xref: /freebsd/sys/dev/usb/wlan/if_rum.c (revision 130d950cafcd29c6a32cf5357bf600dcd9c1d998)
1 /*	$FreeBSD$	*/
2 
3 /*-
4  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
5  * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
6  * Copyright (c) 2007-2008 Hans Petter Selasky <hselasky@FreeBSD.org>
7  * Copyright (c) 2015 Andriy Voskoboinyk <avos@FreeBSD.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 #include <sys/cdefs.h>
23 __FBSDID("$FreeBSD$");
24 
25 /*-
26  * Ralink Technology RT2501USB/RT2601USB chipset driver
27  * http://www.ralinktech.com.tw/
28  */
29 
30 #include "opt_wlan.h"
31 
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/sysctl.h>
35 #include <sys/lock.h>
36 #include <sys/mutex.h>
37 #include <sys/mbuf.h>
38 #include <sys/kernel.h>
39 #include <sys/socket.h>
40 #include <sys/systm.h>
41 #include <sys/malloc.h>
42 #include <sys/module.h>
43 #include <sys/bus.h>
44 #include <sys/endian.h>
45 #include <sys/kdb.h>
46 
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_var.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 
56 #ifdef INET
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <netinet/if_ether.h>
61 #include <netinet/ip.h>
62 #endif
63 
64 #include <net80211/ieee80211_var.h>
65 #include <net80211/ieee80211_regdomain.h>
66 #include <net80211/ieee80211_radiotap.h>
67 #include <net80211/ieee80211_ratectl.h>
68 
69 #include <dev/usb/usb.h>
70 #include <dev/usb/usbdi.h>
71 #include "usbdevs.h"
72 
73 #define	USB_DEBUG_VAR rum_debug
74 #include <dev/usb/usb_debug.h>
75 
76 #include <dev/usb/wlan/if_rumreg.h>
77 #include <dev/usb/wlan/if_rumvar.h>
78 #include <dev/usb/wlan/if_rumfw.h>
79 
80 #ifdef USB_DEBUG
81 static int rum_debug = 0;
82 
83 static SYSCTL_NODE(_hw_usb, OID_AUTO, rum, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
84     "USB rum");
85 SYSCTL_INT(_hw_usb_rum, OID_AUTO, debug, CTLFLAG_RWTUN, &rum_debug, 0,
86     "Debug level");
87 #endif
88 
89 static const STRUCT_USB_HOST_ID rum_devs[] = {
90 #define	RUM_DEV(v,p)  { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
91     RUM_DEV(ABOCOM, HWU54DM),
92     RUM_DEV(ABOCOM, RT2573_2),
93     RUM_DEV(ABOCOM, RT2573_3),
94     RUM_DEV(ABOCOM, RT2573_4),
95     RUM_DEV(ABOCOM, WUG2700),
96     RUM_DEV(AMIT, CGWLUSB2GO),
97     RUM_DEV(ASUS, RT2573_1),
98     RUM_DEV(ASUS, RT2573_2),
99     RUM_DEV(BELKIN, F5D7050A),
100     RUM_DEV(BELKIN, F5D9050V3),
101     RUM_DEV(CISCOLINKSYS, WUSB54GC),
102     RUM_DEV(CISCOLINKSYS, WUSB54GR),
103     RUM_DEV(CONCEPTRONIC2, C54RU2),
104     RUM_DEV(COREGA, CGWLUSB2GL),
105     RUM_DEV(COREGA, CGWLUSB2GPX),
106     RUM_DEV(DICKSMITH, CWD854F),
107     RUM_DEV(DICKSMITH, RT2573),
108     RUM_DEV(EDIMAX, EW7318USG),
109     RUM_DEV(DLINK2, DWLG122C1),
110     RUM_DEV(DLINK2, WUA1340),
111     RUM_DEV(DLINK2, DWA111),
112     RUM_DEV(DLINK2, DWA110),
113     RUM_DEV(GIGABYTE, GNWB01GS),
114     RUM_DEV(GIGABYTE, GNWI05GS),
115     RUM_DEV(GIGASET, RT2573),
116     RUM_DEV(GOODWAY, RT2573),
117     RUM_DEV(GUILLEMOT, HWGUSB254LB),
118     RUM_DEV(GUILLEMOT, HWGUSB254V2AP),
119     RUM_DEV(HUAWEI3COM, WUB320G),
120     RUM_DEV(MELCO, G54HP),
121     RUM_DEV(MELCO, SG54HP),
122     RUM_DEV(MELCO, SG54HG),
123     RUM_DEV(MELCO, WLIUCG),
124     RUM_DEV(MELCO, WLRUCG),
125     RUM_DEV(MELCO, WLRUCGAOSS),
126     RUM_DEV(MSI, RT2573_1),
127     RUM_DEV(MSI, RT2573_2),
128     RUM_DEV(MSI, RT2573_3),
129     RUM_DEV(MSI, RT2573_4),
130     RUM_DEV(NOVATECH, RT2573),
131     RUM_DEV(PLANEX2, GWUS54HP),
132     RUM_DEV(PLANEX2, GWUS54MINI2),
133     RUM_DEV(PLANEX2, GWUSMM),
134     RUM_DEV(QCOM, RT2573),
135     RUM_DEV(QCOM, RT2573_2),
136     RUM_DEV(QCOM, RT2573_3),
137     RUM_DEV(RALINK, RT2573),
138     RUM_DEV(RALINK, RT2573_2),
139     RUM_DEV(RALINK, RT2671),
140     RUM_DEV(SITECOMEU, WL113R2),
141     RUM_DEV(SITECOMEU, WL172),
142     RUM_DEV(SPARKLAN, RT2573),
143     RUM_DEV(SURECOM, RT2573),
144 #undef RUM_DEV
145 };
146 
147 static device_probe_t rum_match;
148 static device_attach_t rum_attach;
149 static device_detach_t rum_detach;
150 
151 static usb_callback_t rum_bulk_read_callback;
152 static usb_callback_t rum_bulk_write_callback;
153 
154 static usb_error_t	rum_do_request(struct rum_softc *sc,
155 			    struct usb_device_request *req, void *data);
156 static usb_error_t	rum_do_mcu_request(struct rum_softc *sc, int);
157 static struct ieee80211vap *rum_vap_create(struct ieee80211com *,
158 			    const char [IFNAMSIZ], int, enum ieee80211_opmode,
159 			    int, const uint8_t [IEEE80211_ADDR_LEN],
160 			    const uint8_t [IEEE80211_ADDR_LEN]);
161 static void		rum_vap_delete(struct ieee80211vap *);
162 static void		rum_cmdq_cb(void *, int);
163 static int		rum_cmd_sleepable(struct rum_softc *, const void *,
164 			    size_t, uint8_t, CMD_FUNC_PROTO);
165 static void		rum_tx_free(struct rum_tx_data *, int);
166 static void		rum_setup_tx_list(struct rum_softc *);
167 static void		rum_reset_tx_list(struct rum_softc *,
168 			    struct ieee80211vap *);
169 static void		rum_unsetup_tx_list(struct rum_softc *);
170 static void		rum_beacon_miss(struct ieee80211vap *);
171 static void		rum_sta_recv_mgmt(struct ieee80211_node *,
172 			    struct mbuf *, int,
173 			    const struct ieee80211_rx_stats *, int, int);
174 static int		rum_set_power_state(struct rum_softc *, int);
175 static int		rum_newstate(struct ieee80211vap *,
176 			    enum ieee80211_state, int);
177 static uint8_t		rum_crypto_mode(struct rum_softc *, u_int, int);
178 static void		rum_setup_tx_desc(struct rum_softc *,
179 			    struct rum_tx_desc *, struct ieee80211_key *,
180 			    uint32_t, uint8_t, uint8_t, int, int, int);
181 static uint32_t		rum_tx_crypto_flags(struct rum_softc *,
182 			    struct ieee80211_node *,
183 			    const struct ieee80211_key *);
184 static int		rum_tx_mgt(struct rum_softc *, struct mbuf *,
185 			    struct ieee80211_node *);
186 static int		rum_tx_raw(struct rum_softc *, struct mbuf *,
187 			    struct ieee80211_node *,
188 			    const struct ieee80211_bpf_params *);
189 static int		rum_tx_data(struct rum_softc *, struct mbuf *,
190 			    struct ieee80211_node *);
191 static int		rum_transmit(struct ieee80211com *, struct mbuf *);
192 static void		rum_start(struct rum_softc *);
193 static void		rum_parent(struct ieee80211com *);
194 static void		rum_eeprom_read(struct rum_softc *, uint16_t, void *,
195 			    int);
196 static uint32_t		rum_read(struct rum_softc *, uint16_t);
197 static void		rum_read_multi(struct rum_softc *, uint16_t, void *,
198 			    int);
199 static usb_error_t	rum_write(struct rum_softc *, uint16_t, uint32_t);
200 static usb_error_t	rum_write_multi(struct rum_softc *, uint16_t, void *,
201 			    size_t);
202 static usb_error_t	rum_setbits(struct rum_softc *, uint16_t, uint32_t);
203 static usb_error_t	rum_clrbits(struct rum_softc *, uint16_t, uint32_t);
204 static usb_error_t	rum_modbits(struct rum_softc *, uint16_t, uint32_t,
205 			    uint32_t);
206 static int		rum_bbp_busy(struct rum_softc *);
207 static void		rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
208 static uint8_t		rum_bbp_read(struct rum_softc *, uint8_t);
209 static void		rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
210 static void		rum_select_antenna(struct rum_softc *);
211 static void		rum_enable_mrr(struct rum_softc *);
212 static void		rum_set_txpreamble(struct rum_softc *);
213 static void		rum_set_basicrates(struct rum_softc *);
214 static void		rum_select_band(struct rum_softc *,
215 			    struct ieee80211_channel *);
216 static void		rum_set_chan(struct rum_softc *,
217 			    struct ieee80211_channel *);
218 static void		rum_set_maxretry(struct rum_softc *,
219 			    struct ieee80211vap *);
220 static int		rum_enable_tsf_sync(struct rum_softc *);
221 static void		rum_enable_tsf(struct rum_softc *);
222 static void		rum_abort_tsf_sync(struct rum_softc *);
223 static void		rum_get_tsf(struct rum_softc *, uint64_t *);
224 static void		rum_update_slot_cb(struct rum_softc *,
225 			    union sec_param *, uint8_t);
226 static void		rum_update_slot(struct ieee80211com *);
227 static int		rum_wme_update(struct ieee80211com *);
228 static void		rum_set_bssid(struct rum_softc *, const uint8_t *);
229 static void		rum_set_macaddr(struct rum_softc *, const uint8_t *);
230 static void		rum_update_mcast(struct ieee80211com *);
231 static void		rum_update_promisc(struct ieee80211com *);
232 static void		rum_setpromisc(struct rum_softc *);
233 static const char	*rum_get_rf(int);
234 static void		rum_read_eeprom(struct rum_softc *);
235 static int		rum_bbp_wakeup(struct rum_softc *);
236 static int		rum_bbp_init(struct rum_softc *);
237 static void		rum_clr_shkey_regs(struct rum_softc *);
238 static int		rum_init(struct rum_softc *);
239 static void		rum_stop(struct rum_softc *);
240 static void		rum_load_microcode(struct rum_softc *, const uint8_t *,
241 			    size_t);
242 static int		rum_set_sleep_time(struct rum_softc *, uint16_t);
243 static int		rum_reset(struct ieee80211vap *, u_long);
244 static int		rum_set_beacon(struct rum_softc *,
245 			    struct ieee80211vap *);
246 static int		rum_alloc_beacon(struct rum_softc *,
247 			    struct ieee80211vap *);
248 static void		rum_update_beacon_cb(struct rum_softc *,
249 			    union sec_param *, uint8_t);
250 static void		rum_update_beacon(struct ieee80211vap *, int);
251 static int		rum_common_key_set(struct rum_softc *,
252 			    struct ieee80211_key *, uint16_t);
253 static void		rum_group_key_set_cb(struct rum_softc *,
254 			    union sec_param *, uint8_t);
255 static void		rum_group_key_del_cb(struct rum_softc *,
256 			    union sec_param *, uint8_t);
257 static void		rum_pair_key_set_cb(struct rum_softc *,
258 			    union sec_param *, uint8_t);
259 static void		rum_pair_key_del_cb(struct rum_softc *,
260 			    union sec_param *, uint8_t);
261 static int		rum_key_alloc(struct ieee80211vap *,
262 			    struct ieee80211_key *, ieee80211_keyix *,
263 			    ieee80211_keyix *);
264 static int		rum_key_set(struct ieee80211vap *,
265 			    const struct ieee80211_key *);
266 static int		rum_key_delete(struct ieee80211vap *,
267 			    const struct ieee80211_key *);
268 static int		rum_raw_xmit(struct ieee80211_node *, struct mbuf *,
269 			    const struct ieee80211_bpf_params *);
270 static void		rum_scan_start(struct ieee80211com *);
271 static void		rum_scan_end(struct ieee80211com *);
272 static void		rum_set_channel(struct ieee80211com *);
273 static void		rum_getradiocaps(struct ieee80211com *, int, int *,
274 			    struct ieee80211_channel[]);
275 static int		rum_get_rssi(struct rum_softc *, uint8_t);
276 static void		rum_ratectl_start(struct rum_softc *,
277 			    struct ieee80211_node *);
278 static void		rum_ratectl_timeout(void *);
279 static void		rum_ratectl_task(void *, int);
280 static int		rum_pause(struct rum_softc *, int);
281 
282 static const struct {
283 	uint32_t	reg;
284 	uint32_t	val;
285 } rum_def_mac[] = {
286 	{ RT2573_TXRX_CSR0,  0x025fb032 },
287 	{ RT2573_TXRX_CSR1,  0x9eaa9eaf },
288 	{ RT2573_TXRX_CSR2,  0x8a8b8c8d },
289 	{ RT2573_TXRX_CSR3,  0x00858687 },
290 	{ RT2573_TXRX_CSR7,  0x2e31353b },
291 	{ RT2573_TXRX_CSR8,  0x2a2a2a2c },
292 	{ RT2573_TXRX_CSR15, 0x0000000f },
293 	{ RT2573_MAC_CSR6,   0x00000fff },
294 	{ RT2573_MAC_CSR8,   0x016c030a },
295 	{ RT2573_MAC_CSR10,  0x00000718 },
296 	{ RT2573_MAC_CSR12,  0x00000004 },
297 	{ RT2573_MAC_CSR13,  0x00007f00 },
298 	{ RT2573_SEC_CSR2,   0x00000000 },
299 	{ RT2573_SEC_CSR3,   0x00000000 },
300 	{ RT2573_SEC_CSR4,   0x00000000 },
301 	{ RT2573_PHY_CSR1,   0x000023b0 },
302 	{ RT2573_PHY_CSR5,   0x00040a06 },
303 	{ RT2573_PHY_CSR6,   0x00080606 },
304 	{ RT2573_PHY_CSR7,   0x00000408 },
305 	{ RT2573_AIFSN_CSR,  0x00002273 },
306 	{ RT2573_CWMIN_CSR,  0x00002344 },
307 	{ RT2573_CWMAX_CSR,  0x000034aa }
308 };
309 
310 static const struct {
311 	uint8_t	reg;
312 	uint8_t	val;
313 } rum_def_bbp[] = {
314 	{   3, 0x80 },
315 	{  15, 0x30 },
316 	{  17, 0x20 },
317 	{  21, 0xc8 },
318 	{  22, 0x38 },
319 	{  23, 0x06 },
320 	{  24, 0xfe },
321 	{  25, 0x0a },
322 	{  26, 0x0d },
323 	{  32, 0x0b },
324 	{  34, 0x12 },
325 	{  37, 0x07 },
326 	{  39, 0xf8 },
327 	{  41, 0x60 },
328 	{  53, 0x10 },
329 	{  54, 0x18 },
330 	{  60, 0x10 },
331 	{  61, 0x04 },
332 	{  62, 0x04 },
333 	{  75, 0xfe },
334 	{  86, 0xfe },
335 	{  88, 0xfe },
336 	{  90, 0x0f },
337 	{  99, 0x00 },
338 	{ 102, 0x16 },
339 	{ 107, 0x04 }
340 };
341 
342 static const uint8_t rum_chan_5ghz[] =
343 	{ 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64,
