1 /* $FreeBSD$ */ 2 /*- 3 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 4 * 5 * Copyright (c) 2008 Hans Petter Selasky. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #ifdef USB_GLOBAL_INCLUDE_FILE 30 #include USB_GLOBAL_INCLUDE_FILE 31 #else 32 #include <sys/stdint.h> 33 #include <sys/stddef.h> 34 #include <sys/param.h> 35 #include <sys/queue.h> 36 #include <sys/types.h> 37 #include <sys/systm.h> 38 #include <sys/kernel.h> 39 #include <sys/bus.h> 40 #include <sys/module.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/condvar.h> 44 #include <sys/sysctl.h> 45 #include <sys/sx.h> 46 #include <sys/unistd.h> 47 #include <sys/callout.h> 48 #include <sys/malloc.h> 49 #include <sys/priv.h> 50 51 #include <dev/usb/usb.h> 52 #include <dev/usb/usbdi.h> 53 #include <dev/usb/usbdi_util.h> 54 55 #define USB_DEBUG_VAR usb_debug 56 57 #include <dev/usb/usb_core.h> 58 #include <dev/usb/usb_busdma.h> 59 #include <dev/usb/usb_process.h> 60 #include <dev/usb/usb_transfer.h> 61 #include <dev/usb/usb_device.h> 62 #include <dev/usb/usb_debug.h> 63 #include <dev/usb/usb_util.h> 64 65 #include <dev/usb/usb_controller.h> 66 #include <dev/usb/usb_bus.h> 67 #include <dev/usb/usb_pf.h> 68 #endif /* USB_GLOBAL_INCLUDE_FILE */ 69 70 struct usb_std_packet_size { 71 struct { 72 uint16_t min; /* inclusive */ 73 uint16_t max; /* inclusive */ 74 } range; 75 76 uint16_t fixed[4]; 77 }; 78 79 static usb_callback_t usb_request_callback; 80 81 static const struct usb_config usb_control_ep_cfg[USB_CTRL_XFER_MAX] = { 82 83 /* This transfer is used for generic control endpoint transfers */ 84 85 [0] = { 86 .type = UE_CONTROL, 87 .endpoint = 0x00, /* Control endpoint */ 88 .direction = UE_DIR_ANY, 89 .bufsize = USB_EP0_BUFSIZE, /* bytes */ 90 .flags = {.proxy_buffer = 1,}, 91 .callback = &usb_request_callback, 92 .usb_mode = USB_MODE_DUAL, /* both modes */ 93 }, 94 95 /* This transfer is used for generic clear stall only */ 96 97 [1] = { 98 .type = UE_CONTROL, 99 .endpoint = 0x00, /* Control pipe */ 100 .direction = UE_DIR_ANY, 101 .bufsize = sizeof(struct usb_device_request), 102 .callback = &usb_do_clear_stall_callback, 103 .timeout = 1000, /* 1 second */ 104 .interval = 50, /* 50ms */ 105 .usb_mode = USB_MODE_HOST, 106 }, 107 }; 108 109 static const struct usb_config usb_control_ep_quirk_cfg[USB_CTRL_XFER_MAX] = { 110 111 /* This transfer is used for generic control endpoint transfers */ 112 113 [0] = { 114 .type = UE_CONTROL, 115 .endpoint = 0x00, /* Control endpoint */ 116 .direction = UE_DIR_ANY, 117 .bufsize = 65535, /* bytes */ 118 .callback = &usb_request_callback, 119 .usb_mode = USB_MODE_DUAL, /* both modes */ 120 }, 121 122 /* This transfer is used for generic clear stall only */ 123 124 [1] = { 125 .type = UE_CONTROL, 126 .endpoint = 0x00, /* Control pipe */ 127 .direction = UE_DIR_ANY, 128 .bufsize = sizeof(struct usb_device_request), 129 .callback = &usb_do_clear_stall_callback, 130 .timeout = 1000, /* 1 second */ 131 .interval = 50, /* 50ms */ 132 .usb_mode = USB_MODE_HOST, 133 }, 134 }; 135 136 /* function prototypes */ 137 138 static void usbd_update_max_frame_size(struct usb_xfer *); 139 static void usbd_transfer_unsetup_sub(struct usb_xfer_root *, uint8_t); 140 static void usbd_control_transfer_init(struct usb_xfer *); 141 static int usbd_setup_ctrl_transfer(struct usb_xfer *); 142 static void usb_callback_proc(struct usb_proc_msg *); 143 static void usbd_callback_ss_done_defer(struct usb_xfer *); 144 static void usbd_callback_wrapper(struct usb_xfer_queue *); 145 static void usbd_transfer_start_cb(void *); 146 static uint8_t usbd_callback_wrapper_sub(struct usb_xfer *); 147 static void usbd_get_std_packet_size(struct usb_std_packet_size *ptr, 148 uint8_t type, enum usb_dev_speed speed); 149 150 /*------------------------------------------------------------------------* 151 * usb_request_callback 152 *------------------------------------------------------------------------*/ 153 static void 154 usb_request_callback(struct usb_xfer *xfer, usb_error_t error) 155 { 156 if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) 157 usb_handle_request_callback(xfer, error); 158 else 159 usbd_do_request_callback(xfer, error); 160 } 161 162 /*------------------------------------------------------------------------* 163 * usbd_update_max_frame_size 164 * 165 * This function updates the maximum frame size, hence high speed USB 166 * can transfer multiple consecutive packets. 167 *------------------------------------------------------------------------*/ 168 static void 169 usbd_update_max_frame_size(struct usb_xfer *xfer) 170 { 171 /* compute maximum frame size */ 172 /* this computation should not overflow 16-bit */ 173 /* max = 15 * 1024 */ 174 175 xfer->max_frame_size = xfer->max_packet_size * xfer->max_packet_count; 176 } 177 178 /*------------------------------------------------------------------------* 179 * usbd_get_dma_delay 180 * 181 * The following function is called when we need to 182 * synchronize with DMA hardware. 183 * 184 * Returns: 185 * 0: no DMA delay required 186 * Else: milliseconds of DMA delay 187 *------------------------------------------------------------------------*/ 188 usb_timeout_t 189 usbd_get_dma_delay(struct usb_device *udev) 190 { 191 const struct usb_bus_methods *mtod; 192 uint32_t temp; 193 194 mtod = udev->bus->methods; 195 temp = 0; 196 197 if (mtod->get_dma_delay) { 198 (mtod->get_dma_delay) (udev, &temp); 199 /* 200 * Round up and convert to milliseconds. Note that we use 201 * 1024 milliseconds per second. to save a division. 202 */ 203 temp += 0x3FF; 204 temp /= 0x400; 205 } 206 return (temp); 207 } 208 209 /*------------------------------------------------------------------------* 210 * usbd_transfer_setup_sub_malloc 211 * 212 * This function will allocate one or more DMA'able memory chunks 213 * according to "size", "align" and "count" arguments. "ppc" is 214 * pointed to a linear array of USB page caches afterwards. 215 * 216 * If the "align" argument is equal to "1" a non-contiguous allocation 217 * can happen. Else if the "align" argument is greater than "1", the 218 * allocation will always be contiguous in memory. 219 * 220 * Returns: 221 * 0: Success 222 * Else: Failure 223 *------------------------------------------------------------------------*/ 224 #if USB_HAVE_BUSDMA 225 uint8_t 226 usbd_transfer_setup_sub_malloc(struct usb_setup_params *parm, 227 struct usb_page_cache **ppc, usb_size_t size, usb_size_t align, 228 usb_size_t count) 229 { 230 struct usb_page_cache *pc; 231 struct usb_page *pg; 232 void *buf; 233 usb_size_t n_dma_pc; 234 usb_size_t n_dma_pg; 235 usb_size_t n_obj; 236 usb_size_t x; 237 usb_size_t y; 238 usb_size_t r; 239 usb_size_t z; 240 241 USB_ASSERT(align > 0, ("Invalid alignment, 0x%08x\n", 242 align)); 243 USB_ASSERT(size > 0, ("Invalid size = 0\n")); 244 245 if (count == 0) { 246 return (0); /* nothing to allocate */ 247 } 248 /* 249 * Make sure that the size is aligned properly. 250 */ 251 size = -((-size) & (-align)); 252 253 /* 254 * Try multi-allocation chunks to reduce the number of DMA 255 * allocations, hence DMA allocations are slow. 256 */ 257 if (align == 1) { 258 /* special case - non-cached multi page DMA memory */ 259 n_dma_pc = count; 260 n_dma_pg = (2 + (size / USB_PAGE_SIZE)); 261 n_obj = 1; 262 } else if (size >= USB_PAGE_SIZE) { 263 n_dma_pc = count; 264 n_dma_pg = 1; 265 n_obj = 1; 266 } else { 267 /* compute number of objects per page */ 268 #ifdef USB_DMA_SINGLE_ALLOC 269 n_obj = 1; 270 #else 271 n_obj = (USB_PAGE_SIZE / size); 272 #endif 273 /* 274 * Compute number of DMA chunks, rounded up 275 * to nearest one: 276 */ 277 n_dma_pc = howmany(count, n_obj); 278 n_dma_pg = 1; 279 } 280 281 /* 282 * DMA memory is allocated once, but mapped twice. That's why 283 * there is one list for auto-free and another list for 284 * non-auto-free which only holds the mapping and not the 285 * allocation. 286 */ 287 if (parm->buf == NULL) { 288 /* reserve memory (auto-free) */ 289 parm->dma_page_ptr += n_dma_pc * n_dma_pg; 290 parm->dma_page_cache_ptr += n_dma_pc; 291 292 /* reserve memory (no-auto-free) */ 293 parm->dma_page_ptr += count * n_dma_pg; 294 parm->xfer_page_cache_ptr += count; 295 return (0); 296 } 297 for (x = 0; x != n_dma_pc; x++) { 298 /* need to initialize the page cache */ 299 parm->dma_page_cache_ptr[x].tag_parent = 300 &parm->curr_xfer->xroot->dma_parent_tag; 301 } 302 for (x = 0; x != count; x++) { 303 /* need to initialize the page cache */ 304 parm->xfer_page_cache_ptr[x].tag_parent = 305 &parm->curr_xfer->xroot->dma_parent_tag; 306 } 307 308 if (ppc != NULL) { 309 if (n_obj != 1) 310 *ppc = parm->xfer_page_cache_ptr; 311 else 312 *ppc = parm->dma_page_cache_ptr; 313 } 314 r = count; /* set remainder count */ 315 z = n_obj * size; /* set allocation size */ 316 pc = parm->xfer_page_cache_ptr; 317 pg = parm->dma_page_ptr; 318 319 if (n_obj == 1) { 320 /* 321 * Avoid mapping memory twice if only a single object 322 * should be allocated per page cache: 323 */ 324 for (x = 0; x != n_dma_pc; x++) { 325 if (usb_pc_alloc_mem(parm->dma_page_cache_ptr, 326 pg, z, align)) { 327 return (1); /* failure */ 328 } 329 /* Make room for one DMA page cache and "n_dma_pg" pages */ 330 parm->dma_page_cache_ptr++; 331 pg += n_dma_pg; 332 } 333 } else { 334 for (x = 0; x != n_dma_pc; x++) { 335 336 if (r < n_obj) { 337 /* compute last remainder */ 338 z = r * size; 339 n_obj = r; 340 } 341 if (usb_pc_alloc_mem(parm->dma_page_cache_ptr, 342 pg, z, align)) { 343 return (1); /* failure */ 344 } 345 /* Set beginning of current buffer */ 346 buf = parm->dma_page_cache_ptr->buffer; 347 /* Make room for one DMA page cache and "n_dma_pg" pages */ 348 parm->dma_page_cache_ptr++; 349 pg += n_dma_pg; 350 351 for (y = 0; (y != n_obj); y++, r--, pc++, pg += n_dma_pg) { 352 353 /* Load sub-chunk into DMA */ 354 if (usb_pc_dmamap_create(pc, size)) { 355 return (1); /* failure */ 356 } 357 pc->buffer = USB_ADD_BYTES(buf, y * size); 358 pc->page_start = pg; 359 360 USB_MTX_LOCK(pc->tag_parent->mtx); 361 if (usb_pc_load_mem(pc, size, 1 /* synchronous */ )) { 362 USB_MTX_UNLOCK(pc->tag_parent->mtx); 363 return (1); /* failure */ 364 } 365 USB_MTX_UNLOCK(pc->tag_parent->mtx); 366 } 367 } 368 } 369 370 parm->xfer_page_cache_ptr = pc; 371 parm->dma_page_ptr = pg; 372 return (0); 373 } 374 #endif 375 376 /*------------------------------------------------------------------------* 377 * usbd_transfer_setup_sub - transfer setup subroutine 378 * 379 * This function must be called from the "xfer_setup" callback of the 380 * USB Host or Device controller driver when setting up an USB 381 * transfer. This function will setup correct packet sizes, buffer 382 * sizes, flags and more, that are stored in the "usb_xfer" 383 * structure. 384 *------------------------------------------------------------------------*/ 385 void 386 usbd_transfer_setup_sub(struct usb_setup_params *parm) 387 { 388 enum { 389 REQ_SIZE = 8, 390 MIN_PKT = 8, 391 }; 392 struct usb_xfer *xfer = parm->curr_xfer; 393 const struct usb_config *setup = parm->curr_setup; 394 struct usb_endpoint_ss_comp_descriptor *ecomp; 395 struct usb_endpoint_descriptor *edesc; 396 struct usb_std_packet_size std_size; 397 usb_frcount_t n_frlengths; 398 usb_frcount_t n_frbuffers; 399 usb_frcount_t x; 400 uint16_t maxp_old; 401 uint8_t type; 402 uint8_t zmps; 403 404 /* 405 * Sanity check. The following parameters must be initialized before 406 * calling this function. 