1 /* $FreeBSD$ */ 2 /*- 3 * Copyright (c) 2008 Hans Petter Selasky. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #ifdef USB_GLOBAL_INCLUDE_FILE 28 #include USB_GLOBAL_INCLUDE_FILE 29 #else 30 #include <sys/stdint.h> 31 #include <sys/stddef.h> 32 #include <sys/param.h> 33 #include <sys/queue.h> 34 #include <sys/types.h> 35 #include <sys/systm.h> 36 #include <sys/kernel.h> 37 #include <sys/bus.h> 38 #include <sys/module.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/condvar.h> 42 #include <sys/sysctl.h> 43 #include <sys/sx.h> 44 #include <sys/unistd.h> 45 #include <sys/callout.h> 46 #include <sys/malloc.h> 47 #include <sys/priv.h> 48 #include <sys/proc.h> 49 50 #include <dev/usb/usb.h> 51 #include <dev/usb/usbdi.h> 52 #include <dev/usb/usbdi_util.h> 53 54 #define USB_DEBUG_VAR usb_debug 55 56 #include <dev/usb/usb_core.h> 57 #include <dev/usb/usb_busdma.h> 58 #include <dev/usb/usb_process.h> 59 #include <dev/usb/usb_transfer.h> 60 #include <dev/usb/usb_device.h> 61 #include <dev/usb/usb_debug.h> 62 #include <dev/usb/usb_util.h> 63 64 #include <dev/usb/usb_controller.h> 65 #include <dev/usb/usb_bus.h> 66 #include <dev/usb/usb_pf.h> 67 #endif /* USB_GLOBAL_INCLUDE_FILE */ 68 69 struct usb_std_packet_size { 70 struct { 71 uint16_t min; /* inclusive */ 72 uint16_t max; /* inclusive */ 73 } range; 74 75 uint16_t fixed[4]; 76 }; 77 78 static usb_callback_t usb_request_callback; 79 80 static const struct usb_config usb_control_ep_cfg[USB_CTRL_XFER_MAX] = { 81 82 /* This transfer is used for generic control endpoint transfers */ 83 84 [0] = { 85 .type = UE_CONTROL, 86 .endpoint = 0x00, /* Control endpoint */ 87 .direction = UE_DIR_ANY, 88 .bufsize = USB_EP0_BUFSIZE, /* bytes */ 89 .flags = {.proxy_buffer = 1,}, 90 .callback = &usb_request_callback, 91 .usb_mode = USB_MODE_DUAL, /* both modes */ 92 }, 93 94 /* This transfer is used for generic clear stall only */ 95 96 [1] = { 97 .type = UE_CONTROL, 98 .endpoint = 0x00, /* Control pipe */ 99 .direction = UE_DIR_ANY, 100 .bufsize = sizeof(struct usb_device_request), 101 .callback = &usb_do_clear_stall_callback, 102 .timeout = 1000, /* 1 second */ 103 .interval = 50, /* 50ms */ 104 .usb_mode = USB_MODE_HOST, 105 }, 106 }; 107 108 /* function prototypes */ 109 110 static void usbd_update_max_frame_size(struct usb_xfer *); 111 static void usbd_transfer_unsetup_sub(struct usb_xfer_root *, uint8_t); 112 static void usbd_control_transfer_init(struct usb_xfer *); 113 static int usbd_setup_ctrl_transfer(struct usb_xfer *); 114 static void usb_callback_proc(struct usb_proc_msg *); 115 static void usbd_callback_ss_done_defer(struct usb_xfer *); 116 static void usbd_callback_wrapper(struct usb_xfer_queue *); 117 static void usbd_transfer_start_cb(void *); 118 static uint8_t usbd_callback_wrapper_sub(struct usb_xfer *); 119 static void usbd_get_std_packet_size(struct usb_std_packet_size *ptr, 120 uint8_t type, enum usb_dev_speed speed); 121 122 /*------------------------------------------------------------------------* 123 * usb_request_callback 124 *------------------------------------------------------------------------*/ 125 static void 126 usb_request_callback(struct usb_xfer *xfer, usb_error_t error) 127 { 128 if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) 129 usb_handle_request_callback(xfer, error); 130 else 131 usbd_do_request_callback(xfer, error); 132 } 133 134 /*------------------------------------------------------------------------* 135 * usbd_update_max_frame_size 136 * 137 * This function updates the maximum frame size, hence high speed USB 138 * can transfer multiple consecutive packets. 139 *------------------------------------------------------------------------*/ 140 static void 141 usbd_update_max_frame_size(struct usb_xfer *xfer) 142 { 143 /* compute maximum frame size */ 144 /* this computation should not overflow 16-bit */ 145 /* max = 15 * 1024 */ 146 147 xfer->max_frame_size = xfer->max_packet_size * xfer->max_packet_count; 148 } 149 150 /*------------------------------------------------------------------------* 151 * usbd_get_dma_delay 152 * 153 * The following function is called when we need to 154 * synchronize with DMA hardware. 155 * 156 * Returns: 157 * 0: no DMA delay required 158 * Else: milliseconds of DMA delay 159 *------------------------------------------------------------------------*/ 160 usb_timeout_t 161 usbd_get_dma_delay(struct usb_device *udev) 162 { 163 const struct usb_bus_methods *mtod; 164 uint32_t temp; 165 166 mtod = udev->bus->methods; 167 temp = 0; 168 169 if (mtod->get_dma_delay) { 170 (mtod->get_dma_delay) (udev, &temp); 171 /* 172 * Round up and convert to milliseconds. Note that we use 173 * 1024 milliseconds per second. to save a division. 174 */ 175 temp += 0x3FF; 176 temp /= 0x400; 177 } 178 return (temp); 179 } 180 181 /*------------------------------------------------------------------------* 182 * usbd_transfer_setup_sub_malloc 183 * 184 * This function will allocate one or more DMA'able memory chunks 185 * according to "size", "align" and "count" arguments. "ppc" is 186 * pointed to a linear array of USB page caches afterwards. 187 * 188 * If the "align" argument is equal to "1" a non-contiguous allocation 189 * can happen. Else if the "align" argument is greater than "1", the 190 * allocation will always be contiguous in memory. 191 * 192 * Returns: 193 * 0: Success 194 * Else: Failure 195 *------------------------------------------------------------------------*/ 196 #if USB_HAVE_BUSDMA 197 uint8_t 198 usbd_transfer_setup_sub_malloc(struct usb_setup_params *parm, 199 struct usb_page_cache **ppc, usb_size_t size, usb_size_t align, 200 usb_size_t count) 201 { 202 struct usb_page_cache *pc; 203 struct usb_page *pg; 204 void *buf; 205 usb_size_t n_dma_pc; 206 usb_size_t n_dma_pg; 207 usb_size_t n_obj; 208 usb_size_t x; 209 usb_size_t y; 210 usb_size_t r; 211 usb_size_t z; 212 213 USB_ASSERT(align > 0, ("Invalid alignment, 0x%08x\n", 214 align)); 215 USB_ASSERT(size > 0, ("Invalid size = 0\n")); 216 217 if (count == 0) { 218 return (0); /* nothing to allocate */ 219 } 220 /* 221 * Make sure that the size is aligned properly. 222 */ 223 size = -((-size) & (-align)); 224 225 /* 226 * Try multi-allocation chunks to reduce the number of DMA 227 * allocations, hence DMA allocations are slow. 228 */ 229 if (align == 1) { 230 /* special case - non-cached multi page DMA memory */ 231 n_dma_pc = count; 232 n_dma_pg = (2 + (size / USB_PAGE_SIZE)); 233 n_obj = 1; 234 } else if (size >= USB_PAGE_SIZE) { 235 n_dma_pc = count; 236 n_dma_pg = 1; 237 n_obj = 1; 238 } else { 239 /* compute number of objects per page */ 240 n_obj = (USB_PAGE_SIZE / size); 241 /* 242 * Compute number of DMA chunks, rounded up 243 * to nearest one: 244 */ 245 n_dma_pc = ((count + n_obj - 1) / n_obj); 246 n_dma_pg = 1; 247 } 248 249 /* 250 * DMA memory is allocated once, but mapped twice. That's why 251 * there is one list for auto-free and another list for 252 * non-auto-free which only holds the mapping and not the 253 * allocation. 254 */ 255 if (parm->buf == NULL) { 256 /* reserve memory (auto-free) */ 257 parm->dma_page_ptr += n_dma_pc * n_dma_pg; 258 parm->dma_page_cache_ptr += n_dma_pc; 259 260 /* reserve memory (no-auto-free) */ 261 parm->dma_page_ptr += count * n_dma_pg; 262 parm->xfer_page_cache_ptr += count; 263 return (0); 264 } 265 for (x = 0; x != n_dma_pc; x++) { 266 /* need to initialize the page cache */ 267 parm->dma_page_cache_ptr[x].tag_parent = 268 &parm->curr_xfer->xroot->dma_parent_tag; 269 } 270 for (x = 0; x != count; x++) { 271 /* need to initialize the page cache */ 272 parm->xfer_page_cache_ptr[x].tag_parent = 273 &parm->curr_xfer->xroot->dma_parent_tag; 274 } 275 276 if (ppc) { 277 *ppc = parm->xfer_page_cache_ptr; 278 } 279 r = count; /* set remainder count */ 280 z = n_obj * size; /* set allocation size */ 281 pc = parm->xfer_page_cache_ptr; 282 pg = parm->dma_page_ptr; 283 284 for (x = 0; x != n_dma_pc; x++) { 285 286 if (r < n_obj) { 287 /* compute last remainder */ 288 z = r * size; 289 n_obj = r; 290 } 291 if (usb_pc_alloc_mem(parm->dma_page_cache_ptr, 292 pg, z, align)) { 293 return (1); /* failure */ 294 } 295 /* Set beginning of current buffer */ 296 buf = parm->dma_page_cache_ptr->buffer; 297 /* Make room for one DMA page cache and one page */ 298 parm->dma_page_cache_ptr++; 299 pg += n_dma_pg; 300 301 for (y = 0; (y != n_obj); y++, r--, pc++, pg += n_dma_pg) { 302 303 /* Load sub-chunk into DMA */ 304 if (usb_pc_dmamap_create(pc, size)) { 305 return (1); /* failure */ 306 } 307 pc->buffer = USB_ADD_BYTES(buf, y * size); 308 pc->page_start = pg; 309 310 mtx_lock(pc->tag_parent->mtx); 311 if (usb_pc_load_mem(pc, size, 1 /* synchronous */ )) { 312 mtx_unlock(pc->tag_parent->mtx); 313 return (1); /* failure */ 314 } 315 mtx_unlock(pc->tag_parent->mtx); 316 } 317 } 318 319 parm->xfer_page_cache_ptr = pc; 320 parm->dma_page_ptr = pg; 321 return (0); 322 } 323 #endif 324 325 /*------------------------------------------------------------------------* 326 * usbd_transfer_setup_sub - transfer setup subroutine 327 * 328 * This function must be called from the "xfer_setup" callback of the 329 * USB Host or Device controller driver when setting up an USB 330 * transfer. This function will setup correct packet sizes, buffer 331 * sizes, flags and more, that are stored in the "usb_xfer" 332 * structure. 333 *------------------------------------------------------------------------*/ 334 void 335 usbd_transfer_setup_sub(struct usb_setup_params *parm) 336 { 337 enum { 338 REQ_SIZE = 8, 339 MIN_PKT = 8, 340 }; 341 struct usb_xfer *xfer = parm->curr_xfer; 342 const struct usb_config *setup = parm->curr_setup; 343 struct usb_endpoint_ss_comp_descriptor *ecomp; 344 struct usb_endpoint_descriptor *edesc; 345 struct usb_std_packet_size std_size; 346 usb_frcount_t n_frlengths; 347 usb_frcount_t n_frbuffers; 348 usb_frcount_t x; 349 uint16_t maxp_old; 350 uint8_t type; 351 uint8_t zmps; 352 353 /* 354 * Sanity check. The following parameters must be initialized before 355 * calling this function. 