344 	  100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140,
345 	  149, 153, 157, 161, 165 };
346 
347 static const struct rfprog {
348 	uint8_t		chan;
349 	uint32_t	r1, r2, r3, r4;
350 }  rum_rf5226[] = {
351 	{   1, 0x00b03, 0x001e1, 0x1a014, 0x30282 },
352 	{   2, 0x00b03, 0x001e1, 0x1a014, 0x30287 },
353 	{   3, 0x00b03, 0x001e2, 0x1a014, 0x30282 },
354 	{   4, 0x00b03, 0x001e2, 0x1a014, 0x30287 },
355 	{   5, 0x00b03, 0x001e3, 0x1a014, 0x30282 },
356 	{   6, 0x00b03, 0x001e3, 0x1a014, 0x30287 },
357 	{   7, 0x00b03, 0x001e4, 0x1a014, 0x30282 },
358 	{   8, 0x00b03, 0x001e4, 0x1a014, 0x30287 },
359 	{   9, 0x00b03, 0x001e5, 0x1a014, 0x30282 },
360 	{  10, 0x00b03, 0x001e5, 0x1a014, 0x30287 },
361 	{  11, 0x00b03, 0x001e6, 0x1a014, 0x30282 },
362 	{  12, 0x00b03, 0x001e6, 0x1a014, 0x30287 },
363 	{  13, 0x00b03, 0x001e7, 0x1a014, 0x30282 },
364 	{  14, 0x00b03, 0x001e8, 0x1a014, 0x30284 },
365 
366 	{  34, 0x00b03, 0x20266, 0x36014, 0x30282 },
367 	{  38, 0x00b03, 0x20267, 0x36014, 0x30284 },
368 	{  42, 0x00b03, 0x20268, 0x36014, 0x30286 },
369 	{  46, 0x00b03, 0x20269, 0x36014, 0x30288 },
370 
371 	{  36, 0x00b03, 0x00266, 0x26014, 0x30288 },
372 	{  40, 0x00b03, 0x00268, 0x26014, 0x30280 },
373 	{  44, 0x00b03, 0x00269, 0x26014, 0x30282 },
374 	{  48, 0x00b03, 0x0026a, 0x26014, 0x30284 },
375 	{  52, 0x00b03, 0x0026b, 0x26014, 0x30286 },
376 	{  56, 0x00b03, 0x0026c, 0x26014, 0x30288 },
377 	{  60, 0x00b03, 0x0026e, 0x26014, 0x30280 },
378 	{  64, 0x00b03, 0x0026f, 0x26014, 0x30282 },
379 
380 	{ 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 },
381 	{ 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 },
382 	{ 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 },
383 	{ 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 },
384 	{ 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 },
385 	{ 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 },
386 	{ 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 },
387 	{ 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 },
388 	{ 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 },
389 	{ 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 },
390 	{ 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 },
391 
392 	{ 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 },
393 	{ 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 },
394 	{ 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 },
395 	{ 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 },
396 	{ 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 }
397 }, rum_rf5225[] = {
398 	{   1, 0x00b33, 0x011e1, 0x1a014, 0x30282 },
399 	{   2, 0x00b33, 0x011e1, 0x1a014, 0x30287 },
400 	{   3, 0x00b33, 0x011e2, 0x1a014, 0x30282 },
401 	{   4, 0x00b33, 0x011e2, 0x1a014, 0x30287 },
402 	{   5, 0x00b33, 0x011e3, 0x1a014, 0x30282 },
403 	{   6, 0x00b33, 0x011e3, 0x1a014, 0x30287 },
404 	{   7, 0x00b33, 0x011e4, 0x1a014, 0x30282 },
405 	{   8, 0x00b33, 0x011e4, 0x1a014, 0x30287 },
406 	{   9, 0x00b33, 0x011e5, 0x1a014, 0x30282 },
407 	{  10, 0x00b33, 0x011e5, 0x1a014, 0x30287 },
408 	{  11, 0x00b33, 0x011e6, 0x1a014, 0x30282 },
409 	{  12, 0x00b33, 0x011e6, 0x1a014, 0x30287 },
410 	{  13, 0x00b33, 0x011e7, 0x1a014, 0x30282 },
411 	{  14, 0x00b33, 0x011e8, 0x1a014, 0x30284 },
412 
413 	{  34, 0x00b33, 0x01266, 0x26014, 0x30282 },
414 	{  38, 0x00b33, 0x01267, 0x26014, 0x30284 },
415 	{  42, 0x00b33, 0x01268, 0x26014, 0x30286 },
416 	{  46, 0x00b33, 0x01269, 0x26014, 0x30288 },
417 
418 	{  36, 0x00b33, 0x01266, 0x26014, 0x30288 },
419 	{  40, 0x00b33, 0x01268, 0x26014, 0x30280 },
420 	{  44, 0x00b33, 0x01269, 0x26014, 0x30282 },
421 	{  48, 0x00b33, 0x0126a, 0x26014, 0x30284 },
422 	{  52, 0x00b33, 0x0126b, 0x26014, 0x30286 },
423 	{  56, 0x00b33, 0x0126c, 0x26014, 0x30288 },
424 	{  60, 0x00b33, 0x0126e, 0x26014, 0x30280 },
425 	{  64, 0x00b33, 0x0126f, 0x26014, 0x30282 },
426 
427 	{ 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 },
428 	{ 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 },
429 	{ 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 },
430 	{ 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 },
431 	{ 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 },
432 	{ 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 },
433 	{ 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 },
434 	{ 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 },
435 	{ 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 },
436 	{ 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 },
437 	{ 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 },
438 
439 	{ 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 },
440 	{ 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 },
441 	{ 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 },
442 	{ 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 },
443 	{ 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 }
444 };
445 
446 static const struct usb_config rum_config[RUM_N_TRANSFER] = {
447 	[RUM_BULK_WR] = {
448 		.type = UE_BULK,
449 		.endpoint = UE_ADDR_ANY,
450 		.direction = UE_DIR_OUT,
451 		.bufsize = (MCLBYTES + RT2573_TX_DESC_SIZE + 8),
452 		.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
453 		.callback = rum_bulk_write_callback,
454 		.timeout = 5000,	/* ms */
455 	},
456 	[RUM_BULK_RD] = {
457 		.type = UE_BULK,
458 		.endpoint = UE_ADDR_ANY,
459 		.direction = UE_DIR_IN,
460 		.bufsize = (MCLBYTES + RT2573_RX_DESC_SIZE),
461 		.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
462 		.callback = rum_bulk_read_callback,
463 	},
464 };
465 
466 static int
467 rum_match(device_t self)
468 {
469 	struct usb_attach_arg *uaa = device_get_ivars(self);
470 
471 	if (uaa->usb_mode != USB_MODE_HOST)
472 		return (ENXIO);
473 	if (uaa->info.bConfigIndex != 0)
474 		return (ENXIO);
475 	if (uaa->info.bIfaceIndex != RT2573_IFACE_INDEX)
476 		return (ENXIO);
477 
478 	return (usbd_lookup_id_by_uaa(rum_devs, sizeof(rum_devs), uaa));
479 }
480 
481 static int
482 rum_attach(device_t self)
483 {
484 	struct usb_attach_arg *uaa = device_get_ivars(self);
485 	struct rum_softc *sc = device_get_softc(self);
486 	struct ieee80211com *ic = &sc->sc_ic;
487 	uint32_t tmp;
488 	uint8_t iface_index;
489 	int error, ntries;
490 
491 	device_set_usb_desc(self);
492 	sc->sc_udev = uaa->device;
493 	sc->sc_dev = self;
494 
495 	RUM_LOCK_INIT(sc);
496 	RUM_CMDQ_LOCK_INIT(sc);
497 	mbufq_init(&sc->sc_snd, ifqmaxlen);
498 
499 	iface_index = RT2573_IFACE_INDEX;
500 	error = usbd_transfer_setup(uaa->device, &iface_index,
501 	    sc->sc_xfer, rum_config, RUM_N_TRANSFER, sc, &sc->sc_mtx);
502 	if (error) {
503 		device_printf(self, "could not allocate USB transfers, "
504 		    "err=%s\n", usbd_errstr(error));
505 		goto detach;
506 	}
507 
508 	RUM_LOCK(sc);
509 	/* retrieve RT2573 rev. no */
510 	for (ntries = 0; ntries < 100; ntries++) {
511 		if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
512 			break;
513 		if (rum_pause(sc, hz / 100))
514 			break;
515 	}
516 	if (ntries == 100) {
517 		device_printf(sc->sc_dev, "timeout waiting for chip to settle\n");
518 		RUM_UNLOCK(sc);
519 		goto detach;
520 	}
521 
522 	/* retrieve MAC address and various other things from EEPROM */
523 	rum_read_eeprom(sc);
524 
525 	device_printf(sc->sc_dev, "MAC/BBP RT2573 (rev 0x%05x), RF %s\n",
526 	    tmp, rum_get_rf(sc->rf_rev));
527 
528 	rum_load_microcode(sc, rt2573_ucode, sizeof(rt2573_ucode));
529 	RUM_UNLOCK(sc);
530 
531 	ic->ic_softc = sc;
532 	ic->ic_name = device_get_nameunit(self);
533 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
534 
535 	/* set device capabilities */
536 	ic->ic_caps =
537 	      IEEE80211_C_STA		/* station mode supported */
538 	    | IEEE80211_C_IBSS		/* IBSS mode supported */
539 	    | IEEE80211_C_MONITOR	/* monitor mode supported */
540 	    | IEEE80211_C_HOSTAP	/* HostAp mode supported */
541 	    | IEEE80211_C_AHDEMO	/* adhoc demo mode */
542 	    | IEEE80211_C_TXPMGT	/* tx power management */
543 	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
544 	    | IEEE80211_C_SHSLOT	/* short slot time supported */
545 	    | IEEE80211_C_BGSCAN	/* bg scanning supported */
546 	    | IEEE80211_C_WPA		/* 802.11i */
547 	    | IEEE80211_C_WME		/* 802.11e */
548 	    | IEEE80211_C_PMGT		/* Station-side power mgmt */
549 	    | IEEE80211_C_SWSLEEP	/* net80211 managed power mgmt */
550 	    ;
551 
552 	ic->ic_cryptocaps =
553 	    IEEE80211_CRYPTO_WEP |
554 	    IEEE80211_CRYPTO_AES_CCM |
555 	    IEEE80211_CRYPTO_TKIPMIC |
556 	    IEEE80211_CRYPTO_TKIP;
557 
558 	rum_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
559 	    ic->ic_channels);
560 
561 	ieee80211_ifattach(ic);
562 	ic->ic_update_promisc = rum_update_promisc;
563 	ic->ic_raw_xmit = rum_raw_xmit;
564 	ic->ic_scan_start = rum_scan_start;
565 	ic->ic_scan_end = rum_scan_end;
566 	ic->ic_set_channel = rum_set_channel;
567 	ic->ic_getradiocaps = rum_getradiocaps;
568 	ic->ic_transmit = rum_transmit;
569 	ic->ic_parent = rum_parent;
570 	ic->ic_vap_create = rum_vap_create;
571 	ic->ic_vap_delete = rum_vap_delete;
572 	ic->ic_updateslot = rum_update_slot;
573 	ic->ic_wme.wme_update = rum_wme_update;
574 	ic->ic_update_mcast = rum_update_mcast;
575 
576 	ieee80211_radiotap_attach(ic,
577 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
578 		RT2573_TX_RADIOTAP_PRESENT,
579 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
580 		RT2573_RX_RADIOTAP_PRESENT);
581 
582 	TASK_INIT(&sc->cmdq_task, 0, rum_cmdq_cb, sc);
583 
584 	if (bootverbose)
585 		ieee80211_announce(ic);
586 
587 	return (0);
588 
589 detach:
590 	rum_detach(self);
591 	return (ENXIO);			/* failure */
592 }
593 
594 static int
595 rum_detach(device_t self)
596 {
597 	struct rum_softc *sc = device_get_softc(self);
598 	struct ieee80211com *ic = &sc->sc_ic;
599 
600 	/* Prevent further ioctls */
601 	RUM_LOCK(sc);
602 	sc->sc_detached = 1;
603 	RUM_UNLOCK(sc);
604 
605 	/* stop all USB transfers */
606 	usbd_transfer_unsetup(sc->sc_xfer, RUM_N_TRANSFER);
607 
608 	/* free TX list, if any */
609 	RUM_LOCK(sc);
610 	rum_unsetup_tx_list(sc);
611 	RUM_UNLOCK(sc);
612 
613 	if (ic->ic_softc == sc) {
614 		ieee80211_draintask(ic, &sc->cmdq_task);
615 		ieee80211_ifdetach(ic);
616 	}
617 
618 	mbufq_drain(&sc->sc_snd);
619 	RUM_CMDQ_LOCK_DESTROY(sc);
620 	RUM_LOCK_DESTROY(sc);
621 
622 	return (0);
623 }
624 
625 static usb_error_t
626 rum_do_request(struct rum_softc *sc,
627     struct usb_device_request *req, void *data)
628 {
629 	usb_error_t err;
630 	int ntries = 10;
631 
632 	while (ntries--) {
633 		err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
634 		    req, data, 0, NULL, 250 /* ms */);
635 		if (err == 0)
636 			break;
637 
638 		DPRINTFN(1, "Control request failed, %s (retrying)\n",
639 		    usbd_errstr(err));
640 		if (rum_pause(sc, hz / 100))
641 			break;
642 	}
643 	return (err);
644 }
645 
646 static usb_error_t
647 rum_do_mcu_request(struct rum_softc *sc, int request)
648 {
649 	struct usb_device_request req;
650 
651 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
652 	req.bRequest = RT2573_MCU_CNTL;
653 	USETW(req.wValue, request);
654 	USETW(req.wIndex, 0);
655 	USETW(req.wLength, 0);
656 
657 	return (rum_do_request(sc, &req, NULL));
658 }
659 
660 static struct ieee80211vap *
661 rum_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
662     enum ieee80211_opmode opmode, int flags,
663     const uint8_t bssid[IEEE80211_ADDR_LEN],
664     const uint8_t mac[IEEE80211_ADDR_LEN])
665 {
666 	struct rum_softc *sc = ic->ic_softc;
667 	struct rum_vap *rvp;
668 	struct ieee80211vap *vap;
669 
670 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
671 		return NULL;
672 	rvp = malloc(sizeof(struct rum_vap), M_80211_VAP, M_WAITOK | M_ZERO);
673 	vap = &rvp->vap;
674 	/* enable s/w bmiss handling for sta mode */
675 
676 	if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
677 	    flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) {
678 		/* out of memory */
679 		free(rvp, M_80211_VAP);
680 		return (NULL);
681 	}
682 
683 	/* override state transition machine */
684 	rvp->newstate = vap->iv_newstate;
685 	vap->iv_newstate = rum_newstate;
686 	vap->iv_key_alloc = rum_key_alloc;
687 	vap->iv_key_set = rum_key_set;
688 	vap->iv_key_delete = rum_key_delete;
689 	vap->iv_update_beacon = rum_update_beacon;
690 	vap->iv_reset = rum_reset;
691 	vap->iv_max_aid = RT2573_ADDR_MAX;
692 
693 	if (opmode == IEEE80211_M_STA) {
694 		/*
695 		 * Move device to the sleep state when
696 		 * beacon is received and there is no data for us.
