1 /* $FreeBSD$ */ 2 /*- 3 * Copyright (c) 2008 Hans Petter Selasky. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #ifdef USB_GLOBAL_INCLUDE_FILE 28 #include USB_GLOBAL_INCLUDE_FILE 29 #else 30 #include <sys/stdint.h> 31 #include <sys/stddef.h> 32 #include <sys/param.h> 33 #include <sys/queue.h> 34 #include <sys/types.h> 35 #include <sys/systm.h> 36 #include <sys/kernel.h> 37 #include <sys/bus.h> 38 #include <sys/module.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/condvar.h> 42 #include <sys/sysctl.h> 43 #include <sys/sx.h> 44 #include <sys/unistd.h> 45 #include <sys/callout.h> 46 #include <sys/malloc.h> 47 #include <sys/priv.h> 48 #include <sys/proc.h> 49 50 #include <dev/usb/usb.h> 51 #include <dev/usb/usbdi.h> 52 #include <dev/usb/usbdi_util.h> 53 54 #define USB_DEBUG_VAR usb_debug 55 56 #include <dev/usb/usb_core.h> 57 #include <dev/usb/usb_busdma.h> 58 #include <dev/usb/usb_process.h> 59 #include <dev/usb/usb_transfer.h> 60 #include <dev/usb/usb_device.h> 61 #include <dev/usb/usb_debug.h> 62 #include <dev/usb/usb_util.h> 63 64 #include <dev/usb/usb_controller.h> 65 #include <dev/usb/usb_bus.h> 66 #include <dev/usb/usb_pf.h> 67 #endif /* USB_GLOBAL_INCLUDE_FILE */ 68 69 struct usb_std_packet_size { 70 struct { 71 uint16_t min; /* inclusive */ 72 uint16_t max; /* inclusive */ 73 } range; 74 75 uint16_t fixed[4]; 76 }; 77 78 static usb_callback_t usb_request_callback; 79 80 static const struct usb_config usb_control_ep_cfg[USB_CTRL_XFER_MAX] = { 81 82 /* This transfer is used for generic control endpoint transfers */ 83 84 [0] = { 85 .type = UE_CONTROL, 86 .endpoint = 0x00, /* Control endpoint */ 87 .direction = UE_DIR_ANY, 88 .bufsize = USB_EP0_BUFSIZE, /* bytes */ 89 .flags = {.proxy_buffer = 1,}, 90 .callback = &usb_request_callback, 91 .usb_mode = USB_MODE_DUAL, /* both modes */ 92 }, 93 94 /* This transfer is used for generic clear stall only */ 95 96 [1] = { 97 .type = UE_CONTROL, 98 .endpoint = 0x00, /* Control pipe */ 99 .direction = UE_DIR_ANY, 100 .bufsize = sizeof(struct usb_device_request), 101 .callback = &usb_do_clear_stall_callback, 102 .timeout = 1000, /* 1 second */ 103 .interval = 50, /* 50ms */ 104 .usb_mode = USB_MODE_HOST, 105 }, 106 }; 107 108 /* function prototypes */ 109 110 static void usbd_update_max_frame_size(struct usb_xfer *); 111 static void usbd_transfer_unsetup_sub(struct usb_xfer_root *, uint8_t); 112 static void usbd_control_transfer_init(struct usb_xfer *); 113 static int usbd_setup_ctrl_transfer(struct usb_xfer *); 114 static void usb_callback_proc(struct usb_proc_msg *); 115 static void usbd_callback_ss_done_defer(struct usb_xfer *); 116 static void usbd_callback_wrapper(struct usb_xfer_queue *); 117 static void usbd_transfer_start_cb(void *); 118 static uint8_t usbd_callback_wrapper_sub(struct usb_xfer *); 119 static void usbd_get_std_packet_size(struct usb_std_packet_size *ptr, 120 uint8_t type, enum usb_dev_speed speed); 121 122 /*------------------------------------------------------------------------* 123 * usb_request_callback 124 *------------------------------------------------------------------------*/ 125 static void 126 usb_request_callback(struct usb_xfer *xfer, usb_error_t error) 127 { 128 if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) 129 usb_handle_request_callback(xfer, error); 130 else 131 usbd_do_request_callback(xfer, error); 132 } 133 134 /*------------------------------------------------------------------------* 135 * usbd_update_max_frame_size 136 * 137 * This function updates the maximum frame size, hence high speed USB 138 * can transfer multiple consecutive packets. 139 *------------------------------------------------------------------------*/ 140 static void 141 usbd_update_max_frame_size(struct usb_xfer *xfer) 142 { 143 /* compute maximum frame size */ 144 /* this computation should not overflow 16-bit */ 145 /* max = 15 * 1024 */ 146 147 xfer->max_frame_size = xfer->max_packet_size * xfer->max_packet_count; 148 } 149 150 /*------------------------------------------------------------------------* 151 * usbd_get_dma_delay 152 * 153 * The following function is called when we need to 154 * synchronize with DMA hardware. 155 * 156 * Returns: 157 * 0: no DMA delay required 158 * Else: milliseconds of DMA delay 159 *------------------------------------------------------------------------*/ 160 usb_timeout_t 161 usbd_get_dma_delay(struct usb_device *udev) 162 { 163 const struct usb_bus_methods *mtod; 164 uint32_t temp; 165 166 mtod = udev->bus->methods; 167 temp = 0; 168 169 if (mtod->get_dma_delay) { 170 (mtod->get_dma_delay) (udev, &temp); 171 /* 172 * Round up and convert to milliseconds. Note that we use 173 * 1024 milliseconds per second. to save a division. 174 */ 175 temp += 0x3FF; 176 temp /= 0x400; 177 } 178 return (temp); 179 } 180 181 /*------------------------------------------------------------------------* 182 * usbd_transfer_setup_sub_malloc 183 * 184 * This function will allocate one or more DMA'able memory chunks 185 * according to "size", "align" and "count" arguments. "ppc" is 186 * pointed to a linear array of USB page caches afterwards. 187 * 188 * If the "align" argument is equal to "1" a non-contiguous allocation 189 * can happen. Else if the "align" argument is greater than "1", the 190 * allocation will always be contiguous in memory. 191 * 192 * Returns: 193 * 0: Success 194 * Else: Failure 195 *------------------------------------------------------------------------*/ 196 #if USB_HAVE_BUSDMA 197 uint8_t 198 usbd_transfer_setup_sub_malloc(struct usb_setup_params *parm, 199 struct usb_page_cache **ppc, usb_size_t size, usb_size_t align, 200 usb_size_t count) 201 { 202 struct usb_page_cache *pc; 203 struct usb_page *pg; 204 void *buf; 205 usb_size_t n_dma_pc; 206 usb_size_t n_dma_pg; 207 usb_size_t n_obj; 208 usb_size_t x; 209 usb_size_t y; 210 usb_size_t r; 211 usb_size_t z; 212 213 USB_ASSERT(align > 0, ("Invalid alignment, 0x%08x\n", 214 align)); 215 USB_ASSERT(size > 0, ("Invalid size = 0\n")); 216 217 if (count == 0) { 218 return (0); /* nothing to allocate */ 219 } 220 /* 221 * Make sure that the size is aligned properly. 222 */ 223 size = -((-size) & (-align)); 224 225 /* 226 * Try multi-allocation chunks to reduce the number of DMA 227 * allocations, hence DMA allocations are slow. 228 */ 229 if (align == 1) { 230 /* special case - non-cached multi page DMA memory */ 231 n_dma_pc = count; 232 n_dma_pg = (2 + (size / USB_PAGE_SIZE)); 233 n_obj = 1; 234 } else if (size >= USB_PAGE_SIZE) { 235 n_dma_pc = count; 236 n_dma_pg = 1; 237 n_obj = 1; 238 } else { 239 /* compute number of objects per page */ 240 #ifdef USB_DMA_SINGLE_ALLOC 241 n_obj = 1; 242 #else 243 n_obj = (USB_PAGE_SIZE / size); 244 #endif 245 /* 246 * Compute number of DMA chunks, rounded up 247 * to nearest one: 248 */ 249 n_dma_pc = ((count + n_obj - 1) / n_obj); 250 n_dma_pg = 1; 251 } 252 253 /* 254 * DMA memory is allocated once, but mapped twice. That's why 255 * there is one list for auto-free and another list for 256 * non-auto-free which only holds the mapping and not the 257 * allocation. 258 */ 259 if (parm->buf == NULL) { 260 /* reserve memory (auto-free) */ 261 parm->dma_page_ptr += n_dma_pc * n_dma_pg; 262 parm->dma_page_cache_ptr += n_dma_pc; 263 264 /* reserve memory (no-auto-free) */ 265 parm->dma_page_ptr += count * n_dma_pg; 266 parm->xfer_page_cache_ptr += count; 267 return (0); 268 } 269 for (x = 0; x != n_dma_pc; x++) { 270 /* need to initialize the page cache */ 271 parm->dma_page_cache_ptr[x].tag_parent = 272 &parm->curr_xfer->xroot->dma_parent_tag; 273 } 274 for (x = 0; x != count; x++) { 275 /* need to initialize the page cache */ 276 parm->xfer_page_cache_ptr[x].tag_parent = 277 &parm->curr_xfer->xroot->dma_parent_tag; 278 } 279 280 if (ppc != NULL) { 281 if (n_obj != 1) 282 *ppc = parm->xfer_page_cache_ptr; 283 else 284 *ppc = parm->dma_page_cache_ptr; 285 } 286 r = count; /* set remainder count */ 287 z = n_obj * size; /* set allocation size */ 288 pc = parm->xfer_page_cache_ptr; 289 pg = parm->dma_page_ptr; 290 291 if (n_obj == 1) { 292 /* 293 * Avoid mapping memory twice if only a single object 294 * should be allocated per page cache: 295 */ 296 for (x = 0; x != n_dma_pc; x++) { 297 if (usb_pc_alloc_mem(parm->dma_page_cache_ptr, 298 pg, z, align)) { 299 return (1); /* failure */ 300 } 301 /* Make room for one DMA page cache and "n_dma_pg" pages */ 302 parm->dma_page_cache_ptr++; 303 pg += n_dma_pg; 304 } 305 } else { 306 for (x = 0; x != n_dma_pc; x++) { 307 308 if (r < n_obj) { 309 /* compute last remainder */ 310 z = r * size; 311 n_obj = r; 312 } 313 if (usb_pc_alloc_mem(parm->dma_page_cache_ptr, 314 pg, z, align)) { 315 return (1); /* failure */ 316 } 317 /* Set beginning of current buffer */ 318 buf = parm->dma_page_cache_ptr->buffer; 319 /* Make room for one DMA page cache and "n_dma_pg" pages */ 320 parm->dma_page_cache_ptr++; 321 pg += n_dma_pg; 322 323 for (y = 0; (y != n_obj); y++, r--, pc++, pg += n_dma_pg) { 324 325 /* Load sub-chunk into DMA */ 326 if (usb_pc_dmamap_create(pc, size)) { 327 return (1); /* failure */ 328 } 329 pc->buffer = USB_ADD_BYTES(buf, y * size); 330 pc->page_start = pg; 331 332 mtx_lock(pc->tag_parent->mtx); 333 if (usb_pc_load_mem(pc, size, 1 /* synchronous */ )) { 334 mtx_unlock(pc->tag_parent->mtx); 335 return (1); /* failure */ 336 } 337 mtx_unlock(pc->tag_parent->mtx); 338 } 339 } 340 } 341 342 parm->xfer_page_cache_ptr = pc; 343 parm->dma_page_ptr = pg; 344 return (0); 345 } 346 #endif 347 348 /*------------------------------------------------------------------------* 349 * usbd_transfer_setup_sub - transfer setup subroutine 350 * 351 * This function must be called from the "xfer_setup" callback of the 352 * USB Host or Device controller driver when setting up an USB 353 * transfer. This function will setup correct packet sizes, buffer 354 * sizes, flags and more, that are stored in the "usb_xfer" 355 * structure. 356 *------------------------------------------------------------------------*/ 357 void 358 usbd_transfer_setup_sub(struct usb_setup_params *parm) 359 { 360 enum { 361 REQ_SIZE = 8, 362 MIN_PKT = 8, 363 }; 364 struct usb_xfer *xfer = parm->curr_xfer; 365 const struct usb_config *setup = parm->curr_setup; 366 struct usb_endpoint_ss_comp_descriptor *ecomp; 367 struct usb_endpoint_descriptor *edesc; 368 struct usb_std_packet_size std_size; 369 usb_frcount_t n_frlengths; 370 usb_frcount_t n_frbuffers; 371 usb_frcount_t x; 372 uint16_t maxp_old; 373 uint8_t type; 374 uint8_t zmps; 375 376 /* 377 * Sanity check. The following parameters must be initialized before 378 * calling this function. 