356 */ 357 if ((parm->hc_max_packet_size == 0) || 358 (parm->hc_max_packet_count == 0) || 359 (parm->hc_max_frame_size == 0)) { 360 parm->err = USB_ERR_INVAL; 361 goto done; 362 } 363 edesc = xfer->endpoint->edesc; 364 ecomp = xfer->endpoint->ecomp; 365 366 type = (edesc->bmAttributes & UE_XFERTYPE); 367 368 xfer->flags = setup->flags; 369 xfer->nframes = setup->frames; 370 xfer->timeout = setup->timeout; 371 xfer->callback = setup->callback; 372 xfer->interval = setup->interval; 373 xfer->endpointno = edesc->bEndpointAddress; 374 xfer->max_packet_size = UGETW(edesc->wMaxPacketSize); 375 xfer->max_packet_count = 1; 376 /* make a shadow copy: */ 377 xfer->flags_int.usb_mode = parm->udev->flags.usb_mode; 378 379 parm->bufsize = setup->bufsize; 380 381 switch (parm->speed) { 382 case USB_SPEED_HIGH: 383 switch (type) { 384 case UE_ISOCHRONOUS: 385 case UE_INTERRUPT: 386 xfer->max_packet_count += 387 (xfer->max_packet_size >> 11) & 3; 388 389 /* check for invalid max packet count */ 390 if (xfer->max_packet_count > 3) 391 xfer->max_packet_count = 3; 392 break; 393 default: 394 break; 395 } 396 xfer->max_packet_size &= 0x7FF; 397 break; 398 case USB_SPEED_SUPER: 399 xfer->max_packet_count += (xfer->max_packet_size >> 11) & 3; 400 401 if (ecomp != NULL) 402 xfer->max_packet_count += ecomp->bMaxBurst; 403 404 if ((xfer->max_packet_count == 0) || 405 (xfer->max_packet_count > 16)) 406 xfer->max_packet_count = 16; 407 408 switch (type) { 409 case UE_CONTROL: 410 xfer->max_packet_count = 1; 411 break; 412 case UE_ISOCHRONOUS: 413 if (ecomp != NULL) { 414 uint8_t mult; 415 416 mult = UE_GET_SS_ISO_MULT( 417 ecomp->bmAttributes) + 1; 418 if (mult > 3) 419 mult = 3; 420 421 xfer->max_packet_count *= mult; 422 } 423 break; 424 default: 425 break; 426 } 427 xfer->max_packet_size &= 0x7FF; 428 break; 429 default: 430 break; 431 } 432 /* range check "max_packet_count" */ 433 434 if (xfer->max_packet_count > parm->hc_max_packet_count) { 435 xfer->max_packet_count = parm->hc_max_packet_count; 436 } 437 438 /* store max packet size value before filtering */ 439 440 maxp_old = xfer->max_packet_size; 441 442 /* filter "wMaxPacketSize" according to HC capabilities */ 443 444 if ((xfer->max_packet_size > parm->hc_max_packet_size) || 445 (xfer->max_packet_size == 0)) { 446 xfer->max_packet_size = parm->hc_max_packet_size; 447 } 448 /* filter "wMaxPacketSize" according to standard sizes */ 449 450 usbd_get_std_packet_size(&std_size, type, parm->speed); 451 452 if (std_size.range.min || std_size.range.max) { 453 454 if (xfer->max_packet_size < std_size.range.min) { 455 xfer->max_packet_size = std_size.range.min; 456 } 457 if (xfer->max_packet_size > std_size.range.max) { 458 xfer->max_packet_size = std_size.range.max; 459 } 460 } else { 461 462 if (xfer->max_packet_size >= std_size.fixed[3]) { 463 xfer->max_packet_size = std_size.fixed[3]; 464 } else if (xfer->max_packet_size >= std_size.fixed[2]) { 465 xfer->max_packet_size = std_size.fixed[2]; 466 } else if (xfer->max_packet_size >= std_size.fixed[1]) { 467 xfer->max_packet_size = std_size.fixed[1]; 468 } else { 469 /* only one possibility left */ 470 xfer->max_packet_size = std_size.fixed[0]; 471 } 472 } 473 474 /* 475 * Check if the max packet size was outside its allowed range 476 * and clamped to a valid value: 477 */ 478 if (maxp_old != xfer->max_packet_size) 479 xfer->flags_int.maxp_was_clamped = 1; 480 481 /* compute "max_frame_size" */ 482 483 usbd_update_max_frame_size(xfer); 484 485 /* check interrupt interval and transfer pre-delay */ 486 487 if (type == UE_ISOCHRONOUS) { 488 489 uint16_t frame_limit; 490 491 xfer->interval = 0; /* not used, must be zero */ 492 xfer->flags_int.isochronous_xfr = 1; /* set flag */ 493 494 if (xfer->timeout == 0) { 495 /* 496 * set a default timeout in 497 * case something goes wrong! 498 */ 499 xfer->timeout = 1000 / 4; 500 } 501 switch (parm->speed) { 502 case USB_SPEED_LOW: 503 case USB_SPEED_FULL: 504 frame_limit = USB_MAX_FS_ISOC_FRAMES_PER_XFER; 505 xfer->fps_shift = 0; 506 break; 507 default: 508 frame_limit = USB_MAX_HS_ISOC_FRAMES_PER_XFER; 509 xfer->fps_shift = edesc->bInterval; 510 if (xfer->fps_shift > 0) 511 xfer->fps_shift--; 512 if (xfer->fps_shift > 3) 513 xfer->fps_shift = 3; 514 if (xfer->flags.pre_scale_frames != 0) 515 xfer->nframes <<= (3 - xfer->fps_shift); 516 break; 517 } 518 519 if (xfer->nframes > frame_limit) { 520 /* 521 * this is not going to work 522 * cross hardware 523 */ 524 parm->err = USB_ERR_INVAL; 525 goto done; 526 } 527 if (xfer->nframes == 0) { 528 /* 529 * this is not a valid value 530 */ 531 parm->err = USB_ERR_ZERO_NFRAMES; 532 goto done; 533 } 534 } else { 535 536 /* 537 * If a value is specified use that else check the 538 * endpoint descriptor! 539 */ 540 if (type == UE_INTERRUPT) { 541 542 uint32_t temp; 543 544 if (xfer->interval == 0) { 545 546 xfer->interval = edesc->bInterval; 547 548 switch (parm->speed) { 549 case USB_SPEED_LOW: 550 case USB_SPEED_FULL: 551 break; 552 default: 553 /* 125us -> 1ms */ 554 if (xfer->interval < 4) 555 xfer->interval = 1; 556 else if (xfer->interval > 16) 557 xfer->interval = (1 << (16 - 4)); 558 else 559 xfer->interval = 560 (1 << (xfer->interval - 4)); 561 break; 562 } 563 } 564 565 if (xfer->interval == 0) { 566 /* 567 * One millisecond is the smallest 568 * interval we support: 569 */ 570 xfer->interval = 1; 571 } 572 573 xfer->fps_shift = 0; 574 temp = 1; 575 576 while ((temp != 0) && (temp < xfer->interval)) { 577 xfer->fps_shift++; 578 temp *= 2; 579 } 580 581 switch (parm->speed) { 582 case USB_SPEED_LOW: 583 case USB_SPEED_FULL: 584 break; 585 default: 586 xfer->fps_shift += 3; 587 break; 588 } 589 } 590 } 591 592 /* 593 * NOTE: we do not allow "max_packet_size" or "max_frame_size" 594 * to be equal to zero when setting up USB transfers, hence 595 * this leads to alot of extra code in the USB kernel. 596 */ 597 598 if ((xfer->max_frame_size == 0) || 599 (xfer->max_packet_size == 0)) { 600 601 zmps = 1; 602 603 if ((parm->bufsize <= MIN_PKT) && 604 (type != UE_CONTROL) && 605 (type != UE_BULK)) { 606 607 /* workaround */ 608 xfer->max_packet_size = MIN_PKT; 609 xfer->max_packet_count = 1; 610 parm->bufsize = 0; /* automatic setup length */ 611 usbd_update_max_frame_size(xfer); 612 613 } else { 614 parm->err = USB_ERR_ZERO_MAXP; 615 goto done; 616 } 617 618 } else { 619 zmps = 0; 620 } 621 622 /* 623 * check if we should setup a default 624 * length: 625 */ 626 627 if (parm->bufsize == 0) { 628 629 parm->bufsize = xfer->max_frame_size; 630 631 if (type == UE_ISOCHRONOUS) { 632 parm->bufsize *= xfer->nframes; 633 } 634 } 635 /* 636 * check if we are about to setup a proxy 637 * type of buffer: 638 */ 639 640 if (xfer->flags.proxy_buffer) { 641 642 /* round bufsize up */ 643 644 parm->bufsize += (xfer->max_frame_size - 1); 645 646 if (parm->bufsize < xfer->max_frame_size) { 647 /* length wrapped around */ 648 parm->err = USB_ERR_INVAL; 649 goto done; 650 } 651 /* subtract remainder */ 652 653 parm->bufsize -= (parm->bufsize % xfer->max_frame_size); 654 655 /* add length of USB device request structure, if any */ 656 657 if (type == UE_CONTROL) { 658 parm->bufsize += REQ_SIZE; /* SETUP message */ 659 } 660 } 661 xfer->max_data_length = parm->bufsize; 662 663 /* Setup "n_frlengths" and "n_frbuffers" */ 664 665 if (type == UE_ISOCHRONOUS) { 666 n_frlengths = xfer->nframes; 667 n_frbuffers = 1; 668 } else { 669 670 if (type == UE_CONTROL) { 671 xfer->flags_int.control_xfr = 1; 672 if (xfer->nframes == 0) { 673 if (parm->bufsize <= REQ_SIZE) { 674 /* 675 * there will never be any data 676 * stage 677 */ 678 xfer->nframes = 1; 679 } else { 680 xfer->nframes = 2; 681 } 682 } 683 } else { 684 if (xfer->nframes == 0) { 685 xfer->nframes = 1; 686 } 687 } 688 689 n_frlengths = xfer->nframes; 690 n_frbuffers = xfer->nframes; 691 } 692 693 /* 694 * check if we have room for the 695 * USB device request structure: 696 */ 697 698 if (type == UE_CONTROL) { 699 700 if (xfer->max_data_length < REQ_SIZE) { 701 /* length wrapped around or too small bufsize */ 702 parm->err = USB_ERR_INVAL; 703 goto done; 704 } 705 xfer->max_data_length -= REQ_SIZE; 706 } 707 /* 708 * Setup "frlengths" and shadow "frlengths" for keeping the 709 * initial frame lengths when a USB transfer is complete. This 710 * information is useful when computing isochronous offsets. 711 */ 712 xfer->frlengths = parm->xfer_length_ptr; 713 parm->xfer_length_ptr += 2 * n_frlengths; 714 715 /* setup "frbuffers" */ 716 xfer->frbuffers = parm->xfer_page_cache_ptr; 717 parm->xfer_page_cache_ptr += n_frbuffers; 718 719 /* initialize max frame count */ 720 xfer->max_frame_count = xfer->nframes; 721 722 /* 723 * check if we need to setup 724 * a local buffer: 725 */ 726 727 if (!xfer->flags.ext_buffer) { 728 #if USB_HAVE_BUSDMA 729 struct usb_page_search page_info; 730 struct usb_page_cache *pc; 731 732 if (usbd_transfer_setup_sub_malloc(parm, 733 &pc, parm->bufsize, 1, 1)) { 734 parm->err = USB_ERR_NOMEM; 735 } else if (parm->buf != NULL) { 736 737 usbd_get_page(pc, 0, &page_info); 738 739 xfer->local_buffer = page_info.buffer; 740 741 usbd_xfer_set_frame_offset(xfer, 0, 0); 742 743 if ((type == UE_CONTROL) && (n_frbuffers > 1)) { 744 usbd_xfer_set_frame_offset(xfer, REQ_SIZE, 1); 745 } 746 } 747 #else 748 /* align data */ 749 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 750 751 if (parm->buf != NULL) { 752 xfer->local_buffer = 753 USB_ADD_BYTES(parm->buf, parm->size[0]); 754 755 usbd_xfer_set_frame_offset(xfer, 0, 0); 756 757 if ((type == UE_CONTROL) && (n_frbuffers > 1)) { 758 usbd_xfer_set_frame_offset(xfer, REQ_SIZE, 1); 759 } 760 } 761 parm->size[0] += parm->bufsize; 762 763 /* align data again */ 764 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 765 #endif 766 } 767 /* 768 * Compute maximum buffer size 769 */ 770 771 if (parm->bufsize_max < parm->bufsize) { 772 parm->bufsize_max = parm->bufsize; 773 } 774 #if USB_HAVE_BUSDMA 775 if (xfer->flags_int.bdma_enable) { 776 /* 777 * Setup "dma_page_ptr". 778 * 779 * Proof for formula below: 780 * 781 * Assume there are three USB frames having length "a", "b" and 782 * "c". These USB frames will at maximum need "z" 783 * "usb_page" structures. "z" is given by: 784 * 785 * z = ((a / USB_PAGE_SIZE) + 2) + ((b / USB_PAGE_SIZE) + 2) + 786 * ((c / USB_PAGE_SIZE) + 2); 787 * 788 * Constraining "a", "b" and "c" like this: 789 * 790 * (a + b + c) <= parm->bufsize 791 * 792 * We know that: 793 * 794 * z <= ((parm->bufsize / USB_PAGE_SIZE) + (3*2)); 795 * 796 * Here is the general formula: 797 */ 798 xfer->dma_page_ptr = parm->dma_page_ptr; 799 parm->dma_page_ptr += (2 * n_frbuffers); 800 parm->dma_page_ptr += (parm->bufsize / USB_PAGE_SIZE); 801 } 802 #endif 803 if (zmps) { 804 /* correct maximum data length */ 805 xfer->max_data_length = 0; 806 } 807 /* subtract USB frame remainder from "hc_max_frame_size" */ 808 809 xfer->max_hc_frame_size = 810 (parm->hc_max_frame_size - 811 (parm->hc_max_frame_size % xfer->max_frame_size)); 812 813 if (xfer->max_hc_frame_size == 0) { 814 parm->err = USB_ERR_INVAL; 815 goto done; 816 } 817 818 /* initialize frame buffers */ 819 820 if (parm->buf) { 821 for (x = 0; x != n_frbuffers; x++) { 822 xfer->frbuffers[x].tag_parent = 823 &xfer->xroot->dma_parent_tag; 824 #if USB_HAVE_BUSDMA 825 if (xfer->flags_int.bdma_enable && 826 (parm->bufsize_max > 0)) { 827 828 if (usb_pc_dmamap_create( 829 xfer->frbuffers + x, 830 parm->bufsize_max)) { 831 parm->err = USB_ERR_NOMEM; 832 goto done; 833 } 834 } 835 #endif 836 } 837 } 838 done: 839 if (parm->err) { 840 /* 841 * Set some dummy values so that we avoid division by zero: 842 */ 843 xfer->max_hc_frame_size = 1; 844 xfer->max_frame_size = 1; 845 xfer->max_packet_size = 1; 846 xfer->max_data_length = 0; 847 xfer->nframes = 0; 848 xfer->max_frame_count = 0; 849 } 850 } 851 852 /*------------------------------------------------------------------------* 853 * usbd_transfer_setup - setup an array of USB transfers 854 * 855 * NOTE: You must always call "usbd_transfer_unsetup" after calling 856 * "usbd_transfer_setup" if success was returned. 857 * 858 * The idea is that the USB device driver should pre-allocate all its 859 * transfers by one call to this function. 