697 		 *
698 		 * Used only for IEEE80211_S_SLEEP state.
699 		 */
700 		rvp->recv_mgmt = vap->iv_recv_mgmt;
701 		vap->iv_recv_mgmt = rum_sta_recv_mgmt;
702 
703 		/* Ignored while sleeping. */
704 		rvp->bmiss = vap->iv_bmiss;
705 		vap->iv_bmiss = rum_beacon_miss;
706 	}
707 
708 	usb_callout_init_mtx(&rvp->ratectl_ch, &sc->sc_mtx, 0);
709 	TASK_INIT(&rvp->ratectl_task, 0, rum_ratectl_task, rvp);
710 	ieee80211_ratectl_init(vap);
711 	ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
712 	/* complete setup */
713 	ieee80211_vap_attach(vap, ieee80211_media_change,
714 	    ieee80211_media_status, mac);
715 	ic->ic_opmode = opmode;
716 	return vap;
717 }
718 
719 static void
720 rum_vap_delete(struct ieee80211vap *vap)
721 {
722 	struct rum_vap *rvp = RUM_VAP(vap);
723 	struct ieee80211com *ic = vap->iv_ic;
724 	struct rum_softc *sc = ic->ic_softc;
725 
726 	/* Put vap into INIT state. */
727 	ieee80211_new_state(vap, IEEE80211_S_INIT, -1);
728 	ieee80211_draintask(ic, &vap->iv_nstate_task);
729 
730 	RUM_LOCK(sc);
731 	/* Cancel any unfinished Tx. */
732 	rum_reset_tx_list(sc, vap);
733 	RUM_UNLOCK(sc);
734 
735 	usb_callout_drain(&rvp->ratectl_ch);
736 	ieee80211_draintask(ic, &rvp->ratectl_task);
737 	ieee80211_ratectl_deinit(vap);
738 	ieee80211_vap_detach(vap);
739 	m_freem(rvp->bcn_mbuf);
740 	free(rvp, M_80211_VAP);
741 }
742 
743 static void
744 rum_cmdq_cb(void *arg, int pending)
745 {
746 	struct rum_softc *sc = arg;
747 	struct rum_cmdq *rc;
748 
749 	RUM_CMDQ_LOCK(sc);
750 	while (sc->cmdq[sc->cmdq_first].func != NULL) {
751 		rc = &sc->cmdq[sc->cmdq_first];
752 		RUM_CMDQ_UNLOCK(sc);
753 
754 		RUM_LOCK(sc);
755 		rc->func(sc, &rc->data, rc->rvp_id);
756 		RUM_UNLOCK(sc);
757 
758 		RUM_CMDQ_LOCK(sc);
759 		memset(rc, 0, sizeof (*rc));
760 		sc->cmdq_first = (sc->cmdq_first + 1) % RUM_CMDQ_SIZE;
761 	}
762 	RUM_CMDQ_UNLOCK(sc);
763 }
764 
765 static int
766 rum_cmd_sleepable(struct rum_softc *sc, const void *ptr, size_t len,
767     uint8_t rvp_id, CMD_FUNC_PROTO)
768 {
769 	struct ieee80211com *ic = &sc->sc_ic;
770 
771 	KASSERT(len <= sizeof(union sec_param), ("buffer overflow"));
772 
773 	RUM_CMDQ_LOCK(sc);
774 	if (sc->cmdq[sc->cmdq_last].func != NULL) {
775 		device_printf(sc->sc_dev, "%s: cmdq overflow\n", __func__);
776 		RUM_CMDQ_UNLOCK(sc);
777 
778 		return EAGAIN;
779 	}
780 
781 	if (ptr != NULL)
782 		memcpy(&sc->cmdq[sc->cmdq_last].data, ptr, len);
783 	sc->cmdq[sc->cmdq_last].rvp_id = rvp_id;
784 	sc->cmdq[sc->cmdq_last].func = func;
785 	sc->cmdq_last = (sc->cmdq_last + 1) % RUM_CMDQ_SIZE;
786 	RUM_CMDQ_UNLOCK(sc);
787 
788 	ieee80211_runtask(ic, &sc->cmdq_task);
789 
790 	return 0;
791 }
792 
793 static void
794 rum_tx_free(struct rum_tx_data *data, int txerr)
795 {
796 	struct rum_softc *sc = data->sc;
797 
798 	if (data->m != NULL) {
799 		ieee80211_tx_complete(data->ni, data->m, txerr);
800 		data->m = NULL;
801 		data->ni = NULL;
802 	}
803 	STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
804 	sc->tx_nfree++;
805 }
806 
807 static void
808 rum_setup_tx_list(struct rum_softc *sc)
809 {
810 	struct rum_tx_data *data;
811 	int i;
812 
813 	sc->tx_nfree = 0;
814 	STAILQ_INIT(&sc->tx_q);
815 	STAILQ_INIT(&sc->tx_free);
816 
817 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
818 		data = &sc->tx_data[i];
819 
820 		data->sc = sc;
821 		STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
822 		sc->tx_nfree++;
823 	}
824 }
825 
826 static void
827 rum_reset_tx_list(struct rum_softc *sc, struct ieee80211vap *vap)
828 {
829 	struct rum_tx_data *data, *tmp;
830 
831 	KASSERT(vap != NULL, ("%s: vap is NULL\n", __func__));
832 
833 	STAILQ_FOREACH_SAFE(data, &sc->tx_q, next, tmp) {
834 		if (data->ni != NULL && data->ni->ni_vap == vap) {
835 			ieee80211_free_node(data->ni);
836 			data->ni = NULL;
837 
838 			KASSERT(data->m != NULL, ("%s: m is NULL\n",
839 			    __func__));
840 			m_freem(data->m);
841 			data->m = NULL;
842 
843 			STAILQ_REMOVE(&sc->tx_q, data, rum_tx_data, next);
844 			STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
845 			sc->tx_nfree++;
846 		}
847 	}
848 }
849 
850 static void
851 rum_unsetup_tx_list(struct rum_softc *sc)
852 {
853 	struct rum_tx_data *data;
854 	int i;
855 
856 	/* make sure any subsequent use of the queues will fail */
857 	sc->tx_nfree = 0;
858 	STAILQ_INIT(&sc->tx_q);
859 	STAILQ_INIT(&sc->tx_free);
860 
861 	/* free up all node references and mbufs */
862 	for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
863 		data = &sc->tx_data[i];
864 
865 		if (data->m != NULL) {
866 			m_freem(data->m);
867 			data->m = NULL;
868 		}
869 		if (data->ni != NULL) {
870 			ieee80211_free_node(data->ni);
871 			data->ni = NULL;
872 		}
873 	}
874 }
875 
876 static void
877 rum_beacon_miss(struct ieee80211vap *vap)
878 {
879 	struct ieee80211com *ic = vap->iv_ic;
880 	struct rum_softc *sc = ic->ic_softc;
881 	struct rum_vap *rvp = RUM_VAP(vap);
882 	int sleep;
883 
884 	RUM_LOCK(sc);
885 	if (sc->sc_sleeping && sc->sc_sleep_end < ticks) {
886 		DPRINTFN(12, "dropping 'sleeping' bit, "
887 		    "device must be awake now\n");
888 
889 		sc->sc_sleeping = 0;
890 	}
891 
892 	sleep = sc->sc_sleeping;
893 	RUM_UNLOCK(sc);
894 
895 	if (!sleep)
896 		rvp->bmiss(vap);
897 #ifdef USB_DEBUG
898 	else
899 		DPRINTFN(13, "bmiss event is ignored whilst sleeping\n");
900 #endif
901 }
902 
903 static void
904 rum_sta_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype,
905     const struct ieee80211_rx_stats *rxs,
906     int rssi, int nf)
907 {
908 	struct ieee80211vap *vap = ni->ni_vap;
909 	struct rum_softc *sc = vap->iv_ic->ic_softc;
910 	struct rum_vap *rvp = RUM_VAP(vap);
911 
912 	if (vap->iv_state == IEEE80211_S_SLEEP &&
913 	    subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
914 		RUM_LOCK(sc);
915 		DPRINTFN(12, "beacon, mybss %d (flags %02X)\n",
916 		    !!(sc->last_rx_flags & RT2573_RX_MYBSS),
917 		    sc->last_rx_flags);
918 
919 		if ((sc->last_rx_flags & (RT2573_RX_MYBSS | RT2573_RX_BC)) ==
920 		    (RT2573_RX_MYBSS | RT2573_RX_BC)) {
921 			/*
922 			 * Put it to sleep here; in case if there is a data
923 			 * for us, iv_recv_mgmt() will wakeup the device via
924 			 * SLEEP -> RUN state transition.
925 			 */
926 			rum_set_power_state(sc, 1);
927 		}
928 		RUM_UNLOCK(sc);
929 	}
930 
931 	rvp->recv_mgmt(ni, m, subtype, rxs, rssi, nf);
932 }
933 
934 static int
935 rum_set_power_state(struct rum_softc *sc, int sleep)
936 {
937 	usb_error_t uerror;
938 
939 	RUM_LOCK_ASSERT(sc);
940 
941 	DPRINTFN(12, "moving to %s state (sleep time %u)\n",
942 	    sleep ? "sleep" : "awake", sc->sc_sleep_time);
943 
944 	uerror = rum_do_mcu_request(sc,
945 	    sleep ? RT2573_MCU_SLEEP : RT2573_MCU_WAKEUP);
946 	if (uerror != USB_ERR_NORMAL_COMPLETION) {
947 		device_printf(sc->sc_dev,
948 		    "%s: could not change power state: %s\n",
949 		    __func__, usbd_errstr(uerror));
950 		return (EIO);
951 	}
952 
953 	sc->sc_sleeping = !!sleep;
954 	sc->sc_sleep_end = sleep ? ticks + sc->sc_sleep_time : 0;
955 
956 	return (0);
957 }
958 
959 static int
960 rum_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
961 {
962 	struct rum_vap *rvp = RUM_VAP(vap);
963 	struct ieee80211com *ic = vap->iv_ic;
964 	struct rum_softc *sc = ic->ic_softc;
965 	const struct ieee80211_txparam *tp;
966 	enum ieee80211_state ostate;
967 	struct ieee80211_node *ni;
968 	usb_error_t uerror;
969 	int ret = 0;
970 
971 	ostate = vap->iv_state;
972 	DPRINTF("%s -> %s\n",
973 		ieee80211_state_name[ostate],
974 		ieee80211_state_name[nstate]);
975 
976 	IEEE80211_UNLOCK(ic);
977 	RUM_LOCK(sc);
978 	usb_callout_stop(&rvp->ratectl_ch);
979 
980 	if (ostate == IEEE80211_S_SLEEP && vap->iv_opmode == IEEE80211_M_STA) {
981 		rum_clrbits(sc, RT2573_TXRX_CSR4, RT2573_ACKCTS_PWRMGT);
982 		rum_clrbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP);
983 
984 		/*
985 		 * Ignore any errors;
986 		 * any subsequent TX will wakeup it anyway
987 		 */
988 		(void) rum_set_power_state(sc, 0);
989 	}
990 
991 	switch (nstate) {
992 	case IEEE80211_S_INIT:
993 		if (ostate == IEEE80211_S_RUN)
994 			rum_abort_tsf_sync(sc);
995 
996 		break;
997 
998 	case IEEE80211_S_RUN:
999 		if (ostate == IEEE80211_S_SLEEP)
1000 			break;		/* already handled */
1001 
1002 		ni = ieee80211_ref_node(vap->iv_bss);
1003 
1004 		if (vap->iv_opmode != IEEE80211_M_MONITOR) {
1005 			if (ic->ic_bsschan == IEEE80211_CHAN_ANYC ||
1006 			    ni->ni_chan == IEEE80211_CHAN_ANYC) {
1007 				ret = EINVAL;
1008 				goto run_fail;
1009 			}
1010 			rum_update_slot_cb(sc, NULL, 0);
1011 			rum_enable_mrr(sc);
1012 			rum_set_txpreamble(sc);
1013 			rum_set_basicrates(sc);
1014 			rum_set_maxretry(sc, vap);
1015 			IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
1016 			rum_set_bssid(sc, sc->sc_bssid);
1017 		}
1018 
1019 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1020 		    vap->iv_opmode == IEEE80211_M_IBSS) {
1021 			if ((ret = rum_alloc_beacon(sc, vap)) != 0)
1022 				goto run_fail;
1023 		}
1024 
1025 		if (vap->iv_opmode != IEEE80211_M_MONITOR &&
1026 		    vap->iv_opmode != IEEE80211_M_AHDEMO) {
1027 			if ((ret = rum_enable_tsf_sync(sc)) != 0)
1028 				goto run_fail;
1029 		} else
1030 			rum_enable_tsf(sc);
1031 
1032 		/* enable automatic rate adaptation */
1033 		tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1034 		if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
1035 			rum_ratectl_start(sc, ni);
1036 run_fail:
1037 		ieee80211_free_node(ni);
1038 		break;
1039 	case IEEE80211_S_SLEEP:
1040 		/* Implemented for STA mode only. */
1041 		if (vap->iv_opmode != IEEE80211_M_STA)
1042 			break;
1043 
1044 		uerror = rum_setbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP);
1045 		if (uerror != USB_ERR_NORMAL_COMPLETION) {
1046 			ret = EIO;
1047 			break;
1048 		}
1049 
1050 		uerror = rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_ACKCTS_PWRMGT);
1051 		if (uerror != USB_ERR_NORMAL_COMPLETION) {
1052 			ret = EIO;
1053 			break;
1054 		}
1055 
1056 		ret = rum_set_power_state(sc, 1);
1057 		if (ret != 0) {
1058 			device_printf(sc->sc_dev,
1059 			    "%s: could not move to the SLEEP state: %s\n",
1060 			    __func__, usbd_errstr(uerror));
1061 		}
1062 		break;
1063 	default:
1064 		break;
1065 	}
1066 	RUM_UNLOCK(sc);
1067 	IEEE80211_LOCK(ic);
1068 	return (ret == 0 ? rvp->newstate(vap, nstate, arg) : ret);
1069 }
1070 
1071 static void
1072 rum_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
1073 {
1074 	struct rum_softc *sc = usbd_xfer_softc(xfer);
1075 	struct ieee80211vap *vap;
1076 	struct rum_tx_data *data;
1077 	struct mbuf *m;
1078 	struct usb_page_cache *pc;
1079 	unsigned int len;
1080 	int actlen, sumlen;
1081 
1082 	usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
1083 
1084 	switch (USB_GET_STATE(xfer)) {
1085 	case USB_ST_TRANSFERRED:
1086 		DPRINTFN(11, "transfer complete, %d bytes\n", actlen);
1087 
1088 		/* free resources */
1089 		data = usbd_xfer_get_priv(xfer);
1090 		rum_tx_free(data, 0);
1091 		usbd_xfer_set_priv(xfer, NULL);
1092 
1093 		/* FALLTHROUGH */
1094 	case USB_ST_SETUP:
1095 tr_setup:
1096 		data = STAILQ_FIRST(&sc->tx_q);
1097 		if (data) {
1098 			STAILQ_REMOVE_HEAD(&sc->tx_q, next);
1099 			m = data->m;
1100 
1101 			if (m->m_pkthdr.len > (int)(MCLBYTES + RT2573_TX_DESC_SIZE)) {
1102 				DPRINTFN(0, "data overflow, %u bytes\n",
1103 				    m->m_pkthdr.len);
1104 				m->m_pkthdr.len = (MCLBYTES + RT2573_TX_DESC_SIZE);
1105 			}
1106 			pc = usbd_xfer_get_frame(xfer, 0);
1107 			usbd_copy_in(pc, 0, &data->desc, RT2573_TX_DESC_SIZE);
1108 			usbd_m_copy_in(pc, RT2573_TX_DESC_SIZE, m, 0,
1109 			    m->m_pkthdr.len);
1110 
1111 			vap = data->ni->ni_vap;
1112 			if (ieee80211_radiotap_active_vap(vap)) {
1113 				struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1114 
1115 				tap->wt_flags = 0;
1116 				tap->wt_rate = data->rate;
1117 				tap->wt_antenna = sc->tx_ant;
1118 
1119 				ieee80211_radiotap_tx(vap, m);
1120 			}
1121 
1122 			/* align end on a 4-bytes boundary */
1123 			len = (RT2573_TX_DESC_SIZE + m->m_pkthdr.len + 3) & ~3;
1124 			if ((len % 64) == 0)
1125 				len += 4;
1126 
1127 			DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
1128 			    m->m_pkthdr.len, len);
1129 
1130 			usbd_xfer_set_frame_len(xfer, 0, len);
1131 			usbd_xfer_set_priv(xfer, data);
1132 
1133 			usbd_transfer_submit(xfer);
1134 		}
1135 		rum_start(sc);
1136 		break;
1137 
1138 	default:			/* Error */
1139 		DPRINTFN(11, "transfer error, %s\n",
1140 		    usbd_errstr(error));
1141 
1142 		counter_u64_add(sc->sc_ic.ic_oerrors, 1);
1143 		data = usbd_xfer_get_priv(xfer);
1144 		if (data != NULL) {
1145 			rum_tx_free(data, error);
1146 			usbd_xfer_set_priv(xfer, NULL);
1147 		}
1148 
1149 		if (error != USB_ERR_CANCELLED) {
1150 			if (error == USB_ERR_TIMEOUT)
1151 				device_printf(sc->sc_dev, "device timeout\n");
1152 
1153 			/*
1154 			 * Try to clear stall first, also if other
1155 			 * errors occur, hence clearing stall
1156 			 * introduces a 50 ms delay:
1157 			 */
1158 			usbd_xfer_set_stall(xfer);
1159 			goto tr_setup;
1160 		}
1161 		break;
1162 	}
1163 }
1164 
1165 static void
