mbuf *m = rvp->bcn_mbuf; 2769 const struct ieee80211_txparam *tp; 2770 struct rum_tx_desc desc; 2771 2772 RUM_LOCK_ASSERT(sc); 2773 2774 if (m == NULL) 2775 return EINVAL; 2776 if (ic->ic_bsschan == IEEE80211_CHAN_ANYC) 2777 return EINVAL; 2778 2779 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)]; 2780 rum_setup_tx_desc(sc, &desc, NULL, RT2573_TX_TIMESTAMP, 2781 RT2573_TX_HWSEQ, 0, 0, m->m_pkthdr.len, tp->mgmtrate); 2782 2783 /* copy the Tx descriptor into NIC memory */ 2784 if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0), (uint8_t *)&desc, 2785 RT2573_TX_DESC_SIZE) != 0) 2786 return EIO; 2787 2788 /* copy beacon header and payload into NIC memory */ 2789 if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0) + RT2573_TX_DESC_SIZE, 2790 mtod(m, uint8_t *), m->m_pkthdr.len) != 0) 2791 return EIO; 2792 2793 return 0; 2794 } 2795 2796 static int 2797 rum_alloc_beacon(struct rum_softc *sc, struct ieee80211vap *vap) 2798 { 2799 struct rum_vap *rvp = RUM_VAP(vap); 2800 struct ieee80211_node *ni = vap->iv_bss; 2801 struct mbuf *m; 2802 2803 if (ni->ni_chan == IEEE80211_CHAN_ANYC) 2804 return EINVAL; 2805 2806 m = ieee80211_beacon_alloc(ni); 2807 if (m == NULL) 2808 return ENOMEM; 2809 2810 if (rvp->bcn_mbuf != NULL) 2811 m_freem(rvp->bcn_mbuf); 2812 2813 rvp->bcn_mbuf = m; 2814 2815 return (rum_set_beacon(sc, vap)); 2816 } 2817 2818 static void 2819 rum_update_beacon_cb(struct rum_softc *sc, union sec_param *data, 2820 uint8_t rvp_id) 2821 { 2822 struct ieee80211vap *vap = data->vap; 2823 2824 rum_set_beacon(sc, vap); 2825 } 2826 2827 static void 2828 rum_update_beacon(struct ieee80211vap *vap, int item) 2829 { 2830 struct ieee80211com *ic = vap->iv_ic; 2831 struct rum_softc *sc = ic->ic_softc; 2832 struct rum_vap *rvp = RUM_VAP(vap); 2833 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 2834 struct ieee80211_node *ni = vap->iv_bss; 2835 struct mbuf *m = rvp->bcn_mbuf; 2836 int mcast = 0; 2837 2838 RUM_LOCK(sc); 2839 if (m == NULL) { 2840 m = ieee80211_beacon_alloc(ni); 2841 if (m == NULL) { 2842 device_printf(sc->sc_dev, 2843 "%s: could not allocate beacon frame\n", __func__); 2844 RUM_UNLOCK(sc); 2845 return; 2846 } 2847 rvp->bcn_mbuf = m; 2848 } 2849 2850 switch (item) { 2851 case IEEE80211_BEACON_ERP: 2852 rum_update_slot(ic); 2853 break; 2854 case IEEE80211_BEACON_TIM: 2855 mcast = 1; /*TODO*/ 2856 break; 2857 default: 2858 break; 2859 } 2860 RUM_UNLOCK(sc); 2861 2862 setbit(bo->bo_flags, item); 2863 ieee80211_beacon_update(ni, m, mcast); 2864 2865 rum_cmd_sleepable(sc, &vap, sizeof(vap), 0, rum_update_beacon_cb); 2866 } 2867 2868 static int 2869 rum_common_key_set(struct rum_softc *sc, struct ieee80211_key *k, 2870 uint16_t base) 2871 { 2872 2873 if (rum_write_multi(sc, base, k->wk_key, k->wk_keylen)) 2874 return EIO; 2875 2876 if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) { 2877 if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE, 2878 k->wk_txmic, 8)) 2879 return EIO; 2880 if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE + 8, 2881 k->wk_rxmic, 8)) 2882 return EIO; 2883 } 2884 2885 return 0; 2886 } 2887 2888 static void 2889 rum_group_key_set_cb(struct rum_softc *sc, union sec_param *data, 2890 uint8_t rvp_id) 2891 { 2892 struct ieee80211_key *k = &data->key; 2893 uint8_t mode; 2894 2895 if (sc->sc_clr_shkeys == 0) { 2896 rum_clr_shkey_regs(sc); 2897 sc->sc_clr_shkeys = 1; 2898 } 2899 2900 mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen); 2901 if (mode == 0) 2902 goto print_err; 2903 2904 DPRINTFN(1, "setting group key %d for vap %d, mode %d " 2905 "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode, 2906 (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off", 2907 (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off"); 2908 2909 /* Install the key. */ 2910 if (rum_common_key_set(sc, k, RT2573_SKEY(rvp_id, k->wk_keyix)) != 0) 2911 goto print_err; 2912 2913 /* Set cipher mode. */ 2914 if (rum_modbits(sc, rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5, 2915 mode << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX, 2916 RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX) 2917 != 0) 2918 goto print_err; 2919 2920 /* Mark this key as valid. */ 2921 if (rum_setbits(sc, RT2573_SEC_CSR0, 2922 1 << (rvp_id * RT2573_SKEY_MAX + k->wk_keyix)) != 0) 2923 goto print_err; 2924 2925 return; 2926 2927 print_err: 2928 device_printf(sc->sc_dev, "%s: cannot set group key %d for vap %d\n", 2929 __func__, k->wk_keyix, rvp_id); 2930 } 2931 2932 static void 2933 rum_group_key_del_cb(struct rum_softc *sc, union sec_param *data, 2934 uint8_t rvp_id) 2935 { 2936 struct ieee80211_key *k = &data->key; 2937 2938 DPRINTF("%s: removing group key %d for vap %d\n", __func__, 2939 k->wk_keyix, rvp_id); 2940 rum_clrbits(sc, 2941 rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5, 2942 RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX); 2943 rum_clrbits(sc, RT2573_SEC_CSR0, 2944 rvp_id * RT2573_SKEY_MAX + k->wk_keyix); 2945 } 2946 2947 static void 2948 rum_pair_key_set_cb(struct rum_softc *sc, union sec_param *data, 2949 uint8_t rvp_id) 2950 { 2951 struct ieee80211_key *k = &data->key; 2952 uint8_t buf[IEEE80211_ADDR_LEN + 1]; 2953 uint8_t mode; 2954 2955 mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen); 2956 if (mode == 0) 2957 goto print_err; 2958 2959 DPRINTFN(1, "setting pairwise key %d for vap %d, mode %d " 2960 "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode, 2961 (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off", 2962 (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off"); 2963 2964 /* Install the key. */ 2965 if (rum_common_key_set(sc, k, RT2573_PKEY(k->wk_keyix)) != 0) 2966 goto print_err; 2967 2968 IEEE80211_ADDR_COPY(buf, k->wk_macaddr); 2969 buf[IEEE80211_ADDR_LEN] = mode; 2970 2971 /* Set transmitter address and cipher mode. */ 2972 if (rum_write_multi(sc, RT2573_ADDR_ENTRY(k->wk_keyix), 2973 buf, sizeof buf) != 0) 2974 goto print_err; 2975 2976 /* Enable key table lookup