379 */ 380 if ((parm->hc_max_packet_size == 0) || 381 (parm->hc_max_packet_count == 0) || 382 (parm->hc_max_frame_size == 0)) { 383 parm->err = USB_ERR_INVAL; 384 goto done; 385 } 386 edesc = xfer->endpoint->edesc; 387 ecomp = xfer->endpoint->ecomp; 388 389 type = (edesc->bmAttributes & UE_XFERTYPE); 390 391 xfer->flags = setup->flags; 392 xfer->nframes = setup->frames; 393 xfer->timeout = setup->timeout; 394 xfer->callback = setup->callback; 395 xfer->interval = setup->interval; 396 xfer->endpointno = edesc->bEndpointAddress; 397 xfer->max_packet_size = UGETW(edesc->wMaxPacketSize); 398 xfer->max_packet_count = 1; 399 /* make a shadow copy: */ 400 xfer->flags_int.usb_mode = parm->udev->flags.usb_mode; 401 402 parm->bufsize = setup->bufsize; 403 404 switch (parm->speed) { 405 case USB_SPEED_HIGH: 406 switch (type) { 407 case UE_ISOCHRONOUS: 408 case UE_INTERRUPT: 409 xfer->max_packet_count += 410 (xfer->max_packet_size >> 11) & 3; 411 412 /* check for invalid max packet count */ 413 if (xfer->max_packet_count > 3) 414 xfer->max_packet_count = 3; 415 break; 416 default: 417 break; 418 } 419 xfer->max_packet_size &= 0x7FF; 420 break; 421 case USB_SPEED_SUPER: 422 xfer->max_packet_count += (xfer->max_packet_size >> 11) & 3; 423 424 if (ecomp != NULL) 425 xfer->max_packet_count += ecomp->bMaxBurst; 426 427 if ((xfer->max_packet_count == 0) || 428 (xfer->max_packet_count > 16)) 429 xfer->max_packet_count = 16; 430 431 switch (type) { 432 case UE_CONTROL: 433 xfer->max_packet_count = 1; 434 break; 435 case UE_ISOCHRONOUS: 436 if (ecomp != NULL) { 437 uint8_t mult; 438 439 mult = UE_GET_SS_ISO_MULT( 440 ecomp->bmAttributes) + 1; 441 if (mult > 3) 442 mult = 3; 443 444 xfer->max_packet_count *= mult; 445 } 446 break; 447 default: 448 break; 449 } 450 xfer->max_packet_size &= 0x7FF; 451 break; 452 default: 453 break; 454 } 455 /* range check "max_packet_count" */ 456 457 if (xfer->max_packet_count > parm->hc_max_packet_count) { 458 xfer->max_packet_count = parm->hc_max_packet_count; 459 } 460 461 /* store max packet size value before filtering */ 462 463 maxp_old = xfer->max_packet_size; 464 465 /* filter "wMaxPacketSize" according to HC capabilities */ 466 467 if ((xfer->max_packet_size > parm->hc_max_packet_size) || 468 (xfer->max_packet_size == 0)) { 469 xfer->max_packet_size = parm->hc_max_packet_size; 470 } 471 /* filter "wMaxPacketSize" according to standard sizes */ 472 473 usbd_get_std_packet_size(&std_size, type, parm->speed); 474 475 if (std_size.range.min || std_size.range.max) { 476 477 if (xfer->max_packet_size < std_size.range.min) { 478 xfer->max_packet_size = std_size.range.min; 479 } 480 if (xfer->max_packet_size > std_size.range.max) { 481 xfer->max_packet_size = std_size.range.max; 482 } 483 } else { 484 485 if (xfer->max_packet_size >= std_size.fixed[3]) { 486 xfer->max_packet_size = std_size.fixed[3]; 487 } else if (xfer->max_packet_size >= std_size.fixed[2]) { 488 xfer->max_packet_size = std_size.fixed[2]; 489 } else if (xfer->max_packet_size >= std_size.fixed[1]) { 490 xfer->max_packet_size = std_size.fixed[1]; 491 } else { 492 /* only one possibility left */ 493 xfer->max_packet_size = std_size.fixed[0]; 494 } 495 } 496 497 /* 498 * Check if the max packet size was outside its allowed range 499 * and clamped to a valid value: 500 */ 501 if (maxp_old != xfer->max_packet_size) 502 xfer->flags_int.maxp_was_clamped = 1; 503 504 /* compute "max_frame_size" */ 505 506 usbd_update_max_frame_size(xfer); 507 508 /* check interrupt interval and transfer pre-delay */ 509 510 if (type == UE_ISOCHRONOUS) { 511 512 uint16_t frame_limit; 513 514 xfer->interval = 0; /* not used, must be zero */ 515 xfer->flags_int.isochronous_xfr = 1; /* set flag */ 516 517 if (xfer->timeout == 0) { 518 /* 519 * set a default timeout in 520 * case something goes wrong! 521 */ 522 xfer->timeout = 1000 / 4; 523 } 524 switch (parm->speed) { 525 case USB_SPEED_LOW: 526 case USB_SPEED_FULL: 527 frame_limit = USB_MAX_FS_ISOC_FRAMES_PER_XFER; 528 xfer->fps_shift = 0; 529 break; 530 default: 531 frame_limit = USB_MAX_HS_ISOC_FRAMES_PER_XFER; 532 xfer->fps_shift = edesc->bInterval; 533 if (xfer->fps_shift > 0) 534 xfer->fps_shift--; 535 if (xfer->fps_shift > 3) 536 xfer->fps_shift = 3; 537 if (xfer->flags.pre_scale_frames != 0) 538 xfer->nframes <<= (3 - xfer->fps_shift); 539 break; 540 } 541 542 if (xfer->nframes > frame_limit) { 543 /* 544 * this is not going to work 545 * cross hardware 546 */ 547 parm->err = USB_ERR_INVAL; 548 goto done; 549 } 550 if (xfer->nframes == 0) { 551 /* 552 * this is not a valid value 553 */ 554 parm->err = USB_ERR_ZERO_NFRAMES; 555 goto done; 556 } 557 } else { 558 559 /* 560 * If a value is specified use that else check the 561 * endpoint descriptor! 562 */ 563 if (type == UE_INTERRUPT) { 564 565 uint32_t temp; 566 567 if (xfer->interval == 0) { 568 569 xfer->interval = edesc->bInterval; 570 571 switch (parm->speed) { 572 case USB_SPEED_LOW: 573 case USB_SPEED_FULL: 574 break; 575 default: 576 /* 125us -> 1ms */ 577 if (xfer->interval < 4) 578 xfer->interval = 1; 579 else if (xfer->interval > 16) 580 xfer->interval = (1 << (16 - 4)); 581 else 582 xfer->interval = 583 (1 << (xfer->interval - 4)); 584 break; 585 } 586 } 587 588 if (xfer->interval == 0) { 589 /* 590 * One millisecond is the smallest 591 * interval we support: 592 */ 593 xfer->interval = 1; 594 } 595 596 xfer->fps_shift = 0; 597 temp = 1; 598 599 while ((temp != 0) && (temp < xfer->interval)) { 600 xfer->fps_shift++; 601 temp *= 2; 602 } 603 604 switch (parm->speed) { 605 case USB_SPEED_LOW: 606 case USB_SPEED_FULL: 607 break; 608 default: 609 xfer->fps_shift += 3; 610 break; 611 } 612 } 613 } 614 615 /* 616 * NOTE: we do not allow "max_packet_size" or "max_frame_size" 617 * to be equal to zero when setting up USB transfers, hence 618 * this leads to alot of extra code in the USB kernel. 619 */ 620 621 if ((xfer->max_frame_size == 0) || 622 (xfer->max_packet_size == 0)) { 623 624 zmps = 1; 625 626 if ((parm->bufsize <= MIN_PKT) && 627 (type != UE_CONTROL) && 628 (type != UE_BULK)) { 629 630 /* workaround */ 631 xfer->max_packet_size = MIN_PKT; 632 xfer->max_packet_count = 1; 633 parm->bufsize = 0; /* automatic setup length */ 634 usbd_update_max_frame_size(xfer); 635 636 } else { 637 parm->err = USB_ERR_ZERO_MAXP; 638 goto done; 639 } 640 641 } else { 642 zmps = 0; 643 } 644 645 /* 646 * check if we should setup a default 647 * length: 648 */ 649 650 if (parm->bufsize == 0) { 651 652 parm->bufsize = xfer->max_frame_size; 653 654 if (type == UE_ISOCHRONOUS) { 655 parm->bufsize *= xfer->nframes; 656 } 657 } 658 /* 659 * check if we are about to setup a proxy 660 * type of buffer: 661 */ 662 663 if (xfer->flags.proxy_buffer) { 664 665 /* round bufsize up */ 666 667 parm->bufsize += (xfer->max_frame_size - 1); 668 669 if (parm->bufsize < xfer->max_frame_size) { 670 /* length wrapped around */ 671 parm->err = USB_ERR_INVAL; 672 goto done; 673 } 674 /* subtract remainder */ 675 676 parm->bufsize -= (parm->bufsize % xfer->max_frame_size); 677 678 /* add length of USB device request structure, if any */ 679 680 if (type == UE_CONTROL) { 681 parm->bufsize += REQ_SIZE; /* SETUP message */ 682 } 683 } 684 xfer->max_data_length = parm->bufsize; 685 686 /* Setup "n_frlengths" and "n_frbuffers" */ 687 688 if (type == UE_ISOCHRONOUS) { 689 n_frlengths = xfer->nframes; 690 n_frbuffers = 1; 691 } else { 692 693 if (type == UE_CONTROL) { 694 xfer->flags_int.control_xfr = 1; 695 if (xfer->nframes == 0) { 696 if (parm->bufsize <= REQ_SIZE) { 697 /* 698 * there will never be any data 699 * stage 700 */ 701 xfer->nframes = 1; 702 } else { 703 xfer->nframes = 2; 704 } 705 } 706 } else { 707 if (xfer->nframes == 0) { 708 xfer->nframes = 1; 709 } 710 } 711 712 n_frlengths = xfer->nframes; 713 n_frbuffers = xfer->nframes; 714 } 715 716 /* 717 * check if we have room for the 718 * USB device request structure: 719 */ 720 721 if (type == UE_CONTROL) { 722 723 if (xfer->max_data_length < REQ_SIZE) { 724 /* length wrapped around or too small bufsize */ 725 parm->err = USB_ERR_INVAL; 726 goto done; 727 } 728 xfer->max_data_length -= REQ_SIZE; 729 } 730 /* 731 * Setup "frlengths" and shadow "frlengths" for keeping the 732 * initial frame lengths when a USB transfer is complete. This 733 * information is useful when computing isochronous offsets. 734 */ 735 xfer->frlengths = parm->xfer_length_ptr; 736 parm->xfer_length_ptr += 2 * n_frlengths; 737 738 /* setup "frbuffers" */ 739 xfer->frbuffers = parm->xfer_page_cache_ptr; 740 parm->xfer_page_cache_ptr += n_frbuffers; 741 742 /* initialize max frame count */ 743 xfer->max_frame_count = xfer->nframes; 744 745 /* 746 * check if we need to setup 747 * a local buffer: 748 */ 749 750 if (!xfer->flags.ext_buffer) { 751 #if USB_HAVE_BUSDMA 752 struct usb_page_search page_info; 753 struct usb_page_cache *pc; 754 755 if (usbd_transfer_setup_sub_malloc(parm, 756 &pc, parm->bufsize, 1, 1)) { 757 parm->err = USB_ERR_NOMEM; 758 } else if (parm->buf != NULL) { 759 760 usbd_get_page(pc, 0, &page_info); 761 762 xfer->local_buffer = page_info.buffer; 763 764 usbd_xfer_set_frame_offset(xfer, 0, 0); 765 766 if ((type == UE_CONTROL) && (n_frbuffers > 1)) { 767 usbd_xfer_set_frame_offset(xfer, REQ_SIZE, 1); 768 } 769 } 770 #else 771 /* align data */ 772 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 773 774 if (parm->buf != NULL) { 775 xfer->local_buffer = 776 USB_ADD_BYTES(parm->buf, parm->size[0]); 777 778 usbd_xfer_set_frame_offset(xfer, 0, 0); 779 780 if ((type == UE_CONTROL) && (n_frbuffers > 1)) { 781 usbd_xfer_set_frame_offset(xfer, REQ_SIZE, 1); 782 } 783 } 784 parm->size[0] += parm->bufsize; 785 786 /* align data again */ 787 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 788 #endif 789 } 790 /* 791 * Compute maximum buffer size 792 */ 793 794 if (parm->bufsize_max < parm->bufsize) { 795 parm->bufsize_max = parm->bufsize; 796 } 797 #if USB_HAVE_BUSDMA 798 if (xfer->flags_int.bdma_enable) { 799 /* 800 * Setup "dma_page_ptr". 801 * 802 * Proof for formula below: 803 * 804 * Assume there are three USB frames having length "a", "b" and 805 * "c". These USB frames will at maximum need "z" 806 * "usb_page" structures. "z" is given by: 807 * 808 * z = ((a / USB_PAGE_SIZE) + 2) + ((b / USB_PAGE_SIZE) + 2) + 809 * ((c / USB_PAGE_SIZE) + 2); 810 * 811 * Constraining "a", "b" and "c" like this: 812 * 813 * (a + b + c) <= parm->bufsize 814 * 815 * We know that: 816 * 817 * z <= ((parm->bufsize / USB_PAGE_SIZE) + (3*2)); 818 * 819 * Here is the general formula: 820 */ 821 xfer->dma_page_ptr = parm->dma_page_ptr; 822 parm->dma_page_ptr += (2 * n_frbuffers); 823 parm->dma_page_ptr += (parm->bufsize / USB_PAGE_SIZE); 824 } 825 #endif 826 if (zmps) { 827 /* correct maximum data length */ 828 xfer->max_data_length = 0; 829 } 830 /* subtract USB frame remainder from "hc_max_frame_size" */ 831 832 xfer->max_hc_frame_size = 833 (parm->hc_max_frame_size - 834 (parm->hc_max_frame_size % xfer->max_frame_size)); 835 836 if (xfer->max_hc_frame_size == 0) { 837 parm->err = USB_ERR_INVAL; 838 goto done; 839 } 840 841 /* initialize frame buffers */ 842 843 if (parm->buf) { 844 for (x = 0; x != n_frbuffers; x++) { 845 xfer->frbuffers[x].tag_parent = 846 &xfer->xroot->dma_parent_tag; 847 #if USB_HAVE_BUSDMA 848 if (xfer->flags_int.bdma_enable && 849 (parm->bufsize_max > 0)) { 850 851 if (usb_pc_dmamap_create( 852 xfer->frbuffers + x, 853 parm->bufsize_max)) { 854 parm->err = USB_ERR_NOMEM; 855 goto done; 856 } 857 } 858 #endif 859 } 860 } 861 done: 862 if (parm->err) { 863 /* 864 * Set some dummy values so that we avoid division by zero: 865 */ 866 xfer->max_hc_frame_size = 1; 867 xfer->max_frame_size = 1; 868 xfer->max_packet_size = 1; 869 xfer->max_data_length = 0; 870 xfer->nframes = 0; 871 xfer->max_frame_count = 0; 872 } 873 } 874 875 /*------------------------------------------------------------------------* 876 * usbd_transfer_setup - setup an array of USB transfers 877 * 878 * NOTE: You must always call "usbd_transfer_unsetup" after calling 879 * "usbd_transfer_setup" if success was returned. 880 * 881 * The idea is that the USB device driver should pre-allocate all its 882 * transfers by one call to this function. 883 * 884 * Return values: 885 * 0: Success 886 * Else: Failure 887 *------------------------------------------------------------------------*/ 888 usb_error_t 889 usbd_transfer_setup(struct usb_device *udev, 890 const uint8_t *ifaces, struct usb_xfer **ppxfer, 891 const struct usb_config *setup_start, uint16_t n_setup, 892 void *priv_sc, struct mtx *xfer_mtx) 893 { 894 const struct usb_config *setup_end = setup_start + n_setup; 895 const struct usb_config *setup; 896 struct usb_setup_params *parm; 897 struct usb_endpoint *ep; 898 struct usb_xfer_root *info; 899 struct usb_xfer *xfer; 900 void *buf = NULL; 901 usb_error_t error = 0; 902 uint16_t n; 903 uint16_t refcount; 904 uint8_t do_unlock; 905 906 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 907 "usbd_transfer_setup can sleep!"); 908 909 /* do some checking first */ 910 911 if (n_setup == 0) { 912 DPRINTFN(6, "setup array has zero length!\n"); 913 return (USB_ERR_INVAL); 914 } 915 if (ifaces == 0) { 916 DPRINTFN(6, "ifaces array is NULL!\n"); 917 return (USB_ERR_INVAL); 918 } 919 if (xfer_mtx == NULL) { 920 DPRINTFN(6, "using global lock\n"); 921 xfer_mtx = &Giant; 922 } 923 924 /* more sanity checks */ 925 926 for (setup = setup_start, n = 0; 927 setup != setup_end; setup++, n++) { 928 if (setup->bufsize == (usb_frlength_t)-1) { 929 error = USB_ERR_BAD_BUFSIZE; 930 DPRINTF("invalid bufsize\n"); 931 } 932 if (setup->callback == NULL) { 933 error = USB_ERR_NO_CALLBACK; 934 DPRINTF("no callback\n"); 935 } 936 ppxfer[n] = NULL; 937 } 938 939 if (error) 940 return (error); 941 942 /* Protect scratch area */ 943 do_unlock = usbd_enum_lock(udev); 944 945 refcount = 0; 946 info = NULL; 947 948 parm = &udev->scratch.xfer_setup[0].parm; 949 memset(parm, 0, sizeof(*parm)); 950 951 parm->udev = udev; 952 parm->speed = usbd_get_speed(udev); 953 parm->hc_max_packet_count = 1; 954 955 if (parm->speed >= USB_SPEED_MAX) { 956 parm->err = USB_ERR_INVAL; 957 goto done; 958 } 959 /* setup all transfers */ 960 961 while (1) { 962 963 if (buf) { 964 /* 965 * Initialize the "usb_xfer_root" structure, 966 * which is common for all our USB transfers. 