1166 rum_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
1167 {
1168 	struct rum_softc *sc = usbd_xfer_softc(xfer);
1169 	struct ieee80211com *ic = &sc->sc_ic;
1170 	struct ieee80211_frame_min *wh;
1171 	struct ieee80211_node *ni;
1172 	struct epoch_tracker et;
1173 	struct mbuf *m = NULL;
1174 	struct usb_page_cache *pc;
1175 	uint32_t flags;
1176 	uint8_t rssi = 0;
1177 	int len;
1178 
1179 	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
1180 
1181 	switch (USB_GET_STATE(xfer)) {
1182 	case USB_ST_TRANSFERRED:
1183 
1184 		DPRINTFN(15, "rx done, actlen=%d\n", len);
1185 
1186 		if (len < RT2573_RX_DESC_SIZE) {
1187 			DPRINTF("%s: xfer too short %d\n",
1188 			    device_get_nameunit(sc->sc_dev), len);
1189 			counter_u64_add(ic->ic_ierrors, 1);
1190 			goto tr_setup;
1191 		}
1192 
1193 		len -= RT2573_RX_DESC_SIZE;
1194 		pc = usbd_xfer_get_frame(xfer, 0);
1195 		usbd_copy_out(pc, 0, &sc->sc_rx_desc, RT2573_RX_DESC_SIZE);
1196 
1197 		rssi = rum_get_rssi(sc, sc->sc_rx_desc.rssi);
1198 		flags = le32toh(sc->sc_rx_desc.flags);
1199 		sc->last_rx_flags = flags;
1200 		if (len < ((flags >> 16) & 0xfff)) {
1201 			DPRINTFN(5, "%s: frame is truncated from %d to %d "
1202 			    "bytes\n", device_get_nameunit(sc->sc_dev),
1203 			    (flags >> 16) & 0xfff, len);
1204 			counter_u64_add(ic->ic_ierrors, 1);
1205 			goto tr_setup;
1206 		}
1207 		len = (flags >> 16) & 0xfff;
1208 		if (len < sizeof(struct ieee80211_frame_ack)) {
1209 			DPRINTFN(5, "%s: frame too short %d\n",
1210 			    device_get_nameunit(sc->sc_dev), len);
1211 			counter_u64_add(ic->ic_ierrors, 1);
1212 			goto tr_setup;
1213 		}
1214 		if (flags & RT2573_RX_CRC_ERROR) {
1215 			/*
1216 		         * This should not happen since we did not
1217 		         * request to receive those frames when we
1218 		         * filled RUM_TXRX_CSR2:
1219 		         */
1220 			DPRINTFN(5, "PHY or CRC error\n");
1221 			counter_u64_add(ic->ic_ierrors, 1);
1222 			goto tr_setup;
1223 		}
1224 		if ((flags & RT2573_RX_DEC_MASK) != RT2573_RX_DEC_OK) {
1225 			switch (flags & RT2573_RX_DEC_MASK) {
1226 			case RT2573_RX_IV_ERROR:
1227 				DPRINTFN(5, "IV/EIV error\n");
1228 				break;
1229 			case RT2573_RX_MIC_ERROR:
1230 				DPRINTFN(5, "MIC error\n");
1231 				break;
1232 			case RT2573_RX_KEY_ERROR:
1233 				DPRINTFN(5, "Key error\n");
1234 				break;
1235 			}
1236 			counter_u64_add(ic->ic_ierrors, 1);
1237 			goto tr_setup;
1238 		}
1239 
1240 		m = m_get2(len, M_NOWAIT, MT_DATA, M_PKTHDR);
1241 		if (m == NULL) {
1242 			DPRINTF("could not allocate mbuf\n");
1243 			counter_u64_add(ic->ic_ierrors, 1);
1244 			goto tr_setup;
1245 		}
1246 		usbd_copy_out(pc, RT2573_RX_DESC_SIZE,
1247 		    mtod(m, uint8_t *), len);
1248 
1249 		wh = mtod(m, struct ieee80211_frame_min *);
1250 
1251 		if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1252 		    (flags & RT2573_RX_CIP_MASK) !=
1253 		     RT2573_RX_CIP_MODE(RT2573_MODE_NOSEC)) {
1254 			wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED;
1255 			m->m_flags |= M_WEP;
1256 		}
1257 
1258 		/* finalize mbuf */
1259 		m->m_pkthdr.len = m->m_len = len;
1260 
1261 		if (ieee80211_radiotap_active(ic)) {
1262 			struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
1263 
1264 			tap->wr_flags = 0;
1265 			tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate,
1266 			    (flags & RT2573_RX_OFDM) ?
1267 			    IEEE80211_T_OFDM : IEEE80211_T_CCK);
1268 			rum_get_tsf(sc, &tap->wr_tsf);
1269 			tap->wr_antsignal = RT2573_NOISE_FLOOR + rssi;
1270 			tap->wr_antnoise = RT2573_NOISE_FLOOR;
1271 			tap->wr_antenna = sc->rx_ant;
1272 		}
1273 		/* FALLTHROUGH */
1274 	case USB_ST_SETUP:
1275 tr_setup:
1276 		usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
1277 		usbd_transfer_submit(xfer);
1278 
1279 		/*
1280 		 * At the end of a USB callback it is always safe to unlock
1281 		 * the private mutex of a device! That is why we do the
1282 		 * "ieee80211_input" here, and not some lines up!
1283 		 */
1284 		RUM_UNLOCK(sc);
1285 		if (m) {
1286 			if (m->m_len >= sizeof(struct ieee80211_frame_min))
1287 				ni = ieee80211_find_rxnode(ic, wh);
1288 			else
1289 				ni = NULL;
1290 
1291 			NET_EPOCH_ENTER(et);
1292 			if (ni != NULL) {
1293 				(void) ieee80211_input(ni, m, rssi,
1294 				    RT2573_NOISE_FLOOR);
1295 				ieee80211_free_node(ni);
1296 			} else
1297 				(void) ieee80211_input_all(ic, m, rssi,
1298 				    RT2573_NOISE_FLOOR);
1299 			NET_EPOCH_EXIT(et);
1300 		}
1301 		RUM_LOCK(sc);
1302 		rum_start(sc);
1303 		return;
1304 
1305 	default:			/* Error */
1306 		if (error != USB_ERR_CANCELLED) {
1307 			/* try to clear stall first */
1308 			usbd_xfer_set_stall(xfer);
1309 			goto tr_setup;
1310 		}
1311 		return;
1312 	}
1313 }
1314 
1315 static uint8_t
1316 rum_plcp_signal(int rate)
1317 {
1318 	switch (rate) {
1319 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1320 	case 12:	return 0xb;
1321 	case 18:	return 0xf;
1322 	case 24:	return 0xa;
1323 	case 36:	return 0xe;
1324 	case 48:	return 0x9;
1325 	case 72:	return 0xd;
1326 	case 96:	return 0x8;
1327 	case 108:	return 0xc;
1328 
1329 	/* CCK rates (NB: not IEEE std, device-specific) */
1330 	case 2:		return 0x0;
1331 	case 4:		return 0x1;
1332 	case 11:	return 0x2;
1333 	case 22:	return 0x3;
1334 	}
1335 	return 0xff;		/* XXX unsupported/unknown rate */
1336 }
1337 
1338 /*
1339  * Map net80211 cipher to RT2573 security mode.
1340  */
1341 static uint8_t
1342 rum_crypto_mode(struct rum_softc *sc, u_int cipher, int keylen)
1343 {
1344 	switch (cipher) {
1345 	case IEEE80211_CIPHER_WEP:
1346 		return (keylen < 8 ? RT2573_MODE_WEP40 : RT2573_MODE_WEP104);
1347 	case IEEE80211_CIPHER_TKIP:
1348 		return RT2573_MODE_TKIP;
1349 	case IEEE80211_CIPHER_AES_CCM:
1350 		return RT2573_MODE_AES_CCMP;
1351 	default:
1352 		device_printf(sc->sc_dev, "unknown cipher %d\n", cipher);
1353 		return 0;
1354 	}
1355 }
1356 
1357 static void
1358 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1359     struct ieee80211_key *k, uint32_t flags, uint8_t xflags, uint8_t qid,
1360     int hdrlen, int len, int rate)
1361 {
1362 	struct ieee80211com *ic = &sc->sc_ic;
1363 	struct wmeParams *wmep = &sc->wme_params[qid];
1364 	uint16_t plcp_length;
1365 	int remainder;
1366 
1367 	flags |= RT2573_TX_VALID;
1368 	flags |= len << 16;
1369 
1370 	if (k != NULL && !(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
1371 		const struct ieee80211_cipher *cip = k->wk_cipher;
1372 
1373 		len += cip->ic_header + cip->ic_trailer + cip->ic_miclen;
1374 
1375 		desc->eiv = 0;		/* for WEP */
1376 		cip->ic_setiv(k, (uint8_t *)&desc->iv);
1377 	}
1378 
1379 	/* setup PLCP fields */
1380 	desc->plcp_signal  = rum_plcp_signal(rate);
1381 	desc->plcp_service = 4;
1382 
1383 	len += IEEE80211_CRC_LEN;
1384 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
1385 		flags |= RT2573_TX_OFDM;
1386 
1387 		plcp_length = len & 0xfff;
1388 		desc->plcp_length_hi = plcp_length >> 6;
1389 		desc->plcp_length_lo = plcp_length & 0x3f;
1390 	} else {
1391 		if (rate == 0)
1392 			rate = 2;	/* avoid division by zero */
1393 		plcp_length = howmany(16 * len, rate);
1394 		if (rate == 22) {
1395 			remainder = (16 * len) % 22;
1396 			if (remainder != 0 && remainder < 7)
1397 				desc->plcp_service |= RT2573_PLCP_LENGEXT;
1398 		}
1399 		desc->plcp_length_hi = plcp_length >> 8;
1400 		desc->plcp_length_lo = plcp_length & 0xff;
1401 
1402 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1403 			desc->plcp_signal |= 0x08;
1404 	}
1405 
1406 	desc->flags = htole32(flags);
1407 	desc->hdrlen = hdrlen;
1408 	desc->xflags = xflags;
1409 
1410 	desc->wme = htole16(RT2573_QID(qid) |
1411 	    RT2573_AIFSN(wmep->wmep_aifsn) |
1412 	    RT2573_LOGCWMIN(wmep->wmep_logcwmin) |
1413 	    RT2573_LOGCWMAX(wmep->wmep_logcwmax));
1414 }
1415 
1416 static int
1417 rum_sendprot(struct rum_softc *sc,
1418     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
1419 {
1420 	struct ieee80211com *ic = ni->ni_ic;
1421 	struct rum_tx_data *data;
1422 	struct mbuf *mprot;
1423 	int protrate, flags;
1424 
1425 	RUM_LOCK_ASSERT(sc);
1426 
1427 	mprot = ieee80211_alloc_prot(ni, m, rate, prot);
1428 	if (mprot == NULL) {
1429 		if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
1430 		device_printf(sc->sc_dev,
1431 		    "could not allocate mbuf for protection mode %d\n", prot);
1432 		return (ENOBUFS);
1433 	}
1434 
1435 	protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
1436 	flags = 0;
1437 	if (prot == IEEE80211_PROT_RTSCTS)
1438 		flags |= RT2573_TX_NEED_ACK;
1439 
1440 	data = STAILQ_FIRST(&sc->tx_free);
1441 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1442 	sc->tx_nfree--;
1443 
1444 	data->m = mprot;
1445 	data->ni = ieee80211_ref_node(ni);
1446 	data->rate = protrate;
1447 	rum_setup_tx_desc(sc, &data->desc, NULL, flags, 0, 0, 0,
1448 	    mprot->m_pkthdr.len, protrate);
1449 
1450 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1451 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1452 
1453 	return 0;
1454 }
1455 
1456 static uint32_t
1457 rum_tx_crypto_flags(struct rum_softc *sc, struct ieee80211_node *ni,
1458     const struct ieee80211_key *k)
1459 {
1460 	struct ieee80211vap *vap = ni->ni_vap;
1461 	u_int cipher;
1462 	uint32_t flags = 0;
1463 	uint8_t mode, pos;
1464 
1465 	if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
1466 		cipher = k->wk_cipher->ic_cipher;
1467 		pos = k->wk_keyix;
1468 		mode = rum_crypto_mode(sc, cipher, k->wk_keylen);
1469 		if (mode == 0)
1470 			return 0;
1471 
1472 		flags |= RT2573_TX_CIP_MODE(mode);
1473 
1474 		/* Do not trust GROUP flag */
1475 		if (!(k >= &vap->iv_nw_keys[0] &&
1476 		      k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]))
1477 			flags |= RT2573_TX_KEY_PAIR;
1478 		else
1479 			pos += 0 * RT2573_SKEY_MAX;	/* vap id */
1480 
1481 		flags |= RT2573_TX_KEY_ID(pos);
1482 
1483 		if (cipher == IEEE80211_CIPHER_TKIP)
1484 			flags |= RT2573_TX_TKIPMIC;
1485 	}
1486 
1487 	return flags;
1488 }
1489 
1490 static int
1491 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1492 {
1493 	const struct ieee80211_txparam *tp = ni->ni_txparms;
1494 	struct ieee80211com *ic = &sc->sc_ic;
1495 	struct rum_tx_data *data;
1496 	struct ieee80211_frame *wh;
1497 	struct ieee80211_key *k = NULL;
1498 	uint32_t flags = 0;
1499 	uint16_t dur;
1500 	uint8_t ac, type, xflags = 0;
1501 	int hdrlen;
1502 
1503 	RUM_LOCK_ASSERT(sc);
1504 
1505 	data = STAILQ_FIRST(&sc->tx_free);
1506 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1507 	sc->tx_nfree--;
1508 
1509 	wh = mtod(m0, struct ieee80211_frame *);
1510 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1511 	hdrlen = ieee80211_anyhdrsize(wh);
1512 	ac = M_WME_GETAC(m0);
1513 
1514 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1515 		k = ieee80211_crypto_get_txkey(ni, m0);
1516 		if (k == NULL)
1517 			return (ENOENT);
1518 
1519 		if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
1520 		    !k->wk_cipher->ic_encap(k, m0))
1521 			return (ENOBUFS);
1522 
1523 		wh = mtod(m0, struct ieee80211_frame *);
1524 	}
1525 
1526 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1527 		flags |= RT2573_TX_NEED_ACK;
1528 
1529 		dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate,
1530 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1531 		USETW(wh->i_dur, dur);
1532 
1533 		/* tell hardware to add timestamp for probe responses */
1534 		if (type == IEEE80211_FC0_TYPE_MGT &&
1535 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1536 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1537 			flags |= RT2573_TX_TIMESTAMP;
1538 	}
1539 
1540 	if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh))
1541 		xflags |= RT2573_TX_HWSEQ;
1542 
1543 	if (k != NULL)
1544 		flags |= rum_tx_crypto_flags(sc, ni, k);
1545 
1546 	data->m = m0;
1547 	data->ni = ni;
1548 	data->rate = tp->mgmtrate;
1549 
1550 	rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen,
1551 	    m0->m_pkthdr.len, tp->mgmtrate);
1552 
1553 	DPRINTFN(10, "sending mgt frame len=%d rate=%d\n",
1554 	    m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, tp->mgmtrate);
1555 
1556 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1557 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1558 
1559 	return (0);
1560 }
1561 
1562 static int
1563 rum_tx_raw(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1564     const struct ieee80211_bpf_params *params)
1565 {
1566 	struct ieee80211com *ic = ni->ni_ic;
1567 	struct ieee80211_frame *wh;
1568 	struct rum_tx_data *data;
1569 	uint32_t flags;
1570 	uint8_t ac, type, xflags = 0;
1571 	int rate, error;
1572 
1573 	RUM_LOCK_ASSERT(sc);
1574 
1575 	wh = mtod(m0, struct ieee80211_frame *);
1576 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1577 
1578 	ac = params->ibp_pri & 3;
1579 
1580 	rate = params->ibp_rate0;
1581 	if (!ieee80211_isratevalid(ic->ic_rt, rate))
1582 		return (EINVAL);
1583 
1584 	flags = 0;
1585 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1586 		flags |= RT2573_TX_NEED_ACK;
1587 	if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
1588 		error = rum_sendprot(sc, m0, ni,
1589 		    params->ibp_flags & IEEE80211_BPF_RTS ?