for this vap. */ 2977 if (sc->vap_key_count[rvp_id]++ == 0) 2978 if (rum_setbits(sc, RT2573_SEC_CSR4, 1 << rvp_id) != 0) 2979 goto print_err; 2980 2981 /* Mark this key as valid. */ 2982 if (rum_setbits(sc, 2983 k->wk_keyix < 32 ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3, 2984 1 << (k->wk_keyix % 32)) != 0) 2985 goto print_err; 2986 2987 return; 2988 2989 print_err: 2990 device_printf(sc->sc_dev, 2991 "%s: cannot set pairwise key %d, vap %d\n", __func__, k->wk_keyix, 2992 rvp_id); 2993 } 2994 2995 static void 2996 rum_pair_key_del_cb(struct rum_softc *sc, union sec_param *data, 2997 uint8_t rvp_id) 2998 { 2999 struct ieee80211_key *k = &data->key; 3000 3001 DPRINTF("%s: removing key %d\n", __func__, k->wk_keyix); 3002 rum_clrbits(sc, (k->wk_keyix < 32) ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3, 3003 1 << (k->wk_keyix % 32)); 3004 sc->keys_bmap &= ~(1ULL << k->wk_keyix); 3005 if (--sc->vap_key_count[rvp_id] == 0) 3006 rum_clrbits(sc, RT2573_SEC_CSR4, 1 << rvp_id); 3007 } 3008 3009 static int 3010 rum_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k, 3011 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) 3012 { 3013 struct rum_softc *sc = vap->iv_ic->ic_softc; 3014 uint8_t i; 3015 3016 if (!(&vap->iv_nw_keys[0] <= k && 3017 k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) { 3018 if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) { 3019 RUM_LOCK(sc); 3020 for (i = 0; i < RT2573_ADDR_MAX; i++) { 3021 if ((sc->keys_bmap & (1ULL << i)) == 0) { 3022 sc->keys_bmap |= (1ULL << i); 3023 *keyix = i; 3024 break; 3025 } 3026 } 3027 RUM_UNLOCK(sc); 3028 if (i == RT2573_ADDR_MAX) { 3029 device_printf(sc->sc_dev, 3030 "%s: no free space in the key table\n", 3031 __func__); 3032 return 0; 3033 } 3034 } else 3035 *keyix = 0; 3036 } else { 3037 *keyix = ieee80211_crypto_get_key_wepidx(vap, k); 3038 } 3039 *rxkeyix = *keyix; 3040 return 1; 3041 } 3042 3043 static int 3044 rum_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k) 3045 { 3046 struct rum_softc *sc = vap->iv_ic->ic_softc; 3047 int group; 3048 3049 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 3050 /* Not for us. */ 3051 return 1; 3052 } 3053 3054 group = k >= &vap->iv_nw_keys[0] && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]; 3055 3056 return !rum_cmd_sleepable(sc, k, sizeof(*k), 0, 3057 group ? rum_group_key_set_cb : rum_pair_key_set_cb); 3058 } 3059 3060 static int 3061 rum_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k) 3062 { 3063 struct rum_softc *sc = vap->iv_ic->ic_softc; 3064 int group; 3065 3066 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 3067 /* Not for us. */ 3068 return 1; 3069 } 3070 3071 group = k >= &vap->iv_nw_keys[0] && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]; 3072 3073 return !rum_cmd_sleepable(sc, k, sizeof(*k), 0, 3074 group ? rum_group_key_del_cb : rum_pair_key_del_cb); 3075 } 3076 3077 static int 3078 rum_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 3079 const struct