407 */ 408 if ((parm->hc_max_packet_size == 0) || 409 (parm->hc_max_packet_count == 0) || 410 (parm->hc_max_frame_size == 0)) { 411 parm->err = USB_ERR_INVAL; 412 goto done; 413 } 414 edesc = xfer->endpoint->edesc; 415 ecomp = xfer->endpoint->ecomp; 416 417 type = (edesc->bmAttributes & UE_XFERTYPE); 418 419 xfer->flags = setup->flags; 420 xfer->nframes = setup->frames; 421 xfer->timeout = setup->timeout; 422 xfer->callback = setup->callback; 423 xfer->interval = setup->interval; 424 xfer->endpointno = edesc->bEndpointAddress; 425 xfer->max_packet_size = UGETW(edesc->wMaxPacketSize); 426 xfer->max_packet_count = 1; 427 /* make a shadow copy: */ 428 xfer->flags_int.usb_mode = parm->udev->flags.usb_mode; 429 430 parm->bufsize = setup->bufsize; 431 432 switch (parm->speed) { 433 case USB_SPEED_HIGH: 434 switch (type) { 435 case UE_ISOCHRONOUS: 436 case UE_INTERRUPT: 437 xfer->max_packet_count += 438 (xfer->max_packet_size >> 11) & 3; 439 440 /* check for invalid max packet count */ 441 if (xfer->max_packet_count > 3) 442 xfer->max_packet_count = 3; 443 break; 444 default: 445 break; 446 } 447 xfer->max_packet_size &= 0x7FF; 448 break; 449 case USB_SPEED_SUPER: 450 xfer->max_packet_count += (xfer->max_packet_size >> 11) & 3; 451 452 if (ecomp != NULL) 453 xfer->max_packet_count += ecomp->bMaxBurst; 454 455 if ((xfer->max_packet_count == 0) || 456 (xfer->max_packet_count > 16)) 457 xfer->max_packet_count = 16; 458 459 switch (type) { 460 case UE_CONTROL: 461 xfer->max_packet_count = 1; 462 break; 463 case UE_ISOCHRONOUS: 464 if (ecomp != NULL) { 465 uint8_t mult; 466 467 mult = UE_GET_SS_ISO_MULT( 468 ecomp->bmAttributes) + 1; 469 if (mult > 3) 470 mult = 3; 471 472 xfer->max_packet_count *= mult; 473 } 474 break; 475 default: 476 break; 477 } 478 xfer->max_packet_size &= 0x7FF; 479 break; 480 default: 481 break; 482 } 483 /* range check "max_packet_count" */ 484 485 if (xfer->max_packet_count > parm->hc_max_packet_count) { 486 xfer->max_packet_count = parm->hc_max_packet_count; 487 } 488 489 /* store max packet size value before filtering */ 490 491 maxp_old = xfer->max_packet_size; 492 493 /* filter "wMaxPacketSize" according to HC capabilities */ 494 495 if ((xfer->max_packet_size > parm->hc_max_packet_size) || 496 (xfer->max_packet_size == 0)) { 497 xfer->max_packet_size = parm->hc_max_packet_size; 498 } 499 /* filter "wMaxPacketSize" according to standard sizes */ 500 501 usbd_get_std_packet_size(&std_size, type, parm->speed); 502 503 if (std_size.range.min || std_size.range.max) { 504 505 if (xfer->max_packet_size < std_size.range.min) { 506 xfer->max_packet_size = std_size.range.min; 507 } 508 if (xfer->max_packet_size > std_size.range.max) { 509 xfer->max_packet_size = std_size.range.max; 510 } 511 } else { 512 513 if (xfer->max_packet_size >= std_size.fixed[3]) { 514 xfer->max_packet_size = std_size.fixed[3]; 515 } else if (xfer->max_packet_size >= std_size.fixed[2]) { 516 xfer->max_packet_size = std_size.fixed[2]; 517 } else if (xfer->max_packet_size >= std_size.fixed[1]) { 518 xfer->max_packet_size = std_size.fixed[1]; 519 } else { 520 /* only one possibility left */ 521 xfer->max_packet_size = std_size.fixed[0]; 522 } 523 } 524 525 /* 526 * Check if the max packet size was outside its allowed range 527 * and clamped to a valid value: 528 */ 529 if (maxp_old != xfer->max_packet_size) 530 xfer->flags_int.maxp_was_clamped = 1; 531 532 /* compute "max_frame_size" */ 533 534 usbd_update_max_frame_size(xfer); 535 536 /* check interrupt interval and transfer pre-delay */ 537 538 if (type == UE_ISOCHRONOUS) { 539 540 uint16_t frame_limit; 541 542 xfer->interval = 0; /* not used, must be zero */ 543 xfer->flags_int.isochronous_xfr = 1; /* set flag */ 544 545 if (xfer->timeout == 0) { 546 /* 547 * set a default timeout in 548 * case something goes wrong! 549 */ 550 xfer->timeout = 1000 / 4; 551 } 552 switch (parm->speed) { 553 case USB_SPEED_LOW: 554 case USB_SPEED_FULL: 555 frame_limit = USB_MAX_FS_ISOC_FRAMES_PER_XFER; 556 xfer->fps_shift = 0; 557 break; 558 default: 559 frame_limit = USB_MAX_HS_ISOC_FRAMES_PER_XFER; 560 xfer->fps_shift = edesc->bInterval; 561 if (xfer->fps_shift > 0) 562 xfer->fps_shift--; 563 if (xfer->fps_shift > 3) 564 xfer->fps_shift = 3; 565 if (xfer->flags.pre_scale_frames != 0) 566 xfer->nframes <<= (3 - xfer->fps_shift); 567 break; 568 } 569 570 if (xfer->nframes > frame_limit) { 571 /* 572 * this is not going to work 573 * cross hardware 574 */ 575 parm->err = USB_ERR_INVAL; 576 goto done; 577 } 578 if (xfer->nframes == 0) { 579 /* 580 * this is not a valid value 581 */ 582 parm->err = USB_ERR_ZERO_NFRAMES; 583 goto done; 584 } 585 } else { 586 587 /* 588 * If a value is specified use that else check the 589 * endpoint descriptor! 590 */ 591 if (type == UE_INTERRUPT) { 592 593 uint32_t temp; 594 595 if (xfer->interval == 0) { 596 597 xfer->interval = edesc->bInterval; 598 599 switch (parm->speed) { 600 case USB_SPEED_LOW: 601 case USB_SPEED_FULL: 602 break; 603 default: 604 /* 125us -> 1ms */ 605 if (xfer->interval < 4) 606 xfer->interval = 1; 607 else if (xfer->interval > 16) 608 xfer->interval = (1 << (16 - 4)); 609 else 610 xfer->interval = 611 (1 << (xfer->interval - 4)); 612 break; 613 } 614 } 615 616 if (xfer->interval == 0) { 617 /* 618 * One millisecond is the smallest 619 * interval we support: 620 */ 621 xfer->interval = 1; 622 } 623 624 xfer->fps_shift = 0; 625 temp = 1; 626 627 while ((temp != 0) && (temp < xfer->interval)) { 628 xfer->fps_shift++; 629 temp *= 2; 630 } 631 632 switch (parm->speed) { 633 case USB_SPEED_LOW: 634 case USB_SPEED_FULL: 635 break; 636 default: 637 xfer->fps_shift += 3; 638 break; 639 } 640 } 641 } 642 643 /* 644 * NOTE: we do not allow "max_packet_size" or "max_frame_size" 645 * to be equal to zero when setting up USB transfers, hence 646 * this leads to a lot of extra code in the USB kernel. 647 */ 648 649 if ((xfer->max_frame_size == 0) || 650 (xfer->max_packet_size == 0)) { 651 652 zmps = 1; 653 654 if ((parm->bufsize <= MIN_PKT) && 655 (type != UE_CONTROL) && 656 (type != UE_BULK)) { 657 658 /* workaround */ 659 xfer->max_packet_size = MIN_PKT; 660 xfer->max_packet_count = 1; 661 parm->bufsize = 0; /* automatic setup length */ 662 usbd_update_max_frame_size(xfer); 663 664 } else { 665 parm->err = USB_ERR_ZERO_MAXP; 666 goto done; 667 } 668 669 } else { 670 zmps = 0; 671 } 672 673 /* 674 * check if we should setup a default 675 * length: 676 */ 677 678 if (parm->bufsize == 0) { 679 680 parm->bufsize = xfer->max_frame_size; 681 682 if (type == UE_ISOCHRONOUS) { 683 parm->bufsize *= xfer->nframes; 684 } 685 } 686 /* 687 * check if we are about to setup a proxy 688 * type of buffer: 689 */ 690 691 if (xfer->flags.proxy_buffer) { 692 693 /* round bufsize up */ 694 695 parm->bufsize += (xfer->max_frame_size - 1); 696 697 if (parm->bufsize < xfer->max_frame_size) { 698 /* length wrapped around */ 699 parm->err = USB_ERR_INVAL; 700 goto done; 701 } 702 /* subtract remainder */ 703 704 parm->bufsize -= (parm->bufsize % xfer->max_frame_size); 705 706 /* add length of USB device request structure, if any */ 707 708 if (type == UE_CONTROL) { 709 parm->bufsize += REQ_SIZE; /* SETUP message */ 710 } 711 } 712 xfer->max_data_length = parm->bufsize; 713 714 /* Setup "n_frlengths" and "n_frbuffers" */ 715 716 if (type == UE_ISOCHRONOUS) { 717 n_frlengths = xfer->nframes; 718 n_frbuffers = 1; 719 } else { 720 721 if (type == UE_CONTROL) { 722 xfer->flags_int.control_xfr = 1; 723 if (xfer->nframes == 0) { 724 if (parm->bufsize <= REQ_SIZE) { 725 /* 726 * there will never be any data 727 * stage 728 */ 729 xfer->nframes = 1; 730 } else { 731 xfer->nframes = 2; 732 } 733 } 734 } else { 735 if (xfer->nframes == 0) { 736 xfer->nframes = 1; 737 } 738 } 739 740 n_frlengths = xfer->nframes; 741 n_frbuffers = xfer->nframes; 742 } 743 744 /* 745 * check if we have room for the 746 * USB device request structure: 747 */ 748 749 if (type == UE_CONTROL) { 750 751 if (xfer->max_data_length < REQ_SIZE) { 752 /* length wrapped around or too small bufsize */ 753 parm->err = USB_ERR_INVAL; 754 goto done; 755 } 756 xfer->max_data_length -= REQ_SIZE; 757 } 758 /* 759 * Setup "frlengths" and shadow "frlengths" for keeping the 760 * initial frame lengths when a USB transfer is complete. This 761 * information is useful when computing isochronous offsets. 762 */ 763 xfer->frlengths = parm->xfer_length_ptr; 764 parm->xfer_length_ptr += 2 * n_frlengths; 765 766 /* setup "frbuffers" */ 767 xfer->frbuffers = parm->xfer_page_cache_ptr; 768 parm->xfer_page_cache_ptr += n_frbuffers; 769 770 /* initialize max frame count */ 771 xfer->max_frame_count = xfer->nframes; 772 773 /* 774 * check if we need to setup 775 * a local buffer: 776 */ 777 778 if (!xfer->flags.ext_buffer) { 779 #if USB_HAVE_BUSDMA 780 struct usb_page_search page_info; 781 struct usb_page_cache *pc; 782 783 if (usbd_transfer_setup_sub_malloc(parm, 784 &pc, parm->bufsize, 1, 1)) { 785 parm->err = USB_ERR_NOMEM; 786 } else if (parm->buf != NULL) { 787 788 usbd_get_page(pc, 0, &page_info); 789 790 xfer->local_buffer = page_info.buffer; 791 792 usbd_xfer_set_frame_offset(xfer, 0, 0); 793 794 if ((type == UE_CONTROL) && (n_frbuffers > 1)) { 795 usbd_xfer_set_frame_offset(xfer, REQ_SIZE, 1); 796 } 797 } 798 #else 799 /* align data */ 800 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 801 802 if (parm->buf != NULL) { 803 xfer->local_buffer = 804 USB_ADD_BYTES(parm->buf, parm->size[0]); 805 806 usbd_xfer_set_frame_offset(xfer, 0, 0); 807 808 if ((type == UE_CONTROL) && (n_frbuffers > 1)) { 809 usbd_xfer_set_frame_offset(xfer, REQ_SIZE, 1); 810 } 811 } 812 parm->size[0] += parm->bufsize; 813 814 /* align data again */ 815 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 816 #endif 817 } 818 /* 819 * Compute maximum buffer size 820 */ 821 822 if (parm->bufsize_max < parm->bufsize) { 823 parm->bufsize_max = parm->bufsize; 824 } 825 #if USB_HAVE_BUSDMA 826 if (xfer->flags_int.bdma_enable) { 827 /* 828 * Setup "dma_page_ptr". 829 * 830 * Proof for formula below: 831 * 832 * Assume there are three USB frames having length "a", "b" and 833 * "c". These USB frames will at maximum need "z" 834 * "usb_page" structures. "z" is given by: 835 * 836 * z = ((a / USB_PAGE_SIZE) + 2) + ((b / USB_PAGE_SIZE) + 2) + 837 * ((c / USB_PAGE_SIZE) + 2); 838 * 839 * Constraining "a", "b" and "c" like this: 840 * 841 * (a + b + c) <= parm->bufsize 842 * 843 * We know that: 844 * 845 * z <= ((parm->bufsize / USB_PAGE_SIZE) + (3*2)); 846 * 847 * Here is the general formula: 848 */ 849 xfer->dma_page_ptr = parm->dma_page_ptr; 850 parm->dma_page_ptr += (2 * n_frbuffers); 851 parm->dma_page_ptr += (parm->bufsize / USB_PAGE_SIZE); 852 } 853 #endif 854 if (zmps) { 855 /* correct maximum data length */ 856 xfer->max_data_length = 0; 857 } 858 /* subtract USB frame remainder from "hc_max_frame_size" */ 859 860 xfer->max_hc_frame_size = 861 (parm->hc_max_frame_size - 862 (parm->hc_max_frame_size % xfer->max_frame_size)); 863 864 if (xfer->max_hc_frame_size == 0) { 865 parm->err = USB_ERR_INVAL; 866 goto done; 867 } 868 869 /* initialize frame buffers */ 870 871 if (parm->buf) { 872 for (x = 0; x != n_frbuffers; x++) { 873 xfer->frbuffers[x].tag_parent = 874 &xfer->xroot->dma_parent_tag; 875 #if USB_HAVE_BUSDMA 876 if (xfer->flags_int.bdma_enable && 877 (parm->bufsize_max > 0)) { 878 879 if (usb_pc_dmamap_create( 880 xfer->frbuffers + x, 881 parm->bufsize_max)) { 882 parm->err = USB_ERR_NOMEM; 883 goto done; 884 } 885 } 886 #endif 887 } 888 } 889 done: 890 if (parm->err) { 891 /* 892 * Set some dummy values so that we avoid division by zero: 893 */ 894 xfer->max_hc_frame_size = 1; 895 xfer->max_frame_size = 1; 896 xfer->max_packet_size = 1; 897 xfer->max_data_length = 0; 898 xfer->nframes = 0; 899 xfer->max_frame_count = 0; 900 } 901 } 902 903 static uint8_t 904 usbd_transfer_setup_has_bulk(const struct usb_config *setup_start, 905 uint16_t n_setup) 906 { 907 while (n_setup--) { 908 uint8_t type = setup_start[n_setup].type; 909 if (type == UE_BULK || type == UE_BULK_INTR || 910 type == UE_TYPE_ANY) 911 return (1); 912 } 913 return (0); 914 } 915 916 /*------------------------------------------------------------------------* 917 * usbd_transfer_setup - setup an array of USB transfers 918 * 919 * NOTE: You must always call "usbd_transfer_unsetup" after calling 920 * "usbd_transfer_setup" if success was returned. 921 * 922 * The idea is that the USB device driver should pre-allocate all its 923 * transfers by one call to this function. 924 * 925 * Return values: 926 * 0: Success 927 * Else: Failure 928 *------------------------------------------------------------------------*/ 929 usb_error_t 930 usbd_transfer_setup(struct usb_device *udev, 931 const uint8_t *ifaces, struct usb_xfer **ppxfer, 932 const struct usb_config *setup_start, uint16_t n_setup, 933 void *priv_sc, struct mtx *xfer_mtx) 934 { 935 const struct usb_config *setup_end = setup_start + n_setup; 936 const struct usb_config *setup; 937 struct usb_setup_params *parm; 938 struct usb_endpoint *ep; 939 struct usb_xfer_root *info; 940 struct usb_xfer *xfer; 941 void *buf = NULL; 942 usb_error_t error = 0; 943 uint16_t n; 944 uint16_t refcount; 945 uint8_t do_unlock; 946 947 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 948 "usbd_transfer_setup can sleep!"); 949 950 /* do some checking first */ 951 952 if (n_setup == 0) { 953 DPRINTFN(6, "setup array has zero length!\n"); 954 return (USB_ERR_INVAL); 955 } 956 if (ifaces == NULL) { 957 DPRINTFN(6, "ifaces array is NULL!