1590 			 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
1591 		    rate);
1592 		if (error || sc->tx_nfree == 0)
1593 			return (ENOBUFS);
1594 
1595 		flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1596 	}
1597 
1598 	if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh))
1599 		xflags |= RT2573_TX_HWSEQ;
1600 
1601 	data = STAILQ_FIRST(&sc->tx_free);
1602 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1603 	sc->tx_nfree--;
1604 
1605 	data->m = m0;
1606 	data->ni = ni;
1607 	data->rate = rate;
1608 
1609 	/* XXX need to setup descriptor ourself */
1610 	rum_setup_tx_desc(sc, &data->desc, NULL, flags, xflags, ac, 0,
1611 	    m0->m_pkthdr.len, rate);
1612 
1613 	DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
1614 	    m0->m_pkthdr.len, rate);
1615 
1616 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1617 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1618 
1619 	return 0;
1620 }
1621 
1622 static int
1623 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1624 {
1625 	struct ieee80211vap *vap = ni->ni_vap;
1626 	struct ieee80211com *ic = &sc->sc_ic;
1627 	struct rum_tx_data *data;
1628 	struct ieee80211_frame *wh;
1629 	const struct ieee80211_txparam *tp = ni->ni_txparms;
1630 	struct ieee80211_key *k = NULL;
1631 	uint32_t flags = 0;
1632 	uint16_t dur;
1633 	uint8_t ac, type, qos, xflags = 0;
1634 	int error, hdrlen, rate;
1635 
1636 	RUM_LOCK_ASSERT(sc);
1637 
1638 	wh = mtod(m0, struct ieee80211_frame *);
1639 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1640 	hdrlen = ieee80211_anyhdrsize(wh);
1641 
1642 	if (IEEE80211_QOS_HAS_SEQ(wh))
1643 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
1644 	else
1645 		qos = 0;
1646 	ac = M_WME_GETAC(m0);
1647 
1648 	if (m0->m_flags & M_EAPOL)
1649 		rate = tp->mgmtrate;
1650 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1651 		rate = tp->mcastrate;
1652 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
1653 		rate = tp->ucastrate;
1654 	else {
1655 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
1656 		rate = ni->ni_txrate;
1657 	}
1658 
1659 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1660 		k = ieee80211_crypto_get_txkey(ni, m0);
1661 		if (k == NULL) {
1662 			m_freem(m0);
1663 			return (ENOENT);
1664 		}
1665 		if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
1666 		    !k->wk_cipher->ic_encap(k, m0)) {
1667 			m_freem(m0);
1668 			return (ENOBUFS);
1669 		}
1670 
1671 		/* packet header may have moved, reset our local pointer */
1672 		wh = mtod(m0, struct ieee80211_frame *);
1673 	}
1674 
1675 	if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh))
1676 		xflags |= RT2573_TX_HWSEQ;
1677 
1678 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1679 		int prot = IEEE80211_PROT_NONE;
1680 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
1681 			prot = IEEE80211_PROT_RTSCTS;
1682 		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1683 		    ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
1684 			prot = ic->ic_protmode;
1685 		if (prot != IEEE80211_PROT_NONE) {
1686 			error = rum_sendprot(sc, m0, ni, prot, rate);
1687 			if (error || sc->tx_nfree == 0) {
1688 				m_freem(m0);
1689 				return ENOBUFS;
1690 			}
1691 			flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1692 		}
1693 	}
1694 
1695 	if (k != NULL)
1696 		flags |= rum_tx_crypto_flags(sc, ni, k);
1697 
1698 	data = STAILQ_FIRST(&sc->tx_free);
1699 	STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1700 	sc->tx_nfree--;
1701 
1702 	data->m = m0;
1703 	data->ni = ni;
1704 	data->rate = rate;
1705 
1706 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1707 		/* Unicast frame, check if an ACK is expected. */
1708 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
1709 		    IEEE80211_QOS_ACKPOLICY_NOACK)
1710 			flags |= RT2573_TX_NEED_ACK;
1711 
1712 		dur = ieee80211_ack_duration(ic->ic_rt, rate,
1713 		    ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1714 		USETW(wh->i_dur, dur);
1715 	}
1716 
1717 	rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen,
1718 	    m0->m_pkthdr.len, rate);
1719 
1720 	DPRINTFN(10, "sending frame len=%d rate=%d\n",
1721 	    m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate);
1722 
1723 	STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1724 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1725 
1726 	return 0;
1727 }
1728 
1729 static int
1730 rum_transmit(struct ieee80211com *ic, struct mbuf *m)
1731 {
1732 	struct rum_softc *sc = ic->ic_softc;
1733 	int error;
1734 
1735 	RUM_LOCK(sc);
1736 	if (!sc->sc_running) {
1737 		RUM_UNLOCK(sc);
1738 		return (ENXIO);
1739 	}
1740 	error = mbufq_enqueue(&sc->sc_snd, m);
1741 	if (error) {
1742 		RUM_UNLOCK(sc);
1743 		return (error);
1744 	}
1745 	rum_start(sc);
1746 	RUM_UNLOCK(sc);
1747 
1748 	return (0);
1749 }
1750 
1751 static void
1752 rum_start(struct rum_softc *sc)
1753 {
1754 	struct ieee80211_node *ni;
1755 	struct mbuf *m;
1756 
1757 	RUM_LOCK_ASSERT(sc);
1758 
1759 	if (!sc->sc_running)
1760 		return;
1761 
1762 	while (sc->tx_nfree >= RUM_TX_MINFREE &&
1763 	    (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
1764 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1765 		if (rum_tx_data(sc, m, ni) != 0) {
1766 			if_inc_counter(ni->ni_vap->iv_ifp,
1767 			    IFCOUNTER_OERRORS, 1);
1768 			ieee80211_free_node(ni);
1769 			break;
1770 		}
1771 	}
1772 }
1773 
1774 static void
1775 rum_parent(struct ieee80211com *ic)
1776 {
1777 	struct rum_softc *sc = ic->ic_softc;
1778 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1779 
1780 	RUM_LOCK(sc);
1781 	if (sc->sc_detached) {
1782 		RUM_UNLOCK(sc);
1783 		return;
1784 	}
1785 	RUM_UNLOCK(sc);
1786 
1787 	if (ic->ic_nrunning > 0) {
1788 		if (rum_init(sc) == 0)
1789 			ieee80211_start_all(ic);
1790 		else
1791 			ieee80211_stop(vap);
1792 	} else
1793 		rum_stop(sc);
1794 }
1795 
1796 static void
1797 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1798 {
1799 	struct usb_device_request req;
1800 	usb_error_t error;
1801 
1802 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1803 	req.bRequest = RT2573_READ_EEPROM;
1804 	USETW(req.wValue, 0);
1805 	USETW(req.wIndex, addr);
1806 	USETW(req.wLength, len);
1807 
1808 	error = rum_do_request(sc, &req, buf);
1809 	if (error != 0) {
1810 		device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1811 		    usbd_errstr(error));
1812 	}
1813 }
1814 
1815 static uint32_t
1816 rum_read(struct rum_softc *sc, uint16_t reg)
1817 {
1818 	uint32_t val;
1819 
1820 	rum_read_multi(sc, reg, &val, sizeof val);
1821 
1822 	return le32toh(val);
1823 }
1824 
1825 static void
1826 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1827 {
1828 	struct usb_device_request req;
1829 	usb_error_t error;
1830 
1831 	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1832 	req.bRequest = RT2573_READ_MULTI_MAC;
1833 	USETW(req.wValue, 0);
1834 	USETW(req.wIndex, reg);
1835 	USETW(req.wLength, len);
1836 
1837 	error = rum_do_request(sc, &req, buf);
1838 	if (error != 0) {
1839 		device_printf(sc->sc_dev,
1840 		    "could not multi read MAC register: %s\n",
1841 		    usbd_errstr(error));
1842 	}
1843 }
1844 
1845 static usb_error_t
1846 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1847 {
1848 	uint32_t tmp = htole32(val);
1849 
1850 	return (rum_write_multi(sc, reg, &tmp, sizeof tmp));
1851 }
1852 
1853 static usb_error_t
1854 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1855 {
1856 	struct usb_device_request req;
1857 	usb_error_t error;
1858 	size_t offset;
1859 
1860 	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1861 	req.bRequest = RT2573_WRITE_MULTI_MAC;
1862 	USETW(req.wValue, 0);
1863 
1864 	/* write at most 64 bytes at a time */
1865 	for (offset = 0; offset < len; offset += 64) {
1866 		USETW(req.wIndex, reg + offset);
1867 		USETW(req.wLength, MIN(len - offset, 64));
1868 
1869 		error = rum_do_request(sc, &req, (char *)buf + offset);
1870 		if (error != 0) {
1871 			device_printf(sc->sc_dev,
1872 			    "could not multi write MAC register: %s\n",
1873 			    usbd_errstr(error));
1874 			return (error);
1875 		}
1876 	}
1877 
1878 	return (USB_ERR_NORMAL_COMPLETION);
1879 }
1880 
1881 static usb_error_t
1882 rum_setbits(struct rum_softc *sc, uint16_t reg, uint32_t mask)
1883 {
1884 	return (rum_write(sc, reg, rum_read(sc, reg) | mask));
1885 }
1886 
1887 static usb_error_t
1888 rum_clrbits(struct rum_softc *sc, uint16_t reg, uint32_t mask)
1889 {
1890 	return (rum_write(sc, reg, rum_read(sc, reg) & ~mask));
1891 }
1892 
1893 static usb_error_t
1894 rum_modbits(struct rum_softc *sc, uint16_t reg, uint32_t set, uint32_t unset)
1895 {
1896 	return (rum_write(sc, reg, (rum_read(sc, reg) & ~unset) | set));
1897 }
1898 
1899 static int
1900 rum_bbp_busy(struct rum_softc *sc)
1901 {
1902 	int ntries;
1903 
1904 	for (ntries = 0; ntries < 100; ntries++) {
1905 		if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1906 			break;
1907 		if (rum_pause(sc, hz / 100))
1908 			break;
1909 	}
1910 	if (ntries == 100)
1911 		return (ETIMEDOUT);
1912 
1913 	return (0);
1914 }
1915 
1916 static void
1917 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1918 {
1919 	uint32_t tmp;
1920 
1921 	DPRINTFN(2, "reg=0x%08x\n", reg);
1922 
1923 	if (rum_bbp_busy(sc) != 0) {
1924 		device_printf(sc->sc_dev, "could not write to BBP\n");
1925 		return;
1926 	}
1927 
1928 	tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1929 	rum_write(sc, RT2573_PHY_CSR3, tmp);
1930 }
1931 
1932 static uint8_t
1933 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1934 {
1935 	uint32_t val;
1936 	int ntries;
1937 
1938 	DPRINTFN(2, "reg=0x%08x\n", reg);
1939 
1940 	if (rum_bbp_busy(sc) != 0) {
1941 		device_printf(sc->sc_dev, "could not read BBP\n");
1942 		return 0;
1943 	}
1944 
1945 	val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1946 	rum_write(sc, RT2573_PHY_CSR3, val);
1947 
1948 	for (ntries = 0; ntries < 100; ntries++) {
1949 		val = rum_read(sc, RT2573_PHY_CSR3);
1950 		if (!(val & RT2573_BBP_BUSY))
1951 			return val & 0xff;
1952 		if (rum_pause(sc, hz / 100))
1953 			break;
1954 	}
1955 
1956 	device_printf(sc->sc_dev, "could not read BBP\n");
1957 	return 0;
1958 }
1959 
1960 static void
1961 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1962 {
1963 	uint32_t tmp;
1964 	int ntries;
1965 
1966 	for (ntries = 0; ntries < 100; ntries++) {
1967 		if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1968 			break;
1969 		if (rum_pause(sc, hz / 100))
1970 			break;
1971 	}
1972 	if (ntries == 100) {
1973 		device_printf(sc->sc_dev, "could not write to RF\n");
1974 		return;
1975 	}
1976 
1977 	tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1978 	    (reg & 3);
1979 	rum_write(sc, RT2573_PHY_CSR4, tmp);
1980 
1981 	/* remember last written value in sc */
1982 	sc->rf_regs[reg] = val;
1983 
1984 	DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff);
1985 }
1986 
1987 static void
1988 rum_select_antenna(struct rum_softc *sc)
1989 {
1990 	uint8_t bbp4, bbp77;
1991 	uint32_t tmp;
1992 
1993 	bbp4  = rum_bbp_read(sc, 4);
1994 	bbp77 = rum_bbp_read(sc, 77);
1995 
1996 	/* TBD */
1997 
1998 	/* make sure Rx is disabled before switching antenna */
1999 	tmp = rum_read(sc, RT2573_TXRX_CSR0);
2000 	rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2001 
2002 	rum_bbp_write(sc,  4, bbp4);
2003 	rum_bbp_write(sc, 77, bbp77);
2004 
2005 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
2006 }
2007 
2008 /*
2009  * Enable multi-rate retries for frames sent at OFDM rates.