967 */ 968 info = USB_ADD_BYTES(buf, 0); 969 970 info->memory_base = buf; 971 info->memory_size = parm->size[0]; 972 973 #if USB_HAVE_BUSDMA 974 info->dma_page_cache_start = USB_ADD_BYTES(buf, parm->size[4]); 975 info->dma_page_cache_end = USB_ADD_BYTES(buf, parm->size[5]); 976 #endif 977 info->xfer_page_cache_start = USB_ADD_BYTES(buf, parm->size[5]); 978 info->xfer_page_cache_end = USB_ADD_BYTES(buf, parm->size[2]); 979 980 cv_init(&info->cv_drain, "WDRAIN"); 981 982 info->xfer_mtx = xfer_mtx; 983 #if USB_HAVE_BUSDMA 984 usb_dma_tag_setup(&info->dma_parent_tag, 985 parm->dma_tag_p, udev->bus->dma_parent_tag[0].tag, 986 xfer_mtx, &usb_bdma_done_event, udev->bus->dma_bits, 987 parm->dma_tag_max); 988 #endif 989 990 info->bus = udev->bus; 991 info->udev = udev; 992 993 TAILQ_INIT(&info->done_q.head); 994 info->done_q.command = &usbd_callback_wrapper; 995 #if USB_HAVE_BUSDMA 996 TAILQ_INIT(&info->dma_q.head); 997 info->dma_q.command = &usb_bdma_work_loop; 998 #endif 999 info->done_m[0].hdr.pm_callback = &usb_callback_proc; 1000 info->done_m[0].xroot = info; 1001 info->done_m[1].hdr.pm_callback = &usb_callback_proc; 1002 info->done_m[1].xroot = info; 1003 1004 /* 1005 * In device side mode control endpoint 1006 * requests need to run from a separate 1007 * context, else there is a chance of 1008 * deadlock! 1009 */ 1010 if (setup_start == usb_control_ep_cfg) 1011 info->done_p = 1012 USB_BUS_CONTROL_XFER_PROC(udev->bus); 1013 else if (xfer_mtx == &Giant) 1014 info->done_p = 1015 USB_BUS_GIANT_PROC(udev->bus); 1016 else 1017 info->done_p = 1018 USB_BUS_NON_GIANT_PROC(udev->bus); 1019 } 1020 /* reset sizes */ 1021 1022 parm->size[0] = 0; 1023 parm->buf = buf; 1024 parm->size[0] += sizeof(info[0]); 1025 1026 for (setup = setup_start, n = 0; 1027 setup != setup_end; setup++, n++) { 1028 1029 /* skip USB transfers without callbacks: */ 1030 if (setup->callback == NULL) { 1031 continue; 1032 } 1033 /* see if there is a matching endpoint */ 1034 ep = usbd_get_endpoint(udev, 1035 ifaces[setup->if_index], setup); 1036 1037 /* 1038 * Check that the USB PIPE is valid and that 1039 * the endpoint mode is proper. 1040 * 1041 * Make sure we don't allocate a streams 1042 * transfer when such a combination is not 1043 * valid. 1044 */ 1045 if ((ep == NULL) || (ep->methods == NULL) || 1046 ((ep->ep_mode != USB_EP_MODE_STREAMS) && 1047 (ep->ep_mode != USB_EP_MODE_DEFAULT)) || 1048 (setup->stream_id != 0 && 1049 (setup->stream_id >= USB_MAX_EP_STREAMS || 1050 (ep->ep_mode != USB_EP_MODE_STREAMS)))) { 1051 if (setup->flags.no_pipe_ok) 1052 continue; 1053 if ((setup->usb_mode != USB_MODE_DUAL) && 1054 (setup->usb_mode != udev->flags.usb_mode)) 1055 continue; 1056 parm->err = USB_ERR_NO_PIPE; 1057 goto done; 1058 } 1059 1060 /* align data properly */ 1061 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1062 1063 /* store current setup pointer */ 1064 parm->curr_setup = setup; 1065 1066 if (buf) { 1067 /* 1068 * Common initialization of the 1069 * "usb_xfer" structure. 1070 */ 1071 xfer = USB_ADD_BYTES(buf, parm->size[0]); 1072 xfer->address = udev->address; 1073 xfer->priv_sc = priv_sc; 1074 xfer->xroot = info; 1075 1076 usb_callout_init_mtx(&xfer->timeout_handle, 1077 &udev->bus->bus_mtx, 0); 1078 } else { 1079 /* 1080 * Setup a dummy xfer, hence we are 1081 * writing to the "usb_xfer" 1082 * structure pointed to by "xfer" 1083 * before we have allocated any 1084 * memory: 1085 */ 1086 xfer = &udev->scratch.xfer_setup[0].dummy; 1087 memset(xfer, 0, sizeof(*xfer)); 1088 refcount++; 1089 } 1090 1091 /* set transfer endpoint pointer */ 1092 xfer->endpoint = ep; 1093 1094 /* set transfer stream ID */ 1095 xfer->stream_id = setup->stream_id; 1096 1097 parm->size[0] += sizeof(xfer[0]); 1098 parm->methods = xfer->endpoint->methods; 1099 parm->curr_xfer = xfer; 1100 1101 /* 1102 * Call the Host or Device controller transfer 1103 * setup routine: 1104 */ 1105 (udev->bus->methods->xfer_setup) (parm); 1106 1107 /* check for error */ 1108 if (parm->err) 1109 goto done; 1110 1111 if (buf) { 1112 /* 1113 * Increment the endpoint refcount. This 1114 * basically prevents setting a new 1115 * configuration and alternate setting 1116 * when USB transfers are in use on 1117 * the given interface. Search the USB 1118 * code for "endpoint->refcount_alloc" if you 1119 * want more information. 1120 */ 1121 USB_BUS_LOCK(info->bus); 1122 if (xfer->endpoint->refcount_alloc >= USB_EP_REF_MAX) 1123 parm->err = USB_ERR_INVAL; 1124 1125 xfer->endpoint->refcount_alloc++; 1126 1127 if (xfer->endpoint->refcount_alloc == 0) 1128 panic("usbd_transfer_setup(): Refcount wrapped to zero\n"); 1129 USB_BUS_UNLOCK(info->bus); 1130 1131 /* 1132 * Whenever we set ppxfer[] then we 1133 * also need to increment the 1134 * "setup_refcount": 1135 */ 1136 info->setup_refcount++; 1137 1138 /* 1139 * Transfer is successfully setup and 1140 * can be used: 1141 */ 1142 ppxfer[n] = xfer; 1143 } 1144 1145 /* check for error */ 1146 if (parm->err) 1147 goto done; 1148 } 1149 1150 if (buf != NULL || parm->err != 0) 1151 goto done; 1152 1153 /* if no transfers, nothing to do */ 1154 if (refcount == 0) 1155 goto done; 1156 1157 /* align data properly */ 1158 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1159 1160 /* store offset temporarily */ 1161 parm->size[1] = parm->size[0]; 1162 1163 /* 1164 * The number of DMA tags required depends on 1165 * the number of endpoints. The current estimate 1166 * for maximum number of DMA tags per endpoint 1167 * is three: 1168 * 1) for loading memory 1169 * 2) for allocating memory 1170 * 3) for fixing memory [UHCI] 1171 */ 1172 parm->dma_tag_max += 3 * MIN(n_setup, USB_EP_MAX); 1173 1174 /* 1175 * DMA tags for QH, TD, Data and more. 1176 */ 1177 parm->dma_tag_max += 8; 1178 1179 parm->dma_tag_p += parm->dma_tag_max; 1180 1181 parm->size[0] += ((uint8_t *)parm->dma_tag_p) - 1182 ((uint8_t *)0); 1183 1184 /* align data properly */ 1185 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1186 1187 /* store offset temporarily */ 1188 parm->size[3] = parm->size[0]; 1189 1190 parm->size[0] += ((uint8_t *)parm->dma_page_ptr) - 1191 ((uint8_t *)0); 1192 1193 /* align data properly */ 1194 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1195 1196 /* store offset temporarily */ 1197 parm->size[4] = parm->size[0]; 1198 1199 parm->size[0] += ((uint8_t *)parm->dma_page_cache_ptr) - 1200 ((uint8_t *)0); 1201 1202 /* store end offset temporarily */ 1203 parm->size[5] = parm->size[0]; 1204 1205 parm->size[0] += ((uint8_t *)parm->xfer_page_cache_ptr) - 1206 ((uint8_t *)0); 1207 1208 /* store end offset temporarily */ 1209 1210 parm->size[2] = parm->size[0]; 1211 1212 /* align data properly */ 1213 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1214 1215 parm->size[6] = parm->size[0]; 1216 1217 parm->size[0] += ((uint8_t *)parm->xfer_length_ptr) - 1218 ((uint8_t *)0); 1219 1220 /* align data properly */ 1221 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1222 1223 /* allocate zeroed memory */ 1224 buf = malloc(parm->size[0], M_USB, M_WAITOK | M_ZERO); 1225 1226 if (buf == NULL) { 1227 parm->err = USB_ERR_NOMEM; 1228 DPRINTFN(0, "cannot allocate memory block for " 1229 "configuration (%d bytes)\n", 1230 parm->size[0]); 1231 goto done; 1232 } 1233 parm->dma_tag_p = USB_ADD_BYTES(buf, parm->size[1]); 1234 parm->dma_page_ptr = USB_ADD_BYTES(buf, parm->size[3]); 1235 parm->dma_page_cache_ptr = USB_ADD_BYTES(buf, parm->size[4]); 1236 parm->xfer_page_cache_ptr = USB_ADD_BYTES(buf, parm->size[5]); 1237 parm->xfer_length_ptr = USB_ADD_BYTES(buf, parm->size[6]); 1238 } 1239 1240 done: 1241 if (buf) { 1242 if (info->setup_refcount == 0) { 1243 /* 1244 * "usbd_transfer_unsetup_sub" will unlock 1245 * the bus mutex before returning ! 1246 */ 1247 USB_BUS_LOCK(info->bus); 1248 1249 /* something went wrong */ 1250 usbd_transfer_unsetup_sub(info, 0); 1251 } 1252 } 1253 1254 /* check if any errors happened */ 1255 if (parm->err) 1256 usbd_transfer_unsetup(ppxfer, n_setup); 1257 1258 error = parm->err; 1259 1260 if (do_unlock) 1261 usbd_enum_unlock(udev); 1262 1263 return (error); 1264 } 1265 1266 /*------------------------------------------------------------------------* 1267 * usbd_transfer_unsetup_sub - factored out code 1268 *------------------------------------------------------------------------*/ 1269 static void 1270 usbd_transfer_unsetup_sub(struct usb_xfer_root *info, uint8_t needs_delay) 1271 { 1272 #if USB_HAVE_BUSDMA 1273 struct usb_page_cache *pc; 1274 #endif 1275 1276 USB_BUS_LOCK_ASSERT(info->bus, MA_OWNED); 1277 1278 /* wait for any outstanding DMA operations */ 1279 1280 if (needs_delay) { 1281 usb_timeout_t temp; 1282 temp = usbd_get_dma_delay(info->udev); 1283 if (temp != 0) { 1284 usb_pause_mtx(&info->bus->bus_mtx, 1285 USB_MS_TO_TICKS(temp)); 1286 } 1287 } 1288 1289 /* make sure that our done messages are not queued anywhere */ 1290 usb_proc_mwait(info->done_p, &info->done_m[0], &info->done_m[1]); 1291 1292 USB_BUS_UNLOCK(info->bus); 1293 1294 #if USB_HAVE_BUSDMA 1295 /* free DMA'able memory, if any */ 1296 pc = info->dma_page_cache_start; 1297 while (pc != info->dma_page_cache_end) { 1298 usb_pc_free_mem(pc); 1299 pc++; 1300 } 1301 1302 /* free DMA maps in all "xfer->frbuffers" */ 1303 pc = info->xfer_page_cache_start; 1304 while (pc != info->xfer_page_cache_end) { 1305 usb_pc_dmamap_destroy(pc); 1306 pc++; 1307 } 1308 1309 /* free all DMA tags */ 1310 usb_dma_tag_unsetup(&info->dma_parent_tag); 1311 #endif 1312 1313 cv_destroy(&info->cv_drain); 1314 1315 /* 1316 * free the "memory_base" last, hence the "info" structure is 1317 * contained within the "memory_base"! 1318 */ 1319 free(info->memory_base, M_USB); 1320 } 1321 1322 /*------------------------------------------------------------------------* 1323 * usbd_transfer_unsetup - unsetup/free an array of USB transfers 1324 * 1325 * NOTE: All USB transfers in progress will get called back passing 1326 * the error code "USB_ERR_CANCELLED" before this function 1327 * returns. 1328 *------------------------------------------------------------------------*/ 1329 void 1330 usbd_transfer_unsetup(struct usb_xfer **pxfer, uint16_t n_setup) 1331 { 1332 struct usb_xfer *xfer; 1333 struct usb_xfer_root *info; 1334 uint8_t needs_delay = 0; 1335 1336 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 1337 "usbd_transfer_unsetup can sleep!"); 1338 1339 while (n_setup--) { 1340 xfer = pxfer[n_setup]; 1341 1342 if (xfer == NULL) 1343 continue; 1344 1345 info = xfer->xroot; 1346 1347 USB_XFER_LOCK(xfer); 1348 USB_BUS_LOCK(info->bus); 1349 1350 /* 1351 * HINT: when you start/stop a transfer, it might be a 1352 * good idea to directly use the "pxfer[]" structure: 1353 * 1354 * usbd_transfer_start(sc->pxfer[0]); 1355 * usbd_transfer_stop(sc->pxfer[0]); 1356 * 1357 * That way, if your code has many parts that will not 1358 * stop running under the same lock, in other words 1359 * "xfer_mtx", the usbd_transfer_start and 1360 * usbd_transfer_stop functions will simply return 1361 * when they detect a NULL pointer argument. 