\n"); 958 return (USB_ERR_INVAL); 959 } 960 if (xfer_mtx == NULL) { 961 DPRINTFN(6, "using global lock\n"); 962 xfer_mtx = &Giant; 963 } 964 965 /* more sanity checks */ 966 967 for (setup = setup_start, n = 0; 968 setup != setup_end; setup++, n++) { 969 if (setup->bufsize == (usb_frlength_t)-1) { 970 error = USB_ERR_BAD_BUFSIZE; 971 DPRINTF("invalid bufsize\n"); 972 } 973 if (setup->callback == NULL) { 974 error = USB_ERR_NO_CALLBACK; 975 DPRINTF("no callback\n"); 976 } 977 ppxfer[n] = NULL; 978 } 979 980 if (error) 981 return (error); 982 983 /* Protect scratch area */ 984 do_unlock = usbd_ctrl_lock(udev); 985 986 refcount = 0; 987 info = NULL; 988 989 parm = &udev->scratch.xfer_setup[0].parm; 990 memset(parm, 0, sizeof(*parm)); 991 992 parm->udev = udev; 993 parm->speed = usbd_get_speed(udev); 994 parm->hc_max_packet_count = 1; 995 996 if (parm->speed >= USB_SPEED_MAX) { 997 parm->err = USB_ERR_INVAL; 998 goto done; 999 } 1000 /* setup all transfers */ 1001 1002 while (1) { 1003 1004 if (buf) { 1005 /* 1006 * Initialize the "usb_xfer_root" structure, 1007 * which is common for all our USB transfers. 1008 */ 1009 info = USB_ADD_BYTES(buf, 0); 1010 1011 info->memory_base = buf; 1012 info->memory_size = parm->size[0]; 1013 1014 #if USB_HAVE_BUSDMA 1015 info->dma_page_cache_start = USB_ADD_BYTES(buf, parm->size[4]); 1016 info->dma_page_cache_end = USB_ADD_BYTES(buf, parm->size[5]); 1017 #endif 1018 info->xfer_page_cache_start = USB_ADD_BYTES(buf, parm->size[5]); 1019 info->xfer_page_cache_end = USB_ADD_BYTES(buf, parm->size[2]); 1020 1021 cv_init(&info->cv_drain, "WDRAIN"); 1022 1023 info->xfer_mtx = xfer_mtx; 1024 #if USB_HAVE_BUSDMA 1025 usb_dma_tag_setup(&info->dma_parent_tag, 1026 parm->dma_tag_p, udev->bus->dma_parent_tag[0].tag, 1027 xfer_mtx, &usb_bdma_done_event, udev->bus->dma_bits, 1028 parm->dma_tag_max); 1029 #endif 1030 1031 info->bus = udev->bus; 1032 info->udev = udev; 1033 1034 TAILQ_INIT(&info->done_q.head); 1035 info->done_q.command = &usbd_callback_wrapper; 1036 #if USB_HAVE_BUSDMA 1037 TAILQ_INIT(&info->dma_q.head); 1038 info->dma_q.command = &usb_bdma_work_loop; 1039 #endif 1040 info->done_m[0].hdr.pm_callback = &usb_callback_proc; 1041 info->done_m[0].xroot = info; 1042 info->done_m[1].hdr.pm_callback = &usb_callback_proc; 1043 info->done_m[1].xroot = info; 1044 1045 /* 1046 * In device side mode control endpoint 1047 * requests need to run from a separate 1048 * context, else there is a chance of 1049 * deadlock! 1050 */ 1051 if (setup_start == usb_control_ep_cfg || 1052 setup_start == usb_control_ep_quirk_cfg) 1053 info->done_p = 1054 USB_BUS_CONTROL_XFER_PROC(udev->bus); 1055 else if (xfer_mtx == &Giant) 1056 info->done_p = 1057 USB_BUS_GIANT_PROC(udev->bus); 1058 else if (usbd_transfer_setup_has_bulk(setup_start, n_setup)) 1059 info->done_p = 1060 USB_BUS_NON_GIANT_BULK_PROC(udev->bus); 1061 else 1062 info->done_p = 1063 USB_BUS_NON_GIANT_ISOC_PROC(udev->bus); 1064 } 1065 /* reset sizes */ 1066 1067 parm->size[0] = 0; 1068 parm->buf = buf; 1069 parm->size[0] += sizeof(info[0]); 1070 1071 for (setup = setup_start, n = 0; 1072 setup != setup_end; setup++, n++) { 1073 1074 /* skip USB transfers without callbacks: */ 1075 if (setup->callback == NULL) { 1076 continue; 1077 } 1078 /* see if there is a matching endpoint */ 1079 ep = usbd_get_endpoint(udev, 1080 ifaces[setup->if_index], setup); 1081 1082 /* 1083 * Check that the USB PIPE is valid and that 1084 * the endpoint mode is proper. 1085 * 1086 * Make sure we don't allocate a streams 1087 * transfer when such a combination is not 1088 * valid. 1089 */ 1090 if ((ep == NULL) || (ep->methods == NULL) || 1091 ((ep->ep_mode != USB_EP_MODE_STREAMS) && 1092 (ep->ep_mode != USB_EP_MODE_DEFAULT)) || 1093 (setup->stream_id != 0 && 1094 (setup->stream_id >= USB_MAX_EP_STREAMS || 1095 (ep->ep_mode != USB_EP_MODE_STREAMS)))) { 1096 if (setup->flags.no_pipe_ok) 1097 continue; 1098 if ((setup->usb_mode != USB_MODE_DUAL) && 1099 (setup->usb_mode != udev->flags.usb_mode)) 1100 continue; 1101 parm->err = USB_ERR_NO_PIPE; 1102 goto done; 1103 } 1104 1105 /* align data properly */ 1106 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1107 1108 /* store current setup pointer */ 1109 parm->curr_setup = setup; 1110 1111 if (buf) { 1112 /* 1113 * Common initialization of the 1114 * "usb_xfer" structure. 1115 */ 1116 xfer = USB_ADD_BYTES(buf, parm->size[0]); 1117 xfer->address = udev->address; 1118 xfer->priv_sc = priv_sc; 1119 xfer->xroot = info; 1120 1121 usb_callout_init_mtx(&xfer->timeout_handle, 1122 &udev->bus->bus_mtx, 0); 1123 } else { 1124 /* 1125 * Setup a dummy xfer, hence we are 1126 * writing to the "usb_xfer" 1127 * structure pointed to by "xfer" 1128 * before we have allocated any 1129 * memory: 1130 */ 1131 xfer = &udev->scratch.xfer_setup[0].dummy; 1132 memset(xfer, 0, sizeof(*xfer)); 1133 refcount++; 1134 } 1135 1136 /* set transfer endpoint pointer */ 1137 xfer->endpoint = ep; 1138 1139 /* set transfer stream ID */ 1140 xfer->stream_id = setup->stream_id; 1141 1142 parm->size[0] += sizeof(xfer[0]); 1143 parm->methods = xfer->endpoint->methods; 1144 parm->curr_xfer = xfer; 1145 1146 /* 1147 * Call the Host or Device controller transfer 1148 * setup routine: 1149 */ 1150 (udev->bus->methods->xfer_setup) (parm); 1151 1152 /* check for error */ 1153 if (parm->err) 1154 goto done; 1155 1156 if (buf) { 1157 /* 1158 * Increment the endpoint refcount. This 1159 * basically prevents setting a new 1160 * configuration and alternate setting 1161 * when USB transfers are in use on 1162 * the given interface. Search the USB 1163 * code for "endpoint->refcount_alloc" if you 1164 * want more information. 1165 */ 1166 USB_BUS_LOCK(info->bus); 1167 if (xfer->endpoint->refcount_alloc >= USB_EP_REF_MAX) 1168 parm->err = USB_ERR_INVAL; 1169 1170 xfer->endpoint->refcount_alloc++; 1171 1172 if (xfer->endpoint->refcount_alloc == 0) 1173 panic("usbd_transfer_setup(): Refcount wrapped to zero\n"); 1174 USB_BUS_UNLOCK(info->bus); 1175 1176 /* 1177 * Whenever we set ppxfer[] then we 1178 * also need to increment the 1179 * "setup_refcount": 1180 */ 1181 info->setup_refcount++; 1182 1183 /* 1184 * Transfer is successfully setup and 1185 * can be used: 1186 */ 1187 ppxfer[n] = xfer; 1188 } 1189 1190 /* check for error */ 1191 if (parm->err) 1192 goto done; 1193 } 1194 1195 if (buf != NULL || parm->err != 0) 1196 goto done; 1197 1198 /* if no transfers, nothing to do */ 1199 if (refcount == 0) 1200 goto done; 1201 1202 /* align data properly */ 1203 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1204 1205 /* store offset temporarily */ 1206 parm->size[1] = parm->size[0]; 1207 1208 /* 1209 * The number of DMA tags required depends on 1210 * the number of endpoints. The current estimate 1211 * for maximum number of DMA tags per endpoint 1212 * is three: 1213 * 1) for loading memory 1214 * 2) for allocating memory 1215 * 3) for fixing memory [UHCI] 1216 */ 1217 parm->dma_tag_max += 3 * MIN(n_setup, USB_EP_MAX); 1218 1219 /* 1220 * DMA tags for QH, TD, Data and more. 1221 */ 1222 parm->dma_tag_max += 8; 1223 1224 parm->dma_tag_p += parm->dma_tag_max; 1225 1226 parm->size[0] += ((uint8_t *)parm->dma_tag_p) - 1227 ((uint8_t *)0); 1228 1229 /* align data properly */ 1230 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1231 1232 /* store offset temporarily */ 1233 parm->size[3] = parm->size[0]; 1234 1235 parm->size[0] += ((uint8_t *)parm->dma_page_ptr) - 1236 ((uint8_t *)0); 1237 1238 /* align data properly */ 1239 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1240 1241 /* store offset temporarily */ 1242 parm->size[4] = parm->size[0]; 1243 1244 parm->size[0] += ((uint8_t *)parm->dma_page_cache_ptr) - 1245 ((uint8_t *)0); 1246 1247 /* store end offset temporarily */ 1248 parm->size[5] = parm->size[0]; 1249 1250 parm->size[0] += ((uint8_t *)parm->xfer_page_cache_ptr) - 1251 ((uint8_t *)0); 1252 1253 /* store end offset temporarily */ 1254 1255 parm->size[2] = parm->size[0]; 1256 1257 /* align data properly */ 1258 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1259 1260 parm->size[6] = parm->size[0]; 1261 1262 parm->size[0] += ((uint8_t *)parm->xfer_length_ptr) - 1263 ((uint8_t *)0); 1264 1265 /* align data properly */ 1266 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1267 1268 /* allocate zeroed memory */ 1269 buf = malloc(parm->size[0], M_USB, M_WAITOK | M_ZERO); 1270 1271 if (buf == NULL) { 1272 parm->err = USB_ERR_NOMEM; 1273 DPRINTFN(0, "cannot allocate memory block for " 1274 "configuration (%d bytes)\n", 1275 parm->size[0]); 1276 goto done; 1277 } 1278 parm->dma_tag_p = USB_ADD_BYTES(buf, parm->size[1]); 1279 parm->dma_page_ptr = USB_ADD_BYTES(buf, parm->size[3]); 1280 parm->dma_page_cache_ptr = USB_ADD_BYTES(buf, parm->size[4]); 1281 parm->xfer_page_cache_ptr = USB_ADD_BYTES(buf, parm->size[5]); 1282 parm->xfer_length_ptr = USB_ADD_BYTES(buf, parm->size[6]); 1283 } 1284 1285 done: 1286 if (buf) { 1287 if (info->setup_refcount == 0) { 1288 /* 1289 * "usbd_transfer_unsetup_sub" will unlock 1290 * the bus mutex before returning ! 1291 */ 1292 USB_BUS_LOCK(info->bus); 1293 1294 /* something went wrong */ 1295 usbd_transfer_unsetup_sub(info, 0); 1296 } 1297 } 1298 1299 /* check if any errors happened */ 1300 if (parm->err) 1301 usbd_transfer_unsetup(ppxfer, n_setup); 1302 1303 error = parm->err; 1304 1305 if (do_unlock) 1306 usbd_ctrl_unlock(udev); 1307 1308 return (error); 1309 } 1310 1311 /*------------------------------------------------------------------------* 1312 * usbd_transfer_unsetup_sub - factored out code 1313 *------------------------------------------------------------------------*/ 1314 static void 1315 usbd_transfer_unsetup_sub(struct usb_xfer_root *info, uint8_t needs_delay) 1316 { 1317 #if USB_HAVE_BUSDMA 1318 struct usb_page_cache *pc; 1319 #endif 1320 1321 USB_BUS_LOCK_ASSERT(info->bus, MA_OWNED); 1322 1323 /* wait for any outstanding DMA operations */ 1324 1325 if (needs_delay) { 1326 usb_timeout_t temp; 1327 temp = usbd_get_dma_delay(info->udev); 1328 if (temp != 0) { 1329 usb_pause_mtx(&info->bus->bus_mtx, 1330 USB_MS_TO_TICKS(temp)); 1331 } 1332 } 1333 1334 /* make sure that our done messages are not queued anywhere */ 1335 usb_proc_mwait(info->done_p, &info->done_m[0], &info->done_m[1]); 1336 1337 USB_BUS_UNLOCK(info->bus); 1338 1339 #if USB_HAVE_BUSDMA 1340 /* free DMA'able memory, if any */ 1341 pc = info->dma_page_cache_start; 1342 while (pc != info->dma_page_cache_end) { 1343 usb_pc_free_mem(pc); 1344 pc++; 1345 } 1346 1347 /* free DMA maps in all "xfer->frbuffers" */ 1348 pc = info->xfer_page_cache_start; 1349 while (pc != info->xfer_page_cache_end) { 1350 usb_pc_dmamap_destroy(pc); 1351 pc++; 1352 } 1353 1354 /* free all DMA tags */ 1355 usb_dma_tag_unsetup(&info->dma_parent_tag); 1356 #endif 1357 1358 cv_destroy(&info->cv_drain); 1359 1360 /* 1361 * free the "memory_base" last, hence the "info" structure is 1362 * contained within the "memory_base"! 1363 */ 1364 free(info->memory_base, M_USB); 1365 } 1366 1367 /*------------------------------------------------------------------------* 1368 * usbd_transfer_unsetup - unsetup/free an array of USB transfers 1369 * 1370 * NOTE: All USB transfers in progress will get called back passing 1371 * the error code "USB_ERR_CANCELLED" before this function 1372 * returns. 1373 *------------------------------------------------------------------------*/ 1374 void 1375 usbd_transfer_unsetup(struct usb_xfer **pxfer, uint16_t n_setup) 1376 { 1377 struct usb_xfer *xfer; 1378 struct usb_xfer_root *info; 1379 uint8_t needs_delay = 0; 1380 1381 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 1382 "usbd_transfer_unsetup can sleep!"); 1383 1384 while (n_setup--) { 1385 xfer = pxfer[n_setup]; 1386 1387 if (xfer == NULL) 1388 continue; 1389 1390 info = xfer->xroot; 1391 1392 USB_XFER_LOCK(xfer); 1393 USB_BUS_LOCK(info->bus); 1394 1395 /* 1396 * HINT: when you start/stop a transfer, it might be a 1397 * good idea to directly use the "pxfer[]" structure: 1398 * 1399 * usbd_transfer_start(sc->pxfer[0]); 1400 * usbd_transfer_stop(sc->pxfer[0]); 1401 * 1402 * That way, if your code has many parts that will not 1403 * stop running under the same lock, in other words 1404 * "xfer_mtx", the usbd_transfer_start and 1405 * usbd_transfer_stop functions will simply return 1406 * when they detect a NULL pointer argument. 