2010  * In 802.11b/g mode, allow fallback to CCK rates.
2011  */
2012 static void
2013 rum_enable_mrr(struct rum_softc *sc)
2014 {
2015 	struct ieee80211com *ic = &sc->sc_ic;
2016 
2017 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) {
2018 		rum_setbits(sc, RT2573_TXRX_CSR4,
2019 		    RT2573_MRR_ENABLED | RT2573_MRR_CCK_FALLBACK);
2020 	} else {
2021 		rum_modbits(sc, RT2573_TXRX_CSR4,
2022 		    RT2573_MRR_ENABLED, RT2573_MRR_CCK_FALLBACK);
2023 	}
2024 }
2025 
2026 static void
2027 rum_set_txpreamble(struct rum_softc *sc)
2028 {
2029 	struct ieee80211com *ic = &sc->sc_ic;
2030 
2031 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2032 		rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE);
2033 	else
2034 		rum_clrbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE);
2035 }
2036 
2037 static void
2038 rum_set_basicrates(struct rum_softc *sc)
2039 {
2040 	struct ieee80211com *ic = &sc->sc_ic;
2041 
2042 	/* update basic rate set */
2043 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2044 		/* 11b basic rates: 1, 2Mbps */
2045 		rum_write(sc, RT2573_TXRX_CSR5, 0x3);
2046 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) {
2047 		/* 11a basic rates: 6, 12, 24Mbps */
2048 		rum_write(sc, RT2573_TXRX_CSR5, 0x150);
2049 	} else {
2050 		/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
2051 		rum_write(sc, RT2573_TXRX_CSR5, 0xf);
2052 	}
2053 }
2054 
2055 /*
2056  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
2057  * driver.
2058  */
2059 static void
2060 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
2061 {
2062 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
2063 
2064 	/* update all BBP registers that depend on the band */
2065 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
2066 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
2067 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2068 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
2069 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
2070 	}
2071 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2072 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2073 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
2074 	}
2075 
2076 	sc->bbp17 = bbp17;
2077 	rum_bbp_write(sc,  17, bbp17);
2078 	rum_bbp_write(sc,  96, bbp96);
2079 	rum_bbp_write(sc, 104, bbp104);
2080 
2081 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2082 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2083 		rum_bbp_write(sc, 75, 0x80);
2084 		rum_bbp_write(sc, 86, 0x80);
2085 		rum_bbp_write(sc, 88, 0x80);
2086 	}
2087 
2088 	rum_bbp_write(sc, 35, bbp35);
2089 	rum_bbp_write(sc, 97, bbp97);
2090 	rum_bbp_write(sc, 98, bbp98);
2091 
2092 	if (IEEE80211_IS_CHAN_2GHZ(c)) {
2093 		rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_2GHZ,
2094 		    RT2573_PA_PE_5GHZ);
2095 	} else {
2096 		rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_5GHZ,
2097 		    RT2573_PA_PE_2GHZ);
2098 	}
2099 }
2100 
2101 static void
2102 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
2103 {
2104 	struct ieee80211com *ic = &sc->sc_ic;
2105 	const struct rfprog *rfprog;
2106 	uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
2107 	int8_t power;
2108 	int i, chan;
2109 
2110 	chan = ieee80211_chan2ieee(ic, c);
2111 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2112 		return;
2113 
2114 	/* select the appropriate RF settings based on what EEPROM says */
2115 	rfprog = (sc->rf_rev == RT2573_RF_5225 ||
2116 		  sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
2117 
2118 	/* find the settings for this channel (we know it exists) */
2119 	for (i = 0; rfprog[i].chan != chan; i++);
2120 
2121 	power = sc->txpow[i];
2122 	if (power < 0) {
2123 		bbp94 += power;
2124 		power = 0;
2125 	} else if (power > 31) {
2126 		bbp94 += power - 31;
2127 		power = 31;
2128 	}
2129 
2130 	/*
2131 	 * If we are switching from the 2GHz band to the 5GHz band or
2132 	 * vice-versa, BBP registers need to be reprogrammed.
2133 	 */
2134 	if (c->ic_flags != ic->ic_curchan->ic_flags) {
2135 		rum_select_band(sc, c);
2136 		rum_select_antenna(sc);
2137 	}
2138 	ic->ic_curchan = c;
2139 
2140 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
2141 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
2142 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
2143 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
2144 
2145 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
2146 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
2147 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
2148 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
2149 
2150 	rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
2151 	rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
2152 	rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
2153 	rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
2154 
2155 	rum_pause(sc, hz / 100);
2156 
2157 	/* enable smart mode for MIMO-capable RFs */
2158 	bbp3 = rum_bbp_read(sc, 3);
2159 
2160 	bbp3 &= ~RT2573_SMART_MODE;
2161 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
2162 		bbp3 |= RT2573_SMART_MODE;
2163 
2164 	rum_bbp_write(sc, 3, bbp3);
2165 
2166 	if (bbp94 != RT2573_BBPR94_DEFAULT)
2167 		rum_bbp_write(sc, 94, bbp94);
2168 
2169 	/* give the chip some extra time to do the switchover */
2170 	rum_pause(sc, hz / 100);
2171 }
2172 
2173 static void
2174 rum_set_maxretry(struct rum_softc *sc, struct ieee80211vap *vap)
2175 {
2176 	struct ieee80211_node *ni = vap->iv_bss;
2177 	const struct ieee80211_txparam *tp = ni->ni_txparms;
2178 	struct rum_vap *rvp = RUM_VAP(vap);
2179 
2180 	rvp->maxretry = MIN(tp->maxretry, 0xf);
2181 
2182 	rum_modbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_RETRY(rvp->maxretry) |
2183 	    RT2573_LONG_RETRY(rvp->maxretry),
2184 	    RT2573_SHORT_RETRY_MASK | RT2573_LONG_RETRY_MASK);
2185 }
2186 
2187 /*
2188  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
2189  * and HostAP operating modes.
2190  */
2191 static int
2192 rum_enable_tsf_sync(struct rum_softc *sc)
2193 {
2194 	struct ieee80211com *ic = &sc->sc_ic;
2195 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2196 	uint32_t tmp;
2197 	uint16_t bintval;
2198 
2199 	if (vap->iv_opmode != IEEE80211_M_STA) {
2200 		/*
2201 		 * Change default 16ms TBTT adjustment to 8ms.
2202 		 * Must be done before enabling beacon generation.
2203 		 */
2204 		if (rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8) != 0)
2205 			return EIO;
2206 	}
2207 
2208 	tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
2209 
2210 	/* set beacon interval (in 1/16ms unit) */
2211 	bintval = vap->iv_bss->ni_intval;
2212 	tmp |= bintval * 16;
2213 	tmp |= RT2573_TSF_TIMER_EN | RT2573_TBTT_TIMER_EN;
2214 
2215 	switch (vap->iv_opmode) {
2216 	case IEEE80211_M_STA:
2217 		/*
2218 		 * Local TSF is always updated with remote TSF on beacon
2219 		 * reception.
2220 		 */
2221 		tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_STA);
2222 		break;
2223 	case IEEE80211_M_IBSS:
2224 		/*
2225 		 * Local TSF is updated with remote TSF on beacon reception
2226 		 * only if the remote TSF is greater than local TSF.
2227 		 */
2228 		tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_IBSS);
2229 		tmp |= RT2573_BCN_TX_EN;
2230 		break;
2231 	case IEEE80211_M_HOSTAP:
2232 		/* SYNC with nobody */
2233 		tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_HOSTAP);
2234 		tmp |= RT2573_BCN_TX_EN;
2235 		break;
2236 	default:
2237 		device_printf(sc->sc_dev,
2238 		    "Enabling TSF failed. undefined opmode %d\n",
2239 		    vap->iv_opmode);
2240 		return EINVAL;
2241 	}
2242 
2243 	if (rum_write(sc, RT2573_TXRX_CSR9, tmp) != 0)
2244 		return EIO;
2245 
2246 	/* refresh current sleep time */
2247 	return (rum_set_sleep_time(sc, bintval));
2248 }
2249 
2250 static void
2251 rum_enable_tsf(struct rum_softc *sc)
2252 {
2253 	rum_modbits(sc, RT2573_TXRX_CSR9, RT2573_TSF_TIMER_EN |
2254 	    RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_DIS), 0x00ffffff);
2255 }
2256 
2257 static void
2258 rum_abort_tsf_sync(struct rum_softc *sc)
2259 {
2260 	rum_clrbits(sc, RT2573_TXRX_CSR9, 0x00ffffff);
2261 }
2262 
2263 static void
2264 rum_get_tsf(struct rum_softc *sc, uint64_t *buf)
2265 {
2266 	rum_read_multi(sc, RT2573_TXRX_CSR12, buf, sizeof (*buf));
2267 }
2268 
2269 static void
2270 rum_update_slot_cb(struct rum_softc *sc, union sec_param *data, uint8_t rvp_id)
2271 {
2272 	struct ieee80211com *ic = &sc->sc_ic;
2273 	uint8_t slottime;
2274 
2275 	slottime = IEEE80211_GET_SLOTTIME(ic);
2276 
2277 	rum_modbits(sc, RT2573_MAC_CSR9, slottime, 0xff);
2278 
2279 	DPRINTF("setting slot time to %uus\n", slottime);
2280 }
2281 
2282 static void
2283 rum_update_slot(struct ieee80211com *ic)
2284 {
2285 	rum_cmd_sleepable(ic->ic_softc, NULL, 0, 0, rum_update_slot_cb);
2286 }
2287 
2288 static int
2289 rum_wme_update(struct ieee80211com *ic)
2290 {
2291 	struct chanAccParams chp;
2292 	const struct wmeParams *chanp;
2293 	struct rum_softc *sc = ic->ic_softc;
2294 	int error = 0;
2295 
2296 	ieee80211_wme_ic_getparams(ic, &chp);
2297 	chanp = chp.cap_wmeParams;
2298 
2299 	RUM_LOCK(sc);
2300 	error = rum_write(sc, RT2573_AIFSN_CSR,
2301 	    chanp[WME_AC_VO].wmep_aifsn  << 12 |
2302 	    chanp[WME_AC_VI].wmep_aifsn  <<  8 |
2303 	    chanp[WME_AC_BK].wmep_aifsn  <<  4 |
2304 	    chanp[WME_AC_BE].wmep_aifsn);
2305 	if (error)
2306 		goto print_err;
2307 	error = rum_write(sc, RT2573_CWMIN_CSR,
2308 	    chanp[WME_AC_VO].wmep_logcwmin << 12 |
2309 	    chanp[WME_AC_VI].wmep_logcwmin <<  8 |
2310 	    chanp[WME_AC_BK].wmep_logcwmin <<  4 |
2311 	    chanp[WME_AC_BE].wmep_logcwmin);
2312 	if (error)
2313 		goto print_err;
2314 	error = rum_write(sc, RT2573_CWMAX_CSR,
2315 	    chanp[WME_AC_VO].wmep_logcwmax << 12 |
2316 	    chanp[WME_AC_VI].wmep_logcwmax <<  8 |
2317 	    chanp[WME_AC_BK].wmep_logcwmax <<  4 |
2318 	    chanp[WME_AC_BE].wmep_logcwmax);
2319 	if (error)
2320 		goto print_err;
2321 	error = rum_write(sc, RT2573_TXOP01_CSR,
2322 	    chanp[WME_AC_BK].wmep_txopLimit << 16 |
2323 	    chanp[WME_AC_BE].wmep_txopLimit);
2324 	if (error)
2325 		goto print_err;
2326 	error = rum_write(sc, RT2573_TXOP23_CSR,
2327 	    chanp[WME_AC_VO].wmep_txopLimit << 16 |
2328 	    chanp[WME_AC_VI].wmep_txopLimit);
2329 	if (error)
2330 		goto print_err;
2331 
2332 	memcpy(sc->wme_params, chanp, sizeof(*chanp) * WME_NUM_AC);
2333 
2334 print_err:
2335 	RUM_UNLOCK(sc);
2336 	if (error != 0) {
2337 		device_printf(sc->sc_dev, "%s: WME update failed, error %d\n",
2338 		    __func__, error);
2339 	}
2340 
2341 	return (error);
2342 }
2343 
2344 static void
2345 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
2346 {
2347 
2348 	rum_write(sc, RT2573_MAC_CSR4,
2349 	    bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24);
2350 	rum_write(sc, RT2573_MAC_CSR5,
2351 	    bssid[4] | bssid[5] << 8 | RT2573_NUM_BSSID_MSK(1));
2352 }
2353 
2354 static void
2355 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
2356 {
2357 
2358 	rum_write(sc, RT2573_MAC_CSR2,
2359 	    addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
2360 	rum_write(sc, RT2573_MAC_CSR3,
2361 	    addr[4] | addr[5] << 8 | 0xff << 16);
2362 }
2363 
2364 static void
2365 rum_setpromisc(struct rum_softc *sc)
2366 {
2367 	struct ieee80211com *ic = &sc->sc_ic;
2368 
2369 	if (ic->ic_promisc == 0)
2370 		rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME);
2371 	else
2372 		rum_clrbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME);