1362 * 1363 * To avoid any races we clear the "pxfer[]" pointer 1364 * while holding the private mutex of the driver: 1365 */ 1366 pxfer[n_setup] = NULL; 1367 1368 USB_BUS_UNLOCK(info->bus); 1369 USB_XFER_UNLOCK(xfer); 1370 1371 usbd_transfer_drain(xfer); 1372 1373 #if USB_HAVE_BUSDMA 1374 if (xfer->flags_int.bdma_enable) 1375 needs_delay = 1; 1376 #endif 1377 /* 1378 * NOTE: default endpoint does not have an 1379 * interface, even if endpoint->iface_index == 0 1380 */ 1381 USB_BUS_LOCK(info->bus); 1382 xfer->endpoint->refcount_alloc--; 1383 USB_BUS_UNLOCK(info->bus); 1384 1385 usb_callout_drain(&xfer->timeout_handle); 1386 1387 USB_BUS_LOCK(info->bus); 1388 1389 USB_ASSERT(info->setup_refcount != 0, ("Invalid setup " 1390 "reference count\n")); 1391 1392 info->setup_refcount--; 1393 1394 if (info->setup_refcount == 0) { 1395 usbd_transfer_unsetup_sub(info, 1396 needs_delay); 1397 } else { 1398 USB_BUS_UNLOCK(info->bus); 1399 } 1400 } 1401 } 1402 1403 /*------------------------------------------------------------------------* 1404 * usbd_control_transfer_init - factored out code 1405 * 1406 * In USB Device Mode we have to wait for the SETUP packet which 1407 * containst the "struct usb_device_request" structure, before we can 1408 * transfer any data. In USB Host Mode we already have the SETUP 1409 * packet at the moment the USB transfer is started. This leads us to 1410 * having to setup the USB transfer at two different places in 1411 * time. This function just contains factored out control transfer 1412 * initialisation code, so that we don't duplicate the code. 1413 *------------------------------------------------------------------------*/ 1414 static void 1415 usbd_control_transfer_init(struct usb_xfer *xfer) 1416 { 1417 struct usb_device_request req; 1418 1419 /* copy out the USB request header */ 1420 1421 usbd_copy_out(xfer->frbuffers, 0, &req, sizeof(req)); 1422 1423 /* setup remainder */ 1424 1425 xfer->flags_int.control_rem = UGETW(req.wLength); 1426 1427 /* copy direction to endpoint variable */ 1428 1429 xfer->endpointno &= ~(UE_DIR_IN | UE_DIR_OUT); 1430 xfer->endpointno |= 1431 (req.bmRequestType & UT_READ) ? UE_DIR_IN : UE_DIR_OUT; 1432 } 1433 1434 /*------------------------------------------------------------------------* 1435 * usbd_control_transfer_did_data 1436 * 1437 * This function returns non-zero if a control endpoint has 1438 * transferred the first DATA packet after the SETUP packet. 1439 * Else it returns zero. 1440 *------------------------------------------------------------------------*/ 1441 static uint8_t 1442 usbd_control_transfer_did_data(struct usb_xfer *xfer) 1443 { 1444 struct usb_device_request req; 1445 1446 /* SETUP packet is not yet sent */ 1447 if (xfer->flags_int.control_hdr != 0) 1448 return (0); 1449 1450 /* copy out the USB request header */ 1451 usbd_copy_out(xfer->frbuffers, 0, &req, sizeof(req)); 1452 1453 /* compare remainder to the initial value */ 1454 return (xfer->flags_int.control_rem != UGETW(req.wLength)); 1455 } 1456 1457 /*------------------------------------------------------------------------* 1458 * usbd_setup_ctrl_transfer 1459 * 1460 * This function handles initialisation of control transfers. Control 1461 * transfers are special in that regard that they can both transmit 1462 * and receive data. 1463 * 1464 * Return values: 1465 * 0: Success 1466 * Else: Failure 1467 *------------------------------------------------------------------------*/ 1468 static int 1469 usbd_setup_ctrl_transfer(struct usb_xfer *xfer) 1470 { 1471 usb_frlength_t len; 1472 1473 /* Check for control endpoint stall */ 1474 if (xfer->flags.stall_pipe && xfer->flags_int.control_act) { 1475 /* the control transfer is no longer active */ 1476 xfer->flags_int.control_stall = 1; 1477 xfer->flags_int.control_act = 0; 1478 } else { 1479 /* don't stall control transfer by default */ 1480 xfer->flags_int.control_stall = 0; 1481 } 1482 1483 /* Check for invalid number of frames */ 1484 if (xfer->nframes > 2) { 1485 /* 1486 * If you need to split a control transfer, you 1487 * have to do one part at a time. Only with 1488 * non-control transfers you can do multiple 1489 * parts a time. 1490 */ 1491 DPRINTFN(0, "Too many frames: %u\n", 1492 (unsigned int)xfer->nframes); 1493 goto error; 1494 } 1495 1496 /* 1497 * Check if there is a control 1498 * transfer in progress: 1499 */ 1500 if (xfer->flags_int.control_act) { 1501 1502 if (xfer->flags_int.control_hdr) { 1503 1504 /* clear send header flag */ 1505 1506 xfer->flags_int.control_hdr = 0; 1507 1508 /* setup control transfer */ 1509 if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) { 1510 usbd_control_transfer_init(xfer); 1511 } 1512 } 1513 /* get data length */ 1514 1515 len = xfer->sumlen; 1516 1517 } else { 1518 1519 /* the size of the SETUP structure is hardcoded ! */ 1520 1521 if (xfer->frlengths[0] != sizeof(struct usb_device_request)) { 1522 DPRINTFN(0, "Wrong framelength %u != %zu\n", 1523 xfer->frlengths[0], sizeof(struct 1524 usb_device_request)); 1525 goto error; 1526 } 1527 /* check USB mode */ 1528 if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) { 1529 1530 /* check number of frames */ 1531 if (xfer->nframes != 1) { 1532 /* 1533 * We need to receive the setup 1534 * message first so that we know the 1535 * data direction! 1536 */ 1537 DPRINTF("Misconfigured transfer\n"); 1538 goto error; 1539 } 1540 /* 1541 * Set a dummy "control_rem" value. This 1542 * variable will be overwritten later by a 1543 * call to "usbd_control_transfer_init()" ! 1544 */ 1545 xfer->flags_int.control_rem = 0xFFFF; 1546 } else { 1547 1548 /* setup "endpoint" and "control_rem" */ 1549 1550 usbd_control_transfer_init(xfer); 1551 } 1552 1553 /* set transfer-header flag */ 1554 1555 xfer->flags_int.control_hdr = 1; 1556 1557 /* get data length */ 1558 1559 len = (xfer->sumlen - sizeof(struct usb_device_request)); 1560 } 1561 1562 /* update did data flag */ 1563 1564 xfer->flags_int.control_did_data = 1565 usbd_control_transfer_did_data(xfer); 1566 1567 /* check if there is a length mismatch */ 1568 1569 if (len > xfer->flags_int.control_rem) { 1570 DPRINTFN(0, "Length (%d) greater than " 1571 "remaining length (%d)\n", len, 1572 xfer->flags_int.control_rem); 1573 goto error; 1574 } 1575 /* check if we are doing a short transfer */ 1576 1577 if (xfer->flags.force_short_xfer) { 1578 xfer->flags_int.control_rem = 0; 1579 } else { 1580 if ((len != xfer->max_data_length) && 1581 (len != xfer->flags_int.control_rem) && 1582 (xfer->nframes != 1)) { 1583 DPRINTFN(0, "Short control transfer without " 1584 "force_short_xfer set\n"); 1585 goto error; 1586 } 1587 xfer->flags_int.control_rem -= len; 1588 } 1589 1590 /* the status part is executed when "control_act" is 0 */ 1591 1592 if ((xfer->flags_int.control_rem > 0) || 1593 (xfer->flags.manual_status)) { 1594 /* don't execute the STATUS stage yet */ 1595 xfer->flags_int.control_act = 1; 1596 1597 /* sanity check */ 1598 if ((!xfer->flags_int.control_hdr) && 1599 (xfer->nframes == 1)) { 1600 /* 1601 * This is not a valid operation! 1602 */ 1603 DPRINTFN(0, "Invalid parameter " 1604 "combination\n"); 1605 goto error; 1606 } 1607 } else { 1608 /* time to execute the STATUS stage */ 1609 xfer->flags_int.control_act = 0; 1610 } 1611 return (0); /* success */ 1612 1613 error: 1614 return (1); /* failure */ 1615 } 1616 1617 /*------------------------------------------------------------------------* 1618 * usbd_transfer_submit - start USB hardware for the given transfer 1619 * 1620 * This function should only be called from the USB callback. 1621 *------------------------------------------------------------------------*/ 1622 void 1623 usbd_transfer_submit(struct usb_xfer *xfer) 1624 { 1625 struct usb_xfer_root *info; 1626 struct usb_bus *bus; 1627 usb_frcount_t x; 1628 1629 info = xfer->xroot; 1630 bus = info->bus; 1631 1632 DPRINTF("xfer=%p, endpoint=%p, nframes=%d, dir=%s\n", 1633 xfer, xfer->endpoint, xfer->nframes, USB_GET_DATA_ISREAD(xfer) ? 1634 "read" : "write"); 1635 1636 #ifdef USB_DEBUG 1637 if (USB_DEBUG_VAR > 0) { 1638 USB_BUS_LOCK(bus); 1639 1640 usb_dump_endpoint(xfer->endpoint); 1641 1642 USB_BUS_UNLOCK(bus); 1643 } 1644 #endif 1645 1646 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 1647 USB_BUS_LOCK_ASSERT(bus, MA_NOTOWNED); 1648 1649 /* Only open the USB transfer once! */ 1650 if (!xfer->flags_int.open) { 1651 xfer->flags_int.open = 1; 1652 1653 DPRINTF("open\n"); 1654 1655 USB_BUS_LOCK(bus); 1656 (xfer->endpoint->methods->open) (xfer); 1657 USB_BUS_UNLOCK(bus); 1658 } 1659 /* set "transferring" flag */ 1660 xfer->flags_int.transferring = 1; 1661 1662 #if USB_HAVE_POWERD 1663 /* increment power reference */ 1664 usbd_transfer_power_ref(xfer, 1); 1665 #endif 1666 /* 1667 * Check if the transfer is waiting on a queue, most 1668 * frequently the "done_q": 1669 */ 1670 if (xfer->wait_queue) { 1671 USB_BUS_LOCK(bus); 1672 usbd_transfer_dequeue(xfer); 1673 USB_BUS_UNLOCK(bus); 1674 } 1675 /* clear "did_dma_delay" flag */ 1676 xfer->flags_int.did_dma_delay = 0; 1677 1678 /* clear "did_close" flag */ 1679 xfer->flags_int.did_close = 0; 1680 1681 #if USB_HAVE_BUSDMA 1682 /* clear "bdma_setup" flag */ 1683 xfer->flags_int.bdma_setup = 0; 1684 #endif 1685 /* by default we cannot cancel any USB transfer immediately */ 1686 xfer->flags_int.can_cancel_immed = 0; 1687 1688 /* clear lengths and frame counts by default */ 1689 xfer->sumlen = 0; 1690 xfer->actlen = 0; 1691 xfer->aframes = 0; 1692 1693 /* clear any previous errors */ 1694 xfer->error = 0; 1695 1696 /* Check if the device is still alive */ 1697 if (info->udev->state < USB_STATE_POWERED) { 1698 USB_BUS_LOCK(bus); 1699 /* 1700 * Must return cancelled error code else 1701 * device drivers can hang. 1702 */ 1703 usbd_transfer_done(xfer, USB_ERR_CANCELLED); 1704 USB_BUS_UNLOCK(bus); 1705 return; 1706 } 1707 1708 /* sanity check */ 1709 if (xfer->nframes == 0) { 1710 if (xfer->flags.stall_pipe) { 1711 /* 1712 * Special case - want to stall without transferring 1713 * any data: 1714 */ 1715 DPRINTF("xfer=%p nframes=0: stall " 1716 "or clear stall!\n", xfer); 1717 USB_BUS_LOCK(bus); 1718 xfer->flags_int.can_cancel_immed = 1; 1719 /* start the transfer */ 1720 usb_command_wrapper(&xfer->endpoint-> 1721 endpoint_q[xfer->stream_id], xfer); 1722 USB_BUS_UNLOCK(bus); 1723 return; 1724 } 1725 USB_BUS_LOCK(bus); 1726 usbd_transfer_done(xfer, USB_ERR_INVAL); 1727 USB_BUS_UNLOCK(bus); 1728 return; 1729 } 1730 /* compute some variables */ 1731 1732 for (x = 0; x != xfer->nframes; x++) { 1733 /* make a copy of the frlenghts[] */ 1734 xfer->frlengths[x + xfer->max_frame_count] = xfer->frlengths[x]; 1735 /* compute total transfer length */ 1736 xfer->sumlen += xfer->frlengths[x]; 1737 if (xfer->sumlen < xfer->frlengths[x]) { 1738 /* length wrapped around */ 1739 USB_BUS_LOCK(bus); 1740 usbd_transfer_done(xfer, USB_ERR_INVAL); 1741 USB_BUS_UNLOCK(bus); 1742 return; 1743 } 1744 } 1745 1746 /* clear some internal flags */ 1747 1748 xfer->flags_int.short_xfer_ok = 0; 1749 xfer->flags_int.short_frames_ok = 0; 1750 1751 /* check if this is a control transfer */ 1752 1753 if (xfer->flags_int.control_xfr) { 1754 1755 if (usbd_setup_ctrl_transfer(xfer)) { 1756 USB_BUS_LOCK(bus); 1757 usbd_transfer_done(xfer, USB_ERR_STALLED); 1758 USB_BUS_UNLOCK(bus); 1759 return; 1760 } 1761 } 1762 /* 1763 * Setup filtered version of some transfer flags, 1764 * in case of data read direction 1765 */ 1766 if (USB_GET_DATA_ISREAD(xfer)) { 1767 1768 if (xfer->flags.short_frames_ok) { 1769 xfer->flags_int.short_xfer_ok = 1; 1770 xfer->flags_int.short_frames_ok = 1; 1771 } else if (xfer->flags.short_xfer_ok) { 1772 xfer->flags_int.short_xfer_ok = 1; 1773 1774 /* check for control transfer */ 1775 if (xfer->flags_int.control_xfr) { 1776 /* 1777 * 1) Control transfers do not support 1778 * reception of multiple short USB 1779 * frames in host mode and device side 1780 * mode, with exception of: 1781 * 1782 * 2) Due to sometimes buggy device 1783 * side firmware we need to do a 1784 * STATUS stage in case of short 1785 * control transfers in USB host mode. 1786 * The STATUS stage then becomes the 1787 * "alt_next" to the DATA stage. 