1407 * 1408 * To avoid any races we clear the "pxfer[]" pointer 1409 * while holding the private mutex of the driver: 1410 */ 1411 pxfer[n_setup] = NULL; 1412 1413 USB_BUS_UNLOCK(info->bus); 1414 USB_XFER_UNLOCK(xfer); 1415 1416 usbd_transfer_drain(xfer); 1417 1418 #if USB_HAVE_BUSDMA 1419 if (xfer->flags_int.bdma_enable) 1420 needs_delay = 1; 1421 #endif 1422 /* 1423 * NOTE: default endpoint does not have an 1424 * interface, even if endpoint->iface_index == 0 1425 */ 1426 USB_BUS_LOCK(info->bus); 1427 xfer->endpoint->refcount_alloc--; 1428 USB_BUS_UNLOCK(info->bus); 1429 1430 usb_callout_drain(&xfer->timeout_handle); 1431 1432 USB_BUS_LOCK(info->bus); 1433 1434 USB_ASSERT(info->setup_refcount != 0, ("Invalid setup " 1435 "reference count\n")); 1436 1437 info->setup_refcount--; 1438 1439 if (info->setup_refcount == 0) { 1440 usbd_transfer_unsetup_sub(info, 1441 needs_delay); 1442 } else { 1443 USB_BUS_UNLOCK(info->bus); 1444 } 1445 } 1446 } 1447 1448 /*------------------------------------------------------------------------* 1449 * usbd_control_transfer_init - factored out code 1450 * 1451 * In USB Device Mode we have to wait for the SETUP packet which 1452 * containst the "struct usb_device_request" structure, before we can 1453 * transfer any data. In USB Host Mode we already have the SETUP 1454 * packet at the moment the USB transfer is started. This leads us to 1455 * having to setup the USB transfer at two different places in 1456 * time. This function just contains factored out control transfer 1457 * initialisation code, so that we don't duplicate the code. 1458 *------------------------------------------------------------------------*/ 1459 static void 1460 usbd_control_transfer_init(struct usb_xfer *xfer) 1461 { 1462 struct usb_device_request req; 1463 1464 /* copy out the USB request header */ 1465 1466 usbd_copy_out(xfer->frbuffers, 0, &req, sizeof(req)); 1467 1468 /* setup remainder */ 1469 1470 xfer->flags_int.control_rem = UGETW(req.wLength); 1471 1472 /* copy direction to endpoint variable */ 1473 1474 xfer->endpointno &= ~(UE_DIR_IN | UE_DIR_OUT); 1475 xfer->endpointno |= 1476 (req.bmRequestType & UT_READ) ? UE_DIR_IN : UE_DIR_OUT; 1477 } 1478 1479 /*------------------------------------------------------------------------* 1480 * usbd_control_transfer_did_data 1481 * 1482 * This function returns non-zero if a control endpoint has 1483 * transferred the first DATA packet after the SETUP packet. 1484 * Else it returns zero. 1485 *------------------------------------------------------------------------*/ 1486 static uint8_t 1487 usbd_control_transfer_did_data(struct usb_xfer *xfer) 1488 { 1489 struct usb_device_request req; 1490 1491 /* SETUP packet is not yet sent */ 1492 if (xfer->flags_int.control_hdr != 0) 1493 return (0); 1494 1495 /* copy out the USB request header */ 1496 usbd_copy_out(xfer->frbuffers, 0, &req, sizeof(req)); 1497 1498 /* compare remainder to the initial value */ 1499 return (xfer->flags_int.control_rem != UGETW(req.wLength)); 1500 } 1501 1502 /*------------------------------------------------------------------------* 1503 * usbd_setup_ctrl_transfer 1504 * 1505 * This function handles initialisation of control transfers. Control 1506 * transfers are special in that regard that they can both transmit 1507 * and receive data. 1508 * 1509 * Return values: 1510 * 0: Success 1511 * Else: Failure 1512 *------------------------------------------------------------------------*/ 1513 static int 1514 usbd_setup_ctrl_transfer(struct usb_xfer *xfer) 1515 { 1516 usb_frlength_t len; 1517 1518 /* Check for control endpoint stall */ 1519 if (xfer->flags.stall_pipe && xfer->flags_int.control_act) { 1520 /* the control transfer is no longer active */ 1521 xfer->flags_int.control_stall = 1; 1522 xfer->flags_int.control_act = 0; 1523 } else { 1524 /* don't stall control transfer by default */ 1525 xfer->flags_int.control_stall = 0; 1526 } 1527 1528 /* Check for invalid number of frames */ 1529 if (xfer->nframes > 2) { 1530 /* 1531 * If you need to split a control transfer, you 1532 * have to do one part at a time. Only with 1533 * non-control transfers you can do multiple 1534 * parts a time. 1535 */ 1536 DPRINTFN(0, "Too many frames: %u\n", 1537 (unsigned int)xfer->nframes); 1538 goto error; 1539 } 1540 1541 /* 1542 * Check if there is a control 1543 * transfer in progress: 1544 */ 1545 if (xfer->flags_int.control_act) { 1546 1547 if (xfer->flags_int.control_hdr) { 1548 1549 /* clear send header flag */ 1550 1551 xfer->flags_int.control_hdr = 0; 1552 1553 /* setup control transfer */ 1554 if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) { 1555 usbd_control_transfer_init(xfer); 1556 } 1557 } 1558 /* get data length */ 1559 1560 len = xfer->sumlen; 1561 1562 } else { 1563 1564 /* the size of the SETUP structure is hardcoded ! */ 1565 1566 if (xfer->frlengths[0] != sizeof(struct usb_device_request)) { 1567 DPRINTFN(0, "Wrong framelength %u != %zu\n", 1568 xfer->frlengths[0], sizeof(struct 1569 usb_device_request)); 1570 goto error; 1571 } 1572 /* check USB mode */ 1573 if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) { 1574 1575 /* check number of frames */ 1576 if (xfer->nframes != 1) { 1577 /* 1578 * We need to receive the setup 1579 * message first so that we know the 1580 * data direction! 1581 */ 1582 DPRINTF("Misconfigured transfer\n"); 1583 goto error; 1584 } 1585 /* 1586 * Set a dummy "control_rem" value. This 1587 * variable will be overwritten later by a 1588 * call to "usbd_control_transfer_init()" ! 1589 */ 1590 xfer->flags_int.control_rem = 0xFFFF; 1591 } else { 1592 1593 /* setup "endpoint" and "control_rem" */ 1594 1595 usbd_control_transfer_init(xfer); 1596 } 1597 1598 /* set transfer-header flag */ 1599 1600 xfer->flags_int.control_hdr = 1; 1601 1602 /* get data length */ 1603 1604 len = (xfer->sumlen - sizeof(struct usb_device_request)); 1605 } 1606 1607 /* update did data flag */ 1608 1609 xfer->flags_int.control_did_data = 1610 usbd_control_transfer_did_data(xfer); 1611 1612 /* check if there is a length mismatch */ 1613 1614 if (len > xfer->flags_int.control_rem) { 1615 DPRINTFN(0, "Length (%d) greater than " 1616 "remaining length (%d)\n", len, 1617 xfer->flags_int.control_rem); 1618 goto error; 1619 } 1620 /* check if we are doing a short transfer */ 1621 1622 if (xfer->flags.force_short_xfer) { 1623 xfer->flags_int.control_rem = 0; 1624 } else { 1625 if ((len != xfer->max_data_length) && 1626 (len != xfer->flags_int.control_rem) && 1627 (xfer->nframes != 1)) { 1628 DPRINTFN(0, "Short control transfer without " 1629 "force_short_xfer set\n"); 1630 goto error; 1631 } 1632 xfer->flags_int.control_rem -= len; 1633 } 1634 1635 /* the status part is executed when "control_act" is 0 */ 1636 1637 if ((xfer->flags_int.control_rem > 0) || 1638 (xfer->flags.manual_status)) { 1639 /* don't execute the STATUS stage yet */ 1640 xfer->flags_int.control_act = 1; 1641 1642 /* sanity check */ 1643 if ((!xfer->flags_int.control_hdr) && 1644 (xfer->nframes == 1)) { 1645 /* 1646 * This is not a valid operation! 1647 */ 1648 DPRINTFN(0, "Invalid parameter " 1649 "combination\n"); 1650 goto error; 1651 } 1652 } else { 1653 /* time to execute the STATUS stage */ 1654 xfer->flags_int.control_act = 0; 1655 } 1656 return (0); /* success */ 1657 1658 error: 1659 return (1); /* failure */ 1660 } 1661 1662 /*------------------------------------------------------------------------* 1663 * usbd_transfer_submit - start USB hardware for the given transfer 1664 * 1665 * This function should only be called from the USB callback. 1666 *------------------------------------------------------------------------*/ 1667 void 1668 usbd_transfer_submit(struct usb_xfer *xfer) 1669 { 1670 struct usb_xfer_root *info; 1671 struct usb_bus *bus; 1672 usb_frcount_t x; 1673 1674 info = xfer->xroot; 1675 bus = info->bus; 1676 1677 DPRINTF("xfer=%p, endpoint=%p, nframes=%d, dir=%s\n", 1678 xfer, xfer->endpoint, xfer->nframes, USB_GET_DATA_ISREAD(xfer) ? 1679 "read" : "write"); 1680 1681 #ifdef USB_DEBUG 1682 if (USB_DEBUG_VAR > 0) { 1683 USB_BUS_LOCK(bus); 1684 1685 usb_dump_endpoint(xfer->endpoint); 1686 1687 USB_BUS_UNLOCK(bus); 1688 } 1689 #endif 1690 1691 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 1692 USB_BUS_LOCK_ASSERT(bus, MA_NOTOWNED); 1693 1694 /* Only open the USB transfer once! */ 1695 if (!xfer->flags_int.open) { 1696 xfer->flags_int.open = 1; 1697 1698 DPRINTF("open\n"); 1699 1700 USB_BUS_LOCK(bus); 1701 (xfer->endpoint->methods->open) (xfer); 1702 USB_BUS_UNLOCK(bus); 1703 } 1704 /* set "transferring" flag */ 1705 xfer->flags_int.transferring = 1; 1706 1707 #if USB_HAVE_POWERD 1708 /* increment power reference */ 1709 usbd_transfer_power_ref(xfer, 1); 1710 #endif 1711 /* 1712 * Check if the transfer is waiting on a queue, most 1713 * frequently the "done_q": 1714 */ 1715 if (xfer->wait_queue) { 1716 USB_BUS_LOCK(bus); 1717 usbd_transfer_dequeue(xfer); 1718 USB_BUS_UNLOCK(bus); 1719 } 1720 /* clear "did_dma_delay" flag */ 1721 xfer->flags_int.did_dma_delay = 0; 1722 1723 /* clear "did_close" flag */ 1724 xfer->flags_int.did_close = 0; 1725 1726 #if USB_HAVE_BUSDMA 1727 /* clear "bdma_setup" flag */ 1728 xfer->flags_int.bdma_setup = 0; 1729 #endif 1730 /* by default we cannot cancel any USB transfer immediately */ 1731 xfer->flags_int.can_cancel_immed = 0; 1732 1733 /* clear lengths and frame counts by default */ 1734 xfer->sumlen = 0; 1735 xfer->actlen = 0; 1736 xfer->aframes = 0; 1737 1738 /* clear any previous errors */ 1739 xfer->error = 0; 1740 1741 /* Check if the device is still alive */ 1742 if (info->udev->state < USB_STATE_POWERED) { 1743 USB_BUS_LOCK(bus); 1744 /* 1745 * Must return cancelled error code else 1746 * device drivers can hang. 1747 */ 1748 usbd_transfer_done(xfer, USB_ERR_CANCELLED); 1749 USB_BUS_UNLOCK(bus); 1750 return; 1751 } 1752 1753 /* sanity check */ 1754 if (xfer->nframes == 0) { 1755 if (xfer->flags.stall_pipe) { 1756 /* 1757 * Special case - want to stall without transferring 1758 * any data: 1759 */ 1760 DPRINTF("xfer=%p nframes=0: stall " 1761 "or clear stall!\n", xfer); 1762 USB_BUS_LOCK(bus); 1763 xfer->flags_int.can_cancel_immed = 1; 1764 /* start the transfer */ 1765 usb_command_wrapper(&xfer->endpoint-> 1766 endpoint_q[xfer->stream_id], xfer); 1767 USB_BUS_UNLOCK(bus); 1768 return; 1769 } 1770 USB_BUS_LOCK(bus); 1771 usbd_transfer_done(xfer, USB_ERR_INVAL); 1772 USB_BUS_UNLOCK(bus); 1773 return; 1774 } 1775 /* compute some variables */ 1776 1777 for (x = 0; x != xfer->nframes; x++) { 1778 /* make a copy of the frlenghts[] */ 1779 xfer->frlengths[x + xfer->max_frame_count] = xfer->frlengths[x]; 1780 /* compute total transfer length */ 1781 xfer->sumlen += xfer->frlengths[x]; 1782 if (xfer->sumlen < xfer->frlengths[x]) { 1783 /* length wrapped around */ 1784 USB_BUS_LOCK(bus); 1785 usbd_transfer_done(xfer, USB_ERR_INVAL); 1786 USB_BUS_UNLOCK(bus); 1787 return; 1788 } 1789 } 1790 1791 /* clear some internal flags */ 1792 1793 xfer->flags_int.short_xfer_ok = 0; 1794 xfer->flags_int.short_frames_ok = 0; 1795 1796 /* check if this is a control transfer */ 1797 1798 if (xfer->flags_int.control_xfr) { 1799 1800 if (usbd_setup_ctrl_transfer(xfer)) { 1801 USB_BUS_LOCK(bus); 1802 usbd_transfer_done(xfer, USB_ERR_STALLED); 1803 USB_BUS_UNLOCK(bus); 1804 return; 1805 } 1806 } 1807 /* 1808 * Setup filtered version of some transfer flags, 1809 * in case of data read direction 1810 */ 1811 if (USB_GET_DATA_ISREAD(xfer)) { 1812 1813 if (xfer->flags.short_frames_ok) { 1814 xfer->flags_int.short_xfer_ok = 1; 1815 xfer->flags_int.short_frames_ok = 1; 1816 } else if (xfer->flags.short_xfer_ok) { 1817 xfer->flags_int.short_xfer_ok = 1; 1818 1819 /* check for control transfer */ 1820 if (xfer->flags_int.control_xfr) { 1821 /* 1822 * 1) Control transfers do not support 1823 * reception of multiple short USB 1824 * frames in host mode and device side 1825 * mode, with exception of: 1826 * 1827 * 2) Due to sometimes buggy device 1828 * side firmware we need to do a 1829 * STATUS stage in case of short 1830 * control transfers in USB host mode. 1831 * The STATUS stage then becomes the 1832 * "alt_next" to the DATA stage. 