2373 
2374 	DPRINTF("%s promiscuous mode\n", ic->ic_promisc > 0 ?
2375 	    "entering" : "leaving");
2376 }
2377 
2378 static void
2379 rum_update_promisc(struct ieee80211com *ic)
2380 {
2381 	struct rum_softc *sc = ic->ic_softc;
2382 
2383 	RUM_LOCK(sc);
2384 	if (sc->sc_running)
2385 		rum_setpromisc(sc);
2386 	RUM_UNLOCK(sc);
2387 }
2388 
2389 static void
2390 rum_update_mcast(struct ieee80211com *ic)
2391 {
2392 	/* Ignore. */
2393 }
2394 
2395 static const char *
2396 rum_get_rf(int rev)
2397 {
2398 	switch (rev) {
2399 	case RT2573_RF_2527:	return "RT2527 (MIMO XR)";
2400 	case RT2573_RF_2528:	return "RT2528";
2401 	case RT2573_RF_5225:	return "RT5225 (MIMO XR)";
2402 	case RT2573_RF_5226:	return "RT5226";
2403 	default:		return "unknown";
2404 	}
2405 }
2406 
2407 static void
2408 rum_read_eeprom(struct rum_softc *sc)
2409 {
2410 	uint16_t val;
2411 #ifdef RUM_DEBUG
2412 	int i;
2413 #endif
2414 
2415 	/* read MAC address */
2416 	rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, sc->sc_ic.ic_macaddr, 6);
2417 
2418 	rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
2419 	val = le16toh(val);
2420 	sc->rf_rev =   (val >> 11) & 0x1f;
2421 	sc->hw_radio = (val >> 10) & 0x1;
2422 	sc->rx_ant =   (val >> 4)  & 0x3;
2423 	sc->tx_ant =   (val >> 2)  & 0x3;
2424 	sc->nb_ant =   val & 0x3;
2425 
2426 	DPRINTF("RF revision=%d\n", sc->rf_rev);
2427 
2428 	rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
2429 	val = le16toh(val);
2430 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
2431 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
2432 
2433 	DPRINTF("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
2434 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna);
2435 
2436 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
2437 	val = le16toh(val);
2438 	if ((val & 0xff) != 0xff)
2439 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
2440 
2441 	/* Only [-10, 10] is valid */
2442 	if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10)
2443 		sc->rssi_2ghz_corr = 0;
2444 
2445 	rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
2446 	val = le16toh(val);
2447 	if ((val & 0xff) != 0xff)
2448 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
2449 
2450 	/* Only [-10, 10] is valid */
2451 	if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10)
2452 		sc->rssi_5ghz_corr = 0;
2453 
2454 	if (sc->ext_2ghz_lna)
2455 		sc->rssi_2ghz_corr -= 14;
2456 	if (sc->ext_5ghz_lna)
2457 		sc->rssi_5ghz_corr -= 14;
2458 
2459 	DPRINTF("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
2460 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr);
2461 
2462 	rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
2463 	val = le16toh(val);
2464 	if ((val & 0xff) != 0xff)
2465 		sc->rffreq = val & 0xff;
2466 
2467 	DPRINTF("RF freq=%d\n", sc->rffreq);
2468 
2469 	/* read Tx power for all a/b/g channels */
2470 	rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
2471 	/* XXX default Tx power for 802.11a channels */
2472 	memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
2473 #ifdef RUM_DEBUG
2474 	for (i = 0; i < 14; i++)
2475 		DPRINTF("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]);
2476 #endif
2477 
2478 	/* read default values for BBP registers */
2479 	rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
2480 #ifdef RUM_DEBUG
2481 	for (i = 0; i < 14; i++) {
2482 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
2483 			continue;
2484 		DPRINTF("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
2485 		    sc->bbp_prom[i].val);
2486 	}
2487 #endif
2488 }
2489 
2490 static int
2491 rum_bbp_wakeup(struct rum_softc *sc)
2492 {
2493 	unsigned int ntries;
2494 
2495 	for (ntries = 0; ntries < 100; ntries++) {
2496 		if (rum_read(sc, RT2573_MAC_CSR12) & 8)
2497 			break;
2498 		rum_write(sc, RT2573_MAC_CSR12, 4);	/* force wakeup */
2499 		if (rum_pause(sc, hz / 100))
2500 			break;
2501 	}
2502 	if (ntries == 100) {
2503 		device_printf(sc->sc_dev,
2504 		    "timeout waiting for BBP/RF to wakeup\n");
2505 		return (ETIMEDOUT);
2506 	}
2507 
2508 	return (0);
2509 }
2510 
2511 static int
2512 rum_bbp_init(struct rum_softc *sc)
2513 {
2514 	int i, ntries;
2515 
2516 	/* wait for BBP to be ready */
2517 	for (ntries = 0; ntries < 100; ntries++) {
2518 		const uint8_t val = rum_bbp_read(sc, 0);
2519 		if (val != 0 && val != 0xff)
2520 			break;
2521 		if (rum_pause(sc, hz / 100))
2522 			break;
2523 	}
2524 	if (ntries == 100) {
2525 		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
2526 		return EIO;
2527 	}
2528 
2529 	/* initialize BBP registers to default values */
2530 	for (i = 0; i < nitems(rum_def_bbp); i++)
2531 		rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
2532 
2533 	/* write vendor-specific BBP values (from EEPROM) */
2534 	for (i = 0; i < 16; i++) {
2535 		if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
2536 			continue;
2537 		rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2538 	}
2539 
2540 	return 0;
2541 }
2542 
2543 static void
2544 rum_clr_shkey_regs(struct rum_softc *sc)
2545 {
2546 	rum_write(sc, RT2573_SEC_CSR0, 0);
2547 	rum_write(sc, RT2573_SEC_CSR1, 0);
2548 	rum_write(sc, RT2573_SEC_CSR5, 0);
2549 }
2550 
2551 static int
2552 rum_init(struct rum_softc *sc)
2553 {
2554 	struct ieee80211com *ic = &sc->sc_ic;
2555 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2556 	uint32_t tmp;
2557 	int i, ret;
2558 
2559 	RUM_LOCK(sc);
2560 	if (sc->sc_running) {
2561 		ret = 0;
2562 		goto end;
2563 	}
2564 
2565 	/* initialize MAC registers to default values */
2566 	for (i = 0; i < nitems(rum_def_mac); i++)
2567 		rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
2568 
2569 	/* reset some WME parameters to default values */
2570 	sc->wme_params[0].wmep_aifsn = 2;
2571 	sc->wme_params[0].wmep_logcwmin = 4;
2572 	sc->wme_params[0].wmep_logcwmax = 10;
2573 
2574 	/* set host ready */
2575 	rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP);
2576 	rum_write(sc, RT2573_MAC_CSR1, 0);
2577 
2578 	/* wait for BBP/RF to wakeup */
2579 	if ((ret = rum_bbp_wakeup(sc)) != 0)
2580 		goto end;
2581 
2582 	if ((ret = rum_bbp_init(sc)) != 0)
2583 		goto end;
2584 
2585 	/* select default channel */
2586 	rum_select_band(sc, ic->ic_curchan);
2587 	rum_select_antenna(sc);
2588 	rum_set_chan(sc, ic->ic_curchan);
2589 
2590 	/* clear STA registers */
2591 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2592 
2593 	/* clear security registers (if required) */
2594 	if (sc->sc_clr_shkeys == 0) {
2595 		rum_clr_shkey_regs(sc);
2596 		sc->sc_clr_shkeys = 1;
2597 	}
2598 
2599 	rum_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr);
2600 
2601 	/* initialize ASIC */
2602 	rum_write(sc, RT2573_MAC_CSR1, RT2573_HOST_READY);
2603 
2604 	/*
2605 	 * Allocate Tx and Rx xfer queues.
2606 	 */
2607 	rum_setup_tx_list(sc);
2608 
2609 	/* update Rx filter */
2610 	tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2611 
2612 	tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2613 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2614 		tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2615 		       RT2573_DROP_ACKCTS;
2616 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2617 			tmp |= RT2573_DROP_TODS;
2618 		if (ic->ic_promisc == 0)
2619 			tmp |= RT2573_DROP_NOT_TO_ME;
2620 	}
2621 	rum_write(sc, RT2573_TXRX_CSR0, tmp);
2622 
2623 	sc->sc_running = 1;
2624 	usbd_xfer_set_stall(sc->sc_xfer[RUM_BULK_WR]);
2625 	usbd_transfer_start(sc->sc_xfer[RUM_BULK_RD]);
2626 
2627 end:	RUM_UNLOCK(sc);
2628 
2629 	if (ret != 0)
2630 		rum_stop(sc);
2631 
2632 	return ret;
2633 }
2634 
2635 static void
2636 rum_stop(struct rum_softc *sc)
2637 {
2638 
2639 	RUM_LOCK(sc);
2640 	if (!sc->sc_running) {
2641 		RUM_UNLOCK(sc);
2642 		return;
2643 	}
2644 	sc->sc_running = 0;
2645 	RUM_UNLOCK(sc);
2646 
2647 	/*
2648 	 * Drain the USB transfers, if not already drained:
2649 	 */
2650 	usbd_transfer_drain(sc->sc_xfer[RUM_BULK_WR]);
2651 	usbd_transfer_drain(sc->sc_xfer[RUM_BULK_RD]);
2652 
2653 	RUM_LOCK(sc);
2654 	rum_unsetup_tx_list(sc);
2655 
2656 	/* disable Rx */
2657 	rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DISABLE_RX);
2658 
2659 	/* reset ASIC */
2660 	rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP);
2661 	rum_write(sc, RT2573_MAC_CSR1, 0);
2662 	RUM_UNLOCK(sc);
2663 }
2664 
2665 static void
2666 rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size)
2667 {
2668 	uint16_t reg = RT2573_MCU_CODE_BASE;
2669 	usb_error_t err;
2670 
2671 	/* copy firmware image into NIC */
2672 	for (; size >= 4; reg += 4, ucode += 4, size -= 4) {
2673 		err = rum_write(sc, reg, UGETDW(ucode));
2674 		if (err) {
2675 			/* firmware already loaded ? */
2676 			device_printf(sc->sc_dev, "Firmware load "
2677 			    "failure! (ignored)\n");
2678 			break;
2679 		}
2680 	}
2681 
2682 	err = rum_do_mcu_request(sc, RT2573_MCU_RUN);
2683 	if (err != USB_ERR_NORMAL_COMPLETION) {
2684 		device_printf(sc->sc_dev, "could not run firmware: %s\n",
2685 		    usbd_errstr(err));
2686 	}
2687 
2688 	/* give the chip some time to boot */
2689 	rum_pause(sc, hz / 8);
2690 }
2691 
2692 static int
2693 rum_set_sleep_time(struct rum_softc *sc, uint16_t bintval)
2694 {
2695 	struct ieee80211com *ic = &sc->sc_ic;
2696 	usb_error_t uerror;
2697 	int exp, delay;
2698 
2699 	RUM_LOCK_ASSERT(sc);
2700 
2701 	exp = ic->ic_lintval / bintval;
2702 	delay = ic->ic_lintval % bintval;
2703 
2704 	if (exp > RT2573_TBCN_EXP_MAX)
2705 		exp = RT2573_TBCN_EXP_MAX;
2706 	if (delay > RT2573_TBCN_DELAY_MAX)
2707 		delay = RT2573_TBCN_DELAY_MAX;
2708 
2709 	uerror = rum_modbits(sc, RT2573_MAC_CSR11,
2710 	    RT2573_TBCN_EXP(exp) |
2711 	    RT2573_TBCN_DELAY(delay),
2712 	    RT2573_TBCN_EXP(RT2573_TBCN_EXP_MAX) |
2713 	    RT2573_TBCN_DELAY(RT2573_TBCN_DELAY_MAX));
2714 
2715 	if (uerror != USB_ERR_NORMAL_COMPLETION)
2716 		return (EIO);
2717 
2718 	sc->sc_sleep_time = IEEE80211_TU_TO_TICKS(exp * bintval + delay);
2719 
2720 	return (0);
2721 }
2722 
2723 static int
2724 rum_reset(struct ieee80211vap *vap, u_long cmd)
2725 {
2726 	struct ieee80211com *ic = vap->iv_ic;
2727 	struct ieee80211_node *ni;
2728 	struct rum_softc *sc = ic->ic_softc;
2729 	int error;
2730 
2731 	switch (cmd) {
2732 	case IEEE80211_IOC_POWERSAVE:
2733 	case IEEE80211_IOC_PROTMODE:
2734 	case IEEE80211_IOC_RTSTHRESHOLD:
2735 		error = 0;
2736 		break;
2737 	case IEEE80211_IOC_POWERSAVESLEEP:
2738 		ni = ieee80211_ref_node(vap->iv_bss);
2739 
2740 		RUM_LOCK(sc);
2741 		error = rum_set_sleep_time(sc, ni->ni_intval);
2742 		if (vap->iv_state == IEEE80211_S_SLEEP) {
2743 			/* Use new values for wakeup timer. */
2744 			rum_clrbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP);
2745 			rum_setbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP);
2746 		}
2747 		/* XXX send reassoc */
2748 		RUM_UNLOCK(sc);
2749 
2750 		ieee80211_free_node(ni);
2751 		break;
2752 	default:
2753 		error = ENETRESET;
2754 		break;
2755 	}
2756 
2757 	return (error);
2758 }
2759 
2760 static int
2761 rum_set_beacon(struct rum_softc *sc, struct ieee80211vap *vap)
2762 {
2763 	struct ieee80211com *ic = vap->iv_ic;
2764 	struct rum_vap *rvp = RUM_VAP(vap);
2765 	struct mbuf *m = rvp->bcn_mbuf;
2766 	const struct ieee80211_txparam *tp;
2767 	struct rum_tx_desc desc;
2768 
2769 	RUM_LOCK_ASSERT(sc);
2770 
2771 	if (m == NULL)
2772 		return EINVAL;
2773 	if (ic->ic_bsschan == IEEE80211_CHAN_ANYC)
2774 		return EINVAL;
2775 
2776 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
2777 	rum_setup_tx_desc(sc, &desc, NULL, RT2573_TX_TIMESTAMP,
2778 	    RT2573_TX_HWSEQ, 0, 0, m->m_pkthdr.len, tp->mgmtrate);
2779 
2780 	/* copy the Tx descriptor into NIC memory */
2781 	if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0), (uint8_t *)&desc,
2782 	    RT2573_TX_DESC_SIZE) != 0)
2783 		return EIO;
2784 
2785 	/* copy beacon header and payload into NIC memory */
2786 	if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0) + RT2573_TX_DESC_SIZE,
2787 	    mtod(m, uint8_t *), m->m_pkthdr.len) != 0)
2788 		return EIO;
2789 
2790 	return 0;
2791 }
2792 
2793 static int
2794 rum_alloc_beacon(struct rum_softc *sc, struct ieee80211vap *vap)
2795 {
2796 	struct rum_vap *rvp = RUM_VAP(vap);
2797 	struct ieee80211_node *ni = vap->iv_bss;
2798 	struct mbuf *m;
2799 
2800 	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
2801 		return EINVAL;
2802 
2803 	m = ieee80211_beacon_alloc(ni);
2804 	if (m == NULL)
2805 		return ENOMEM;
2806 
2807 	if (rvp->bcn_mbuf != NULL)
2808 		m_freem(rvp->bcn_mbuf);
2809 
2810 	rvp->bcn_mbuf = m;
2811 
2812 	return (rum_set_beacon(sc, vap));
2813 }
2814 
2815 static void
2816 rum_update_beacon_cb(struct rum_softc *sc, union sec_param *data,
2817     uint8_t rvp_id)
2818 {
2819 	struct ieee80211vap *vap = data->vap;
2820 
2821 	rum_set_beacon(sc, vap);
2822 }
2823 
2824 static void
2825 rum_update_beacon(struct ieee80211vap *vap, int item)
2826 {
2827 	struct ieee80211com *ic = vap->iv_ic;
2828 	struct rum_softc *sc = ic->ic_softc;
2829 	struct rum_vap *rvp = RUM_VAP(vap);
2830 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
2831 	struct ieee80211_node *ni = vap->iv_bss;
2832 	struct mbuf *m = rvp->bcn_mbuf;
2833 	int mcast = 0;
2834 
2835 	RUM_LOCK(sc);
2836 	if (m == NULL) {
2837 		m = ieee80211_beacon_alloc(ni);
2838 		if (m == NULL) {
2839 			device_printf(sc->sc_dev,
2840 			    "%s: could not allocate beacon frame\n", __func__);
2841 			RUM_UNLOCK(sc);