860 * 861 * Return values: 862 * 0: Success 863 * Else: Failure 864 *------------------------------------------------------------------------*/ 865 usb_error_t 866 usbd_transfer_setup(struct usb_device *udev, 867 const uint8_t *ifaces, struct usb_xfer **ppxfer, 868 const struct usb_config *setup_start, uint16_t n_setup, 869 void *priv_sc, struct mtx *xfer_mtx) 870 { 871 const struct usb_config *setup_end = setup_start + n_setup; 872 const struct usb_config *setup; 873 struct usb_setup_params *parm; 874 struct usb_endpoint *ep; 875 struct usb_xfer_root *info; 876 struct usb_xfer *xfer; 877 void *buf = NULL; 878 usb_error_t error = 0; 879 uint16_t n; 880 uint16_t refcount; 881 uint8_t do_unlock; 882 883 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 884 "usbd_transfer_setup can sleep!"); 885 886 /* do some checking first */ 887 888 if (n_setup == 0) { 889 DPRINTFN(6, "setup array has zero length!\n"); 890 return (USB_ERR_INVAL); 891 } 892 if (ifaces == 0) { 893 DPRINTFN(6, "ifaces array is NULL!\n"); 894 return (USB_ERR_INVAL); 895 } 896 if (xfer_mtx == NULL) { 897 DPRINTFN(6, "using global lock\n"); 898 xfer_mtx = &Giant; 899 } 900 901 /* more sanity checks */ 902 903 for (setup = setup_start, n = 0; 904 setup != setup_end; setup++, n++) { 905 if (setup->bufsize == (usb_frlength_t)-1) { 906 error = USB_ERR_BAD_BUFSIZE; 907 DPRINTF("invalid bufsize\n"); 908 } 909 if (setup->callback == NULL) { 910 error = USB_ERR_NO_CALLBACK; 911 DPRINTF("no callback\n"); 912 } 913 ppxfer[n] = NULL; 914 } 915 916 if (error) 917 return (error); 918 919 /* Protect scratch area */ 920 do_unlock = usbd_enum_lock(udev); 921 922 refcount = 0; 923 info = NULL; 924 925 parm = &udev->scratch.xfer_setup[0].parm; 926 memset(parm, 0, sizeof(*parm)); 927 928 parm->udev = udev; 929 parm->speed = usbd_get_speed(udev); 930 parm->hc_max_packet_count = 1; 931 932 if (parm->speed >= USB_SPEED_MAX) { 933 parm->err = USB_ERR_INVAL; 934 goto done; 935 } 936 /* setup all transfers */ 937 938 while (1) { 939 940 if (buf) { 941 /* 942 * Initialize the "usb_xfer_root" structure, 943 * which is common for all our USB transfers. 944 */ 945 info = USB_ADD_BYTES(buf, 0); 946 947 info->memory_base = buf; 948 info->memory_size = parm->size[0]; 949 950 #if USB_HAVE_BUSDMA 951 info->dma_page_cache_start = USB_ADD_BYTES(buf, parm->size[4]); 952 info->dma_page_cache_end = USB_ADD_BYTES(buf, parm->size[5]); 953 #endif 954 info->xfer_page_cache_start = USB_ADD_BYTES(buf, parm->size[5]); 955 info->xfer_page_cache_end = USB_ADD_BYTES(buf, parm->size[2]); 956 957 cv_init(&info->cv_drain, "WDRAIN"); 958 959 info->xfer_mtx = xfer_mtx; 960 #if USB_HAVE_BUSDMA 961 usb_dma_tag_setup(&info->dma_parent_tag, 962 parm->dma_tag_p, udev->bus->dma_parent_tag[0].tag, 963 xfer_mtx, &usb_bdma_done_event, udev->bus->dma_bits, 964 parm->dma_tag_max); 965 #endif 966 967 info->bus = udev->bus; 968 info->udev = udev; 969 970 TAILQ_INIT(&info->done_q.head); 971 info->done_q.command = &usbd_callback_wrapper; 972 #if USB_HAVE_BUSDMA 973 TAILQ_INIT(&info->dma_q.head); 974 info->dma_q.command = &usb_bdma_work_loop; 975 #endif 976 info->done_m[0].hdr.pm_callback = &usb_callback_proc; 977 info->done_m[0].xroot = info; 978 info->done_m[1].hdr.pm_callback = &usb_callback_proc; 979 info->done_m[1].xroot = info; 980 981 /* 982 * In device side mode control endpoint 983 * requests need to run from a separate 984 * context, else there is a chance of 985 * deadlock! 986 */ 987 if (setup_start == usb_control_ep_cfg) 988 info->done_p = 989 USB_BUS_CONTROL_XFER_PROC(udev->bus); 990 else if (xfer_mtx == &Giant) 991 info->done_p = 992 USB_BUS_GIANT_PROC(udev->bus); 993 else 994 info->done_p = 995 USB_BUS_NON_GIANT_PROC(udev->bus); 996 } 997 /* reset sizes */ 998 999 parm->size[0] = 0; 1000 parm->buf = buf; 1001 parm->size[0] += sizeof(info[0]); 1002 1003 for (setup = setup_start, n = 0; 1004 setup != setup_end; setup++, n++) { 1005 1006 /* skip USB transfers without callbacks: */ 1007 if (setup->callback == NULL) { 1008 continue; 1009 } 1010 /* see if there is a matching endpoint */ 1011 ep = usbd_get_endpoint(udev, 1012 ifaces[setup->if_index], setup); 1013 1014 /* 1015 * Check that the USB PIPE is valid and that 1016 * the endpoint mode is proper. 1017 * 1018 * Make sure we don't allocate a streams 1019 * transfer when such a combination is not 1020 * valid. 1021 */ 1022 if ((ep == NULL) || (ep->methods == NULL) || 1023 ((ep->ep_mode != USB_EP_MODE_STREAMS) && 1024 (ep->ep_mode != USB_EP_MODE_DEFAULT)) || 1025 (setup->stream_id != 0 && 1026 (setup->stream_id >= USB_MAX_EP_STREAMS || 1027 (ep->ep_mode != USB_EP_MODE_STREAMS)))) { 1028 if (setup->flags.no_pipe_ok) 1029 continue; 1030 if ((setup->usb_mode != USB_MODE_DUAL) && 1031 (setup->usb_mode != udev->flags.usb_mode)) 1032 continue; 1033 parm->err = USB_ERR_NO_PIPE; 1034 goto done; 1035 } 1036 1037 /* align data properly */ 1038 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1039 1040 /* store current setup pointer */ 1041 parm->curr_setup = setup; 1042 1043 if (buf) { 1044 /* 1045 * Common initialization of the 1046 * "usb_xfer" structure. 1047 */ 1048 xfer = USB_ADD_BYTES(buf, parm->size[0]); 1049 xfer->address = udev->address; 1050 xfer->priv_sc = priv_sc; 1051 xfer->xroot = info; 1052 1053 usb_callout_init_mtx(&xfer->timeout_handle, 1054 &udev->bus->bus_mtx, 0); 1055 } else { 1056 /* 1057 * Setup a dummy xfer, hence we are 1058 * writing to the "usb_xfer" 1059 * structure pointed to by "xfer" 1060 * before we have allocated any 1061 * memory: 1062 */ 1063 xfer = &udev->scratch.xfer_setup[0].dummy; 1064 memset(xfer, 0, sizeof(*xfer)); 1065 refcount++; 1066 } 1067 1068 /* set transfer endpoint pointer */ 1069 xfer->endpoint = ep; 1070 1071 /* set transfer stream ID */ 1072 xfer->stream_id = setup->stream_id; 1073 1074 parm->size[0] += sizeof(xfer[0]); 1075 parm->methods = xfer->endpoint->methods; 1076 parm->curr_xfer = xfer; 1077 1078 /* 1079 * Call the Host or Device controller transfer 1080 * setup routine: 1081 */ 1082 (udev->bus->methods->xfer_setup) (parm); 1083 1084 /* check for error */ 1085 if (parm->err) 1086 goto done; 1087 1088 if (buf) { 1089 /* 1090 * Increment the endpoint refcount. This 1091 * basically prevents setting a new 1092 * configuration and alternate setting 1093 * when USB transfers are in use on 1094 * the given interface. Search the USB 1095 * code for "endpoint->refcount_alloc" if you 1096 * want more information. 1097 */ 1098 USB_BUS_LOCK(info->bus); 1099 if (xfer->endpoint->refcount_alloc >= USB_EP_REF_MAX) 1100 parm->err = USB_ERR_INVAL; 1101 1102 xfer->endpoint->refcount_alloc++; 1103 1104 if (xfer->endpoint->refcount_alloc == 0) 1105 panic("usbd_transfer_setup(): Refcount wrapped to zero\n"); 1106 USB_BUS_UNLOCK(info->bus); 1107 1108 /* 1109 * Whenever we set ppxfer[] then we 1110 * also need to increment the 1111 * "setup_refcount": 1112 */ 1113 info->setup_refcount++; 1114 1115 /* 1116 * Transfer is successfully setup and 1117 * can be used: 1118 */ 1119 ppxfer[n] = xfer; 1120 } 1121 1122 /* check for error */ 1123 if (parm->err) 1124 goto done; 1125 } 1126 1127 if (buf != NULL || parm->err != 0) 1128 goto done; 1129 1130 /* if no transfers, nothing to do */ 1131 if (refcount == 0) 1132 goto done; 1133 1134 /* align data properly */ 1135 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1136 1137 /* store offset temporarily */ 1138 parm->size[1] = parm->size[0]; 1139 1140 /* 1141 * The number of DMA tags required depends on 1142 * the number of endpoints. The current estimate 1143 * for maximum number of DMA tags per endpoint 1144 * is three: 1145 * 1) for loading memory 1146 * 2) for allocating memory 1147 * 3) for fixing memory [UHCI] 1148 */ 1149 parm->dma_tag_max += 3 * MIN(n_setup, USB_EP_MAX); 1150 1151 /* 1152 * DMA tags for QH, TD, Data and more. 1153 */ 1154 parm->dma_tag_max += 8; 1155 1156 parm->dma_tag_p += parm->dma_tag_max; 1157 1158 parm->size[0] += ((uint8_t *)parm->dma_tag_p) - 1159 ((uint8_t *)0); 1160 1161 /* align data properly */ 1162 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1163 1164 /* store offset temporarily */ 1165 parm->size[3] = parm->size[0]; 1166 1167 parm->size[0] += ((uint8_t *)parm->dma_page_ptr) - 1168 ((uint8_t *)0); 1169 1170 /* align data properly */ 1171 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1172 1173 /* store offset temporarily */ 1174 parm->size[4] = parm->size[0]; 1175 1176 parm->size[0] += ((uint8_t *)parm->dma_page_cache_ptr) - 1177 ((uint8_t *)0); 1178 1179 /* store end offset temporarily */ 1180 parm->size[5] = parm->size[0]; 1181 1182 parm->size[0] += ((uint8_t *)parm->xfer_page_cache_ptr) - 1183 ((uint8_t *)0); 1184 1185 /* store end offset temporarily */ 1186 1187 parm->size[2] = parm->size[0]; 1188 1189 /* align data properly */ 1190 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1191 1192 parm->size[6] = parm->size[0]; 1193 1194 parm->size[0] += ((uint8_t *)parm->xfer_length_ptr) - 1195 ((uint8_t *)0); 1196 1197 /* align data properly */ 1198 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1199 1200 /* allocate zeroed memory */ 1201 buf = malloc(parm->size[0], M_USB, M_WAITOK | M_ZERO); 1202 1203 if (buf == NULL) { 1204 parm->err = USB_ERR_NOMEM; 1205 DPRINTFN(0, "cannot allocate memory block for " 1206 "configuration (%d bytes)\n", 1207 parm->size[0]); 1208 goto done; 1209 } 1210 parm->dma_tag_p = USB_ADD_BYTES(buf, parm->size[1]); 1211 parm->dma_page_ptr = USB_ADD_BYTES(buf, parm->size[3]); 1212 parm->dma_page_cache_ptr = USB_ADD_BYTES(buf, parm->size[4]); 1213 parm->xfer_page_cache_ptr = USB_ADD_BYTES(buf, parm->size[5]); 1214 parm->xfer_length_ptr = USB_ADD_BYTES(buf, parm->size[6]); 1215 } 1216 1217 done: 1218 if (buf) { 1219 if (info->setup_refcount == 0) { 1220 /* 1221 * "usbd_transfer_unsetup_sub" will unlock 1222 * the bus mutex before returning ! 1223 */ 1224 USB_BUS_LOCK(info->bus); 1225 1226 /* something went wrong */ 1227 usbd_transfer_unsetup_sub(info, 0); 1228 } 1229 } 1230 1231 /* check if any errors happened */ 1232 if (parm->err) 1233 usbd_transfer_unsetup(ppxfer, n_setup); 1234 1235 error = parm->err; 1236 1237 if (do_unlock) 1238 usbd_enum_unlock(udev); 1239 1240 return (error); 1241 } 1242 1243 /*------------------------------------------------------------------------* 1244 * usbd_transfer_unsetup_sub - factored out code 1245 *------------------------------------------------------------------------*/ 1246 static void 1247 usbd_transfer_unsetup_sub(struct usb_xfer_root *info, uint8_t needs_delay) 1248 { 1249 #if USB_HAVE_BUSDMA 1250 struct usb_page_cache *pc; 1251 #endif 1252 1253 USB_BUS_LOCK_ASSERT(info->bus, MA_OWNED); 1254 1255 /* wait for any outstanding DMA operations */ 1256 1257 if (needs_delay) { 1258 usb_timeout_t temp; 1259 temp = usbd_get_dma_delay(info->udev); 1260 if (temp != 0) { 1261 usb_pause_mtx(&info->bus->bus_mtx, 1262 USB_MS_TO_TICKS(temp)); 1263 } 1264 } 1265 1266 /* make sure that our done messages are not queued anywhere */ 1267 usb_proc_mwait(info->done_p, &info->done_m[0], &info->done_m[1]); 1268 1269 USB_BUS_UNLOCK(info->bus); 1270 1271 #if USB_HAVE_BUSDMA 1272 /* free DMA'able memory, if any */ 1273 pc = info->dma_page_cache_start; 1274 while (pc != info->dma_page_cache_end) { 1275 usb_pc_free_mem(pc); 1276 pc++; 1277 } 1278 1279 /* free DMA maps in all "xfer->frbuffers" */ 1280 pc = info->xfer_page_cache_start; 1281 while (pc != info->xfer_page_cache_end) { 1282 usb_pc_dmamap_destroy(pc); 1283 pc++; 1284 } 1285 1286 /* free all DMA tags */ 1287 usb_dma_tag_unsetup(&info->dma_parent_tag); 1288 #endif 1289 1290 cv_destroy(&info->cv_drain); 1291 1292 /* 1293 * free the "memory_base" last, hence the "info" structure is 1294 * contained within the "memory_base"! 