1833 */ 1834 xfer->flags_int.short_frames_ok = 1; 1835 } 1836 } 1837 } 1838 /* 1839 * Check if BUS-DMA support is enabled and try to load virtual 1840 * buffers into DMA, if any: 1841 */ 1842 #if USB_HAVE_BUSDMA 1843 if (xfer->flags_int.bdma_enable) { 1844 /* insert the USB transfer last in the BUS-DMA queue */ 1845 usb_command_wrapper(&xfer->xroot->dma_q, xfer); 1846 return; 1847 } 1848 #endif 1849 /* 1850 * Enter the USB transfer into the Host Controller or 1851 * Device Controller schedule: 1852 */ 1853 usbd_pipe_enter(xfer); 1854 } 1855 1856 /*------------------------------------------------------------------------* 1857 * usbd_pipe_enter - factored out code 1858 *------------------------------------------------------------------------*/ 1859 void 1860 usbd_pipe_enter(struct usb_xfer *xfer) 1861 { 1862 struct usb_endpoint *ep; 1863 1864 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 1865 1866 USB_BUS_LOCK(xfer->xroot->bus); 1867 1868 ep = xfer->endpoint; 1869 1870 DPRINTF("enter\n"); 1871 1872 /* the transfer can now be cancelled */ 1873 xfer->flags_int.can_cancel_immed = 1; 1874 1875 /* enter the transfer */ 1876 (ep->methods->enter) (xfer); 1877 1878 /* check for transfer error */ 1879 if (xfer->error) { 1880 /* some error has happened */ 1881 usbd_transfer_done(xfer, 0); 1882 USB_BUS_UNLOCK(xfer->xroot->bus); 1883 return; 1884 } 1885 1886 /* start the transfer */ 1887 usb_command_wrapper(&ep->endpoint_q[xfer->stream_id], xfer); 1888 USB_BUS_UNLOCK(xfer->xroot->bus); 1889 } 1890 1891 /*------------------------------------------------------------------------* 1892 * usbd_transfer_start - start an USB transfer 1893 * 1894 * NOTE: Calling this function more than one time will only 1895 * result in a single transfer start, until the USB transfer 1896 * completes. 1897 *------------------------------------------------------------------------*/ 1898 void 1899 usbd_transfer_start(struct usb_xfer *xfer) 1900 { 1901 if (xfer == NULL) { 1902 /* transfer is gone */ 1903 return; 1904 } 1905 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 1906 1907 /* mark the USB transfer started */ 1908 1909 if (!xfer->flags_int.started) { 1910 /* lock the BUS lock to avoid races updating flags_int */ 1911 USB_BUS_LOCK(xfer->xroot->bus); 1912 xfer->flags_int.started = 1; 1913 USB_BUS_UNLOCK(xfer->xroot->bus); 1914 } 1915 /* check if the USB transfer callback is already transferring */ 1916 1917 if (xfer->flags_int.transferring) { 1918 return; 1919 } 1920 USB_BUS_LOCK(xfer->xroot->bus); 1921 /* call the USB transfer callback */ 1922 usbd_callback_ss_done_defer(xfer); 1923 USB_BUS_UNLOCK(xfer->xroot->bus); 1924 } 1925 1926 /*------------------------------------------------------------------------* 1927 * usbd_transfer_stop - stop an USB transfer 1928 * 1929 * NOTE: Calling this function more than one time will only 1930 * result in a single transfer stop. 1931 * NOTE: When this function returns it is not safe to free nor 1932 * reuse any DMA buffers. See "usbd_transfer_drain()". 1933 *------------------------------------------------------------------------*/ 1934 void 1935 usbd_transfer_stop(struct usb_xfer *xfer) 1936 { 1937 struct usb_endpoint *ep; 1938 1939 if (xfer == NULL) { 1940 /* transfer is gone */ 1941 return; 1942 } 1943 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 1944 1945 /* check if the USB transfer was ever opened */ 1946 1947 if (!xfer->flags_int.open) { 1948 if (xfer->flags_int.started) { 1949 /* nothing to do except clearing the "started" flag */ 1950 /* lock the BUS lock to avoid races updating flags_int */ 1951 USB_BUS_LOCK(xfer->xroot->bus); 1952 xfer->flags_int.started = 0; 1953 USB_BUS_UNLOCK(xfer->xroot->bus); 1954 } 1955 return; 1956 } 1957 /* try to stop the current USB transfer */ 1958 1959 USB_BUS_LOCK(xfer->xroot->bus); 1960 /* override any previous error */ 1961 xfer->error = USB_ERR_CANCELLED; 1962 1963 /* 1964 * Clear "open" and "started" when both private and USB lock 1965 * is locked so that we don't get a race updating "flags_int" 1966 */ 1967 xfer->flags_int.open = 0; 1968 xfer->flags_int.started = 0; 1969 1970 /* 1971 * Check if we can cancel the USB transfer immediately. 1972 */ 1973 if (xfer->flags_int.transferring) { 1974 if (xfer->flags_int.can_cancel_immed && 1975 (!xfer->flags_int.did_close)) { 1976 DPRINTF("close\n"); 1977 /* 1978 * The following will lead to an USB_ERR_CANCELLED 1979 * error code being passed to the USB callback. 1980 */ 1981 (xfer->endpoint->methods->close) (xfer); 1982 /* only close once */ 1983 xfer->flags_int.did_close = 1; 1984 } else { 1985 /* need to wait for the next done callback */ 1986 } 1987 } else { 1988 DPRINTF("close\n"); 1989 1990 /* close here and now */ 1991 (xfer->endpoint->methods->close) (xfer); 1992 1993 /* 1994 * Any additional DMA delay is done by 1995 * "usbd_transfer_unsetup()". 1996 */ 1997 1998 /* 1999 * Special case. Check if we need to restart a blocked 2000 * endpoint. 2001 */ 2002 ep = xfer->endpoint; 2003 2004 /* 2005 * If the current USB transfer is completing we need 2006 * to start the next one: 2007 */ 2008 if (ep->endpoint_q[xfer->stream_id].curr == xfer) { 2009 usb_command_wrapper( 2010 &ep->endpoint_q[xfer->stream_id], NULL); 2011 } 2012 } 2013 2014 USB_BUS_UNLOCK(xfer->xroot->bus); 2015 } 2016 2017 /*------------------------------------------------------------------------* 2018 * usbd_transfer_pending 2019 * 2020 * This function will check if an USB transfer is pending which is a 2021 * little bit complicated! 2022 * Return values: 2023 * 0: Not pending 2024 * 1: Pending: The USB transfer will receive a callback in the future. 2025 *------------------------------------------------------------------------*/ 2026 uint8_t 2027 usbd_transfer_pending(struct usb_xfer *xfer) 2028 { 2029 struct usb_xfer_root *info; 2030 struct usb_xfer_queue *pq; 2031 2032 if (xfer == NULL) { 2033 /* transfer is gone */ 2034 return (0); 2035 } 2036 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 2037 2038 if (xfer->flags_int.transferring) { 2039 /* trivial case */ 2040 return (1); 2041 } 2042 USB_BUS_LOCK(xfer->xroot->bus); 2043 if (xfer->wait_queue) { 2044 /* we are waiting on a queue somewhere */ 2045 USB_BUS_UNLOCK(xfer->xroot->bus); 2046 return (1); 2047 } 2048 info = xfer->xroot; 2049 pq = &info->done_q; 2050 2051 if (pq->curr == xfer) { 2052 /* we are currently scheduled for callback */ 2053 USB_BUS_UNLOCK(xfer->xroot->bus); 2054 return (1); 2055 } 2056 /* we are not pending */ 2057 USB_BUS_UNLOCK(xfer->xroot->bus); 2058 return (0); 2059 } 2060 2061 /*------------------------------------------------------------------------* 2062 * usbd_transfer_drain 2063 * 2064 * This function will stop the USB transfer and wait for any 2065 * additional BUS-DMA and HW-DMA operations to complete. Buffers that 2066 * are loaded into DMA can safely be freed or reused after that this 2067 * function has returned. 2068 *------------------------------------------------------------------------*/ 2069 void 2070 usbd_transfer_drain(struct usb_xfer *xfer) 2071 { 2072 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2073 "usbd_transfer_drain can sleep!"); 2074 2075 if (xfer == NULL) { 2076 /* transfer is gone */ 2077 return; 2078 } 2079 if (xfer->xroot->xfer_mtx != &Giant) { 2080 USB_XFER_LOCK_ASSERT(xfer, MA_NOTOWNED); 2081 } 2082 USB_XFER_LOCK(xfer); 2083 2084 usbd_transfer_stop(xfer); 2085 2086 while (usbd_transfer_pending(xfer) || 2087 xfer->flags_int.doing_callback) { 2088 2089 /* 2090 * It is allowed that the callback can drop its 2091 * transfer mutex. In that case checking only 2092 * "usbd_transfer_pending()" is not enough to tell if 2093 * the USB transfer is fully drained. We also need to 2094 * check the internal "doing_callback" flag. 2095 */ 2096 xfer->flags_int.draining = 1; 2097 2098 /* 2099 * Wait until the current outstanding USB 2100 * transfer is complete ! 2101 */ 2102 cv_wait(&xfer->xroot->cv_drain, xfer->xroot->xfer_mtx); 2103 } 2104 USB_XFER_UNLOCK(xfer); 2105 } 2106 2107 struct usb_page_cache * 2108 usbd_xfer_get_frame(struct usb_xfer *xfer, usb_frcount_t frindex) 2109 { 2110 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2111 2112 return (&xfer->frbuffers[frindex]); 2113 } 2114 2115 void * 2116 usbd_xfer_get_frame_buffer(struct usb_xfer *xfer, usb_frcount_t frindex) 2117 { 2118 struct usb_page_search page_info; 2119 2120 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2121 2122 usbd_get_page(&xfer->frbuffers[frindex], 0, &page_info); 2123 return (page_info.buffer); 2124 } 2125 2126 /*------------------------------------------------------------------------* 2127 * usbd_xfer_get_fps_shift 2128 * 2129 * The following function is only useful for isochronous transfers. It 2130 * returns how many times the frame execution rate has been shifted 2131 * down. 2132 * 2133 * Return value: 2134 * Success: 0..3 2135 * Failure: 0 2136 *------------------------------------------------------------------------*/ 2137 uint8_t 2138 usbd_xfer_get_fps_shift(struct usb_xfer *xfer) 2139 { 2140 return (xfer->fps_shift); 2141 } 2142 2143 usb_frlength_t 2144 usbd_xfer_frame_len(struct usb_xfer *xfer, usb_frcount_t frindex) 2145 { 2146 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2147 2148 return (xfer->frlengths[frindex]); 2149 } 2150 2151 /*------------------------------------------------------------------------* 2152 * usbd_xfer_set_frame_data 2153 * 2154 * This function sets the pointer of the buffer that should 2155 * loaded directly into DMA for the given USB frame. Passing "ptr" 2156 * equal to NULL while the corresponding "frlength" is greater 2157 * than zero gives undefined results! 2158 *------------------------------------------------------------------------*/ 2159 void 2160 usbd_xfer_set_frame_data(struct usb_xfer *xfer, usb_frcount_t frindex, 2161 void *ptr, usb_frlength_t len) 2162 { 2163 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2164 2165 /* set virtual address to load and length */ 2166 xfer->frbuffers[frindex].buffer = ptr; 2167 usbd_xfer_set_frame_len(xfer, frindex, len); 2168 } 2169 2170 void 2171 usbd_xfer_frame_data(struct usb_xfer *xfer, usb_frcount_t frindex, 2172 void **ptr, int *len) 2173 { 2174 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2175 2176 if (ptr != NULL) 2177 *ptr = xfer->frbuffers[frindex].buffer; 2178 if (len != NULL) 2179 *len = xfer->frlengths[frindex]; 2180 } 2181 2182 /*------------------------------------------------------------------------* 2183 * usbd_xfer_old_frame_length 2184 * 2185 * This function returns the framelength of the given frame at the 2186 * time the transfer was submitted. This function can be used to 2187 * compute the starting data pointer of the next isochronous frame 2188 * when an isochronous transfer has completed. 2189 *------------------------------------------------------------------------*/ 2190 usb_frlength_t 2191 usbd_xfer_old_frame_length(struct usb_xfer *xfer, usb_frcount_t frindex) 2192 { 2193 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2194 2195 return (xfer->frlengths[frindex + xfer->max_frame_count]); 2196 } 2197 2198 void 2199 usbd_xfer_status(struct usb_xfer *xfer, int *actlen, int *sumlen, int *aframes, 2200 int *nframes) 2201 { 2202 if (actlen != NULL) 2203 *actlen = xfer->actlen; 2204 if (sumlen != NULL) 2205 *sumlen = xfer->sumlen; 2206 if (aframes != NULL) 2207 *aframes = xfer->aframes; 2208 if (nframes != NULL) 2209 *nframes = xfer->nframes; 2210 } 2211 2212 /*------------------------------------------------------------------------* 2213 * usbd_xfer_set_frame_offset 2214 * 2215 * This function sets the frame data buffer offset relative to the beginning 2216 * of the USB DMA buffer allocated for this USB transfer. 2217 *------------------------------------------------------------------------*/ 2218 void 2219 usbd_xfer_set_frame_offset(struct usb_xfer *xfer, usb_frlength_t offset, 2220 usb_frcount_t frindex) 2221 { 2222 KASSERT(!xfer->flags.ext_buffer, ("Cannot offset data frame " 2223 "when the USB buffer is external\n")); 2224 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2225 2226 /* set virtual address to load */ 2227 xfer->frbuffers[frindex].buffer = 2228 USB_ADD_BYTES(xfer->local_buffer, offset); 2229 } 2230 2231 void 2232 usbd_xfer_set_interval(struct usb_xfer *xfer, int i) 2233 { 2234 xfer->interval = i; 2235 } 2236 2237 void 2238 usbd_xfer_set_timeout(struct usb_xfer *xfer, int t) 2239 { 2240 xfer->timeout = t; 2241 } 2242 2243 void 2244 usbd_xfer_set_frames(struct usb_xfer *xfer, usb_frcount_t n) 2245 { 2246 xfer->nframes = n; 2247 } 2248 2249 usb_frcount_t 2250 usbd_xfer_max_frames(struct usb_xfer *xfer) 2251 { 2252 return (xfer->max_frame_count); 2253 } 2254 2255 usb_frlength_t 2256 usbd_xfer_max_len(struct usb_xfer *xfer) 2257 { 2258 return (xfer->max_data_length); 2259 } 2260 2261 usb_frlength_t 2262 usbd_xfer_max_framelen(struct usb_xfer *xfer) 2263 { 2264 return (xfer->max_frame_size); 2265 } 2266 2267 void 2268 usbd_xfer_set_frame_len(struct usb_xfer *xfer, usb_frcount_t frindex, 2269 usb_frlength_t len) 2270 { 2271 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2272 2273 xfer->frlengths[frindex] = len; 2274 } 2275 2276 /*------------------------------------------------------------------------* 2277 * usb_callback_proc - factored out code 2278 * 2279 * This function performs USB callbacks. 