1788 */ 1789 xfer->flags_int.short_frames_ok = 1; 1790 } 1791 } 1792 } 1793 /* 1794 * Check if BUS-DMA support is enabled and try to load virtual 1795 * buffers into DMA, if any: 1796 */ 1797 #if USB_HAVE_BUSDMA 1798 if (xfer->flags_int.bdma_enable) { 1799 /* insert the USB transfer last in the BUS-DMA queue */ 1800 usb_command_wrapper(&xfer->xroot->dma_q, xfer); 1801 return; 1802 } 1803 #endif 1804 /* 1805 * Enter the USB transfer into the Host Controller or 1806 * Device Controller schedule: 1807 */ 1808 usbd_pipe_enter(xfer); 1809 } 1810 1811 /*------------------------------------------------------------------------* 1812 * usbd_pipe_enter - factored out code 1813 *------------------------------------------------------------------------*/ 1814 void 1815 usbd_pipe_enter(struct usb_xfer *xfer) 1816 { 1817 struct usb_endpoint *ep; 1818 1819 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 1820 1821 USB_BUS_LOCK(xfer->xroot->bus); 1822 1823 ep = xfer->endpoint; 1824 1825 DPRINTF("enter\n"); 1826 1827 /* the transfer can now be cancelled */ 1828 xfer->flags_int.can_cancel_immed = 1; 1829 1830 /* enter the transfer */ 1831 (ep->methods->enter) (xfer); 1832 1833 /* check for transfer error */ 1834 if (xfer->error) { 1835 /* some error has happened */ 1836 usbd_transfer_done(xfer, 0); 1837 USB_BUS_UNLOCK(xfer->xroot->bus); 1838 return; 1839 } 1840 1841 /* start the transfer */ 1842 usb_command_wrapper(&ep->endpoint_q[xfer->stream_id], xfer); 1843 USB_BUS_UNLOCK(xfer->xroot->bus); 1844 } 1845 1846 /*------------------------------------------------------------------------* 1847 * usbd_transfer_start - start an USB transfer 1848 * 1849 * NOTE: Calling this function more than one time will only 1850 * result in a single transfer start, until the USB transfer 1851 * completes. 1852 *------------------------------------------------------------------------*/ 1853 void 1854 usbd_transfer_start(struct usb_xfer *xfer) 1855 { 1856 if (xfer == NULL) { 1857 /* transfer is gone */ 1858 return; 1859 } 1860 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 1861 1862 /* mark the USB transfer started */ 1863 1864 if (!xfer->flags_int.started) { 1865 /* lock the BUS lock to avoid races updating flags_int */ 1866 USB_BUS_LOCK(xfer->xroot->bus); 1867 xfer->flags_int.started = 1; 1868 USB_BUS_UNLOCK(xfer->xroot->bus); 1869 } 1870 /* check if the USB transfer callback is already transferring */ 1871 1872 if (xfer->flags_int.transferring) { 1873 return; 1874 } 1875 USB_BUS_LOCK(xfer->xroot->bus); 1876 /* call the USB transfer callback */ 1877 usbd_callback_ss_done_defer(xfer); 1878 USB_BUS_UNLOCK(xfer->xroot->bus); 1879 } 1880 1881 /*------------------------------------------------------------------------* 1882 * usbd_transfer_stop - stop an USB transfer 1883 * 1884 * NOTE: Calling this function more than one time will only 1885 * result in a single transfer stop. 1886 * NOTE: When this function returns it is not safe to free nor 1887 * reuse any DMA buffers. See "usbd_transfer_drain()". 1888 *------------------------------------------------------------------------*/ 1889 void 1890 usbd_transfer_stop(struct usb_xfer *xfer) 1891 { 1892 struct usb_endpoint *ep; 1893 1894 if (xfer == NULL) { 1895 /* transfer is gone */ 1896 return; 1897 } 1898 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 1899 1900 /* check if the USB transfer was ever opened */ 1901 1902 if (!xfer->flags_int.open) { 1903 if (xfer->flags_int.started) { 1904 /* nothing to do except clearing the "started" flag */ 1905 /* lock the BUS lock to avoid races updating flags_int */ 1906 USB_BUS_LOCK(xfer->xroot->bus); 1907 xfer->flags_int.started = 0; 1908 USB_BUS_UNLOCK(xfer->xroot->bus); 1909 } 1910 return; 1911 } 1912 /* try to stop the current USB transfer */ 1913 1914 USB_BUS_LOCK(xfer->xroot->bus); 1915 /* override any previous error */ 1916 xfer->error = USB_ERR_CANCELLED; 1917 1918 /* 1919 * Clear "open" and "started" when both private and USB lock 1920 * is locked so that we don't get a race updating "flags_int" 1921 */ 1922 xfer->flags_int.open = 0; 1923 xfer->flags_int.started = 0; 1924 1925 /* 1926 * Check if we can cancel the USB transfer immediately. 1927 */ 1928 if (xfer->flags_int.transferring) { 1929 if (xfer->flags_int.can_cancel_immed && 1930 (!xfer->flags_int.did_close)) { 1931 DPRINTF("close\n"); 1932 /* 1933 * The following will lead to an USB_ERR_CANCELLED 1934 * error code being passed to the USB callback. 1935 */ 1936 (xfer->endpoint->methods->close) (xfer); 1937 /* only close once */ 1938 xfer->flags_int.did_close = 1; 1939 } else { 1940 /* need to wait for the next done callback */ 1941 } 1942 } else { 1943 DPRINTF("close\n"); 1944 1945 /* close here and now */ 1946 (xfer->endpoint->methods->close) (xfer); 1947 1948 /* 1949 * Any additional DMA delay is done by 1950 * "usbd_transfer_unsetup()". 1951 */ 1952 1953 /* 1954 * Special case. Check if we need to restart a blocked 1955 * endpoint. 1956 */ 1957 ep = xfer->endpoint; 1958 1959 /* 1960 * If the current USB transfer is completing we need 1961 * to start the next one: 1962 */ 1963 if (ep->endpoint_q[xfer->stream_id].curr == xfer) { 1964 usb_command_wrapper( 1965 &ep->endpoint_q[xfer->stream_id], NULL); 1966 } 1967 } 1968 1969 USB_BUS_UNLOCK(xfer->xroot->bus); 1970 } 1971 1972 /*------------------------------------------------------------------------* 1973 * usbd_transfer_pending 1974 * 1975 * This function will check if an USB transfer is pending which is a 1976 * little bit complicated! 1977 * Return values: 1978 * 0: Not pending 1979 * 1: Pending: The USB transfer will receive a callback in the future. 1980 *------------------------------------------------------------------------*/ 1981 uint8_t 1982 usbd_transfer_pending(struct usb_xfer *xfer) 1983 { 1984 struct usb_xfer_root *info; 1985 struct usb_xfer_queue *pq; 1986 1987 if (xfer == NULL) { 1988 /* transfer is gone */ 1989 return (0); 1990 } 1991 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 1992 1993 if (xfer->flags_int.transferring) { 1994 /* trivial case */ 1995 return (1); 1996 } 1997 USB_BUS_LOCK(xfer->xroot->bus); 1998 if (xfer->wait_queue) { 1999 /* we are waiting on a queue somewhere */ 2000 USB_BUS_UNLOCK(xfer->xroot->bus); 2001 return (1); 2002 } 2003 info = xfer->xroot; 2004 pq = &info->done_q; 2005 2006 if (pq->curr == xfer) { 2007 /* we are currently scheduled for callback */ 2008 USB_BUS_UNLOCK(xfer->xroot->bus); 2009 return (1); 2010 } 2011 /* we are not pending */ 2012 USB_BUS_UNLOCK(xfer->xroot->bus); 2013 return (0); 2014 } 2015 2016 /*------------------------------------------------------------------------* 2017 * usbd_transfer_drain 2018 * 2019 * This function will stop the USB transfer and wait for any 2020 * additional BUS-DMA and HW-DMA operations to complete. Buffers that 2021 * are loaded into DMA can safely be freed or reused after that this 2022 * function has returned. 2023 *------------------------------------------------------------------------*/ 2024 void 2025 usbd_transfer_drain(struct usb_xfer *xfer) 2026 { 2027 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2028 "usbd_transfer_drain can sleep!"); 2029 2030 if (xfer == NULL) { 2031 /* transfer is gone */ 2032 return; 2033 } 2034 if (xfer->xroot->xfer_mtx != &Giant) { 2035 USB_XFER_LOCK_ASSERT(xfer, MA_NOTOWNED); 2036 } 2037 USB_XFER_LOCK(xfer); 2038 2039 usbd_transfer_stop(xfer); 2040 2041 while (usbd_transfer_pending(xfer) || 2042 xfer->flags_int.doing_callback) { 2043 2044 /* 2045 * It is allowed that the callback can drop its 2046 * transfer mutex. In that case checking only 2047 * "usbd_transfer_pending()" is not enough to tell if 2048 * the USB transfer is fully drained. We also need to 2049 * check the internal "doing_callback" flag. 2050 */ 2051 xfer->flags_int.draining = 1; 2052 2053 /* 2054 * Wait until the current outstanding USB 2055 * transfer is complete ! 2056 */ 2057 cv_wait(&xfer->xroot->cv_drain, xfer->xroot->xfer_mtx); 2058 } 2059 USB_XFER_UNLOCK(xfer); 2060 } 2061 2062 struct usb_page_cache * 2063 usbd_xfer_get_frame(struct usb_xfer *xfer, usb_frcount_t frindex) 2064 { 2065 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2066 2067 return (&xfer->frbuffers[frindex]); 2068 } 2069 2070 void * 2071 usbd_xfer_get_frame_buffer(struct usb_xfer *xfer, usb_frcount_t frindex) 2072 { 2073 struct usb_page_search page_info; 2074 2075 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2076 2077 usbd_get_page(&xfer->frbuffers[frindex], 0, &page_info); 2078 return (page_info.buffer); 2079 } 2080 2081 /*------------------------------------------------------------------------* 2082 * usbd_xfer_get_fps_shift 2083 * 2084 * The following function is only useful for isochronous transfers. It 2085 * returns how many times the frame execution rate has been shifted 2086 * down. 2087 * 2088 * Return value: 2089 * Success: 0..3 2090 * Failure: 0 2091 *------------------------------------------------------------------------*/ 2092 uint8_t 2093 usbd_xfer_get_fps_shift(struct usb_xfer *xfer) 2094 { 2095 return (xfer->fps_shift); 2096 } 2097 2098 usb_frlength_t 2099 usbd_xfer_frame_len(struct usb_xfer *xfer, usb_frcount_t frindex) 2100 { 2101 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2102 2103 return (xfer->frlengths[frindex]); 2104 } 2105 2106 /*------------------------------------------------------------------------* 2107 * usbd_xfer_set_frame_data 2108 * 2109 * This function sets the pointer of the buffer that should 2110 * loaded directly into DMA for the given USB frame. Passing "ptr" 2111 * equal to NULL while the corresponding "frlength" is greater 2112 * than zero gives undefined results! 2113 *------------------------------------------------------------------------*/ 2114 void 2115 usbd_xfer_set_frame_data(struct usb_xfer *xfer, usb_frcount_t frindex, 2116 void *ptr, usb_frlength_t len) 2117 { 2118 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2119 2120 /* set virtual address to load and length */ 2121 xfer->frbuffers[frindex].buffer = ptr; 2122 usbd_xfer_set_frame_len(xfer, frindex, len); 2123 } 2124 2125 void 2126 usbd_xfer_frame_data(struct usb_xfer *xfer, usb_frcount_t frindex, 2127 void **ptr, int *len) 2128 { 2129 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2130 2131 if (ptr != NULL) 2132 *ptr = xfer->frbuffers[frindex].buffer; 2133 if (len != NULL) 2134 *len = xfer->frlengths[frindex]; 2135 } 2136 2137 /*------------------------------------------------------------------------* 2138 * usbd_xfer_old_frame_length 2139 * 2140 * This function returns the framelength of the given frame at the 2141 * time the transfer was submitted. This function can be used to 2142 * compute the starting data pointer of the next isochronous frame 2143 * when an isochronous transfer has completed. 2144 *------------------------------------------------------------------------*/ 2145 usb_frlength_t 2146 usbd_xfer_old_frame_length(struct usb_xfer *xfer, usb_frcount_t frindex) 2147 { 2148 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2149 2150 return (xfer->frlengths[frindex + xfer->max_frame_count]); 2151 } 2152 2153 void 2154 usbd_xfer_status(struct usb_xfer *xfer, int *actlen, int *sumlen, int *aframes, 2155 int *nframes) 2156 { 2157 if (actlen != NULL) 2158 *actlen = xfer->actlen; 2159 if (sumlen != NULL) 2160 *sumlen = xfer->sumlen; 2161 if (aframes != NULL) 2162 *aframes = xfer->aframes; 2163 if (nframes != NULL) 2164 *nframes = xfer->nframes; 2165 } 2166 2167 /*------------------------------------------------------------------------* 2168 * usbd_xfer_set_frame_offset 2169 * 2170 * This function sets the frame data buffer offset relative to the beginning 2171 * of the USB DMA buffer allocated for this USB transfer. 2172 *------------------------------------------------------------------------*/ 2173 void 2174 usbd_xfer_set_frame_offset(struct usb_xfer *xfer, usb_frlength_t offset, 2175 usb_frcount_t frindex) 2176 { 2177 KASSERT(!xfer->flags.ext_buffer, ("Cannot offset data frame " 2178 "when the USB buffer is external\n")); 2179 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2180 2181 /* set virtual address to load */ 2182 xfer->frbuffers[frindex].buffer = 2183 USB_ADD_BYTES(xfer->local_buffer, offset); 2184 } 2185 2186 void 2187 usbd_xfer_set_interval(struct usb_xfer *xfer, int i) 2188 { 2189 xfer->interval = i; 2190 } 2191 2192 void 2193 usbd_xfer_set_timeout(struct usb_xfer *xfer, int t) 2194 { 2195 xfer->timeout = t; 2196 } 2197 2198 void 2199 usbd_xfer_set_frames(struct usb_xfer *xfer, usb_frcount_t n) 2200 { 2201 xfer->nframes = n; 2202 } 2203 2204 usb_frcount_t 2205 usbd_xfer_max_frames(struct usb_xfer *xfer) 2206 { 2207 return (xfer->max_frame_count); 2208 } 2209 2210 usb_frlength_t 2211 usbd_xfer_max_len(struct usb_xfer *xfer) 2212 { 2213 return (xfer->max_data_length); 2214 } 2215 2216 usb_frlength_t 2217 usbd_xfer_max_framelen(struct usb_xfer *xfer) 2218 { 2219 return (xfer->max_frame_size); 2220 } 2221 2222 void 2223 usbd_xfer_set_frame_len(struct usb_xfer *xfer, usb_frcount_t frindex, 2224 usb_frlength_t len) 2225 { 2226 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2227 2228 xfer->frlengths[frindex] = len; 2229 } 2230 2231 /*------------------------------------------------------------------------* 2232 * usb_callback_proc - factored out code 2233 * 2234 * This function performs USB callbacks. 