1295 */ 1296 free(info->memory_base, M_USB); 1297 } 1298 1299 /*------------------------------------------------------------------------* 1300 * usbd_transfer_unsetup - unsetup/free an array of USB transfers 1301 * 1302 * NOTE: All USB transfers in progress will get called back passing 1303 * the error code "USB_ERR_CANCELLED" before this function 1304 * returns. 1305 *------------------------------------------------------------------------*/ 1306 void 1307 usbd_transfer_unsetup(struct usb_xfer **pxfer, uint16_t n_setup) 1308 { 1309 struct usb_xfer *xfer; 1310 struct usb_xfer_root *info; 1311 uint8_t needs_delay = 0; 1312 1313 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 1314 "usbd_transfer_unsetup can sleep!"); 1315 1316 while (n_setup--) { 1317 xfer = pxfer[n_setup]; 1318 1319 if (xfer == NULL) 1320 continue; 1321 1322 info = xfer->xroot; 1323 1324 USB_XFER_LOCK(xfer); 1325 USB_BUS_LOCK(info->bus); 1326 1327 /* 1328 * HINT: when you start/stop a transfer, it might be a 1329 * good idea to directly use the "pxfer[]" structure: 1330 * 1331 * usbd_transfer_start(sc->pxfer[0]); 1332 * usbd_transfer_stop(sc->pxfer[0]); 1333 * 1334 * That way, if your code has many parts that will not 1335 * stop running under the same lock, in other words 1336 * "xfer_mtx", the usbd_transfer_start and 1337 * usbd_transfer_stop functions will simply return 1338 * when they detect a NULL pointer argument. 1339 * 1340 * To avoid any races we clear the "pxfer[]" pointer 1341 * while holding the private mutex of the driver: 1342 */ 1343 pxfer[n_setup] = NULL; 1344 1345 USB_BUS_UNLOCK(info->bus); 1346 USB_XFER_UNLOCK(xfer); 1347 1348 usbd_transfer_drain(xfer); 1349 1350 #if USB_HAVE_BUSDMA 1351 if (xfer->flags_int.bdma_enable) 1352 needs_delay = 1; 1353 #endif 1354 /* 1355 * NOTE: default endpoint does not have an 1356 * interface, even if endpoint->iface_index == 0 1357 */ 1358 USB_BUS_LOCK(info->bus); 1359 xfer->endpoint->refcount_alloc--; 1360 USB_BUS_UNLOCK(info->bus); 1361 1362 usb_callout_drain(&xfer->timeout_handle); 1363 1364 USB_BUS_LOCK(info->bus); 1365 1366 USB_ASSERT(info->setup_refcount != 0, ("Invalid setup " 1367 "reference count\n")); 1368 1369 info->setup_refcount--; 1370 1371 if (info->setup_refcount == 0) { 1372 usbd_transfer_unsetup_sub(info, 1373 needs_delay); 1374 } else { 1375 USB_BUS_UNLOCK(info->bus); 1376 } 1377 } 1378 } 1379 1380 /*------------------------------------------------------------------------* 1381 * usbd_control_transfer_init - factored out code 1382 * 1383 * In USB Device Mode we have to wait for the SETUP packet which 1384 * containst the "struct usb_device_request" structure, before we can 1385 * transfer any data. In USB Host Mode we already have the SETUP 1386 * packet at the moment the USB transfer is started. This leads us to 1387 * having to setup the USB transfer at two different places in 1388 * time. This function just contains factored out control transfer 1389 * initialisation code, so that we don't duplicate the code. 1390 *------------------------------------------------------------------------*/ 1391 static void 1392 usbd_control_transfer_init(struct usb_xfer *xfer) 1393 { 1394 struct usb_device_request req; 1395 1396 /* copy out the USB request header */ 1397 1398 usbd_copy_out(xfer->frbuffers, 0, &req, sizeof(req)); 1399 1400 /* setup remainder */ 1401 1402 xfer->flags_int.control_rem = UGETW(req.wLength); 1403 1404 /* copy direction to endpoint variable */ 1405 1406 xfer->endpointno &= ~(UE_DIR_IN | UE_DIR_OUT); 1407 xfer->endpointno |= 1408 (req.bmRequestType & UT_READ) ? UE_DIR_IN : UE_DIR_OUT; 1409 } 1410 1411 /*------------------------------------------------------------------------* 1412 * usbd_setup_ctrl_transfer 1413 * 1414 * This function handles initialisation of control transfers. Control 1415 * transfers are special in that regard that they can both transmit 1416 * and receive data. 1417 * 1418 * Return values: 1419 * 0: Success 1420 * Else: Failure 1421 *------------------------------------------------------------------------*/ 1422 static int 1423 usbd_setup_ctrl_transfer(struct usb_xfer *xfer) 1424 { 1425 usb_frlength_t len; 1426 1427 /* Check for control endpoint stall */ 1428 if (xfer->flags.stall_pipe && xfer->flags_int.control_act) { 1429 /* the control transfer is no longer active */ 1430 xfer->flags_int.control_stall = 1; 1431 xfer->flags_int.control_act = 0; 1432 } else { 1433 /* don't stall control transfer by default */ 1434 xfer->flags_int.control_stall = 0; 1435 } 1436 1437 /* Check for invalid number of frames */ 1438 if (xfer->nframes > 2) { 1439 /* 1440 * If you need to split a control transfer, you 1441 * have to do one part at a time. Only with 1442 * non-control transfers you can do multiple 1443 * parts a time. 1444 */ 1445 DPRINTFN(0, "Too many frames: %u\n", 1446 (unsigned int)xfer->nframes); 1447 goto error; 1448 } 1449 1450 /* 1451 * Check if there is a control 1452 * transfer in progress: 1453 */ 1454 if (xfer->flags_int.control_act) { 1455 1456 if (xfer->flags_int.control_hdr) { 1457 1458 /* clear send header flag */ 1459 1460 xfer->flags_int.control_hdr = 0; 1461 1462 /* setup control transfer */ 1463 if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) { 1464 usbd_control_transfer_init(xfer); 1465 } 1466 } 1467 /* get data length */ 1468 1469 len = xfer->sumlen; 1470 1471 } else { 1472 1473 /* the size of the SETUP structure is hardcoded ! */ 1474 1475 if (xfer->frlengths[0] != sizeof(struct usb_device_request)) { 1476 DPRINTFN(0, "Wrong framelength %u != %zu\n", 1477 xfer->frlengths[0], sizeof(struct 1478 usb_device_request)); 1479 goto error; 1480 } 1481 /* check USB mode */ 1482 if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) { 1483 1484 /* check number of frames */ 1485 if (xfer->nframes != 1) { 1486 /* 1487 * We need to receive the setup 1488 * message first so that we know the 1489 * data direction! 1490 */ 1491 DPRINTF("Misconfigured transfer\n"); 1492 goto error; 1493 } 1494 /* 1495 * Set a dummy "control_rem" value. This 1496 * variable will be overwritten later by a 1497 * call to "usbd_control_transfer_init()" ! 1498 */ 1499 xfer->flags_int.control_rem = 0xFFFF; 1500 } else { 1501 1502 /* setup "endpoint" and "control_rem" */ 1503 1504 usbd_control_transfer_init(xfer); 1505 } 1506 1507 /* set transfer-header flag */ 1508 1509 xfer->flags_int.control_hdr = 1; 1510 1511 /* get data length */ 1512 1513 len = (xfer->sumlen - sizeof(struct usb_device_request)); 1514 } 1515 1516 /* check if there is a length mismatch */ 1517 1518 if (len > xfer->flags_int.control_rem) { 1519 DPRINTFN(0, "Length (%d) greater than " 1520 "remaining length (%d)\n", len, 1521 xfer->flags_int.control_rem); 1522 goto error; 1523 } 1524 /* check if we are doing a short transfer */ 1525 1526 if (xfer->flags.force_short_xfer) { 1527 xfer->flags_int.control_rem = 0; 1528 } else { 1529 if ((len != xfer->max_data_length) && 1530 (len != xfer->flags_int.control_rem) && 1531 (xfer->nframes != 1)) { 1532 DPRINTFN(0, "Short control transfer without " 1533 "force_short_xfer set\n"); 1534 goto error; 1535 } 1536 xfer->flags_int.control_rem -= len; 1537 } 1538 1539 /* the status part is executed when "control_act" is 0 */ 1540 1541 if ((xfer->flags_int.control_rem > 0) || 1542 (xfer->flags.manual_status)) { 1543 /* don't execute the STATUS stage yet */ 1544 xfer->flags_int.control_act = 1; 1545 1546 /* sanity check */ 1547 if ((!xfer->flags_int.control_hdr) && 1548 (xfer->nframes == 1)) { 1549 /* 1550 * This is not a valid operation! 1551 */ 1552 DPRINTFN(0, "Invalid parameter " 1553 "combination\n"); 1554 goto error; 1555 } 1556 } else { 1557 /* time to execute the STATUS stage */ 1558 xfer->flags_int.control_act = 0; 1559 } 1560 return (0); /* success */ 1561 1562 error: 1563 return (1); /* failure */ 1564 } 1565 1566 /*------------------------------------------------------------------------* 1567 * usbd_transfer_submit - start USB hardware for the given transfer 1568 * 1569 * This function should only be called from the USB callback. 1570 *------------------------------------------------------------------------*/ 1571 void 1572 usbd_transfer_submit(struct usb_xfer *xfer) 1573 { 1574 struct usb_xfer_root *info; 1575 struct usb_bus *bus; 1576 usb_frcount_t x; 1577 1578 info = xfer->xroot; 1579 bus = info->bus; 1580 1581 DPRINTF("xfer=%p, endpoint=%p, nframes=%d, dir=%s\n", 1582 xfer, xfer->endpoint, xfer->nframes, USB_GET_DATA_ISREAD(xfer) ? 1583 "read" : "write"); 1584 1585 #ifdef USB_DEBUG 1586 if (USB_DEBUG_VAR > 0) { 1587 USB_BUS_LOCK(bus); 1588 1589 usb_dump_endpoint(xfer->endpoint); 1590 1591 USB_BUS_UNLOCK(bus); 1592 } 1593 #endif 1594 1595 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 1596 USB_BUS_LOCK_ASSERT(bus, MA_NOTOWNED); 1597 1598 /* Only open the USB transfer once! */ 1599 if (!xfer->flags_int.open) { 1600 xfer->flags_int.open = 1; 1601 1602 DPRINTF("open\n"); 1603 1604 USB_BUS_LOCK(bus); 1605 (xfer->endpoint->methods->open) (xfer); 1606 USB_BUS_UNLOCK(bus); 1607 } 1608 /* set "transferring" flag */ 1609 xfer->flags_int.transferring = 1; 1610 1611 #if USB_HAVE_POWERD 1612 /* increment power reference */ 1613 usbd_transfer_power_ref(xfer, 1); 1614 #endif 1615 /* 1616 * Check if the transfer is waiting on a queue, most 1617 * frequently the "done_q": 1618 */ 1619 if (xfer->wait_queue) { 1620 USB_BUS_LOCK(bus); 1621 usbd_transfer_dequeue(xfer); 1622 USB_BUS_UNLOCK(bus); 1623 } 1624 /* clear "did_dma_delay" flag */ 1625 xfer->flags_int.did_dma_delay = 0; 1626 1627 /* clear "did_close" flag */ 1628 xfer->flags_int.did_close = 0; 1629 1630 #if USB_HAVE_BUSDMA 1631 /* clear "bdma_setup" flag */ 1632 xfer->flags_int.bdma_setup = 0; 1633 #endif 1634 /* by default we cannot cancel any USB transfer immediately */ 1635 xfer->flags_int.can_cancel_immed = 0; 1636 1637 /* clear lengths and frame counts by default */ 1638 xfer->sumlen = 0; 1639 xfer->actlen = 0; 1640 xfer->aframes = 0; 1641 1642 /* clear any previous errors */ 1643 xfer->error = 0; 1644 1645 /* Check if the device is still alive */ 1646 if (info->udev->state < USB_STATE_POWERED) { 1647 USB_BUS_LOCK(bus); 1648 /* 1649 * Must return cancelled error code else 1650 * device drivers can hang. 1651 */ 1652 usbd_transfer_done(xfer, USB_ERR_CANCELLED); 1653 USB_BUS_UNLOCK(bus); 1654 return; 1655 } 1656 1657 /* sanity check */ 1658 if (xfer->nframes == 0) { 1659 if (xfer->flags.stall_pipe) { 1660 /* 1661 * Special case - want to stall without transferring 1662 * any data: 1663 */ 1664 DPRINTF("xfer=%p nframes=0: stall " 1665 "or clear stall!