2280 *------------------------------------------------------------------------*/ 2281 static void 2282 usb_callback_proc(struct usb_proc_msg *_pm) 2283 { 2284 struct usb_done_msg *pm = (void *)_pm; 2285 struct usb_xfer_root *info = pm->xroot; 2286 2287 /* Change locking order */ 2288 USB_BUS_UNLOCK(info->bus); 2289 2290 /* 2291 * We exploit the fact that the mutex is the same for all 2292 * callbacks that will be called from this thread: 2293 */ 2294 USB_MTX_LOCK(info->xfer_mtx); 2295 USB_BUS_LOCK(info->bus); 2296 2297 /* Continue where we lost track */ 2298 usb_command_wrapper(&info->done_q, 2299 info->done_q.curr); 2300 2301 USB_MTX_UNLOCK(info->xfer_mtx); 2302 } 2303 2304 /*------------------------------------------------------------------------* 2305 * usbd_callback_ss_done_defer 2306 * 2307 * This function will defer the start, stop and done callback to the 2308 * correct thread. 2309 *------------------------------------------------------------------------*/ 2310 static void 2311 usbd_callback_ss_done_defer(struct usb_xfer *xfer) 2312 { 2313 struct usb_xfer_root *info = xfer->xroot; 2314 struct usb_xfer_queue *pq = &info->done_q; 2315 2316 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2317 2318 if (pq->curr != xfer) { 2319 usbd_transfer_enqueue(pq, xfer); 2320 } 2321 if (!pq->recurse_1) { 2322 2323 /* 2324 * We have to postpone the callback due to the fact we 2325 * will have a Lock Order Reversal, LOR, if we try to 2326 * proceed ! 2327 */ 2328 (void) usb_proc_msignal(info->done_p, 2329 &info->done_m[0], &info->done_m[1]); 2330 } else { 2331 /* clear second recurse flag */ 2332 pq->recurse_2 = 0; 2333 } 2334 return; 2335 2336 } 2337 2338 /*------------------------------------------------------------------------* 2339 * usbd_callback_wrapper 2340 * 2341 * This is a wrapper for USB callbacks. This wrapper does some 2342 * auto-magic things like figuring out if we can call the callback 2343 * directly from the current context or if we need to wakeup the 2344 * interrupt process. 2345 *------------------------------------------------------------------------*/ 2346 static void 2347 usbd_callback_wrapper(struct usb_xfer_queue *pq) 2348 { 2349 struct usb_xfer *xfer = pq->curr; 2350 struct usb_xfer_root *info = xfer->xroot; 2351 2352 USB_BUS_LOCK_ASSERT(info->bus, MA_OWNED); 2353 if ((pq->recurse_3 != 0 || mtx_owned(info->xfer_mtx) == 0) && 2354 USB_IN_POLLING_MODE_FUNC() == 0) { 2355 /* 2356 * Cases that end up here: 2357 * 2358 * 5) HW interrupt done callback or other source. 2359 * 6) HW completed transfer during callback 2360 */ 2361 DPRINTFN(3, "case 5 and 6\n"); 2362 2363 /* 2364 * We have to postpone the callback due to the fact we 2365 * will have a Lock Order Reversal, LOR, if we try to 2366 * proceed! 2367 * 2368 * Postponing the callback also ensures that other USB 2369 * transfer queues get a chance. 2370 */ 2371 (void) usb_proc_msignal(info->done_p, 2372 &info->done_m[0], &info->done_m[1]); 2373 return; 2374 } 2375 /* 2376 * Cases that end up here: 2377 * 2378 * 1) We are starting a transfer 2379 * 2) We are prematurely calling back a transfer 2380 * 3) We are stopping a transfer 2381 * 4) We are doing an ordinary callback 2382 */ 2383 DPRINTFN(3, "case 1-4\n"); 2384 /* get next USB transfer in the queue */ 2385 info->done_q.curr = NULL; 2386 2387 /* set flag in case of drain */ 2388 xfer->flags_int.doing_callback = 1; 2389 2390 USB_BUS_UNLOCK(info->bus); 2391 USB_BUS_LOCK_ASSERT(info->bus, MA_NOTOWNED); 2392 2393 /* set correct USB state for callback */ 2394 if (!xfer->flags_int.transferring) { 2395 xfer->usb_state = USB_ST_SETUP; 2396 if (!xfer->flags_int.started) { 2397 /* we got stopped before we even got started */ 2398 USB_BUS_LOCK(info->bus); 2399 goto done; 2400 } 2401 } else { 2402 2403 if (usbd_callback_wrapper_sub(xfer)) { 2404 /* the callback has been deferred */ 2405 USB_BUS_LOCK(info->bus); 2406 goto done; 2407 } 2408 #if USB_HAVE_POWERD 2409 /* decrement power reference */ 2410 usbd_transfer_power_ref(xfer, -1); 2411 #endif 2412 xfer->flags_int.transferring = 0; 2413 2414 if (xfer->error) { 2415 xfer->usb_state = USB_ST_ERROR; 2416 } else { 2417 /* set transferred state */ 2418 xfer->usb_state = USB_ST_TRANSFERRED; 2419 #if USB_HAVE_BUSDMA 2420 /* sync DMA memory, if any */ 2421 if (xfer->flags_int.bdma_enable && 2422 (!xfer->flags_int.bdma_no_post_sync)) { 2423 usb_bdma_post_sync(xfer); 2424 } 2425 #endif 2426 } 2427 } 2428 2429 #if USB_HAVE_PF 2430 if (xfer->usb_state != USB_ST_SETUP) { 2431 USB_BUS_LOCK(info->bus); 2432 usbpf_xfertap(xfer, USBPF_XFERTAP_DONE); 2433 USB_BUS_UNLOCK(info->bus); 2434 } 2435 #endif 2436 /* call processing routine */ 2437 (xfer->callback) (xfer, xfer->error); 2438 2439 /* pickup the USB mutex again */ 2440 USB_BUS_LOCK(info->bus); 2441 2442 /* 2443 * Check if we got started after that we got cancelled, but 2444 * before we managed to do the callback. 2445 */ 2446 if ((!xfer->flags_int.open) && 2447 (xfer->flags_int.started) && 2448 (xfer->usb_state == USB_ST_ERROR)) { 2449 /* clear flag in case of drain */ 2450 xfer->flags_int.doing_callback = 0; 2451 /* try to loop, but not recursivly */ 2452 usb_command_wrapper(&info->done_q, xfer); 2453 return; 2454 } 2455 2456 done: 2457 /* clear flag in case of drain */ 2458 xfer->flags_int.doing_callback = 0; 2459 2460 /* 2461 * Check if we are draining. 2462 */ 2463 if (xfer->flags_int.draining && 2464 (!xfer->flags_int.transferring)) { 2465 /* "usbd_transfer_drain()" is waiting for end of transfer */ 2466 xfer->flags_int.draining = 0; 2467 cv_broadcast(&info->cv_drain); 2468 } 2469 2470 /* do the next callback, if any */ 2471 usb_command_wrapper(&info->done_q, 2472 info->done_q.curr); 2473 } 2474 2475 /*------------------------------------------------------------------------* 2476 * usb_dma_delay_done_cb 2477 * 2478 * This function is called when the DMA delay has been exectuded, and 2479 * will make sure that the callback is called to complete the USB 2480 * transfer. This code path is usually only used when there is an USB 2481 * error like USB_ERR_CANCELLED. 2482 *------------------------------------------------------------------------*/ 2483 void 2484 usb_dma_delay_done_cb(struct usb_xfer *xfer) 2485 { 2486 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2487 2488 DPRINTFN(3, "Completed %p\n", xfer); 2489 2490 /* queue callback for execution, again */ 2491 usbd_transfer_done(xfer, 0); 2492 } 2493 2494 /*------------------------------------------------------------------------* 2495 * usbd_transfer_dequeue 2496 * 2497 * - This function is used to remove an USB transfer from a USB 2498 * transfer queue. 2499 * 2500 * - This function can be called multiple times in a row. 2501 *------------------------------------------------------------------------*/ 2502 void 2503 usbd_transfer_dequeue(struct usb_xfer *xfer) 2504 { 2505 struct usb_xfer_queue *pq; 2506 2507 pq = xfer->wait_queue; 2508 if (pq) { 2509 TAILQ_REMOVE(&pq->head, xfer, wait_entry); 2510 xfer->wait_queue = NULL; 2511 } 2512 } 2513 2514 /*------------------------------------------------------------------------* 2515 * usbd_transfer_enqueue 2516 * 2517 * - This function is used to insert an USB transfer into a USB * 2518 * transfer queue. 2519 * 2520 * - This function can be called multiple times in a row. 2521 *------------------------------------------------------------------------*/ 2522 void 2523 usbd_transfer_enqueue(struct usb_xfer_queue *pq, struct usb_xfer *xfer) 2524 { 2525 /* 2526 * Insert the USB transfer into the queue, if it is not 2527 * already on a USB transfer queue: 2528 */ 2529 if (xfer->wait_queue == NULL) { 2530 xfer->wait_queue = pq; 2531 TAILQ_INSERT_TAIL(&pq->head, xfer, wait_entry); 2532 } 2533 } 2534 2535 /*------------------------------------------------------------------------* 2536 * usbd_transfer_done 2537 * 2538 * - This function is used to remove an USB transfer from the busdma, 2539 * pipe or interrupt queue. 2540 * 2541 * - This function is used to queue the USB transfer on the done 2542 * queue. 2543 * 2544 * - This function is used to stop any USB transfer timeouts. 2545 *------------------------------------------------------------------------*/ 2546 void 2547 usbd_transfer_done(struct usb_xfer *xfer, usb_error_t error) 2548 { 2549 struct usb_xfer_root *info = xfer->xroot; 2550 2551 USB_BUS_LOCK_ASSERT(info->bus, MA_OWNED); 2552 2553 DPRINTF("err=%s\n", usbd_errstr(error)); 2554 2555 /* 2556 * If we are not transferring then just return. 2557 * This can happen during transfer cancel. 2558 */ 2559 if (!xfer->flags_int.transferring) { 2560 DPRINTF("not transferring\n"); 2561 /* end of control transfer, if any */ 2562 xfer->flags_int.control_act = 0; 2563 return; 2564 } 2565 /* only set transfer error, if not already set */ 2566 if (xfer->error == USB_ERR_NORMAL_COMPLETION) 2567 xfer->error = error; 2568 2569 /* stop any callouts */ 2570 usb_callout_stop(&xfer->timeout_handle); 2571 2572 /* 2573 * If we are waiting on a queue, just remove the USB transfer 2574 * from the queue, if any. We should have the required locks 2575 * locked to do the remove when this function is called. 2576 */ 2577 usbd_transfer_dequeue(xfer); 2578 2579 #if USB_HAVE_BUSDMA 2580 if (mtx_owned(info->xfer_mtx)) { 2581 struct usb_xfer_queue *pq; 2582 2583 /* 2584 * If the private USB lock is not locked, then we assume 2585 * that the BUS-DMA load stage has been passed: 2586 */ 2587 pq = &info->dma_q; 2588 2589 if (pq->curr == xfer) { 2590 /* start the next BUS-DMA load, if any */ 2591 usb_command_wrapper(pq, NULL); 2592 } 2593 } 2594 #endif 2595 /* keep some statistics */ 2596 if (xfer->error == USB_ERR_CANCELLED) { 2597 info->udev->stats_cancelled.uds_requests 2598 [xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE]++; 2599 } else if (xfer->error != USB_ERR_NORMAL_COMPLETION) { 2600 info->udev->stats_err.uds_requests 2601 [xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE]++; 2602 } else { 2603 info->udev->stats_ok.uds_requests 2604 [xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE]++; 2605 } 2606 2607 /* call the USB transfer callback */ 2608 usbd_callback_ss_done_defer(xfer); 2609 } 2610 2611 /*------------------------------------------------------------------------* 2612 * usbd_transfer_start_cb 2613 * 2614 * This function is called to start the USB transfer when 2615 * "xfer->interval" is greater than zero, and and the endpoint type is 2616 * BULK or CONTROL. 2617 *------------------------------------------------------------------------*/ 2618 static void 2619 usbd_transfer_start_cb(void *arg) 2620 { 2621 struct usb_xfer *xfer = arg; 2622 struct usb_endpoint *ep = xfer->endpoint; 2623 2624 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2625 2626 DPRINTF("start\n"); 2627 2628 #if USB_HAVE_PF 2629 usbpf_xfertap(xfer, USBPF_XFERTAP_SUBMIT); 2630 #endif 2631 2632 /* the transfer can now be cancelled */ 2633 xfer->flags_int.can_cancel_immed = 1; 2634 2635 /* start USB transfer, if no error */ 2636 if (xfer->error == 0) 2637 (ep->methods->start) (xfer); 2638 2639 /* check for transfer error */ 2640 if (xfer->error) { 2641 /* some error has happened */ 2642 usbd_transfer_done(xfer, 0); 2643 } 2644 } 2645 2646 /*------------------------------------------------------------------------* 2647 * usbd_xfer_set_stall 2648 * 2649 * This function is used to set the stall flag outside the 2650 * callback. This function is NULL safe. 2651 *------------------------------------------------------------------------*/ 2652 void 2653 usbd_xfer_set_stall(struct usb_xfer *xfer) 2654 { 2655 if (xfer == NULL) { 2656 /* tearing down */ 2657 return; 2658 } 2659 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 2660 2661 /* avoid any races by locking the USB mutex */ 2662 USB_BUS_LOCK(xfer->xroot->bus); 2663 xfer->flags.stall_pipe = 1; 2664 USB_BUS_UNLOCK(xfer->xroot->bus); 2665 } 2666 2667 int 2668 usbd_xfer_is_stalled(struct usb_xfer *xfer) 2669 { 2670 return (xfer->endpoint->is_stalled); 2671 } 2672 2673 /*------------------------------------------------------------------------* 2674 * usbd_transfer_clear_stall 2675 * 2676 * This function is used to clear the stall flag outside the 2677 * callback. This function is NULL safe. 2678 *------------------------------------------------------------------------*/ 2679 void 2680 usbd_transfer_clear_stall(struct usb_xfer *xfer) 2681 { 2682 if (xfer == NULL) { 2683 /* tearing down */ 2684 return; 2685 } 2686 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 2687 2688 /* avoid any races by locking the USB mutex */ 2689 USB_BUS_LOCK(xfer->xroot->bus); 2690 2691 xfer->flags.stall_pipe = 0; 2692 2693 USB_BUS_UNLOCK(xfer->xroot->bus); 2694 } 2695 2696 /*------------------------------------------------------------------------* 2697 * usbd_pipe_start 2698 * 2699 * This function is used to add an USB transfer to the pipe transfer list. 2700 *------------------------------------------------------------------------*/ 2701 void 2702 usbd_pipe_start(struct usb_xfer_queue *pq) 2703 { 2704 struct usb_endpoint *ep; 2705 struct usb_xfer *xfer; 2706 uint8_t type; 2707 2708 xfer = pq->curr; 2709 ep = xfer->endpoint; 2710 2711 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2712 2713 /* 2714 * If the endpoint is already stalled we do nothing ! 