2235 *------------------------------------------------------------------------*/ 2236 static void 2237 usb_callback_proc(struct usb_proc_msg *_pm) 2238 { 2239 struct usb_done_msg *pm = (void *)_pm; 2240 struct usb_xfer_root *info = pm->xroot; 2241 2242 /* Change locking order */ 2243 USB_BUS_UNLOCK(info->bus); 2244 2245 /* 2246 * We exploit the fact that the mutex is the same for all 2247 * callbacks that will be called from this thread: 2248 */ 2249 mtx_lock(info->xfer_mtx); 2250 USB_BUS_LOCK(info->bus); 2251 2252 /* Continue where we lost track */ 2253 usb_command_wrapper(&info->done_q, 2254 info->done_q.curr); 2255 2256 mtx_unlock(info->xfer_mtx); 2257 } 2258 2259 /*------------------------------------------------------------------------* 2260 * usbd_callback_ss_done_defer 2261 * 2262 * This function will defer the start, stop and done callback to the 2263 * correct thread. 2264 *------------------------------------------------------------------------*/ 2265 static void 2266 usbd_callback_ss_done_defer(struct usb_xfer *xfer) 2267 { 2268 struct usb_xfer_root *info = xfer->xroot; 2269 struct usb_xfer_queue *pq = &info->done_q; 2270 2271 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2272 2273 if (pq->curr != xfer) { 2274 usbd_transfer_enqueue(pq, xfer); 2275 } 2276 if (!pq->recurse_1) { 2277 2278 /* 2279 * We have to postpone the callback due to the fact we 2280 * will have a Lock Order Reversal, LOR, if we try to 2281 * proceed ! 2282 */ 2283 if (usb_proc_msignal(info->done_p, 2284 &info->done_m[0], &info->done_m[1])) { 2285 /* ignore */ 2286 } 2287 } else { 2288 /* clear second recurse flag */ 2289 pq->recurse_2 = 0; 2290 } 2291 return; 2292 2293 } 2294 2295 /*------------------------------------------------------------------------* 2296 * usbd_callback_wrapper 2297 * 2298 * This is a wrapper for USB callbacks. This wrapper does some 2299 * auto-magic things like figuring out if we can call the callback 2300 * directly from the current context or if we need to wakeup the 2301 * interrupt process. 2302 *------------------------------------------------------------------------*/ 2303 static void 2304 usbd_callback_wrapper(struct usb_xfer_queue *pq) 2305 { 2306 struct usb_xfer *xfer = pq->curr; 2307 struct usb_xfer_root *info = xfer->xroot; 2308 2309 USB_BUS_LOCK_ASSERT(info->bus, MA_OWNED); 2310 if (!mtx_owned(info->xfer_mtx) && !SCHEDULER_STOPPED()) { 2311 /* 2312 * Cases that end up here: 2313 * 2314 * 5) HW interrupt done callback or other source. 2315 */ 2316 DPRINTFN(3, "case 5\n"); 2317 2318 /* 2319 * We have to postpone the callback due to the fact we 2320 * will have a Lock Order Reversal, LOR, if we try to 2321 * proceed ! 2322 */ 2323 if (usb_proc_msignal(info->done_p, 2324 &info->done_m[0], &info->done_m[1])) { 2325 /* ignore */ 2326 } 2327 return; 2328 } 2329 /* 2330 * Cases that end up here: 2331 * 2332 * 1) We are starting a transfer 2333 * 2) We are prematurely calling back a transfer 2334 * 3) We are stopping a transfer 2335 * 4) We are doing an ordinary callback 2336 */ 2337 DPRINTFN(3, "case 1-4\n"); 2338 /* get next USB transfer in the queue */ 2339 info->done_q.curr = NULL; 2340 2341 /* set flag in case of drain */ 2342 xfer->flags_int.doing_callback = 1; 2343 2344 USB_BUS_UNLOCK(info->bus); 2345 USB_BUS_LOCK_ASSERT(info->bus, MA_NOTOWNED); 2346 2347 /* set correct USB state for callback */ 2348 if (!xfer->flags_int.transferring) { 2349 xfer->usb_state = USB_ST_SETUP; 2350 if (!xfer->flags_int.started) { 2351 /* we got stopped before we even got started */ 2352 USB_BUS_LOCK(info->bus); 2353 goto done; 2354 } 2355 } else { 2356 2357 if (usbd_callback_wrapper_sub(xfer)) { 2358 /* the callback has been deferred */ 2359 USB_BUS_LOCK(info->bus); 2360 goto done; 2361 } 2362 #if USB_HAVE_POWERD 2363 /* decrement power reference */ 2364 usbd_transfer_power_ref(xfer, -1); 2365 #endif 2366 xfer->flags_int.transferring = 0; 2367 2368 if (xfer->error) { 2369 xfer->usb_state = USB_ST_ERROR; 2370 } else { 2371 /* set transferred state */ 2372 xfer->usb_state = USB_ST_TRANSFERRED; 2373 #if USB_HAVE_BUSDMA 2374 /* sync DMA memory, if any */ 2375 if (xfer->flags_int.bdma_enable && 2376 (!xfer->flags_int.bdma_no_post_sync)) { 2377 usb_bdma_post_sync(xfer); 2378 } 2379 #endif 2380 } 2381 } 2382 2383 #if USB_HAVE_PF 2384 if (xfer->usb_state != USB_ST_SETUP) 2385 usbpf_xfertap(xfer, USBPF_XFERTAP_DONE); 2386 #endif 2387 /* call processing routine */ 2388 (xfer->callback) (xfer, xfer->error); 2389 2390 /* pickup the USB mutex again */ 2391 USB_BUS_LOCK(info->bus); 2392 2393 /* 2394 * Check if we got started after that we got cancelled, but 2395 * before we managed to do the callback. 2396 */ 2397 if ((!xfer->flags_int.open) && 2398 (xfer->flags_int.started) && 2399 (xfer->usb_state == USB_ST_ERROR)) { 2400 /* clear flag in case of drain */ 2401 xfer->flags_int.doing_callback = 0; 2402 /* try to loop, but not recursivly */ 2403 usb_command_wrapper(&info->done_q, xfer); 2404 return; 2405 } 2406 2407 done: 2408 /* clear flag in case of drain */ 2409 xfer->flags_int.doing_callback = 0; 2410 2411 /* 2412 * Check if we are draining. 2413 */ 2414 if (xfer->flags_int.draining && 2415 (!xfer->flags_int.transferring)) { 2416 /* "usbd_transfer_drain()" is waiting for end of transfer */ 2417 xfer->flags_int.draining = 0; 2418 cv_broadcast(&info->cv_drain); 2419 } 2420 2421 /* do the next callback, if any */ 2422 usb_command_wrapper(&info->done_q, 2423 info->done_q.curr); 2424 } 2425 2426 /*------------------------------------------------------------------------* 2427 * usb_dma_delay_done_cb 2428 * 2429 * This function is called when the DMA delay has been exectuded, and 2430 * will make sure that the callback is called to complete the USB 2431 * transfer. This code path is ususally only used when there is an USB 2432 * error like USB_ERR_CANCELLED. 2433 *------------------------------------------------------------------------*/ 2434 void 2435 usb_dma_delay_done_cb(struct usb_xfer *xfer) 2436 { 2437 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2438 2439 DPRINTFN(3, "Completed %p\n", xfer); 2440 2441 /* queue callback for execution, again */ 2442 usbd_transfer_done(xfer, 0); 2443 } 2444 2445 /*------------------------------------------------------------------------* 2446 * usbd_transfer_dequeue 2447 * 2448 * - This function is used to remove an USB transfer from a USB 2449 * transfer queue. 2450 * 2451 * - This function can be called multiple times in a row. 2452 *------------------------------------------------------------------------*/ 2453 void 2454 usbd_transfer_dequeue(struct usb_xfer *xfer) 2455 { 2456 struct usb_xfer_queue *pq; 2457 2458 pq = xfer->wait_queue; 2459 if (pq) { 2460 TAILQ_REMOVE(&pq->head, xfer, wait_entry); 2461 xfer->wait_queue = NULL; 2462 } 2463 } 2464 2465 /*------------------------------------------------------------------------* 2466 * usbd_transfer_enqueue 2467 * 2468 * - This function is used to insert an USB transfer into a USB * 2469 * transfer queue. 2470 * 2471 * - This function can be called multiple times in a row. 2472 *------------------------------------------------------------------------*/ 2473 void 2474 usbd_transfer_enqueue(struct usb_xfer_queue *pq, struct usb_xfer *xfer) 2475 { 2476 /* 2477 * Insert the USB transfer into the queue, if it is not 2478 * already on a USB transfer queue: 2479 */ 2480 if (xfer->wait_queue == NULL) { 2481 xfer->wait_queue = pq; 2482 TAILQ_INSERT_TAIL(&pq->head, xfer, wait_entry); 2483 } 2484 } 2485 2486 /*------------------------------------------------------------------------* 2487 * usbd_transfer_done 2488 * 2489 * - This function is used to remove an USB transfer from the busdma, 2490 * pipe or interrupt queue. 2491 * 2492 * - This function is used to queue the USB transfer on the done 2493 * queue. 2494 * 2495 * - This function is used to stop any USB transfer timeouts. 2496 *------------------------------------------------------------------------*/ 2497 void 2498 usbd_transfer_done(struct usb_xfer *xfer, usb_error_t error) 2499 { 2500 struct usb_xfer_root *info = xfer->xroot; 2501 2502 USB_BUS_LOCK_ASSERT(info->bus, MA_OWNED); 2503 2504 DPRINTF("err=%s\n", usbd_errstr(error)); 2505 2506 /* 2507 * If we are not transferring then just return. 2508 * This can happen during transfer cancel. 2509 */ 2510 if (!xfer->flags_int.transferring) { 2511 DPRINTF("not transferring\n"); 2512 /* end of control transfer, if any */ 2513 xfer->flags_int.control_act = 0; 2514 return; 2515 } 2516 /* only set transfer error, if not already set */ 2517 if (xfer->error == USB_ERR_NORMAL_COMPLETION) 2518 xfer->error = error; 2519 2520 /* stop any callouts */ 2521 usb_callout_stop(&xfer->timeout_handle); 2522 2523 /* 2524 * If we are waiting on a queue, just remove the USB transfer 2525 * from the queue, if any. We should have the required locks 2526 * locked to do the remove when this function is called. 2527 */ 2528 usbd_transfer_dequeue(xfer); 2529 2530 #if USB_HAVE_BUSDMA 2531 if (mtx_owned(info->xfer_mtx)) { 2532 struct usb_xfer_queue *pq; 2533 2534 /* 2535 * If the private USB lock is not locked, then we assume 2536 * that the BUS-DMA load stage has been passed: 2537 */ 2538 pq = &info->dma_q; 2539 2540 if (pq->curr == xfer) { 2541 /* start the next BUS-DMA load, if any */ 2542 usb_command_wrapper(pq, NULL); 2543 } 2544 } 2545 #endif 2546 /* keep some statistics */ 2547 if (xfer->error) { 2548 info->bus->stats_err.uds_requests 2549 [xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE]++; 2550 } else { 2551 info->bus->stats_ok.uds_requests 2552 [xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE]++; 2553 } 2554 2555 /* call the USB transfer callback */ 2556 usbd_callback_ss_done_defer(xfer); 2557 } 2558 2559 /*------------------------------------------------------------------------* 2560 * usbd_transfer_start_cb 2561 * 2562 * This function is called to start the USB transfer when 2563 * "xfer->interval" is greater than zero, and and the endpoint type is 2564 * BULK or CONTROL. 2565 *------------------------------------------------------------------------*/ 2566 static void 2567 usbd_transfer_start_cb(void *arg) 2568 { 2569 struct usb_xfer *xfer = arg; 2570 struct usb_endpoint *ep = xfer->endpoint; 2571 2572 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2573 2574 DPRINTF("start\n"); 2575 2576 #if USB_HAVE_PF 2577 usbpf_xfertap(xfer, USBPF_XFERTAP_SUBMIT); 2578 #endif 2579 2580 /* the transfer can now be cancelled */ 2581 xfer->flags_int.can_cancel_immed = 1; 2582 2583 /* start USB transfer, if no error */ 2584 if (xfer->error == 0) 2585 (ep->methods->start) (xfer); 2586 2587 /* check for transfer error */ 2588 if (xfer->error) { 2589 /* some error has happened */ 2590 usbd_transfer_done(xfer, 0); 2591 } 2592 } 2593 2594 /*------------------------------------------------------------------------* 2595 * usbd_xfer_set_stall 2596 * 2597 * This function is used to set the stall flag outside the 2598 * callback. This function is NULL safe. 2599 *------------------------------------------------------------------------*/ 2600 void 2601 usbd_xfer_set_stall(struct usb_xfer *xfer) 2602 { 2603 if (xfer == NULL) { 2604 /* tearing down */ 2605 return; 2606 } 2607 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 2608 2609 /* avoid any races by locking the USB mutex */ 2610 USB_BUS_LOCK(xfer->xroot->bus); 2611 xfer->flags.stall_pipe = 1; 2612 USB_BUS_UNLOCK(xfer->xroot->bus); 2613 } 2614 2615 int 2616 usbd_xfer_is_stalled(struct usb_xfer *xfer) 2617 { 2618 return (xfer->endpoint->is_stalled); 2619 } 2620 2621 /*------------------------------------------------------------------------* 2622 * usbd_transfer_clear_stall 2623 * 2624 * This function is used to clear the stall flag outside the 2625 * callback. This function is NULL safe. 2626 *------------------------------------------------------------------------*/ 2627 void 2628 usbd_transfer_clear_stall(struct usb_xfer *xfer) 2629 { 2630 if (xfer == NULL) { 2631 /* tearing down */ 2632 return; 2633 } 2634 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 2635 2636 /* avoid any races by locking the USB mutex */ 2637 USB_BUS_LOCK(xfer->xroot->bus); 2638 2639 xfer->flags.stall_pipe = 0; 2640 2641 USB_BUS_UNLOCK(xfer->xroot->bus); 2642 } 2643 2644 /*------------------------------------------------------------------------* 2645 * usbd_pipe_start 2646 * 2647 * This function is used to add an USB transfer to the pipe transfer list. 2648 *------------------------------------------------------------------------*/ 2649 void 2650 usbd_pipe_start(struct usb_xfer_queue *pq) 2651 { 2652 struct usb_endpoint *ep; 2653 struct usb_xfer *xfer; 2654 uint8_t type; 2655 2656 xfer = pq->curr; 2657 ep = xfer->endpoint; 2658 2659 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2660 2661 /* 2662 * If the endpoint is already stalled we do nothing ! 