\n", xfer); 1666 USB_BUS_LOCK(bus); 1667 xfer->flags_int.can_cancel_immed = 1; 1668 /* start the transfer */ 1669 usb_command_wrapper(&xfer->endpoint-> 1670 endpoint_q[xfer->stream_id], xfer); 1671 USB_BUS_UNLOCK(bus); 1672 return; 1673 } 1674 USB_BUS_LOCK(bus); 1675 usbd_transfer_done(xfer, USB_ERR_INVAL); 1676 USB_BUS_UNLOCK(bus); 1677 return; 1678 } 1679 /* compute some variables */ 1680 1681 for (x = 0; x != xfer->nframes; x++) { 1682 /* make a copy of the frlenghts[] */ 1683 xfer->frlengths[x + xfer->max_frame_count] = xfer->frlengths[x]; 1684 /* compute total transfer length */ 1685 xfer->sumlen += xfer->frlengths[x]; 1686 if (xfer->sumlen < xfer->frlengths[x]) { 1687 /* length wrapped around */ 1688 USB_BUS_LOCK(bus); 1689 usbd_transfer_done(xfer, USB_ERR_INVAL); 1690 USB_BUS_UNLOCK(bus); 1691 return; 1692 } 1693 } 1694 1695 /* clear some internal flags */ 1696 1697 xfer->flags_int.short_xfer_ok = 0; 1698 xfer->flags_int.short_frames_ok = 0; 1699 1700 /* check if this is a control transfer */ 1701 1702 if (xfer->flags_int.control_xfr) { 1703 1704 if (usbd_setup_ctrl_transfer(xfer)) { 1705 USB_BUS_LOCK(bus); 1706 usbd_transfer_done(xfer, USB_ERR_STALLED); 1707 USB_BUS_UNLOCK(bus); 1708 return; 1709 } 1710 } 1711 /* 1712 * Setup filtered version of some transfer flags, 1713 * in case of data read direction 1714 */ 1715 if (USB_GET_DATA_ISREAD(xfer)) { 1716 1717 if (xfer->flags.short_frames_ok) { 1718 xfer->flags_int.short_xfer_ok = 1; 1719 xfer->flags_int.short_frames_ok = 1; 1720 } else if (xfer->flags.short_xfer_ok) { 1721 xfer->flags_int.short_xfer_ok = 1; 1722 1723 /* check for control transfer */ 1724 if (xfer->flags_int.control_xfr) { 1725 /* 1726 * 1) Control transfers do not support 1727 * reception of multiple short USB 1728 * frames in host mode and device side 1729 * mode, with exception of: 1730 * 1731 * 2) Due to sometimes buggy device 1732 * side firmware we need to do a 1733 * STATUS stage in case of short 1734 * control transfers in USB host mode. 1735 * The STATUS stage then becomes the 1736 * "alt_next" to the DATA stage. 1737 */ 1738 xfer->flags_int.short_frames_ok = 1; 1739 } 1740 } 1741 } 1742 /* 1743 * Check if BUS-DMA support is enabled and try to load virtual 1744 * buffers into DMA, if any: 1745 */ 1746 #if USB_HAVE_BUSDMA 1747 if (xfer->flags_int.bdma_enable) { 1748 /* insert the USB transfer last in the BUS-DMA queue */ 1749 usb_command_wrapper(&xfer->xroot->dma_q, xfer); 1750 return; 1751 } 1752 #endif 1753 /* 1754 * Enter the USB transfer into the Host Controller or 1755 * Device Controller schedule: 1756 */ 1757 usbd_pipe_enter(xfer); 1758 } 1759 1760 /*------------------------------------------------------------------------* 1761 * usbd_pipe_enter - factored out code 1762 *------------------------------------------------------------------------*/ 1763 void 1764 usbd_pipe_enter(struct usb_xfer *xfer) 1765 { 1766 struct usb_endpoint *ep; 1767 1768 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 1769 1770 USB_BUS_LOCK(xfer->xroot->bus); 1771 1772 ep = xfer->endpoint; 1773 1774 DPRINTF("enter\n"); 1775 1776 /* the transfer can now be cancelled */ 1777 xfer->flags_int.can_cancel_immed = 1; 1778 1779 /* enter the transfer */ 1780 (ep->methods->enter) (xfer); 1781 1782 /* check for transfer error */ 1783 if (xfer->error) { 1784 /* some error has happened */ 1785 usbd_transfer_done(xfer, 0); 1786 USB_BUS_UNLOCK(xfer->xroot->bus); 1787 return; 1788 } 1789 1790 /* start the transfer */ 1791 usb_command_wrapper(&ep->endpoint_q[xfer->stream_id], xfer); 1792 USB_BUS_UNLOCK(xfer->xroot->bus); 1793 } 1794 1795 /*------------------------------------------------------------------------* 1796 * usbd_transfer_start - start an USB transfer 1797 * 1798 * NOTE: Calling this function more than one time will only 1799 * result in a single transfer start, until the USB transfer 1800 * completes. 1801 *------------------------------------------------------------------------*/ 1802 void 1803 usbd_transfer_start(struct usb_xfer *xfer) 1804 { 1805 if (xfer == NULL) { 1806 /* transfer is gone */ 1807 return; 1808 } 1809 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 1810 1811 /* mark the USB transfer started */ 1812 1813 if (!xfer->flags_int.started) { 1814 /* lock the BUS lock to avoid races updating flags_int */ 1815 USB_BUS_LOCK(xfer->xroot->bus); 1816 xfer->flags_int.started = 1; 1817 USB_BUS_UNLOCK(xfer->xroot->bus); 1818 } 1819 /* check if the USB transfer callback is already transferring */ 1820 1821 if (xfer->flags_int.transferring) { 1822 return; 1823 } 1824 USB_BUS_LOCK(xfer->xroot->bus); 1825 /* call the USB transfer callback */ 1826 usbd_callback_ss_done_defer(xfer); 1827 USB_BUS_UNLOCK(xfer->xroot->bus); 1828 } 1829 1830 /*------------------------------------------------------------------------* 1831 * usbd_transfer_stop - stop an USB transfer 1832 * 1833 * NOTE: Calling this function more than one time will only 1834 * result in a single transfer stop. 1835 * NOTE: When this function returns it is not safe to free nor 1836 * reuse any DMA buffers. See "usbd_transfer_drain()". 1837 *------------------------------------------------------------------------*/ 1838 void 1839 usbd_transfer_stop(struct usb_xfer *xfer) 1840 { 1841 struct usb_endpoint *ep; 1842 1843 if (xfer == NULL) { 1844 /* transfer is gone */ 1845 return; 1846 } 1847 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 1848 1849 /* check if the USB transfer was ever opened */ 1850 1851 if (!xfer->flags_int.open) { 1852 if (xfer->flags_int.started) { 1853 /* nothing to do except clearing the "started" flag */ 1854 /* lock the BUS lock to avoid races updating flags_int */ 1855 USB_BUS_LOCK(xfer->xroot->bus); 1856 xfer->flags_int.started = 0; 1857 USB_BUS_UNLOCK(xfer->xroot->bus); 1858 } 1859 return; 1860 } 1861 /* try to stop the current USB transfer */ 1862 1863 USB_BUS_LOCK(xfer->xroot->bus); 1864 /* override any previous error */ 1865 xfer->error = USB_ERR_CANCELLED; 1866 1867 /* 1868 * Clear "open" and "started" when both private and USB lock 1869 * is locked so that we don't get a race updating "flags_int" 1870 */ 1871 xfer->flags_int.open = 0; 1872 xfer->flags_int.started = 0; 1873 1874 /* 1875 * Check if we can cancel the USB transfer immediately. 1876 */ 1877 if (xfer->flags_int.transferring) { 1878 if (xfer->flags_int.can_cancel_immed && 1879 (!xfer->flags_int.did_close)) { 1880 DPRINTF("close\n"); 1881 /* 1882 * The following will lead to an USB_ERR_CANCELLED 1883 * error code being passed to the USB callback. 1884 */ 1885 (xfer->endpoint->methods->close) (xfer); 1886 /* only close once */ 1887 xfer->flags_int.did_close = 1; 1888 } else { 1889 /* need to wait for the next done callback */ 1890 } 1891 } else { 1892 DPRINTF("close\n"); 1893 1894 /* close here and now */ 1895 (xfer->endpoint->methods->close) (xfer); 1896 1897 /* 1898 * Any additional DMA delay is done by 1899 * "usbd_transfer_unsetup()". 1900 */ 1901 1902 /* 1903 * Special case. Check if we need to restart a blocked 1904 * endpoint. 1905 */ 1906 ep = xfer->endpoint; 1907 1908 /* 1909 * If the current USB transfer is completing we need 1910 * to start the next one: 1911 */ 1912 if (ep->endpoint_q[xfer->stream_id].curr == xfer) { 1913 usb_command_wrapper( 1914 &ep->endpoint_q[xfer->stream_id], NULL); 1915 } 1916 } 1917 1918 USB_BUS_UNLOCK(xfer->xroot->bus); 1919 } 1920 1921 /*------------------------------------------------------------------------* 1922 * usbd_transfer_pending 1923 * 1924 * This function will check if an USB transfer is pending which is a 1925 * little bit complicated! 1926 * Return values: 1927 * 0: Not pending 1928 * 1: Pending: The USB transfer will receive a callback in the future. 1929 *------------------------------------------------------------------------*/ 1930 uint8_t 1931 usbd_transfer_pending(struct usb_xfer *xfer) 1932 { 1933 struct usb_xfer_root *info; 1934 struct usb_xfer_queue *pq; 1935 1936 if (xfer == NULL) { 1937 /* transfer is gone */ 1938 return (0); 1939 } 1940 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 1941 1942 if (xfer->flags_int.transferring) { 1943 /* trivial case */ 1944 return (1); 1945 } 1946 USB_BUS_LOCK(xfer->xroot->bus); 1947 if (xfer->wait_queue) { 1948 /* we are waiting on a queue somewhere */ 1949 USB_BUS_UNLOCK(xfer->xroot->bus); 1950 return (1); 1951 } 1952 info = xfer->xroot; 1953 pq = &info->done_q; 1954 1955 if (pq->curr == xfer) { 1956 /* we are currently scheduled for callback */ 1957 USB_BUS_UNLOCK(xfer->xroot->bus); 1958 return (1); 1959 } 1960 /* we are not pending */ 1961 USB_BUS_UNLOCK(xfer->xroot->bus); 1962 return (0); 1963 } 1964 1965 /*------------------------------------------------------------------------* 1966 * usbd_transfer_drain 1967 * 1968 * This function will stop the USB transfer and wait for any 1969 * additional BUS-DMA and HW-DMA operations to complete. Buffers that 1970 * are loaded into DMA can safely be freed or reused after that this 1971 * function has returned. 1972 *------------------------------------------------------------------------*/ 1973 void 1974 usbd_transfer_drain(struct usb_xfer *xfer) 1975 { 1976 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 1977 "usbd_transfer_drain can sleep!"); 1978 1979 if (xfer == NULL) { 1980 /* transfer is gone */ 1981 return; 1982 } 1983 if (xfer->xroot->xfer_mtx != &Giant) { 1984 USB_XFER_LOCK_ASSERT(xfer, MA_NOTOWNED); 1985 } 1986 USB_XFER_LOCK(xfer); 1987 1988 usbd_transfer_stop(xfer); 1989 1990 while (usbd_transfer_pending(xfer) || 1991 xfer->flags_int.doing_callback) { 1992 1993 /* 1994 * It is allowed that the callback can drop its 1995 * transfer mutex. In that case checking only 1996 * "usbd_transfer_pending()" is not enough to tell if 1997 * the USB transfer is fully drained. We also need to 1998 * check the internal "doing_callback" flag. 1999 */ 2000 xfer->flags_int.draining = 1; 2001 2002 /* 2003 * Wait until the current outstanding USB 2004 * transfer is complete ! 2005 */ 2006 cv_wait(&xfer->xroot->cv_drain, xfer->xroot->xfer_mtx); 2007 } 2008 USB_XFER_UNLOCK(xfer); 2009 } 2010 2011 struct usb_page_cache * 2012 usbd_xfer_get_frame(struct usb_xfer *xfer, usb_frcount_t frindex) 2013 { 2014 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2015 2016 return (&xfer->frbuffers[frindex]); 2017 } 2018 2019 void * 2020 usbd_xfer_get_frame_buffer(struct usb_xfer *xfer, usb_frcount_t frindex) 2021 { 2022 struct usb_page_search page_info; 2023 2024 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2025 2026 usbd_get_page(&xfer->frbuffers[frindex], 0, &page_info); 2027 return (page_info.buffer); 2028 } 2029 2030 /*------------------------------------------------------------------------* 2031 * usbd_xfer_get_fps_shift 2032 * 2033 * The following function is only useful for isochronous transfers. It 2034 * returns how many times the frame execution rate has been shifted 2035 * down. 2036 * 2037 * Return value: 2038 * Success: 0..3 2039 * Failure: 0 2040 *------------------------------------------------------------------------*/ 2041 uint8_t 2042 usbd_xfer_get_fps_shift(struct usb_xfer *xfer) 2043 { 2044 return (xfer->fps_shift); 2045 } 2046 2047 usb_frlength_t 2048 usbd_xfer_frame_len(struct usb_xfer *xfer, usb_frcount_t frindex) 2049 { 2050 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2051 2052 return (xfer->frlengths[frindex]); 2053 } 2054 2055 /*------------------------------------------------------------------------* 2056 * usbd_xfer_set_frame_data 2057 * 2058 * This function sets the pointer of the buffer that should 2059 * loaded directly into DMA for the given USB frame. Passing "ptr" 2060 * equal to NULL while the corresponding "frlength" is greater 2061 * than zero gives undefined results! 