2715 */ 2716 if (ep->is_stalled) { 2717 return; 2718 } 2719 /* 2720 * Check if we are supposed to stall the endpoint: 2721 */ 2722 if (xfer->flags.stall_pipe) { 2723 struct usb_device *udev; 2724 struct usb_xfer_root *info; 2725 2726 /* clear stall command */ 2727 xfer->flags.stall_pipe = 0; 2728 2729 /* get pointer to USB device */ 2730 info = xfer->xroot; 2731 udev = info->udev; 2732 2733 /* 2734 * Only stall BULK and INTERRUPT endpoints. 2735 */ 2736 type = (ep->edesc->bmAttributes & UE_XFERTYPE); 2737 if ((type == UE_BULK) || 2738 (type == UE_INTERRUPT)) { 2739 uint8_t did_stall; 2740 2741 did_stall = 1; 2742 2743 if (udev->flags.usb_mode == USB_MODE_DEVICE) { 2744 (udev->bus->methods->set_stall) ( 2745 udev, ep, &did_stall); 2746 } else if (udev->ctrl_xfer[1]) { 2747 info = udev->ctrl_xfer[1]->xroot; 2748 usb_proc_msignal( 2749 USB_BUS_CS_PROC(info->bus), 2750 &udev->cs_msg[0], &udev->cs_msg[1]); 2751 } else { 2752 /* should not happen */ 2753 DPRINTFN(0, "No stall handler\n"); 2754 } 2755 /* 2756 * Check if we should stall. Some USB hardware 2757 * handles set- and clear-stall in hardware. 2758 */ 2759 if (did_stall) { 2760 /* 2761 * The transfer will be continued when 2762 * the clear-stall control endpoint 2763 * message is received. 2764 */ 2765 ep->is_stalled = 1; 2766 return; 2767 } 2768 } else if (type == UE_ISOCHRONOUS) { 2769 2770 /* 2771 * Make sure any FIFO overflow or other FIFO 2772 * error conditions go away by resetting the 2773 * endpoint FIFO through the clear stall 2774 * method. 2775 */ 2776 if (udev->flags.usb_mode == USB_MODE_DEVICE) { 2777 (udev->bus->methods->clear_stall) (udev, ep); 2778 } 2779 } 2780 } 2781 /* Set or clear stall complete - special case */ 2782 if (xfer->nframes == 0) { 2783 /* we are complete */ 2784 xfer->aframes = 0; 2785 usbd_transfer_done(xfer, 0); 2786 return; 2787 } 2788 /* 2789 * Handled cases: 2790 * 2791 * 1) Start the first transfer queued. 2792 * 2793 * 2) Re-start the current USB transfer. 2794 */ 2795 /* 2796 * Check if there should be any 2797 * pre transfer start delay: 2798 */ 2799 if (xfer->interval > 0) { 2800 type = (ep->edesc->bmAttributes & UE_XFERTYPE); 2801 if ((type == UE_BULK) || 2802 (type == UE_CONTROL)) { 2803 usbd_transfer_timeout_ms(xfer, 2804 &usbd_transfer_start_cb, 2805 xfer->interval); 2806 return; 2807 } 2808 } 2809 DPRINTF("start\n"); 2810 2811 #if USB_HAVE_PF 2812 usbpf_xfertap(xfer, USBPF_XFERTAP_SUBMIT); 2813 #endif 2814 /* the transfer can now be cancelled */ 2815 xfer->flags_int.can_cancel_immed = 1; 2816 2817 /* start USB transfer, if no error */ 2818 if (xfer->error == 0) 2819 (ep->methods->start) (xfer); 2820 2821 /* check for transfer error */ 2822 if (xfer->error) { 2823 /* some error has happened */ 2824 usbd_transfer_done(xfer, 0); 2825 } 2826 } 2827 2828 /*------------------------------------------------------------------------* 2829 * usbd_transfer_timeout_ms 2830 * 2831 * This function is used to setup a timeout on the given USB 2832 * transfer. If the timeout has been deferred the callback given by 2833 * "cb" will get called after "ms" milliseconds. 2834 *------------------------------------------------------------------------*/ 2835 void 2836 usbd_transfer_timeout_ms(struct usb_xfer *xfer, 2837 void (*cb) (void *arg), usb_timeout_t ms) 2838 { 2839 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2840 2841 /* defer delay */ 2842 usb_callout_reset(&xfer->timeout_handle, 2843 USB_MS_TO_TICKS(ms) + USB_CALLOUT_ZERO_TICKS, cb, xfer); 2844 } 2845 2846 /*------------------------------------------------------------------------* 2847 * usbd_callback_wrapper_sub 2848 * 2849 * - This function will update variables in an USB transfer after 2850 * that the USB transfer is complete. 2851 * 2852 * - This function is used to start the next USB transfer on the 2853 * ep transfer queue, if any. 2854 * 2855 * NOTE: In some special cases the USB transfer will not be removed from 2856 * the pipe queue, but remain first. To enforce USB transfer removal call 2857 * this function passing the error code "USB_ERR_CANCELLED". 2858 * 2859 * Return values: 2860 * 0: Success. 2861 * Else: The callback has been deferred. 2862 *------------------------------------------------------------------------*/ 2863 static uint8_t 2864 usbd_callback_wrapper_sub(struct usb_xfer *xfer) 2865 { 2866 struct usb_endpoint *ep; 2867 struct usb_bus *bus; 2868 usb_frcount_t x; 2869 2870 bus = xfer->xroot->bus; 2871 2872 if ((!xfer->flags_int.open) && 2873 (!xfer->flags_int.did_close)) { 2874 DPRINTF("close\n"); 2875 USB_BUS_LOCK(bus); 2876 (xfer->endpoint->methods->close) (xfer); 2877 USB_BUS_UNLOCK(bus); 2878 /* only close once */ 2879 xfer->flags_int.did_close = 1; 2880 return (1); /* wait for new callback */ 2881 } 2882 /* 2883 * If we have a non-hardware induced error we 2884 * need to do the DMA delay! 2885 */ 2886 if (xfer->error != 0 && !xfer->flags_int.did_dma_delay && 2887 (xfer->error == USB_ERR_CANCELLED || 2888 xfer->error == USB_ERR_TIMEOUT || 2889 bus->methods->start_dma_delay != NULL)) { 2890 2891 usb_timeout_t temp; 2892 2893 /* only delay once */ 2894 xfer->flags_int.did_dma_delay = 1; 2895 2896 /* we can not cancel this delay */ 2897 xfer->flags_int.can_cancel_immed = 0; 2898 2899 temp = usbd_get_dma_delay(xfer->xroot->udev); 2900 2901 DPRINTFN(3, "DMA delay, %u ms, " 2902 "on %p\n", temp, xfer); 2903 2904 if (temp != 0) { 2905 USB_BUS_LOCK(bus); 2906 /* 2907 * Some hardware solutions have dedicated 2908 * events when it is safe to free DMA'ed 2909 * memory. For the other hardware platforms we 2910 * use a static delay. 2911 */ 2912 if (bus->methods->start_dma_delay != NULL) { 2913 (bus->methods->start_dma_delay) (xfer); 2914 } else { 2915 usbd_transfer_timeout_ms(xfer, 2916 (void (*)(void *))&usb_dma_delay_done_cb, 2917 temp); 2918 } 2919 USB_BUS_UNLOCK(bus); 2920 return (1); /* wait for new callback */ 2921 } 2922 } 2923 /* check actual number of frames */ 2924 if (xfer->aframes > xfer->nframes) { 2925 if (xfer->error == 0) { 2926 panic("%s: actual number of frames, %d, is " 2927 "greater than initial number of frames, %d\n", 2928 __FUNCTION__, xfer->aframes, xfer->nframes); 2929 } else { 2930 /* just set some valid value */ 2931 xfer->aframes = xfer->nframes; 2932 } 2933 } 2934 /* compute actual length */ 2935 xfer->actlen = 0; 2936 2937 for (x = 0; x != xfer->aframes; x++) { 2938 xfer->actlen += xfer->frlengths[x]; 2939 } 2940 2941 /* 2942 * Frames that were not transferred get zero actual length in 2943 * case the USB device driver does not check the actual number 2944 * of frames transferred, "xfer->aframes": 2945 */ 2946 for (; x < xfer->nframes; x++) { 2947 usbd_xfer_set_frame_len(xfer, x, 0); 2948 } 2949 2950 /* check actual length */ 2951 if (xfer->actlen > xfer->sumlen) { 2952 if (xfer->error == 0) { 2953 panic("%s: actual length, %d, is greater than " 2954 "initial length, %d\n", 2955 __FUNCTION__, xfer->actlen, xfer->sumlen); 2956 } else { 2957 /* just set some valid value */ 2958 xfer->actlen = xfer->sumlen; 2959 } 2960 } 2961 DPRINTFN(1, "xfer=%p endpoint=%p sts=%d alen=%d, slen=%d, afrm=%d, nfrm=%d\n", 2962 xfer, xfer->endpoint, xfer->error, xfer->actlen, xfer->sumlen, 2963 xfer->aframes, xfer->nframes); 2964 2965 if (xfer->error) { 2966 /* end of control transfer, if any */ 2967 xfer->flags_int.control_act = 0; 2968 2969 #if USB_HAVE_TT_SUPPORT 2970 switch (xfer->error) { 2971 case USB_ERR_NORMAL_COMPLETION: 2972 case USB_ERR_SHORT_XFER: 2973 case USB_ERR_STALLED: 2974 case USB_ERR_CANCELLED: 2975 /* nothing to do */ 2976 break; 2977 default: 2978 /* try to reset the TT, if any */ 2979 USB_BUS_LOCK(bus); 2980 uhub_tt_buffer_reset_async_locked(xfer->xroot->udev, xfer->endpoint); 2981 USB_BUS_UNLOCK(bus); 2982 break; 2983 } 2984 #endif 2985 /* check if we should block the execution queue */ 2986 if ((xfer->error != USB_ERR_CANCELLED) && 2987 (xfer->flags.pipe_bof)) { 2988 DPRINTFN(2, "xfer=%p: Block On Failure " 2989 "on endpoint=%p\n", xfer, xfer->endpoint); 2990 goto done; 2991 } 2992 } else { 2993 /* check for short transfers */ 2994 if (xfer->actlen < xfer->sumlen) { 2995 2996 /* end of control transfer, if any */ 2997 xfer->flags_int.control_act = 0; 2998 2999 if (!xfer->flags_int.short_xfer_ok) { 3000 xfer->error = USB_ERR_SHORT_XFER; 3001 if (xfer->flags.pipe_bof) { 3002 DPRINTFN(2, "xfer=%p: Block On Failure on " 3003 "Short Transfer on endpoint %p.\n", 3004 xfer, xfer->endpoint); 3005 goto done; 3006 } 3007 } 3008 } else { 3009 /* 3010 * Check if we are in the middle of a 3011 * control transfer: 3012 */ 3013 if (xfer->flags_int.control_act) { 3014 DPRINTFN(5, "xfer=%p: Control transfer " 3015 "active on endpoint=%p\n", xfer, xfer->endpoint); 3016 goto done; 3017 } 3018 } 3019 } 3020 3021 ep = xfer->endpoint; 3022 3023 /* 3024 * If the current USB transfer is completing we need to start the 3025 * next one: 3026 */ 3027 USB_BUS_LOCK(bus); 3028 if (ep->endpoint_q[xfer->stream_id].curr == xfer) { 3029 usb_command_wrapper(&ep->endpoint_q[xfer->stream_id], NULL); 3030 3031 if (ep->endpoint_q[xfer->stream_id].curr != NULL || 3032 TAILQ_FIRST(&ep->endpoint_q[xfer->stream_id].head) != NULL) { 3033 /* there is another USB transfer waiting */ 3034 } else { 3035 /* this is the last USB transfer */ 3036 /* clear isochronous sync flag */ 3037 xfer->endpoint->is_synced = 0; 3038 } 3039 } 3040 USB_BUS_UNLOCK(bus); 3041 done: 3042 return (0); 3043 } 3044 3045 /*------------------------------------------------------------------------* 3046 * usb_command_wrapper 3047 * 3048 * This function is used to execute commands non-recursivly on an USB 3049 * transfer. 3050 *------------------------------------------------------------------------*/ 3051 void 3052 usb_command_wrapper(struct usb_xfer_queue *pq, struct usb_xfer *xfer) 3053 { 3054 if (xfer) { 3055 /* 3056 * If the transfer is not already processing, 3057 * queue it! 3058 */ 3059 if (pq->curr != xfer) { 3060 usbd_transfer_enqueue(pq, xfer); 3061 if (pq->curr != NULL) { 3062 /* something is already processing */ 3063 DPRINTFN(6, "busy %p\n", pq->curr); 3064 return; 3065 } 3066 } 3067 } else { 3068 /* Get next element in queue */ 3069 pq->curr = NULL; 3070 } 3071 3072 if (!pq->recurse_1) { 3073 3074 /* clear third recurse flag */ 3075 pq->recurse_3 = 0; 3076 3077 do { 3078 /* set two first recurse flags */ 3079 pq->recurse_1 = 1; 3080 pq->recurse_2 = 1; 3081 3082 if (pq->curr == NULL) { 3083 xfer = TAILQ_FIRST(&pq->head); 3084 if (xfer) { 3085 TAILQ_REMOVE(&pq->head, xfer, 3086 wait_entry); 3087 xfer->wait_queue = NULL; 3088 pq->curr = xfer; 3089 } else { 3090 break; 3091 } 3092 } 3093 DPRINTFN(6, "cb %p (enter)\n", pq->curr); 3094 (pq->command) (pq); 3095 DPRINTFN(6, "cb %p (leave)\n", pq->curr); 3096 3097 /* 3098 * Set third recurse flag to indicate 3099 * recursion happened: 3100 */ 3101 pq->recurse_3 = 1; 3102 3103 } while (!pq->recurse_2); 3104 3105 /* clear first recurse flag */ 3106 pq->recurse_1 = 0; 3107 3108 } else { 3109 /* clear second recurse flag */ 3110 pq->recurse_2 = 0; 3111 } 3112 } 3113 3114 /*------------------------------------------------------------------------* 3115 * usbd_ctrl_transfer_setup 3116 * 3117 * This function is used to setup the default USB control endpoint 3118 * transfer. 