2663 */ 2664 if (ep->is_stalled) { 2665 return; 2666 } 2667 /* 2668 * Check if we are supposed to stall the endpoint: 2669 */ 2670 if (xfer->flags.stall_pipe) { 2671 struct usb_device *udev; 2672 struct usb_xfer_root *info; 2673 2674 /* clear stall command */ 2675 xfer->flags.stall_pipe = 0; 2676 2677 /* get pointer to USB device */ 2678 info = xfer->xroot; 2679 udev = info->udev; 2680 2681 /* 2682 * Only stall BULK and INTERRUPT endpoints. 2683 */ 2684 type = (ep->edesc->bmAttributes & UE_XFERTYPE); 2685 if ((type == UE_BULK) || 2686 (type == UE_INTERRUPT)) { 2687 uint8_t did_stall; 2688 2689 did_stall = 1; 2690 2691 if (udev->flags.usb_mode == USB_MODE_DEVICE) { 2692 (udev->bus->methods->set_stall) ( 2693 udev, ep, &did_stall); 2694 } else if (udev->ctrl_xfer[1]) { 2695 info = udev->ctrl_xfer[1]->xroot; 2696 usb_proc_msignal( 2697 USB_BUS_NON_GIANT_PROC(info->bus), 2698 &udev->cs_msg[0], &udev->cs_msg[1]); 2699 } else { 2700 /* should not happen */ 2701 DPRINTFN(0, "No stall handler\n"); 2702 } 2703 /* 2704 * Check if we should stall. Some USB hardware 2705 * handles set- and clear-stall in hardware. 2706 */ 2707 if (did_stall) { 2708 /* 2709 * The transfer will be continued when 2710 * the clear-stall control endpoint 2711 * message is received. 2712 */ 2713 ep->is_stalled = 1; 2714 return; 2715 } 2716 } else if (type == UE_ISOCHRONOUS) { 2717 2718 /* 2719 * Make sure any FIFO overflow or other FIFO 2720 * error conditions go away by resetting the 2721 * endpoint FIFO through the clear stall 2722 * method. 2723 */ 2724 if (udev->flags.usb_mode == USB_MODE_DEVICE) { 2725 (udev->bus->methods->clear_stall) (udev, ep); 2726 } 2727 } 2728 } 2729 /* Set or clear stall complete - special case */ 2730 if (xfer->nframes == 0) { 2731 /* we are complete */ 2732 xfer->aframes = 0; 2733 usbd_transfer_done(xfer, 0); 2734 return; 2735 } 2736 /* 2737 * Handled cases: 2738 * 2739 * 1) Start the first transfer queued. 2740 * 2741 * 2) Re-start the current USB transfer. 2742 */ 2743 /* 2744 * Check if there should be any 2745 * pre transfer start delay: 2746 */ 2747 if (xfer->interval > 0) { 2748 type = (ep->edesc->bmAttributes & UE_XFERTYPE); 2749 if ((type == UE_BULK) || 2750 (type == UE_CONTROL)) { 2751 usbd_transfer_timeout_ms(xfer, 2752 &usbd_transfer_start_cb, 2753 xfer->interval); 2754 return; 2755 } 2756 } 2757 DPRINTF("start\n"); 2758 2759 #if USB_HAVE_PF 2760 usbpf_xfertap(xfer, USBPF_XFERTAP_SUBMIT); 2761 #endif 2762 /* the transfer can now be cancelled */ 2763 xfer->flags_int.can_cancel_immed = 1; 2764 2765 /* start USB transfer, if no error */ 2766 if (xfer->error == 0) 2767 (ep->methods->start) (xfer); 2768 2769 /* check for transfer error */ 2770 if (xfer->error) { 2771 /* some error has happened */ 2772 usbd_transfer_done(xfer, 0); 2773 } 2774 } 2775 2776 /*------------------------------------------------------------------------* 2777 * usbd_transfer_timeout_ms 2778 * 2779 * This function is used to setup a timeout on the given USB 2780 * transfer. If the timeout has been deferred the callback given by 2781 * "cb" will get called after "ms" milliseconds. 2782 *------------------------------------------------------------------------*/ 2783 void 2784 usbd_transfer_timeout_ms(struct usb_xfer *xfer, 2785 void (*cb) (void *arg), usb_timeout_t ms) 2786 { 2787 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2788 2789 /* defer delay */ 2790 usb_callout_reset(&xfer->timeout_handle, 2791 USB_MS_TO_TICKS(ms) + USB_CALLOUT_ZERO_TICKS, cb, xfer); 2792 } 2793 2794 /*------------------------------------------------------------------------* 2795 * usbd_callback_wrapper_sub 2796 * 2797 * - This function will update variables in an USB transfer after 2798 * that the USB transfer is complete. 2799 * 2800 * - This function is used to start the next USB transfer on the 2801 * ep transfer queue, if any. 2802 * 2803 * NOTE: In some special cases the USB transfer will not be removed from 2804 * the pipe queue, but remain first. To enforce USB transfer removal call 2805 * this function passing the error code "USB_ERR_CANCELLED". 2806 * 2807 * Return values: 2808 * 0: Success. 2809 * Else: The callback has been deferred. 2810 *------------------------------------------------------------------------*/ 2811 static uint8_t 2812 usbd_callback_wrapper_sub(struct usb_xfer *xfer) 2813 { 2814 struct usb_endpoint *ep; 2815 struct usb_bus *bus; 2816 usb_frcount_t x; 2817 2818 bus = xfer->xroot->bus; 2819 2820 if ((!xfer->flags_int.open) && 2821 (!xfer->flags_int.did_close)) { 2822 DPRINTF("close\n"); 2823 USB_BUS_LOCK(bus); 2824 (xfer->endpoint->methods->close) (xfer); 2825 USB_BUS_UNLOCK(bus); 2826 /* only close once */ 2827 xfer->flags_int.did_close = 1; 2828 return (1); /* wait for new callback */ 2829 } 2830 /* 2831 * If we have a non-hardware induced error we 2832 * need to do the DMA delay! 2833 */ 2834 if (xfer->error != 0 && !xfer->flags_int.did_dma_delay && 2835 (xfer->error == USB_ERR_CANCELLED || 2836 xfer->error == USB_ERR_TIMEOUT || 2837 bus->methods->start_dma_delay != NULL)) { 2838 2839 usb_timeout_t temp; 2840 2841 /* only delay once */ 2842 xfer->flags_int.did_dma_delay = 1; 2843 2844 /* we can not cancel this delay */ 2845 xfer->flags_int.can_cancel_immed = 0; 2846 2847 temp = usbd_get_dma_delay(xfer->xroot->udev); 2848 2849 DPRINTFN(3, "DMA delay, %u ms, " 2850 "on %p\n", temp, xfer); 2851 2852 if (temp != 0) { 2853 USB_BUS_LOCK(bus); 2854 /* 2855 * Some hardware solutions have dedicated 2856 * events when it is safe to free DMA'ed 2857 * memory. For the other hardware platforms we 2858 * use a static delay. 2859 */ 2860 if (bus->methods->start_dma_delay != NULL) { 2861 (bus->methods->start_dma_delay) (xfer); 2862 } else { 2863 usbd_transfer_timeout_ms(xfer, 2864 (void (*)(void *))&usb_dma_delay_done_cb, 2865 temp); 2866 } 2867 USB_BUS_UNLOCK(bus); 2868 return (1); /* wait for new callback */ 2869 } 2870 } 2871 /* check actual number of frames */ 2872 if (xfer->aframes > xfer->nframes) { 2873 if (xfer->error == 0) { 2874 panic("%s: actual number of frames, %d, is " 2875 "greater than initial number of frames, %d\n", 2876 __FUNCTION__, xfer->aframes, xfer->nframes); 2877 } else { 2878 /* just set some valid value */ 2879 xfer->aframes = xfer->nframes; 2880 } 2881 } 2882 /* compute actual length */ 2883 xfer->actlen = 0; 2884 2885 for (x = 0; x != xfer->aframes; x++) { 2886 xfer->actlen += xfer->frlengths[x]; 2887 } 2888 2889 /* 2890 * Frames that were not transferred get zero actual length in 2891 * case the USB device driver does not check the actual number 2892 * of frames transferred, "xfer->aframes": 2893 */ 2894 for (; x < xfer->nframes; x++) { 2895 usbd_xfer_set_frame_len(xfer, x, 0); 2896 } 2897 2898 /* check actual length */ 2899 if (xfer->actlen > xfer->sumlen) { 2900 if (xfer->error == 0) { 2901 panic("%s: actual length, %d, is greater than " 2902 "initial length, %d\n", 2903 __FUNCTION__, xfer->actlen, xfer->sumlen); 2904 } else { 2905 /* just set some valid value */ 2906 xfer->actlen = xfer->sumlen; 2907 } 2908 } 2909 DPRINTFN(1, "xfer=%p endpoint=%p sts=%d alen=%d, slen=%d, afrm=%d, nfrm=%d\n", 2910 xfer, xfer->endpoint, xfer->error, xfer->actlen, xfer->sumlen, 2911 xfer->aframes, xfer->nframes); 2912 2913 if (xfer->error) { 2914 /* end of control transfer, if any */ 2915 xfer->flags_int.control_act = 0; 2916 2917 #if USB_HAVE_TT_SUPPORT 2918 switch (xfer->error) { 2919 case USB_ERR_NORMAL_COMPLETION: 2920 case USB_ERR_SHORT_XFER: 2921 case USB_ERR_STALLED: 2922 case USB_ERR_CANCELLED: 2923 /* nothing to do */ 2924 break; 2925 default: 2926 /* try to reset the TT, if any */ 2927 USB_BUS_LOCK(bus); 2928 uhub_tt_buffer_reset_async_locked(xfer->xroot->udev, xfer->endpoint); 2929 USB_BUS_UNLOCK(bus); 2930 break; 2931 } 2932 #endif 2933 /* check if we should block the execution queue */ 2934 if ((xfer->error != USB_ERR_CANCELLED) && 2935 (xfer->flags.pipe_bof)) { 2936 DPRINTFN(2, "xfer=%p: Block On Failure " 2937 "on endpoint=%p\n", xfer, xfer->endpoint); 2938 goto done; 2939 } 2940 } else { 2941 /* check for short transfers */ 2942 if (xfer->actlen < xfer->sumlen) { 2943 2944 /* end of control transfer, if any */ 2945 xfer->flags_int.control_act = 0; 2946 2947 if (!xfer->flags_int.short_xfer_ok) { 2948 xfer->error = USB_ERR_SHORT_XFER; 2949 if (xfer->flags.pipe_bof) { 2950 DPRINTFN(2, "xfer=%p: Block On Failure on " 2951 "Short Transfer on endpoint %p.\n", 2952 xfer, xfer->endpoint); 2953 goto done; 2954 } 2955 } 2956 } else { 2957 /* 2958 * Check if we are in the middle of a 2959 * control transfer: 2960 */ 2961 if (xfer->flags_int.control_act) { 2962 DPRINTFN(5, "xfer=%p: Control transfer " 2963 "active on endpoint=%p\n", xfer, xfer->endpoint); 2964 goto done; 2965 } 2966 } 2967 } 2968 2969 ep = xfer->endpoint; 2970 2971 /* 2972 * If the current USB transfer is completing we need to start the 2973 * next one: 2974 */ 2975 USB_BUS_LOCK(bus); 2976 if (ep->endpoint_q[xfer->stream_id].curr == xfer) { 2977 usb_command_wrapper(&ep->endpoint_q[xfer->stream_id], NULL); 2978 2979 if (ep->endpoint_q[xfer->stream_id].curr != NULL || 2980 TAILQ_FIRST(&ep->endpoint_q[xfer->stream_id].head) != NULL) { 2981 /* there is another USB transfer waiting */ 2982 } else { 2983 /* this is the last USB transfer */ 2984 /* clear isochronous sync flag */ 2985 xfer->endpoint->is_synced = 0; 2986 } 2987 } 2988 USB_BUS_UNLOCK(bus); 2989 done: 2990 return (0); 2991 } 2992 2993 /*------------------------------------------------------------------------* 2994 * usb_command_wrapper 2995 * 2996 * This function is used to execute commands non-recursivly on an USB 2997 * transfer. 2998 *------------------------------------------------------------------------*/ 2999 void 3000 usb_command_wrapper(struct usb_xfer_queue *pq, struct usb_xfer *xfer) 3001 { 3002 if (xfer) { 3003 /* 3004 * If the transfer is not already processing, 3005 * queue it! 3006 */ 3007 if (pq->curr != xfer) { 3008 usbd_transfer_enqueue(pq, xfer); 3009 if (pq->curr != NULL) { 3010 /* something is already processing */ 3011 DPRINTFN(6, "busy %p\n", pq->curr); 3012 return; 3013 } 3014 } 3015 } else { 3016 /* Get next element in queue */ 3017 pq->curr = NULL; 3018 } 3019 3020 if (!pq->recurse_1) { 3021 3022 do { 3023 3024 /* set both recurse flags */ 3025 pq->recurse_1 = 1; 3026 pq->recurse_2 = 1; 3027 3028 if (pq->curr == NULL) { 3029 xfer = TAILQ_FIRST(&pq->head); 3030 if (xfer) { 3031 TAILQ_REMOVE(&pq->head, xfer, 3032 wait_entry); 3033 xfer->wait_queue = NULL; 3034 pq->curr = xfer; 3035 } else { 3036 break; 3037 } 3038 } 3039 DPRINTFN(6, "cb %p (enter)\n", pq->curr); 3040 (pq->command) (pq); 3041 DPRINTFN(6, "cb %p (leave)\n", pq->curr); 3042 3043 } while (!pq->recurse_2); 3044 3045 /* clear first recurse flag */ 3046 pq->recurse_1 = 0; 3047 3048 } else { 3049 /* clear second recurse flag */ 3050 pq->recurse_2 = 0; 3051 } 3052 } 3053 3054 /*------------------------------------------------------------------------* 3055 * usbd_ctrl_transfer_setup 3056 * 3057 * This function is used to setup the default USB control endpoint 3058 * transfer. 