2062 *------------------------------------------------------------------------*/ 2063 void 2064 usbd_xfer_set_frame_data(struct usb_xfer *xfer, usb_frcount_t frindex, 2065 void *ptr, usb_frlength_t len) 2066 { 2067 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2068 2069 /* set virtual address to load and length */ 2070 xfer->frbuffers[frindex].buffer = ptr; 2071 usbd_xfer_set_frame_len(xfer, frindex, len); 2072 } 2073 2074 void 2075 usbd_xfer_frame_data(struct usb_xfer *xfer, usb_frcount_t frindex, 2076 void **ptr, int *len) 2077 { 2078 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2079 2080 if (ptr != NULL) 2081 *ptr = xfer->frbuffers[frindex].buffer; 2082 if (len != NULL) 2083 *len = xfer->frlengths[frindex]; 2084 } 2085 2086 /*------------------------------------------------------------------------* 2087 * usbd_xfer_old_frame_length 2088 * 2089 * This function returns the framelength of the given frame at the 2090 * time the transfer was submitted. This function can be used to 2091 * compute the starting data pointer of the next isochronous frame 2092 * when an isochronous transfer has completed. 2093 *------------------------------------------------------------------------*/ 2094 usb_frlength_t 2095 usbd_xfer_old_frame_length(struct usb_xfer *xfer, usb_frcount_t frindex) 2096 { 2097 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2098 2099 return (xfer->frlengths[frindex + xfer->max_frame_count]); 2100 } 2101 2102 void 2103 usbd_xfer_status(struct usb_xfer *xfer, int *actlen, int *sumlen, int *aframes, 2104 int *nframes) 2105 { 2106 if (actlen != NULL) 2107 *actlen = xfer->actlen; 2108 if (sumlen != NULL) 2109 *sumlen = xfer->sumlen; 2110 if (aframes != NULL) 2111 *aframes = xfer->aframes; 2112 if (nframes != NULL) 2113 *nframes = xfer->nframes; 2114 } 2115 2116 /*------------------------------------------------------------------------* 2117 * usbd_xfer_set_frame_offset 2118 * 2119 * This function sets the frame data buffer offset relative to the beginning 2120 * of the USB DMA buffer allocated for this USB transfer. 2121 *------------------------------------------------------------------------*/ 2122 void 2123 usbd_xfer_set_frame_offset(struct usb_xfer *xfer, usb_frlength_t offset, 2124 usb_frcount_t frindex) 2125 { 2126 KASSERT(!xfer->flags.ext_buffer, ("Cannot offset data frame " 2127 "when the USB buffer is external\n")); 2128 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2129 2130 /* set virtual address to load */ 2131 xfer->frbuffers[frindex].buffer = 2132 USB_ADD_BYTES(xfer->local_buffer, offset); 2133 } 2134 2135 void 2136 usbd_xfer_set_interval(struct usb_xfer *xfer, int i) 2137 { 2138 xfer->interval = i; 2139 } 2140 2141 void 2142 usbd_xfer_set_timeout(struct usb_xfer *xfer, int t) 2143 { 2144 xfer->timeout = t; 2145 } 2146 2147 void 2148 usbd_xfer_set_frames(struct usb_xfer *xfer, usb_frcount_t n) 2149 { 2150 xfer->nframes = n; 2151 } 2152 2153 usb_frcount_t 2154 usbd_xfer_max_frames(struct usb_xfer *xfer) 2155 { 2156 return (xfer->max_frame_count); 2157 } 2158 2159 usb_frlength_t 2160 usbd_xfer_max_len(struct usb_xfer *xfer) 2161 { 2162 return (xfer->max_data_length); 2163 } 2164 2165 usb_frlength_t 2166 usbd_xfer_max_framelen(struct usb_xfer *xfer) 2167 { 2168 return (xfer->max_frame_size); 2169 } 2170 2171 void 2172 usbd_xfer_set_frame_len(struct usb_xfer *xfer, usb_frcount_t frindex, 2173 usb_frlength_t len) 2174 { 2175 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2176 2177 xfer->frlengths[frindex] = len; 2178 } 2179 2180 /*------------------------------------------------------------------------* 2181 * usb_callback_proc - factored out code 2182 * 2183 * This function performs USB callbacks. 2184 *------------------------------------------------------------------------*/ 2185 static void 2186 usb_callback_proc(struct usb_proc_msg *_pm) 2187 { 2188 struct usb_done_msg *pm = (void *)_pm; 2189 struct usb_xfer_root *info = pm->xroot; 2190 2191 /* Change locking order */ 2192 USB_BUS_UNLOCK(info->bus); 2193 2194 /* 2195 * We exploit the fact that the mutex is the same for all 2196 * callbacks that will be called from this thread: 2197 */ 2198 mtx_lock(info->xfer_mtx); 2199 USB_BUS_LOCK(info->bus); 2200 2201 /* Continue where we lost track */ 2202 usb_command_wrapper(&info->done_q, 2203 info->done_q.curr); 2204 2205 mtx_unlock(info->xfer_mtx); 2206 } 2207 2208 /*------------------------------------------------------------------------* 2209 * usbd_callback_ss_done_defer 2210 * 2211 * This function will defer the start, stop and done callback to the 2212 * correct thread. 2213 *------------------------------------------------------------------------*/ 2214 static void 2215 usbd_callback_ss_done_defer(struct usb_xfer *xfer) 2216 { 2217 struct usb_xfer_root *info = xfer->xroot; 2218 struct usb_xfer_queue *pq = &info->done_q; 2219 2220 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2221 2222 if (pq->curr != xfer) { 2223 usbd_transfer_enqueue(pq, xfer); 2224 } 2225 if (!pq->recurse_1) { 2226 2227 /* 2228 * We have to postpone the callback due to the fact we 2229 * will have a Lock Order Reversal, LOR, if we try to 2230 * proceed ! 2231 */ 2232 if (usb_proc_msignal(info->done_p, 2233 &info->done_m[0], &info->done_m[1])) { 2234 /* ignore */ 2235 } 2236 } else { 2237 /* clear second recurse flag */ 2238 pq->recurse_2 = 0; 2239 } 2240 return; 2241 2242 } 2243 2244 /*------------------------------------------------------------------------* 2245 * usbd_callback_wrapper 2246 * 2247 * This is a wrapper for USB callbacks. This wrapper does some 2248 * auto-magic things like figuring out if we can call the callback 2249 * directly from the current context or if we need to wakeup the 2250 * interrupt process. 2251 *------------------------------------------------------------------------*/ 2252 static void 2253 usbd_callback_wrapper(struct usb_xfer_queue *pq) 2254 { 2255 struct usb_xfer *xfer = pq->curr; 2256 struct usb_xfer_root *info = xfer->xroot; 2257 2258 USB_BUS_LOCK_ASSERT(info->bus, MA_OWNED); 2259 if (!mtx_owned(info->xfer_mtx) && !SCHEDULER_STOPPED()) { 2260 /* 2261 * Cases that end up here: 2262 * 2263 * 5) HW interrupt done callback or other source. 2264 */ 2265 DPRINTFN(3, "case 5\n"); 2266 2267 /* 2268 * We have to postpone the callback due to the fact we 2269 * will have a Lock Order Reversal, LOR, if we try to 2270 * proceed ! 2271 */ 2272 if (usb_proc_msignal(info->done_p, 2273 &info->done_m[0], &info->done_m[1])) { 2274 /* ignore */ 2275 } 2276 return; 2277 } 2278 /* 2279 * Cases that end up here: 2280 * 2281 * 1) We are starting a transfer 2282 * 2) We are prematurely calling back a transfer 2283 * 3) We are stopping a transfer 2284 * 4) We are doing an ordinary callback 2285 */ 2286 DPRINTFN(3, "case 1-4\n"); 2287 /* get next USB transfer in the queue */ 2288 info->done_q.curr = NULL; 2289 2290 /* set flag in case of drain */ 2291 xfer->flags_int.doing_callback = 1; 2292 2293 USB_BUS_UNLOCK(info->bus); 2294 USB_BUS_LOCK_ASSERT(info->bus, MA_NOTOWNED); 2295 2296 /* set correct USB state for callback */ 2297 if (!xfer->flags_int.transferring) { 2298 xfer->usb_state = USB_ST_SETUP; 2299 if (!xfer->flags_int.started) { 2300 /* we got stopped before we even got started */ 2301 USB_BUS_LOCK(info->bus); 2302 goto done; 2303 } 2304 } else { 2305 2306 if (usbd_callback_wrapper_sub(xfer)) { 2307 /* the callback has been deferred */ 2308 USB_BUS_LOCK(info->bus); 2309 goto done; 2310 } 2311 #if USB_HAVE_POWERD 2312 /* decrement power reference */ 2313 usbd_transfer_power_ref(xfer, -1); 2314 #endif 2315 xfer->flags_int.transferring = 0; 2316 2317 if (xfer->error) { 2318 xfer->usb_state = USB_ST_ERROR; 2319 } else { 2320 /* set transferred state */ 2321 xfer->usb_state = USB_ST_TRANSFERRED; 2322 #if USB_HAVE_BUSDMA 2323 /* sync DMA memory, if any */ 2324 if (xfer->flags_int.bdma_enable && 2325 (!xfer->flags_int.bdma_no_post_sync)) { 2326 usb_bdma_post_sync(xfer); 2327 } 2328 #endif 2329 } 2330 } 2331 2332 #if USB_HAVE_PF 2333 if (xfer->usb_state != USB_ST_SETUP) 2334 usbpf_xfertap(xfer, USBPF_XFERTAP_DONE); 2335 #endif 2336 /* call processing routine */ 2337 (xfer->callback) (xfer, xfer->error); 2338 2339 /* pickup the USB mutex again */ 2340 USB_BUS_LOCK(info->bus); 2341 2342 /* 2343 * Check if we got started after that we got cancelled, but 2344 * before we managed to do the callback. 2345 */ 2346 if ((!xfer->flags_int.open) && 2347 (xfer->flags_int.started) && 2348 (xfer->usb_state == USB_ST_ERROR)) { 2349 /* clear flag in case of drain */ 2350 xfer->flags_int.doing_callback = 0; 2351 /* try to loop, but not recursivly */ 2352 usb_command_wrapper(&info->done_q, xfer); 2353 return; 2354 } 2355 2356 done: 2357 /* clear flag in case of drain */ 2358 xfer->flags_int.doing_callback = 0; 2359 2360 /* 2361 * Check if we are draining. 2362 */ 2363 if (xfer->flags_int.draining && 2364 (!xfer->flags_int.transferring)) { 2365 /* "usbd_transfer_drain()" is waiting for end of transfer */ 2366 xfer->flags_int.draining = 0; 2367 cv_broadcast(&info->cv_drain); 2368 } 2369 2370 /* do the next callback, if any */ 2371 usb_command_wrapper(&info->done_q, 2372 info->done_q.curr); 2373 } 2374 2375 /*------------------------------------------------------------------------* 2376 * usb_dma_delay_done_cb 2377 * 2378 * This function is called when the DMA delay has been exectuded, and 2379 * will make sure that the callback is called to complete the USB 2380 * transfer. This code path is ususally only used when there is an USB 2381 * error like USB_ERR_CANCELLED. 2382 *------------------------------------------------------------------------*/ 2383 void 2384 usb_dma_delay_done_cb(struct usb_xfer *xfer) 2385 { 2386 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2387 2388 DPRINTFN(3, "Completed %p\n", xfer); 2389 2390 /* queue callback for execution, again */ 2391 usbd_transfer_done(xfer, 0); 2392 } 2393 2394 /*------------------------------------------------------------------------* 2395 * usbd_transfer_dequeue 2396 * 2397 * - This function is used to remove an USB transfer from a USB 2398 * transfer queue. 