ieee80211_bpf_params *params) 3080 { 3081 struct rum_softc *sc = ni->ni_ic->ic_softc; 3082 int ret; 3083 3084 RUM_LOCK(sc); 3085 /* prevent management frames from being sent if we're not ready */ 3086 if (!sc->sc_running) { 3087 ret = ENETDOWN; 3088 goto bad; 3089 } 3090 if (sc->tx_nfree < RUM_TX_MINFREE) { 3091 ret = EIO; 3092 goto bad; 3093 } 3094 3095 if (params == NULL) { 3096 /* 3097 * Legacy path; interpret frame contents to decide 3098 * precisely how to send the frame. 3099 */ 3100 if ((ret = rum_tx_mgt(sc, m, ni)) != 0) 3101 goto bad; 3102 } else { 3103 /* 3104 * Caller supplied explicit parameters to use in 3105 * sending the frame. 3106 */ 3107 if ((ret = rum_tx_raw(sc, m, ni, params)) != 0) 3108 goto bad; 3109 } 3110 RUM_UNLOCK(sc); 3111 3112 return 0; 3113 bad: 3114 RUM_UNLOCK(sc); 3115 m_freem(m); 3116 return ret; 3117 } 3118 3119 static void 3120 rum_ratectl_start(struct rum_softc *sc, struct ieee80211_node *ni) 3121 { 3122 struct ieee80211vap *vap = ni->ni_vap; 3123 struct rum_vap *rvp = RUM_VAP(vap); 3124 3125 /* clear statistic registers (STA_CSR0 to STA_CSR5) */ 3126 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta); 3127 3128 usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp); 3129 } 3130 3131 static void 3132 rum_ratectl_timeout(void *arg) 3133 { 3134 struct rum_vap *rvp = arg; 3135 struct ieee80211vap *vap = &rvp->vap; 3136 struct ieee80211com *ic = vap->iv_ic; 3137 3138 ieee80211_runtask(ic, &rvp->ratectl_task); 3139 } 3140 3141 static void 3142 rum_ratectl_task(void *arg, int pending) 3143 { 3144 struct rum_vap *rvp = arg; 3145 struct ieee80211vap *vap = &rvp->vap; 3146 struct rum_softc *sc = vap->iv_ic->ic_softc; 3147 struct ieee80211_ratectl_tx_stats *txs = &sc->sc_txs; 3148 int ok[3], fail; 3149 3150 RUM_LOCK(sc); 3151 /* read and clear statistic registers (STA_CSR0 to STA_CSR5) */ 3152 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta)); 3153 3154 ok[0] = (le32toh(sc->sta[4]) & 0xffff); /* TX ok w/o retry */ 3155 ok[1] = (le32toh(sc->sta[4]) >> 16); /* TX ok w/ one retry */ 3156 ok[2] = (le32toh(sc->sta[5]) & 0xffff); /* TX ok w/ multiple retries */ 3157 fail = (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */ 3158 3159 txs->flags = IEEE80211_RATECTL_TX_STATS_RETRIES; 3160 txs->nframes = ok[0] + ok[1] + ok[2] + fail; 3161 txs->nsuccess = txs->nframes - fail; 3162 /* XXX at least */ 3163 txs->nretries = ok[1] + ok[2] * 2 + fail * (rvp->maxretry + 1); 3164 3165 if (txs->nframes != 0) 3166 ieee80211_ratectl_tx_update(vap, txs); 3167 3168 /* count TX retry-fail as Tx errors */ 3169 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, fail); 3170 3171 usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp); 3172 RUM_UNLOCK(sc); 3173 } 3174 3175 static void 3176 rum_scan_start(struct ieee80211com *ic) 3177 { 3178 struct rum_softc *sc = ic->ic_softc; 3179 3180 RUM_LOCK(sc); 3181 rum_abort_tsf_sync(sc); 3182 rum_set_bssid(sc, ieee80211broadcastaddr); 3183 RUM_UNLOCK(sc); 3184 3185 } 3186 3187 static