2842 			return;
2843 		}
2844 		rvp->bcn_mbuf = m;
2845 	}
2846 
2847 	switch (item) {
2848 	case IEEE80211_BEACON_ERP:
2849 		rum_update_slot(ic);
2850 		break;
2851 	case IEEE80211_BEACON_TIM:
2852 		mcast = 1;	/*TODO*/
2853 		break;
2854 	default:
2855 		break;
2856 	}
2857 	RUM_UNLOCK(sc);
2858 
2859 	setbit(bo->bo_flags, item);
2860 	ieee80211_beacon_update(ni, m, mcast);
2861 
2862 	rum_cmd_sleepable(sc, &vap, sizeof(vap), 0, rum_update_beacon_cb);
2863 }
2864 
2865 static int
2866 rum_common_key_set(struct rum_softc *sc, struct ieee80211_key *k,
2867     uint16_t base)
2868 {
2869 
2870 	if (rum_write_multi(sc, base, k->wk_key, k->wk_keylen))
2871 		return EIO;
2872 
2873 	if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) {
2874 		if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE,
2875 		    k->wk_txmic, 8))
2876 			return EIO;
2877 		if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE + 8,
2878 		    k->wk_rxmic, 8))
2879 			return EIO;
2880 	}
2881 
2882 	return 0;
2883 }
2884 
2885 static void
2886 rum_group_key_set_cb(struct rum_softc *sc, union sec_param *data,
2887     uint8_t rvp_id)
2888 {
2889 	struct ieee80211_key *k = &data->key;
2890 	uint8_t mode;
2891 
2892 	if (sc->sc_clr_shkeys == 0) {
2893 		rum_clr_shkey_regs(sc);
2894 		sc->sc_clr_shkeys = 1;
2895 	}
2896 
2897 	mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen);
2898 	if (mode == 0)
2899 		goto print_err;
2900 
2901 	DPRINTFN(1, "setting group key %d for vap %d, mode %d "
2902 	    "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode,
2903 	    (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off",
2904 	    (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off");
2905 
2906 	/* Install the key. */
2907 	if (rum_common_key_set(sc, k, RT2573_SKEY(rvp_id, k->wk_keyix)) != 0)
2908 		goto print_err;
2909 
2910 	/* Set cipher mode. */
2911 	if (rum_modbits(sc, rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5,
2912 	      mode << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX,
2913 	      RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX)
2914 	    != 0)
2915 		goto print_err;
2916 
2917 	/* Mark this key as valid. */
2918 	if (rum_setbits(sc, RT2573_SEC_CSR0,
2919 	      1 << (rvp_id * RT2573_SKEY_MAX + k->wk_keyix)) != 0)
2920 		goto print_err;
2921 
2922 	return;
2923 
2924 print_err:
2925 	device_printf(sc->sc_dev, "%s: cannot set group key %d for vap %d\n",
2926 	    __func__, k->wk_keyix, rvp_id);
2927 }
2928 
2929 static void
2930 rum_group_key_del_cb(struct rum_softc *sc, union sec_param *data,
2931     uint8_t rvp_id)
2932 {
2933 	struct ieee80211_key *k = &data->key;
2934 
2935 	DPRINTF("%s: removing group key %d for vap %d\n", __func__,
2936 	    k->wk_keyix, rvp_id);
2937 	rum_clrbits(sc,
2938 	    rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5,
2939 	    RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX);
2940 	rum_clrbits(sc, RT2573_SEC_CSR0,
2941 	    rvp_id * RT2573_SKEY_MAX + k->wk_keyix);
2942 }
2943 
2944 static void
2945 rum_pair_key_set_cb(struct rum_softc *sc, union sec_param *data,
2946     uint8_t rvp_id)
2947 {
2948 	struct ieee80211_key *k = &data->key;
2949 	uint8_t buf[IEEE80211_ADDR_LEN + 1];
2950 	uint8_t mode;
2951 
2952 	mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen);
2953 	if (mode == 0)
2954 		goto print_err;
2955 
2956 	DPRINTFN(1, "setting pairwise key %d for vap %d, mode %d "
2957 	    "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode,
2958 	    (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off",
2959 	    (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off");
2960 
2961 	/* Install the key. */
2962 	if (rum_common_key_set(sc, k, RT2573_PKEY(k->wk_keyix)) != 0)
2963 		goto print_err;
2964 
2965 	IEEE80211_ADDR_COPY(buf, k->wk_macaddr);
2966 	buf[IEEE80211_ADDR_LEN] = mode;
2967 
2968 	/* Set transmitter address and cipher mode. */
2969 	if (rum_write_multi(sc, RT2573_ADDR_ENTRY(k->wk_keyix),
2970 	      buf, sizeof buf) != 0)
2971 		goto print_err;
2972 
2973 	/* Enable key table lookup for this vap. */
2974 	if (sc->vap_key_count[rvp_id]++ == 0)
2975 		if (rum_setbits(sc, RT2573_SEC_CSR4, 1 << rvp_id) != 0)
2976 			goto print_err;
2977 
2978 	/* Mark this key as valid. */
2979 	if (rum_setbits(sc,
2980 	      k->wk_keyix < 32 ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3,
2981 	      1 << (k->wk_keyix % 32)) != 0)
2982 		goto print_err;
2983 
2984 	return;
2985 
2986 print_err:
2987 	device_printf(sc->sc_dev,
2988 	    "%s: cannot set pairwise key %d, vap %d\n", __func__, k->wk_keyix,
2989 	    rvp_id);
2990 }
2991 
2992 static void
2993 rum_pair_key_del_cb(struct rum_softc *sc, union sec_param *data,
2994     uint8_t rvp_id)
2995 {
2996 	struct ieee80211_key *k = &data->key;
2997 
2998 	DPRINTF("%s: removing key %d\n", __func__, k->wk_keyix);
2999 	rum_clrbits(sc, (k->wk_keyix < 32) ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3,
3000 	    1 << (k->wk_keyix % 32));
3001 	sc->keys_bmap &= ~(1ULL << k->wk_keyix);
3002 	if (--sc->vap_key_count[rvp_id] == 0)
3003 		rum_clrbits(sc, RT2573_SEC_CSR4, 1 << rvp_id);
3004 }
3005 
3006 static int
3007 rum_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
3008     ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
3009 {
3010 	struct rum_softc *sc = vap->iv_ic->ic_softc;
3011 	uint8_t i;
3012 
3013 	if (!(&vap->iv_nw_keys[0] <= k &&
3014 	     k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
3015 		if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
3016 			RUM_LOCK(sc);
3017 			for (i = 0; i < RT2573_ADDR_MAX; i++) {
3018 				if ((sc->keys_bmap & (1ULL << i)) == 0) {
3019 					sc->keys_bmap |= (1ULL << i);
3020 					*keyix = i;
3021 					break;
3022 				}
3023 			}
3024 			RUM_UNLOCK(sc);
3025 			if (i == RT2573_ADDR_MAX) {
3026 				device_printf(sc->sc_dev,
3027 				    "%s: no free space in the key table\n",
3028 				    __func__);
3029 				return 0;
3030 			}
3031 		} else
3032 			*keyix = 0;
3033 	} else {
3034 		*keyix = ieee80211_crypto_get_key_wepidx(vap, k);
3035 	}
3036 	*rxkeyix = *keyix;
3037 	return 1;
3038 }
3039 
3040 static int
3041 rum_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
3042 {
3043 	struct rum_softc *sc = vap->iv_ic->ic_softc;
3044 	int group;
3045 
3046 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
3047 		/* Not for us. */
3048 		return 1;
3049 	}
3050 
3051 	group = k >= &vap->iv_nw_keys[0] && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID];
3052 
3053 	return !rum_cmd_sleepable(sc, k, sizeof(*k), 0,
3054 		   group ? rum_group_key_set_cb : rum_pair_key_set_cb);
3055 }
3056 
3057 static int
3058 rum_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
3059 {
3060 	struct rum_softc *sc = vap->iv_ic->ic_softc;
3061 	int group;
3062 
3063 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
3064 		/* Not for us. */
3065 		return 1;
3066 	}
3067 
3068 	group = k >= &vap->iv_nw_keys[0] && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID];
3069 
3070 	return !rum_cmd_sleepable(sc, k, sizeof(*k), 0,
3071 		   group ? rum_group_key_del_cb : rum_pair_key_del_cb);
3072 }
3073 
3074 static int
3075 rum_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3076     const struct ieee80211_bpf_params *params)
3077 {
3078 	struct rum_softc *sc = ni->ni_ic->ic_softc;
3079 	int ret;
3080 
3081 	RUM_LOCK(sc);
3082 	/* prevent management frames from being sent if we're not ready */
3083 	if (!sc->sc_running) {
3084 		ret = ENETDOWN;
3085 		goto bad;
3086 	}
3087 	if (sc->tx_nfree < RUM_TX_MINFREE) {
3088 		ret = EIO;
3089 		goto bad;
3090 	}
3091 
3092 	if (params == NULL) {
3093 		/*
3094 		 * Legacy path; interpret frame contents to decide
3095 		 * precisely how to send the frame.
3096 		 */
3097 		if ((ret = rum_tx_mgt(sc, m, ni)) != 0)
3098 			goto bad;
3099 	} else {
3100 		/*
3101 		 * Caller supplied explicit parameters to use in
3102 		 * sending the frame.
3103 		 */
3104 		if ((ret = rum_tx_raw(sc, m, ni, params)) != 0)
3105 			goto bad;
3106 	}
3107 	RUM_UNLOCK(sc);
3108 
3109 	return 0;
3110 bad:
3111 	RUM_UNLOCK(sc);
3112 	m_freem(m);
3113 	return ret;
3114 }
3115 
3116 static void
3117 rum_ratectl_start(struct rum_softc *sc, struct ieee80211_node *ni)
3118 {
3119 	struct ieee80211vap *vap = ni->ni_vap;
3120 	struct rum_vap *rvp = RUM_VAP(vap);
3121 
3122 	/* clear statistic registers (STA_CSR0 to STA_CSR5) */
3123 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
3124 
3125 	usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp);
3126 }
3127 
3128 static void
3129 rum_ratectl_timeout(void *arg)
3130 {
3131 	struct rum_vap *rvp = arg;
3132 	struct ieee80211vap *vap = &rvp->vap;
3133 	struct ieee80211com *ic = vap->iv_ic;
3134 
3135 	ieee80211_runtask(ic, &rvp->ratectl_task);
3136 }
3137 
3138 static void
3139 rum_ratectl_task(void *arg, int pending)
3140 {
3141 	struct rum_vap *rvp = arg;
3142 	struct ieee80211vap *vap = &rvp->vap;
3143 	struct rum_softc *sc = vap->iv_ic->ic_softc;
3144 	struct ieee80211_ratectl_tx_stats *txs = &sc->sc_txs;
3145 	int ok[3], fail;
3146 
3147 	RUM_LOCK(sc);
3148 	/* read and clear statistic registers (STA_CSR0 to STA_CSR5) */
3149 	rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
3150 
3151 	ok[0] = (le32toh(sc->sta[4]) & 0xffff);	/* TX ok w/o retry */
3152 	ok[1] = (le32toh(sc->sta[4]) >> 16);	/* TX ok w/ one retry */
3153 	ok[2] = (le32toh(sc->sta[5]) & 0xffff);	/* TX ok w/ multiple retries */
3154 	fail =  (le32toh(sc->sta[5]) >> 16);	/* TX retry-fail count */
3155 
3156 	txs->flags = IEEE80211_RATECTL_TX_STATS_RETRIES;
3157 	txs->nframes = ok[0] + ok[1] + ok[2] + fail;
3158 	txs->nsuccess = txs->nframes - fail;
3159 	/* XXX at least */
3160 	txs->nretries = ok[1] + ok[2] * 2 + fail * (rvp->maxretry + 1);
3161 
3162 	if (txs->nframes != 0)
3163 		ieee80211_ratectl_tx_update(vap, txs);
3164 
3165 	/* count TX retry-fail as Tx errors */
3166 	if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, fail);
3167 
3168 	usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp);
3169 	RUM_UNLOCK(sc);
3170 }
3171 
3172 static void
3173 rum_scan_start(struct ieee80211com *ic)
3174 {
3175 	struct rum_softc *sc = ic->ic_softc;
3176 
3177 	RUM_LOCK(sc);
3178 	rum_abort_tsf_sync(sc);
3179 	rum_set_bssid(sc, ieee80211broadcastaddr);
3180 	RUM_UNLOCK(sc);
3181 
3182 }
3183 
3184 static void
3185 rum_scan_end(struct ieee80211com *ic)
3186 {
3187 	struct rum_softc *sc = ic->ic_softc;
3188 
3189 	if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) {
3190 		RUM_LOCK(sc);
3191 		if (ic->ic_opmode != IEEE80211_M_AHDEMO)
3192 			rum_enable_tsf_sync(sc);
3193 		else
3194 			rum_enable_tsf(sc);
3195 		rum_set_bssid(sc, sc->sc_bssid);
3196 		RUM_UNLOCK(sc);
3197 	}
3198 }
3199 
3200 static void
3201 rum_set_channel(struct ieee80211com *ic)
3202 {
3203 	struct rum_softc *sc = ic->ic_softc;
3204 
3205 	RUM_LOCK(sc);
3206 	rum_set_chan(sc, ic->ic_curchan);
3207 	RUM_UNLOCK(sc);
3208 }
3209 
3210 static void
3211 rum_getradiocaps(struct ieee80211com *ic,
3212     int maxchans, int *nchans, struct ieee80211_channel chans[])
3213 {
3214 	struct rum_softc *sc = ic->ic_softc;
3215 	uint8_t bands[IEEE80211_MODE_BYTES];
3216 
3217 	memset(bands, 0, sizeof(bands));
3218 	setbit(bands, IEEE80211_MODE_11B);
3219 	setbit(bands, IEEE80211_MODE_11G);
3220 	ieee80211_add_channels_default_2ghz(chans, maxchans, nchans, bands, 0);
3221 
3222 	if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
3223 		setbit(bands, IEEE80211_MODE_11A);
3224 		ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
3225 		    rum_chan_5ghz, nitems(rum_chan_5ghz), bands, 0);
3226 	}
3227 }
3228 
3229 static int
3230 rum_get_rssi(struct rum_softc *sc, uint8_t raw)
3231 {
3232 	struct ieee80211com *ic = &sc->sc_ic;
3233 	int lna, agc, rssi;
3234 
3235 	lna = (raw >> 5) & 0x3;
3236 	agc = raw & 0x1f;
3237 
3238 	if (lna == 0) {
3239 		/*
3240 		 * No RSSI mapping
3241 		 *
3242 		 * NB: Since RSSI is relative to noise floor, -1 is
3243 		 *     adequate for caller to know error happened.
3244 		 */
3245 		return -1;
3246 	}
3247 
3248 	rssi = (2 * agc) - RT2573_NOISE_FLOOR;
3249 
3250 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
3251 		rssi += sc->rssi_2ghz_corr;
3252 
3253 		if (lna == 1)
3254 			rssi -= 64;
3255 		else if (lna == 2)
3256 			rssi -= 74;
3257 		else if (lna == 3)
3258 			rssi -= 90;
3259 	} else {
3260 		rssi += sc->rssi_5ghz_corr;
3261 
3262 		if (!sc->ext_5ghz_lna && lna != 1)
3263 			rssi += 4;
3264 
3265 		if (lna == 1)
3266 			rssi -= 64;
3267 		else if (lna == 2)
3268 			rssi -= 86;
3269 		else if (lna == 3)
3270 			rssi -= 100;
3271 	}
3272 	return rssi;
3273 }
3274 
3275 static int
3276 rum_pause(struct rum_softc *sc, int timeout)
3277 {
3278 
3279 	usb_pause_mtx(&sc->sc_mtx, timeout);
3280 	return (0);
3281 }
3282 
3283 static device_method_t rum_methods[] = {
3284 	/* Device interface */
3285 	DEVMETHOD(device_probe,		rum_match),
3286 	DEVMETHOD(device_attach,	rum_attach),
3287 	DEVMETHOD(device_detach,	rum_detach),
3288 	DEVMETHOD_END
3289 };
3290 
3291 static driver_t rum_driver = {
3292 	.name = "rum",
3293 	.methods = rum_methods,
3294 	.size = sizeof(struct rum_softc),
3295 };
3296 
3297 static devclass_t rum_devclass;
3298 
3299 DRIVER_MODULE(rum, uhub, rum_driver, rum_devclass, NULL, 0);
3300 MODULE_DEPEND(rum, wlan, 1, 1, 1);
3301 MODULE_DEPEND(rum, usb, 1, 1, 1);
3302 MODULE_VERSION(rum, 1);
3303 USB_PNP_HOST_INFO(rum_devs);
3304