2399 * 2400 * - This function can be called multiple times in a row. 2401 *------------------------------------------------------------------------*/ 2402 void 2403 usbd_transfer_dequeue(struct usb_xfer *xfer) 2404 { 2405 struct usb_xfer_queue *pq; 2406 2407 pq = xfer->wait_queue; 2408 if (pq) { 2409 TAILQ_REMOVE(&pq->head, xfer, wait_entry); 2410 xfer->wait_queue = NULL; 2411 } 2412 } 2413 2414 /*------------------------------------------------------------------------* 2415 * usbd_transfer_enqueue 2416 * 2417 * - This function is used to insert an USB transfer into a USB * 2418 * transfer queue. 2419 * 2420 * - This function can be called multiple times in a row. 2421 *------------------------------------------------------------------------*/ 2422 void 2423 usbd_transfer_enqueue(struct usb_xfer_queue *pq, struct usb_xfer *xfer) 2424 { 2425 /* 2426 * Insert the USB transfer into the queue, if it is not 2427 * already on a USB transfer queue: 2428 */ 2429 if (xfer->wait_queue == NULL) { 2430 xfer->wait_queue = pq; 2431 TAILQ_INSERT_TAIL(&pq->head, xfer, wait_entry); 2432 } 2433 } 2434 2435 /*------------------------------------------------------------------------* 2436 * usbd_transfer_done 2437 * 2438 * - This function is used to remove an USB transfer from the busdma, 2439 * pipe or interrupt queue. 2440 * 2441 * - This function is used to queue the USB transfer on the done 2442 * queue. 2443 * 2444 * - This function is used to stop any USB transfer timeouts. 2445 *------------------------------------------------------------------------*/ 2446 void 2447 usbd_transfer_done(struct usb_xfer *xfer, usb_error_t error) 2448 { 2449 struct usb_xfer_root *info = xfer->xroot; 2450 2451 USB_BUS_LOCK_ASSERT(info->bus, MA_OWNED); 2452 2453 DPRINTF("err=%s\n", usbd_errstr(error)); 2454 2455 /* 2456 * If we are not transferring then just return. 2457 * This can happen during transfer cancel. 2458 */ 2459 if (!xfer->flags_int.transferring) { 2460 DPRINTF("not transferring\n"); 2461 /* end of control transfer, if any */ 2462 xfer->flags_int.control_act = 0; 2463 return; 2464 } 2465 /* only set transfer error, if not already set */ 2466 if (xfer->error == USB_ERR_NORMAL_COMPLETION) 2467 xfer->error = error; 2468 2469 /* stop any callouts */ 2470 usb_callout_stop(&xfer->timeout_handle); 2471 2472 /* 2473 * If we are waiting on a queue, just remove the USB transfer 2474 * from the queue, if any. We should have the required locks 2475 * locked to do the remove when this function is called. 2476 */ 2477 usbd_transfer_dequeue(xfer); 2478 2479 #if USB_HAVE_BUSDMA 2480 if (mtx_owned(info->xfer_mtx)) { 2481 struct usb_xfer_queue *pq; 2482 2483 /* 2484 * If the private USB lock is not locked, then we assume 2485 * that the BUS-DMA load stage has been passed: 2486 */ 2487 pq = &info->dma_q; 2488 2489 if (pq->curr == xfer) { 2490 /* start the next BUS-DMA load, if any */ 2491 usb_command_wrapper(pq, NULL); 2492 } 2493 } 2494 #endif 2495 /* keep some statistics */ 2496 if (xfer->error) { 2497 info->bus->stats_err.uds_requests 2498 [xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE]++; 2499 } else { 2500 info->bus->stats_ok.uds_requests 2501 [xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE]++; 2502 } 2503 2504 /* call the USB transfer callback */ 2505 usbd_callback_ss_done_defer(xfer); 2506 } 2507 2508 /*------------------------------------------------------------------------* 2509 * usbd_transfer_start_cb 2510 * 2511 * This function is called to start the USB transfer when 2512 * "xfer->interval" is greater than zero, and and the endpoint type is 2513 * BULK or CONTROL. 2514 *------------------------------------------------------------------------*/ 2515 static void 2516 usbd_transfer_start_cb(void *arg) 2517 { 2518 struct usb_xfer *xfer = arg; 2519 struct usb_endpoint *ep = xfer->endpoint; 2520 2521 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2522 2523 DPRINTF("start\n"); 2524 2525 #if USB_HAVE_PF 2526 usbpf_xfertap(xfer, USBPF_XFERTAP_SUBMIT); 2527 #endif 2528 2529 /* the transfer can now be cancelled */ 2530 xfer->flags_int.can_cancel_immed = 1; 2531 2532 /* start USB transfer, if no error */ 2533 if (xfer->error == 0) 2534 (ep->methods->start) (xfer); 2535 2536 /* check for transfer error */ 2537 if (xfer->error) { 2538 /* some error has happened */ 2539 usbd_transfer_done(xfer, 0); 2540 } 2541 } 2542 2543 /*------------------------------------------------------------------------* 2544 * usbd_xfer_set_stall 2545 * 2546 * This function is used to set the stall flag outside the 2547 * callback. This function is NULL safe. 2548 *------------------------------------------------------------------------*/ 2549 void 2550 usbd_xfer_set_stall(struct usb_xfer *xfer) 2551 { 2552 if (xfer == NULL) { 2553 /* tearing down */ 2554 return; 2555 } 2556 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 2557 2558 /* avoid any races by locking the USB mutex */ 2559 USB_BUS_LOCK(xfer->xroot->bus); 2560 xfer->flags.stall_pipe = 1; 2561 USB_BUS_UNLOCK(xfer->xroot->bus); 2562 } 2563 2564 int 2565 usbd_xfer_is_stalled(struct usb_xfer *xfer) 2566 { 2567 return (xfer->endpoint->is_stalled); 2568 } 2569 2570 /*------------------------------------------------------------------------* 2571 * usbd_transfer_clear_stall 2572 * 2573 * This function is used to clear the stall flag outside the 2574 * callback. This function is NULL safe. 2575 *------------------------------------------------------------------------*/ 2576 void 2577 usbd_transfer_clear_stall(struct usb_xfer *xfer) 2578 { 2579 if (xfer == NULL) { 2580 /* tearing down */ 2581 return; 2582 } 2583 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 2584 2585 /* avoid any races by locking the USB mutex */ 2586 USB_BUS_LOCK(xfer->xroot->bus); 2587 2588 xfer->flags.stall_pipe = 0; 2589 2590 USB_BUS_UNLOCK(xfer->xroot->bus); 2591 } 2592 2593 /*------------------------------------------------------------------------* 2594 * usbd_pipe_start 2595 * 2596 * This function is used to add an USB transfer to the pipe transfer list. 2597 *------------------------------------------------------------------------*/ 2598 void 2599 usbd_pipe_start(struct usb_xfer_queue *pq) 2600 { 2601 struct usb_endpoint *ep; 2602 struct usb_xfer *xfer; 2603 uint8_t type; 2604 2605 xfer = pq->curr; 2606 ep = xfer->endpoint; 2607 2608 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2609 2610 /* 2611 * If the endpoint is already stalled we do nothing ! 2612 */ 2613 if (ep->is_stalled) { 2614 return; 2615 } 2616 /* 2617 * Check if we are supposed to stall the endpoint: 2618 */ 2619 if (xfer->flags.stall_pipe) { 2620 struct usb_device *udev; 2621 struct usb_xfer_root *info; 2622 2623 /* clear stall command */ 2624 xfer->flags.stall_pipe = 0; 2625 2626 /* get pointer to USB device */ 2627 info = xfer->xroot; 2628 udev = info->udev; 2629 2630 /* 2631 * Only stall BULK and INTERRUPT endpoints. 2632 */ 2633 type = (ep->edesc->bmAttributes & UE_XFERTYPE); 2634 if ((type == UE_BULK) || 2635 (type == UE_INTERRUPT)) { 2636 uint8_t did_stall; 2637 2638 did_stall = 1; 2639 2640 if (udev->flags.usb_mode == USB_MODE_DEVICE) { 2641 (udev->bus->methods->set_stall) ( 2642 udev, ep, &did_stall); 2643 } else if (udev->ctrl_xfer[1]) { 2644 info = udev->ctrl_xfer[1]->xroot; 2645 usb_proc_msignal( 2646 USB_BUS_NON_GIANT_PROC(info->bus), 2647 &udev->cs_msg[0], &udev->cs_msg[1]); 2648 } else { 2649 /* should not happen */ 2650 DPRINTFN(0, "No stall handler\n"); 2651 } 2652 /* 2653 * Check if we should stall. Some USB hardware 2654 * handles set- and clear-stall in hardware. 2655 */ 2656 if (did_stall) { 2657 /* 2658 * The transfer will be continued when 2659 * the clear-stall control endpoint 2660 * message is received. 2661 */ 2662 ep->is_stalled = 1; 2663 return; 2664 } 2665 } else if (type == UE_ISOCHRONOUS) { 2666 2667 /* 2668 * Make sure any FIFO overflow or other FIFO 2669 * error conditions go away by resetting the 2670 * endpoint FIFO through the clear stall 2671 * method. 2672 */ 2673 if (udev->flags.usb_mode == USB_MODE_DEVICE) { 2674 (udev->bus->methods->clear_stall) (udev, ep); 2675 } 2676 } 2677 } 2678 /* Set or clear stall complete - special case */ 2679 if (xfer->nframes == 0) { 2680 /* we are complete */ 2681 xfer->aframes = 0; 2682 usbd_transfer_done(xfer, 0); 2683 return; 2684 } 2685 /* 2686 * Handled cases: 2687 * 2688 * 1) Start the first transfer queued. 2689 * 2690 * 2) Re-start the current USB transfer. 2691 */ 2692 /* 2693 * Check if there should be any 2694 * pre transfer start delay: 2695 */ 2696 if (xfer->interval > 0) { 2697 type = (ep->edesc->bmAttributes & UE_XFERTYPE); 2698 if ((type == UE_BULK) || 2699 (type == UE_CONTROL)) { 2700 usbd_transfer_timeout_ms(xfer, 2701 &usbd_transfer_start_cb, 2702 xfer->interval); 2703 return; 2704 } 2705 } 2706 DPRINTF("start\n"); 2707 2708 #if USB_HAVE_PF 2709 usbpf_xfertap(xfer, USBPF_XFERTAP_SUBMIT); 2710 #endif 2711 /* the transfer can now be cancelled */ 2712 xfer->flags_int.can_cancel_immed = 1; 2713 2714 /* start USB transfer, if no error */ 2715 if (xfer->error == 0) 2716 (ep->methods->start) (xfer); 2717 2718 /* check for transfer error */ 2719 if (xfer->error) { 2720 /* some error has happened */ 2721 usbd_transfer_done(xfer, 0); 2722 } 2723 } 2724 2725 /*------------------------------------------------------------------------* 2726 * usbd_transfer_timeout_ms 2727 * 2728 * This function is used to setup a timeout on the given USB 2729 * transfer. If the timeout has been deferred the callback given by 2730 * "cb" will get called after "ms" milliseconds. 2731 *------------------------------------------------------------------------*/ 2732 void 2733 usbd_transfer_timeout_ms(struct usb_xfer *xfer, 2734 void (*cb) (void *arg), usb_timeout_t ms) 2735 { 2736 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2737 2738 /* defer delay */ 2739 usb_callout_reset(&xfer->timeout_handle, 2740 USB_MS_TO_TICKS(ms) + USB_CALLOUT_ZERO_TICKS, cb, xfer); 2741 } 2742 2743 /*------------------------------------------------------------------------* 2744 * usbd_callback_wrapper_sub 2745 * 2746 * - This function will update variables in an USB transfer after 2747 * that the USB transfer is complete. 2748 * 2749 * - This function is used to start the next USB transfer on the 2750 * ep transfer queue, if any. 2751 * 2752 * NOTE: In some special cases the USB transfer will not be removed from 2753 * the pipe queue, but remain first. To enforce USB transfer removal call 2754 * this function passing the error code "USB_ERR_CANCELLED". 2755 * 2756 * Return values: 2757 * 0: Success. 2758 * Else: The callback has been deferred. 2759 *------------------------------------------------------------------------*/ 2760 static uint8_t 2761 usbd_callback_wrapper_sub(struct usb_xfer *xfer) 2762 { 2763 struct usb_endpoint *ep; 2764 struct usb_bus *bus; 2765 usb_frcount_t x; 2766 2767 bus = xfer->xroot->bus; 2768 2769 if ((!xfer->flags_int.open) && 2770 (!xfer->flags_int.did_close)) { 2771 DPRINTF("close\n"); 2772 USB_BUS_LOCK(bus); 2773 (xfer->endpoint->methods->close) (xfer); 2774 USB_BUS_UNLOCK(bus); 2775 /* only close once */ 2776 xfer->flags_int.did_close = 1; 2777 return (1); /* wait for new callback */ 2778 } 2779 /* 2780 * If we have a non-hardware induced error we 2781 * need to do the DMA delay! 