void 3188 rum_scan_end(struct ieee80211com *ic) 3189 { 3190 struct rum_softc *sc = ic->ic_softc; 3191 3192 if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) { 3193 RUM_LOCK(sc); 3194 if (ic->ic_opmode != IEEE80211_M_AHDEMO) 3195 rum_enable_tsf_sync(sc); 3196 else 3197 rum_enable_tsf(sc); 3198 rum_set_bssid(sc, sc->sc_bssid); 3199 RUM_UNLOCK(sc); 3200 } 3201 } 3202 3203 static void 3204 rum_set_channel(struct ieee80211com *ic) 3205 { 3206 struct rum_softc *sc = ic->ic_softc; 3207 3208 RUM_LOCK(sc); 3209 rum_set_chan(sc, ic->ic_curchan); 3210 RUM_UNLOCK(sc); 3211 } 3212 3213 static void 3214 rum_getradiocaps(struct ieee80211com *ic, 3215 int maxchans, int *nchans, struct ieee80211_channel chans[]) 3216 { 3217 struct rum_softc *sc = ic->ic_softc; 3218 uint8_t bands[IEEE80211_MODE_BYTES]; 3219 3220 memset(bands, 0, sizeof(bands)); 3221 setbit(bands, IEEE80211_MODE_11B); 3222 setbit(bands, IEEE80211_MODE_11G); 3223 ieee80211_add_channel_list_2ghz(chans, maxchans, nchans, 3224 rum_chan_2ghz, nitems(rum_chan_2ghz), bands, 0); 3225 3226 if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) { 3227 setbit(bands, IEEE80211_MODE_11A); 3228 ieee80211_add_channel_list_5ghz(chans, maxchans, nchans, 3229 rum_chan_5ghz, nitems(rum_chan_5ghz), bands, 0); 3230 } 3231 } 3232 3233 static int 3234 rum_get_rssi(struct rum_softc *sc, uint8_t raw) 3235 { 3236 struct ieee80211com *ic = &sc->sc_ic; 3237 int lna, agc, rssi; 3238 3239 lna = (raw >> 5) & 0x3; 3240 agc = raw & 0x1f; 3241 3242 if (lna == 0) { 3243 /* 3244 * No RSSI mapping 3245 * 3246 * NB: Since RSSI is relative to noise floor, -1 is 3247 * adequate for caller to know error happened. 3248 */ 3249 return -1; 3250 } 3251 3252 rssi = (2 * agc) - RT2573_NOISE_FLOOR; 3253 3254 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 3255 rssi += sc->rssi_2ghz_corr; 3256 3257 if (lna == 1) 3258 rssi -= 64; 3259 else if (lna == 2) 3260 rssi -= 74; 3261 else if (lna == 3) 3262 rssi -= 90; 3263 } else { 3264 rssi += sc->rssi_5ghz_corr; 3265 3266 if (!sc->ext_5ghz_lna && lna != 1) 3267 rssi += 4; 3268 3269 if (lna == 1) 3270 rssi -= 64; 3271 else if (lna == 2) 3272 rssi -= 86; 3273 else if (lna == 3) 3274 rssi -= 100; 3275 } 3276 return rssi; 3277 } 3278 3279 static int 3280 rum_pause(struct rum_softc *sc, int timeout) 3281 { 3282 3283 usb_pause_mtx(&sc->sc_mtx, timeout); 3284 return (0); 3285 } 3286 3287 static device_method_t rum_methods[] = { 3288 /* Device interface */ 3289 DEVMETHOD(device_probe, rum_match), 3290 DEVMETHOD(device_attach, rum_attach), 3291 DEVMETHOD(device_detach, rum_detach), 3292 DEVMETHOD_END 3293 }; 3294 3295 static driver_t rum_driver = { 3296 .name = "rum", 3297 .methods = rum_methods, 3298 .size = sizeof(struct rum_softc), 3299 }; 3300 3301 static devclass_t rum_devclass; 3302 3303 DRIVER_MODULE(rum, uhub, rum_driver, rum_devclass, NULL, 0); 3304 MODULE_DEPEND(rum, wlan, 1, 1, 1); 3305 MODULE_DEPEND(rum, usb, 1, 1, 1); 3306 MODULE_VERSION(rum, 1); 3307 USB_PNP_HOST_INFO(rum_devs); 3308