3059 *------------------------------------------------------------------------*/ 3060 void 3061 usbd_ctrl_transfer_setup(struct usb_device *udev) 3062 { 3063 struct usb_xfer *xfer; 3064 uint8_t no_resetup; 3065 uint8_t iface_index; 3066 3067 /* check for root HUB */ 3068 if (udev->parent_hub == NULL) 3069 return; 3070 repeat: 3071 3072 xfer = udev->ctrl_xfer[0]; 3073 if (xfer) { 3074 USB_XFER_LOCK(xfer); 3075 no_resetup = 3076 ((xfer->address == udev->address) && 3077 (udev->ctrl_ep_desc.wMaxPacketSize[0] == 3078 udev->ddesc.bMaxPacketSize)); 3079 if (udev->flags.usb_mode == USB_MODE_DEVICE) { 3080 if (no_resetup) { 3081 /* 3082 * NOTE: checking "xfer->address" and 3083 * starting the USB transfer must be 3084 * atomic! 3085 */ 3086 usbd_transfer_start(xfer); 3087 } 3088 } 3089 USB_XFER_UNLOCK(xfer); 3090 } else { 3091 no_resetup = 0; 3092 } 3093 3094 if (no_resetup) { 3095 /* 3096 * All parameters are exactly the same like before. 3097 * Just return. 3098 */ 3099 return; 3100 } 3101 /* 3102 * Update wMaxPacketSize for the default control endpoint: 3103 */ 3104 udev->ctrl_ep_desc.wMaxPacketSize[0] = 3105 udev->ddesc.bMaxPacketSize; 3106 3107 /* 3108 * Unsetup any existing USB transfer: 3109 */ 3110 usbd_transfer_unsetup(udev->ctrl_xfer, USB_CTRL_XFER_MAX); 3111 3112 /* 3113 * Reset clear stall error counter. 3114 */ 3115 udev->clear_stall_errors = 0; 3116 3117 /* 3118 * Try to setup a new USB transfer for the 3119 * default control endpoint: 3120 */ 3121 iface_index = 0; 3122 if (usbd_transfer_setup(udev, &iface_index, 3123 udev->ctrl_xfer, usb_control_ep_cfg, USB_CTRL_XFER_MAX, NULL, 3124 &udev->device_mtx)) { 3125 DPRINTFN(0, "could not setup default " 3126 "USB transfer\n"); 3127 } else { 3128 goto repeat; 3129 } 3130 } 3131 3132 /*------------------------------------------------------------------------* 3133 * usbd_clear_data_toggle - factored out code 3134 * 3135 * NOTE: the intention of this function is not to reset the hardware 3136 * data toggle. 3137 *------------------------------------------------------------------------*/ 3138 void 3139 usbd_clear_stall_locked(struct usb_device *udev, struct usb_endpoint *ep) 3140 { 3141 USB_BUS_LOCK_ASSERT(udev->bus, MA_OWNED); 3142 3143 /* check that we have a valid case */ 3144 if (udev->flags.usb_mode == USB_MODE_HOST && 3145 udev->parent_hub != NULL && 3146 udev->bus->methods->clear_stall != NULL && 3147 ep->methods != NULL) { 3148 (udev->bus->methods->clear_stall) (udev, ep); 3149 } 3150 } 3151 3152 /*------------------------------------------------------------------------* 3153 * usbd_clear_data_toggle - factored out code 3154 * 3155 * NOTE: the intention of this function is not to reset the hardware 3156 * data toggle on the USB device side. 3157 *------------------------------------------------------------------------*/ 3158 void 3159 usbd_clear_data_toggle(struct usb_device *udev, struct usb_endpoint *ep) 3160 { 3161 DPRINTFN(5, "udev=%p endpoint=%p\n", udev, ep); 3162 3163 USB_BUS_LOCK(udev->bus); 3164 ep->toggle_next = 0; 3165 /* some hardware needs a callback to clear the data toggle */ 3166 usbd_clear_stall_locked(udev, ep); 3167 USB_BUS_UNLOCK(udev->bus); 3168 } 3169 3170 /*------------------------------------------------------------------------* 3171 * usbd_clear_stall_callback - factored out clear stall callback 3172 * 3173 * Input parameters: 3174 * xfer1: Clear Stall Control Transfer 3175 * xfer2: Stalled USB Transfer 3176 * 3177 * This function is NULL safe. 3178 * 3179 * Return values: 3180 * 0: In progress 3181 * Else: Finished 3182 * 3183 * Clear stall config example: 3184 * 3185 * static const struct usb_config my_clearstall = { 3186 * .type = UE_CONTROL, 3187 * .endpoint = 0, 3188 * .direction = UE_DIR_ANY, 3189 * .interval = 50, //50 milliseconds 3190 * .bufsize = sizeof(struct usb_device_request), 3191 * .timeout = 1000, //1.000 seconds 3192 * .callback = &my_clear_stall_callback, // ** 3193 * .usb_mode = USB_MODE_HOST, 3194 * }; 3195 * 3196 * ** "my_clear_stall_callback" calls "usbd_clear_stall_callback" 3197 * passing the correct parameters. 3198 *------------------------------------------------------------------------*/ 3199 uint8_t 3200 usbd_clear_stall_callback(struct usb_xfer *xfer1, 3201 struct usb_xfer *xfer2) 3202 { 3203 struct usb_device_request req; 3204 3205 if (xfer2 == NULL) { 3206 /* looks like we are tearing down */ 3207 DPRINTF("NULL input parameter\n"); 3208 return (0); 3209 } 3210 USB_XFER_LOCK_ASSERT(xfer1, MA_OWNED); 3211 USB_XFER_LOCK_ASSERT(xfer2, MA_OWNED); 3212 3213 switch (USB_GET_STATE(xfer1)) { 3214 case USB_ST_SETUP: 3215 3216 /* 3217 * pre-clear the data toggle to DATA0 ("umass.c" and 3218 * "ata-usb.c" depends on this) 3219 */ 3220 3221 usbd_clear_data_toggle(xfer2->xroot->udev, xfer2->endpoint); 3222 3223 /* setup a clear-stall packet */ 3224 3225 req.bmRequestType = UT_WRITE_ENDPOINT; 3226 req.bRequest = UR_CLEAR_FEATURE; 3227 USETW(req.wValue, UF_ENDPOINT_HALT); 3228 req.wIndex[0] = xfer2->endpoint->edesc->bEndpointAddress; 3229 req.wIndex[1] = 0; 3230 USETW(req.wLength, 0); 3231 3232 /* 3233 * "usbd_transfer_setup_sub()" will ensure that 3234 * we have sufficient room in the buffer for 3235 * the request structure! 3236 */ 3237 3238 /* copy in the transfer */ 3239 3240 usbd_copy_in(xfer1->frbuffers, 0, &req, sizeof(req)); 3241 3242 /* set length */ 3243 xfer1->frlengths[0] = sizeof(req); 3244 xfer1->nframes = 1; 3245 3246 usbd_transfer_submit(xfer1); 3247 return (0); 3248 3249 case USB_ST_TRANSFERRED: 3250 break; 3251 3252 default: /* Error */ 3253 if (xfer1->error == USB_ERR_CANCELLED) { 3254 return (0); 3255 } 3256 break; 3257 } 3258 return (1); /* Clear Stall Finished */ 3259 } 3260 3261 /*------------------------------------------------------------------------* 3262 * usbd_transfer_poll 3263 * 3264 * The following function gets called from the USB keyboard driver and 3265 * UMASS when the system has paniced. 3266 * 3267 * NOTE: It is currently not possible to resume normal operation on 3268 * the USB controller which has been polled, due to clearing of the 3269 * "up_dsleep" and "up_msleep" flags. 3270 *------------------------------------------------------------------------*/ 3271 void 3272 usbd_transfer_poll(struct usb_xfer **ppxfer, uint16_t max) 3273 { 3274 struct usb_xfer *xfer; 3275 struct usb_xfer_root *xroot; 3276 struct usb_device *udev; 3277 struct usb_proc_msg *pm; 3278 uint16_t n; 3279 uint16_t drop_bus; 3280 uint16_t drop_xfer; 3281 3282 for (n = 0; n != max; n++) { 3283 /* Extra checks to avoid panic */ 3284 xfer = ppxfer[n]; 3285 if (xfer == NULL) 3286 continue; /* no USB transfer */ 3287 xroot = xfer->xroot; 3288 if (xroot == NULL) 3289 continue; /* no USB root */ 3290 udev = xroot->udev; 3291 if (udev == NULL) 3292 continue; /* no USB device */ 3293 if (udev->bus == NULL) 3294 continue; /* no BUS structure */ 3295 if (udev->bus->methods == NULL) 3296 continue; /* no BUS methods */ 3297 if (udev->bus->methods->xfer_poll == NULL) 3298 continue; /* no poll method */ 3299 3300 /* make sure that the BUS mutex is not locked */ 3301 drop_bus = 0; 3302 while (mtx_owned(&xroot->udev->bus->bus_mtx) && !SCHEDULER_STOPPED()) { 3303 mtx_unlock(&xroot->udev->bus->bus_mtx); 3304 drop_bus++; 3305 } 3306 3307 /* make sure that the transfer mutex is not locked */ 3308 drop_xfer = 0; 3309 while (mtx_owned(xroot->xfer_mtx) && !SCHEDULER_STOPPED()) { 3310 mtx_unlock(xroot->xfer_mtx); 3311 drop_xfer++; 3312 } 3313 3314 /* Make sure cv_signal() and cv_broadcast() is not called */ 3315 USB_BUS_CONTROL_XFER_PROC(udev->bus)->up_msleep = 0; 3316 USB_BUS_EXPLORE_PROC(udev->bus)->up_msleep = 0; 3317 USB_BUS_GIANT_PROC(udev->bus)->up_msleep = 0; 3318 USB_BUS_NON_GIANT_PROC(udev->bus)->up_msleep = 0; 3319 3320 /* poll USB hardware */ 3321 (udev->bus->methods->xfer_poll) (udev->bus); 3322 3323 USB_BUS_LOCK(xroot->bus); 3324 3325 /* check for clear stall */ 3326 if (udev->ctrl_xfer[1] != NULL) { 3327 3328 /* poll clear stall start */ 3329 pm = &udev->cs_msg[0].hdr; 3330 (pm->pm_callback) (pm); 3331 /* poll clear stall done thread */ 3332 pm = &udev->ctrl_xfer[1]-> 3333 xroot->done_m[0].hdr; 3334 (pm->pm_callback) (pm); 3335 } 3336 3337 /* poll done thread */ 3338 pm = &xroot->done_m[0].hdr; 3339 (pm->pm_callback) (pm); 3340 3341 USB_BUS_UNLOCK(xroot->bus); 3342 3343 /* restore transfer mutex */ 3344 while (drop_xfer--) 3345 mtx_lock(xroot->xfer_mtx); 3346 3347 /* restore BUS mutex */ 3348 while (drop_bus--) 3349 mtx_lock(&xroot->udev->bus->bus_mtx); 3350 } 3351 } 3352 3353 static void 3354 usbd_get_std_packet_size(struct usb_std_packet_size *ptr, 3355 uint8_t type, enum usb_dev_speed speed) 3356 { 3357 static const uint16_t intr_range_max[USB_SPEED_MAX] = { 3358 [USB_SPEED_LOW] = 8, 3359 [USB_SPEED_FULL] = 64, 3360 [USB_SPEED_HIGH] = 1024, 3361 [USB_SPEED_VARIABLE] = 1024, 3362 [USB_SPEED_SUPER] = 1024, 3363 }; 3364 3365 static const uint16_t isoc_range_max[USB_SPEED_MAX] = { 3366 [USB_SPEED_LOW] = 0, /* invalid */ 3367 [USB_SPEED_FULL] = 1023, 3368 [USB_SPEED_HIGH] = 1024, 3369 [USB_SPEED_VARIABLE] = 3584, 3370 [USB_SPEED_SUPER] = 1024, 3371 }; 3372 3373 static const uint16_t control_min[USB_SPEED_MAX] = { 3374 [USB_SPEED_LOW] = 8, 3375 [USB_SPEED_FULL] = 8, 3376 [USB_SPEED_HIGH] = 64, 3377 [USB_SPEED_VARIABLE] = 512, 3378 [USB_SPEED_SUPER] = 512, 3379 }; 3380 3381 static const uint16_t bulk_min[USB_SPEED_MAX] = { 3382 [USB_SPEED_LOW] = 8, 3383 [USB_SPEED_FULL] = 8, 3384 [USB_SPEED_HIGH] = 512, 3385 [USB_SPEED_VARIABLE] = 512, 3386 [USB_SPEED_SUPER] = 1024, 3387 }; 3388 3389 uint16_t temp; 3390 3391 memset(ptr, 0, sizeof(*ptr)); 3392 3393 switch (type) { 3394 case UE_INTERRUPT: 3395 ptr->range.max = intr_range_max[speed]; 3396 break; 3397 case UE_ISOCHRONOUS: 3398 ptr->range.max = isoc_range_max[speed]; 3399 break; 3400 default: 3401 if (type == UE_BULK) 3402 temp = bulk_min[speed]; 3403 else /* UE_CONTROL */ 3404 temp = control_min[speed]; 3405 3406 /* default is fixed */ 3407 ptr->fixed[0] = temp; 3408 ptr->fixed[1] = temp; 3409 ptr->fixed[2] = temp; 3410 ptr->fixed[3] = temp; 3411 3412 if (speed == USB_SPEED_FULL) { 3413 /* multiple sizes */ 3414 ptr->fixed[1] = 16; 3415 ptr->fixed[2] = 32; 3416 ptr->fixed[3] = 64; 3417 } 3418 if ((speed == USB_SPEED_VARIABLE) && 3419 (type == UE_BULK)) { 3420 /* multiple sizes */ 3421 ptr->fixed[2] = 1024; 3422 ptr->fixed[3] = 1536; 3423 } 3424 break; 3425 } 3426 } 3427 3428 void * 3429 usbd_xfer_softc(struct usb_xfer *xfer) 3430 { 3431 return (xfer->priv_sc); 3432 } 3433 3434 void * 3435 usbd_xfer_get_priv(struct usb_xfer *xfer) 3436 { 3437 return (xfer->priv_fifo); 3438 } 3439 3440 void 3441 usbd_xfer_set_priv(struct usb_xfer *xfer, void *ptr) 3442 { 3443 xfer->priv_fifo = ptr; 3444 } 3445 3446 uint8_t 3447 usbd_xfer_state(struct usb_xfer *xfer) 3448 { 3449 return (xfer->usb_state); 3450 } 3451 3452 void 3453 usbd_xfer_set_flag(struct usb_xfer *xfer, int flag) 3454 { 3455 switch (flag) { 3456 case USB_FORCE_SHORT_XFER: 3457 xfer->flags.force_short_xfer = 1; 3458 break; 3459 case USB_SHORT_XFER_OK: 3460 xfer->flags.short_xfer_ok = 1; 3461 break; 3462 case USB_MULTI_SHORT_OK: 3463 xfer->flags.short_frames_ok = 1; 3464 break; 3465 case USB_MANUAL_STATUS: 3466 xfer->flags.manual_status = 1; 3467 break; 3468 } 3469 } 3470 3471 void 3472 usbd_xfer_clr_flag(struct usb_xfer *xfer, int flag) 3473 { 3474 switch (flag) { 3475 case USB_FORCE_SHORT_XFER: 3476 xfer->flags.force_short_xfer = 0; 3477 break; 3478 case USB_SHORT_XFER_OK: 3479 xfer->flags.short_xfer_ok = 0; 3480 break; 3481 case USB_MULTI_SHORT_OK: 3482 xfer->flags.short_frames_ok = 0; 3483 break; 3484 case USB_MANUAL_STATUS: 3485 xfer->flags.manual_status = 0; 3486 break; 3487 } 3488 } 3489 3490 /* 3491 * The following function returns in milliseconds when the isochronous 3492 * transfer was completed by the hardware. The returned value wraps 3493 * around 65536 milliseconds. 3494 */ 3495 uint16_t 3496 usbd_xfer_get_timestamp(struct usb_xfer *xfer) 3497 { 3498 return (xfer->isoc_time_complete); 3499 } 3500 3501 /* 3502 * The following function returns non-zero if the max packet size 3503 * field was clamped to a valid value. Else it returns zero. 3504 */ 3505 uint8_t 3506 usbd_xfer_maxp_was_clamped(struct usb_xfer *xfer) 3507 { 3508 return (xfer->flags_int.maxp_was_clamped); 3509 } 3510