3119 *------------------------------------------------------------------------*/ 3120 void 3121 usbd_ctrl_transfer_setup(struct usb_device *udev) 3122 { 3123 struct usb_xfer *xfer; 3124 uint8_t no_resetup; 3125 uint8_t iface_index; 3126 3127 /* check for root HUB */ 3128 if (udev->parent_hub == NULL) 3129 return; 3130 repeat: 3131 3132 xfer = udev->ctrl_xfer[0]; 3133 if (xfer) { 3134 USB_XFER_LOCK(xfer); 3135 no_resetup = 3136 ((xfer->address == udev->address) && 3137 (udev->ctrl_ep_desc.wMaxPacketSize[0] == 3138 udev->ddesc.bMaxPacketSize)); 3139 if (udev->flags.usb_mode == USB_MODE_DEVICE) { 3140 if (no_resetup) { 3141 /* 3142 * NOTE: checking "xfer->address" and 3143 * starting the USB transfer must be 3144 * atomic! 3145 */ 3146 usbd_transfer_start(xfer); 3147 } 3148 } 3149 USB_XFER_UNLOCK(xfer); 3150 } else { 3151 no_resetup = 0; 3152 } 3153 3154 if (no_resetup) { 3155 /* 3156 * All parameters are exactly the same like before. 3157 * Just return. 3158 */ 3159 return; 3160 } 3161 /* 3162 * Update wMaxPacketSize for the default control endpoint: 3163 */ 3164 udev->ctrl_ep_desc.wMaxPacketSize[0] = 3165 udev->ddesc.bMaxPacketSize; 3166 3167 /* 3168 * Unsetup any existing USB transfer: 3169 */ 3170 usbd_transfer_unsetup(udev->ctrl_xfer, USB_CTRL_XFER_MAX); 3171 3172 /* 3173 * Reset clear stall error counter. 3174 */ 3175 udev->clear_stall_errors = 0; 3176 3177 /* 3178 * Try to setup a new USB transfer for the 3179 * default control endpoint: 3180 */ 3181 iface_index = 0; 3182 if (usbd_transfer_setup(udev, &iface_index, 3183 udev->ctrl_xfer, udev->bus->control_ep_quirk ? 3184 usb_control_ep_quirk_cfg : usb_control_ep_cfg, USB_CTRL_XFER_MAX, NULL, 3185 &udev->device_mtx)) { 3186 DPRINTFN(0, "could not setup default " 3187 "USB transfer\n"); 3188 } else { 3189 goto repeat; 3190 } 3191 } 3192 3193 /*------------------------------------------------------------------------* 3194 * usbd_clear_data_toggle - factored out code 3195 * 3196 * NOTE: the intention of this function is not to reset the hardware 3197 * data toggle. 3198 *------------------------------------------------------------------------*/ 3199 void 3200 usbd_clear_stall_locked(struct usb_device *udev, struct usb_endpoint *ep) 3201 { 3202 USB_BUS_LOCK_ASSERT(udev->bus, MA_OWNED); 3203 3204 /* check that we have a valid case */ 3205 if (udev->flags.usb_mode == USB_MODE_HOST && 3206 udev->parent_hub != NULL && 3207 udev->bus->methods->clear_stall != NULL && 3208 ep->methods != NULL) { 3209 (udev->bus->methods->clear_stall) (udev, ep); 3210 } 3211 } 3212 3213 /*------------------------------------------------------------------------* 3214 * usbd_clear_data_toggle - factored out code 3215 * 3216 * NOTE: the intention of this function is not to reset the hardware 3217 * data toggle on the USB device side. 3218 *------------------------------------------------------------------------*/ 3219 void 3220 usbd_clear_data_toggle(struct usb_device *udev, struct usb_endpoint *ep) 3221 { 3222 DPRINTFN(5, "udev=%p endpoint=%p\n", udev, ep); 3223 3224 USB_BUS_LOCK(udev->bus); 3225 ep->toggle_next = 0; 3226 /* some hardware needs a callback to clear the data toggle */ 3227 usbd_clear_stall_locked(udev, ep); 3228 USB_BUS_UNLOCK(udev->bus); 3229 } 3230 3231 /*------------------------------------------------------------------------* 3232 * usbd_clear_stall_callback - factored out clear stall callback 3233 * 3234 * Input parameters: 3235 * xfer1: Clear Stall Control Transfer 3236 * xfer2: Stalled USB Transfer 3237 * 3238 * This function is NULL safe. 3239 * 3240 * Return values: 3241 * 0: In progress 3242 * Else: Finished 3243 * 3244 * Clear stall config example: 3245 * 3246 * static const struct usb_config my_clearstall = { 3247 * .type = UE_CONTROL, 3248 * .endpoint = 0, 3249 * .direction = UE_DIR_ANY, 3250 * .interval = 50, //50 milliseconds 3251 * .bufsize = sizeof(struct usb_device_request), 3252 * .timeout = 1000, //1.000 seconds 3253 * .callback = &my_clear_stall_callback, // ** 3254 * .usb_mode = USB_MODE_HOST, 3255 * }; 3256 * 3257 * ** "my_clear_stall_callback" calls "usbd_clear_stall_callback" 3258 * passing the correct parameters. 3259 *------------------------------------------------------------------------*/ 3260 uint8_t 3261 usbd_clear_stall_callback(struct usb_xfer *xfer1, 3262 struct usb_xfer *xfer2) 3263 { 3264 struct usb_device_request req; 3265 3266 if (xfer2 == NULL) { 3267 /* looks like we are tearing down */ 3268 DPRINTF("NULL input parameter\n"); 3269 return (0); 3270 } 3271 USB_XFER_LOCK_ASSERT(xfer1, MA_OWNED); 3272 USB_XFER_LOCK_ASSERT(xfer2, MA_OWNED); 3273 3274 switch (USB_GET_STATE(xfer1)) { 3275 case USB_ST_SETUP: 3276 3277 /* 3278 * pre-clear the data toggle to DATA0 ("umass.c" and 3279 * "ata-usb.c" depends on this) 3280 */ 3281 3282 usbd_clear_data_toggle(xfer2->xroot->udev, xfer2->endpoint); 3283 3284 /* setup a clear-stall packet */ 3285 3286 req.bmRequestType = UT_WRITE_ENDPOINT; 3287 req.bRequest = UR_CLEAR_FEATURE; 3288 USETW(req.wValue, UF_ENDPOINT_HALT); 3289 req.wIndex[0] = xfer2->endpoint->edesc->bEndpointAddress; 3290 req.wIndex[1] = 0; 3291 USETW(req.wLength, 0); 3292 3293 /* 3294 * "usbd_transfer_setup_sub()" will ensure that 3295 * we have sufficient room in the buffer for 3296 * the request structure! 3297 */ 3298 3299 /* copy in the transfer */ 3300 3301 usbd_copy_in(xfer1->frbuffers, 0, &req, sizeof(req)); 3302 3303 /* set length */ 3304 xfer1->frlengths[0] = sizeof(req); 3305 xfer1->nframes = 1; 3306 3307 usbd_transfer_submit(xfer1); 3308 return (0); 3309 3310 case USB_ST_TRANSFERRED: 3311 break; 3312 3313 default: /* Error */ 3314 if (xfer1->error == USB_ERR_CANCELLED) { 3315 return (0); 3316 } 3317 break; 3318 } 3319 return (1); /* Clear Stall Finished */ 3320 } 3321 3322 /*------------------------------------------------------------------------* 3323 * usbd_transfer_poll 3324 * 3325 * The following function gets called from the USB keyboard driver and 3326 * UMASS when the system has paniced. 3327 * 3328 * NOTE: It is currently not possible to resume normal operation on 3329 * the USB controller which has been polled, due to clearing of the 3330 * "up_dsleep" and "up_msleep" flags. 3331 *------------------------------------------------------------------------*/ 3332 void 3333 usbd_transfer_poll(struct usb_xfer **ppxfer, uint16_t max) 3334 { 3335 struct usb_xfer *xfer; 3336 struct usb_xfer_root *xroot; 3337 struct usb_device *udev; 3338 struct usb_proc_msg *pm; 3339 struct usb_bus *bus; 3340 uint16_t n; 3341 uint16_t drop_bus_spin; 3342 uint16_t drop_bus; 3343 uint16_t drop_xfer; 3344 3345 for (n = 0; n != max; n++) { 3346 /* Extra checks to avoid panic */ 3347 xfer = ppxfer[n]; 3348 if (xfer == NULL) 3349 continue; /* no USB transfer */ 3350 xroot = xfer->xroot; 3351 if (xroot == NULL) 3352 continue; /* no USB root */ 3353 udev = xroot->udev; 3354 if (udev == NULL) 3355 continue; /* no USB device */ 3356 bus = udev->bus; 3357 if (bus == NULL) 3358 continue; /* no BUS structure */ 3359 if (bus->methods == NULL) 3360 continue; /* no BUS methods */ 3361 if (bus->methods->xfer_poll == NULL) 3362 continue; /* no poll method */ 3363 3364 drop_bus_spin = 0; 3365 drop_bus = 0; 3366 drop_xfer = 0; 3367 3368 if (USB_IN_POLLING_MODE_FUNC() == 0) { 3369 /* make sure that the BUS spin mutex is not locked */ 3370 while (mtx_owned(&bus->bus_spin_lock)) { 3371 mtx_unlock_spin(&bus->bus_spin_lock); 3372 drop_bus_spin++; 3373 } 3374 3375 /* make sure that the BUS mutex is not locked */ 3376 while (mtx_owned(&bus->bus_mtx)) { 3377 mtx_unlock(&bus->bus_mtx); 3378 drop_bus++; 3379 } 3380 3381 /* make sure that the transfer mutex is not locked */ 3382 while (mtx_owned(xroot->xfer_mtx)) { 3383 mtx_unlock(xroot->xfer_mtx); 3384 drop_xfer++; 3385 } 3386 } 3387 3388 /* Make sure cv_signal() and cv_broadcast() is not called */ 3389 USB_BUS_CONTROL_XFER_PROC(bus)->up_msleep = 0; 3390 USB_BUS_EXPLORE_PROC(bus)->up_msleep = 0; 3391 USB_BUS_GIANT_PROC(bus)->up_msleep = 0; 3392 USB_BUS_NON_GIANT_ISOC_PROC(bus)->up_msleep = 0; 3393 USB_BUS_NON_GIANT_BULK_PROC(bus)->up_msleep = 0; 3394 3395 /* poll USB hardware */ 3396 (bus->methods->xfer_poll) (bus); 3397 3398 USB_BUS_LOCK(xroot->bus); 3399 3400 /* check for clear stall */ 3401 if (udev->ctrl_xfer[1] != NULL) { 3402 3403 /* poll clear stall start */ 3404 pm = &udev->cs_msg[0].hdr; 3405 (pm->pm_callback) (pm); 3406 /* poll clear stall done thread */ 3407 pm = &udev->ctrl_xfer[1]-> 3408 xroot->done_m[0].hdr; 3409 (pm->pm_callback) (pm); 3410 } 3411 3412 /* poll done thread */ 3413 pm = &xroot->done_m[0].hdr; 3414 (pm->pm_callback) (pm); 3415 3416 USB_BUS_UNLOCK(xroot->bus); 3417 3418 /* restore transfer mutex */ 3419 while (drop_xfer--) 3420 mtx_lock(xroot->xfer_mtx); 3421 3422 /* restore BUS mutex */ 3423 while (drop_bus--) 3424 mtx_lock(&bus->bus_mtx); 3425 3426 /* restore BUS spin mutex */ 3427 while (drop_bus_spin--) 3428 mtx_lock_spin(&bus->bus_spin_lock); 3429 } 3430 } 3431 3432 static void 3433 usbd_get_std_packet_size(struct usb_std_packet_size *ptr, 3434 uint8_t type, enum usb_dev_speed speed) 3435 { 3436 static const uint16_t intr_range_max[USB_SPEED_MAX] = { 3437 [USB_SPEED_LOW] = 8, 3438 [USB_SPEED_FULL] = 64, 3439 [USB_SPEED_HIGH] = 1024, 3440 [USB_SPEED_VARIABLE] = 1024, 3441 [USB_SPEED_SUPER] = 1024, 3442 }; 3443 3444 static const uint16_t isoc_range_max[USB_SPEED_MAX] = { 3445 [USB_SPEED_LOW] = 0, /* invalid */ 3446 [USB_SPEED_FULL] = 1023, 3447 [USB_SPEED_HIGH] = 1024, 3448 [USB_SPEED_VARIABLE] = 3584, 3449 [USB_SPEED_SUPER] = 1024, 3450 }; 3451 3452 static const uint16_t control_min[USB_SPEED_MAX] = { 3453 [USB_SPEED_LOW] = 8, 3454 [USB_SPEED_FULL] = 8, 3455 [USB_SPEED_HIGH] = 64, 3456 [USB_SPEED_VARIABLE] = 512, 3457 [USB_SPEED_SUPER] = 512, 3458 }; 3459 3460 static const uint16_t bulk_min[USB_SPEED_MAX] = { 3461 [USB_SPEED_LOW] = 8, 3462 [USB_SPEED_FULL] = 8, 3463 [USB_SPEED_HIGH] = 512, 3464 [USB_SPEED_VARIABLE] = 512, 3465 [USB_SPEED_SUPER] = 1024, 3466 }; 3467 3468 uint16_t temp; 3469 3470 memset(ptr, 0, sizeof(*ptr)); 3471 3472 switch (type) { 3473 case UE_INTERRUPT: 3474 ptr->range.max = intr_range_max[speed]; 3475 break; 3476 case UE_ISOCHRONOUS: 3477 ptr->range.max = isoc_range_max[speed]; 3478 break; 3479 default: 3480 if (type == UE_BULK) 3481 temp = bulk_min[speed]; 3482 else /* UE_CONTROL */ 3483 temp = control_min[speed]; 3484 3485 /* default is fixed */ 3486 ptr->fixed[0] = temp; 3487 ptr->fixed[1] = temp; 3488 ptr->fixed[2] = temp; 3489 ptr->fixed[3] = temp; 3490 3491 if (speed == USB_SPEED_FULL) { 3492 /* multiple sizes */ 3493 ptr->fixed[1] = 16; 3494 ptr->fixed[2] = 32; 3495 ptr->fixed[3] = 64; 3496 } 3497 if ((speed == USB_SPEED_VARIABLE) && 3498 (type == UE_BULK)) { 3499 /* multiple sizes */ 3500 ptr->fixed[2] = 1024; 3501 ptr->fixed[3] = 1536; 3502 } 3503 break; 3504 } 3505 } 3506 3507 void * 3508 usbd_xfer_softc(struct usb_xfer *xfer) 3509 { 3510 return (xfer->priv_sc); 3511 } 3512 3513 void * 3514 usbd_xfer_get_priv(struct usb_xfer *xfer) 3515 { 3516 return (xfer->priv_fifo); 3517 } 3518 3519 void 3520 usbd_xfer_set_priv(struct usb_xfer *xfer, void *ptr) 3521 { 3522 xfer->priv_fifo = ptr; 3523 } 3524 3525 uint8_t 3526 usbd_xfer_state(struct usb_xfer *xfer) 3527 { 3528 return (xfer->usb_state); 3529 } 3530 3531 void 3532 usbd_xfer_set_flag(struct usb_xfer *xfer, int flag) 3533 { 3534 switch (flag) { 3535 case USB_FORCE_SHORT_XFER: 3536 xfer->flags.force_short_xfer = 1; 3537 break; 3538 case USB_SHORT_XFER_OK: 3539 xfer->flags.short_xfer_ok = 1; 3540 break; 3541 case USB_MULTI_SHORT_OK: 3542 xfer->flags.short_frames_ok = 1; 3543 break; 3544 case USB_MANUAL_STATUS: 3545 xfer->flags.manual_status = 1; 3546 break; 3547 } 3548 } 3549 3550 void 3551 usbd_xfer_clr_flag(struct usb_xfer *xfer, int flag) 3552 { 3553 switch (flag) { 3554 case USB_FORCE_SHORT_XFER: 3555 xfer->flags.force_short_xfer = 0; 3556 break; 3557 case USB_SHORT_XFER_OK: 3558 xfer->flags.short_xfer_ok = 0; 3559 break; 3560 case USB_MULTI_SHORT_OK: 3561 xfer->flags.short_frames_ok = 0; 3562 break; 3563 case USB_MANUAL_STATUS: 3564 xfer->flags.manual_status = 0; 3565 break; 3566 } 3567 } 3568 3569 /* 3570 * The following function returns in milliseconds when the isochronous 3571 * transfer was completed by the hardware. The returned value wraps 3572 * around 65536 milliseconds. 3573 */ 3574 uint16_t 3575 usbd_xfer_get_timestamp(struct usb_xfer *xfer) 3576 { 3577 return (xfer->isoc_time_complete); 3578 } 3579 3580 /* 3581 * The following function returns non-zero if the max packet size 3582 * field was clamped to a valid value. Else it returns zero. 3583 */ 3584 uint8_t 3585 usbd_xfer_maxp_was_clamped(struct usb_xfer *xfer) 3586 { 3587 return (xfer->flags_int.maxp_was_clamped); 3588 } 3589