2782 */ 2783 if (xfer->error != 0 && !xfer->flags_int.did_dma_delay && 2784 (xfer->error == USB_ERR_CANCELLED || 2785 xfer->error == USB_ERR_TIMEOUT || 2786 bus->methods->start_dma_delay != NULL)) { 2787 2788 usb_timeout_t temp; 2789 2790 /* only delay once */ 2791 xfer->flags_int.did_dma_delay = 1; 2792 2793 /* we can not cancel this delay */ 2794 xfer->flags_int.can_cancel_immed = 0; 2795 2796 temp = usbd_get_dma_delay(xfer->xroot->udev); 2797 2798 DPRINTFN(3, "DMA delay, %u ms, " 2799 "on %p\n", temp, xfer); 2800 2801 if (temp != 0) { 2802 USB_BUS_LOCK(bus); 2803 /* 2804 * Some hardware solutions have dedicated 2805 * events when it is safe to free DMA'ed 2806 * memory. For the other hardware platforms we 2807 * use a static delay. 2808 */ 2809 if (bus->methods->start_dma_delay != NULL) { 2810 (bus->methods->start_dma_delay) (xfer); 2811 } else { 2812 usbd_transfer_timeout_ms(xfer, 2813 (void (*)(void *))&usb_dma_delay_done_cb, 2814 temp); 2815 } 2816 USB_BUS_UNLOCK(bus); 2817 return (1); /* wait for new callback */ 2818 } 2819 } 2820 /* check actual number of frames */ 2821 if (xfer->aframes > xfer->nframes) { 2822 if (xfer->error == 0) { 2823 panic("%s: actual number of frames, %d, is " 2824 "greater than initial number of frames, %d\n", 2825 __FUNCTION__, xfer->aframes, xfer->nframes); 2826 } else { 2827 /* just set some valid value */ 2828 xfer->aframes = xfer->nframes; 2829 } 2830 } 2831 /* compute actual length */ 2832 xfer->actlen = 0; 2833 2834 for (x = 0; x != xfer->aframes; x++) { 2835 xfer->actlen += xfer->frlengths[x]; 2836 } 2837 2838 /* 2839 * Frames that were not transferred get zero actual length in 2840 * case the USB device driver does not check the actual number 2841 * of frames transferred, "xfer->aframes": 2842 */ 2843 for (; x < xfer->nframes; x++) { 2844 usbd_xfer_set_frame_len(xfer, x, 0); 2845 } 2846 2847 /* check actual length */ 2848 if (xfer->actlen > xfer->sumlen) { 2849 if (xfer->error == 0) { 2850 panic("%s: actual length, %d, is greater than " 2851 "initial length, %d\n", 2852 __FUNCTION__, xfer->actlen, xfer->sumlen); 2853 } else { 2854 /* just set some valid value */ 2855 xfer->actlen = xfer->sumlen; 2856 } 2857 } 2858 DPRINTFN(1, "xfer=%p endpoint=%p sts=%d alen=%d, slen=%d, afrm=%d, nfrm=%d\n", 2859 xfer, xfer->endpoint, xfer->error, xfer->actlen, xfer->sumlen, 2860 xfer->aframes, xfer->nframes); 2861 2862 if (xfer->error) { 2863 /* end of control transfer, if any */ 2864 xfer->flags_int.control_act = 0; 2865 2866 #if USB_HAVE_TT_SUPPORT 2867 switch (xfer->error) { 2868 case USB_ERR_NORMAL_COMPLETION: 2869 case USB_ERR_SHORT_XFER: 2870 case USB_ERR_STALLED: 2871 case USB_ERR_CANCELLED: 2872 /* nothing to do */ 2873 break; 2874 default: 2875 /* try to reset the TT, if any */ 2876 USB_BUS_LOCK(bus); 2877 uhub_tt_buffer_reset_async_locked(xfer->xroot->udev, xfer->endpoint); 2878 USB_BUS_UNLOCK(bus); 2879 break; 2880 } 2881 #endif 2882 /* check if we should block the execution queue */ 2883 if ((xfer->error != USB_ERR_CANCELLED) && 2884 (xfer->flags.pipe_bof)) { 2885 DPRINTFN(2, "xfer=%p: Block On Failure " 2886 "on endpoint=%p\n", xfer, xfer->endpoint); 2887 goto done; 2888 } 2889 } else { 2890 /* check for short transfers */ 2891 if (xfer->actlen < xfer->sumlen) { 2892 2893 /* end of control transfer, if any */ 2894 xfer->flags_int.control_act = 0; 2895 2896 if (!xfer->flags_int.short_xfer_ok) { 2897 xfer->error = USB_ERR_SHORT_XFER; 2898 if (xfer->flags.pipe_bof) { 2899 DPRINTFN(2, "xfer=%p: Block On Failure on " 2900 "Short Transfer on endpoint %p.\n", 2901 xfer, xfer->endpoint); 2902 goto done; 2903 } 2904 } 2905 } else { 2906 /* 2907 * Check if we are in the middle of a 2908 * control transfer: 2909 */ 2910 if (xfer->flags_int.control_act) { 2911 DPRINTFN(5, "xfer=%p: Control transfer " 2912 "active on endpoint=%p\n", xfer, xfer->endpoint); 2913 goto done; 2914 } 2915 } 2916 } 2917 2918 ep = xfer->endpoint; 2919 2920 /* 2921 * If the current USB transfer is completing we need to start the 2922 * next one: 2923 */ 2924 USB_BUS_LOCK(bus); 2925 if (ep->endpoint_q[xfer->stream_id].curr == xfer) { 2926 usb_command_wrapper(&ep->endpoint_q[xfer->stream_id], NULL); 2927 2928 if (ep->endpoint_q[xfer->stream_id].curr != NULL || 2929 TAILQ_FIRST(&ep->endpoint_q[xfer->stream_id].head) != NULL) { 2930 /* there is another USB transfer waiting */ 2931 } else { 2932 /* this is the last USB transfer */ 2933 /* clear isochronous sync flag */ 2934 xfer->endpoint->is_synced = 0; 2935 } 2936 } 2937 USB_BUS_UNLOCK(bus); 2938 done: 2939 return (0); 2940 } 2941 2942 /*------------------------------------------------------------------------* 2943 * usb_command_wrapper 2944 * 2945 * This function is used to execute commands non-recursivly on an USB 2946 * transfer. 2947 *------------------------------------------------------------------------*/ 2948 void 2949 usb_command_wrapper(struct usb_xfer_queue *pq, struct usb_xfer *xfer) 2950 { 2951 if (xfer) { 2952 /* 2953 * If the transfer is not already processing, 2954 * queue it! 2955 */ 2956 if (pq->curr != xfer) { 2957 usbd_transfer_enqueue(pq, xfer); 2958 if (pq->curr != NULL) { 2959 /* something is already processing */ 2960 DPRINTFN(6, "busy %p\n", pq->curr); 2961 return; 2962 } 2963 } 2964 } else { 2965 /* Get next element in queue */ 2966 pq->curr = NULL; 2967 } 2968 2969 if (!pq->recurse_1) { 2970 2971 do { 2972 2973 /* set both recurse flags */ 2974 pq->recurse_1 = 1; 2975 pq->recurse_2 = 1; 2976 2977 if (pq->curr == NULL) { 2978 xfer = TAILQ_FIRST(&pq->head); 2979 if (xfer) { 2980 TAILQ_REMOVE(&pq->head, xfer, 2981 wait_entry); 2982 xfer->wait_queue = NULL; 2983 pq->curr = xfer; 2984 } else { 2985 break; 2986 } 2987 } 2988 DPRINTFN(6, "cb %p (enter)\n", pq->curr); 2989 (pq->command) (pq); 2990 DPRINTFN(6, "cb %p (leave)\n", pq->curr); 2991 2992 } while (!pq->recurse_2); 2993 2994 /* clear first recurse flag */ 2995 pq->recurse_1 = 0; 2996 2997 } else { 2998 /* clear second recurse flag */ 2999 pq->recurse_2 = 0; 3000 } 3001 } 3002 3003 /*------------------------------------------------------------------------* 3004 * usbd_ctrl_transfer_setup 3005 * 3006 * This function is used to setup the default USB control endpoint 3007 * transfer. 3008 *------------------------------------------------------------------------*/ 3009 void 3010 usbd_ctrl_transfer_setup(struct usb_device *udev) 3011 { 3012 struct usb_xfer *xfer; 3013 uint8_t no_resetup; 3014 uint8_t iface_index; 3015 3016 /* check for root HUB */ 3017 if (udev->parent_hub == NULL) 3018 return; 3019 repeat: 3020 3021 xfer = udev->ctrl_xfer[0]; 3022 if (xfer) { 3023 USB_XFER_LOCK(xfer); 3024 no_resetup = 3025 ((xfer->address == udev->address) && 3026 (udev->ctrl_ep_desc.wMaxPacketSize[0] == 3027 udev->ddesc.bMaxPacketSize)); 3028 if (udev->flags.usb_mode == USB_MODE_DEVICE) { 3029 if (no_resetup) { 3030 /* 3031 * NOTE: checking "xfer->address" and 3032 * starting the USB transfer must be 3033 * atomic! 3034 */ 3035 usbd_transfer_start(xfer); 3036 } 3037 } 3038 USB_XFER_UNLOCK(xfer); 3039 } else { 3040 no_resetup = 0; 3041 } 3042 3043 if (no_resetup) { 3044 /* 3045 * All parameters are exactly the same like before. 3046 * Just return. 3047 */ 3048 return; 3049 } 3050 /* 3051 * Update wMaxPacketSize for the default control endpoint: 3052 */ 3053 udev->ctrl_ep_desc.wMaxPacketSize[0] = 3054 udev->ddesc.bMaxPacketSize; 3055 3056 /* 3057 * Unsetup any existing USB transfer: 3058 */ 3059 usbd_transfer_unsetup(udev->ctrl_xfer, USB_CTRL_XFER_MAX); 3060 3061 /* 3062 * Reset clear stall error counter. 3063 */ 3064 udev->clear_stall_errors = 0; 3065 3066 /* 3067 * Try to setup a new USB transfer for the 3068 * default control endpoint: 3069 */ 3070 iface_index = 0; 3071 if (usbd_transfer_setup(udev, &iface_index, 3072 udev->ctrl_xfer, usb_control_ep_cfg, USB_CTRL_XFER_MAX, NULL, 3073 &udev->device_mtx)) { 3074 DPRINTFN(0, "could not setup default " 3075 "USB transfer\n"); 3076 } else { 3077 goto repeat; 3078 } 3079 } 3080 3081 /*------------------------------------------------------------------------* 3082 * usbd_clear_data_toggle - factored out code 3083 * 3084 * NOTE: the intention of this function is not to reset the hardware 3085 * data toggle. 3086 *------------------------------------------------------------------------*/ 3087 void 3088 usbd_clear_stall_locked(struct usb_device *udev, struct usb_endpoint *ep) 3089 { 3090 USB_BUS_LOCK_ASSERT(udev->bus, MA_OWNED); 3091 3092 /* check that we have a valid case */ 3093 if (udev->flags.usb_mode == USB_MODE_HOST && 3094 udev->parent_hub != NULL && 3095 udev->bus->methods->clear_stall != NULL && 3096 ep->methods != NULL) { 3097 (udev->bus->methods->clear_stall) (udev, ep); 3098 } 3099 } 3100 3101 /*------------------------------------------------------------------------* 3102 * usbd_clear_data_toggle - factored out code 3103 * 3104 * NOTE: the intention of this function is not to reset the hardware 3105 * data toggle on the USB device side. 3106 *------------------------------------------------------------------------*/ 3107 void 3108 usbd_clear_data_toggle(struct usb_device *udev, struct usb_endpoint *ep) 3109 { 3110 DPRINTFN(5, "udev=%p endpoint=%p\n", udev, ep); 3111 3112 USB_BUS_LOCK(udev->bus); 3113 ep->toggle_next = 0; 3114 /* some hardware needs a callback to clear the data toggle */ 3115 usbd_clear_stall_locked(udev, ep); 3116 USB_BUS_UNLOCK(udev->bus); 3117 } 3118 3119 /*------------------------------------------------------------------------* 3120 * usbd_clear_stall_callback - factored out clear stall callback 3121 * 3122 * Input parameters: 3123 * xfer1: Clear Stall Control Transfer 3124 * xfer2: Stalled USB Transfer 3125 * 3126 * This function is NULL safe. 3127 * 3128 * Return values: 3129 * 0: In progress 3130 * Else: Finished 3131 * 3132 * Clear stall config example: 3133 * 3134 * static const struct usb_config my_clearstall = { 3135 * .type = UE_CONTROL, 3136 * .endpoint = 0, 3137 * .direction = UE_DIR_ANY, 3138 * .interval = 50, //50 milliseconds 3139 * .bufsize = sizeof(struct usb_device_request), 3140 * .timeout = 1000, //1.000 seconds 3141 * .callback = &my_clear_stall_callback, // ** 3142 * .usb_mode = USB_MODE_HOST, 3143 * }; 3144 * 3145 * ** "my_clear_stall_callback" calls "usbd_clear_stall_callback" 3146 * passing the correct parameters. 3147 *------------------------------------------------------------------------*/ 3148 uint8_t 3149 usbd_clear_stall_callback(struct usb_xfer *xfer1, 3150 struct usb_xfer *xfer2) 3151 { 3152 struct usb_device_request req; 3153 3154 if (xfer2 == NULL) { 3155 /* looks like we are tearing down */ 3156 DPRINTF("NULL input parameter\n"); 3157 return (0); 3158 } 3159 USB_XFER_LOCK_ASSERT(xfer1, MA_OWNED); 3160 USB_XFER_LOCK_ASSERT(xfer2, MA_OWNED); 3161 3162 switch (USB_GET_STATE(xfer1)) { 3163 case USB_ST_SETUP: 3164 3165 /* 3166 * pre-clear the data toggle to DATA0 ("umass.c" and 3167 * "ata-usb.c" depends on this) 3168 */ 3169 3170 usbd_clear_data_toggle(xfer2->xroot->udev, xfer2->endpoint); 3171 3172 /* setup a clear-stall packet */ 3173 3174 req.bmRequestType = UT_WRITE_ENDPOINT; 3175 req.bRequest = UR_CLEAR_FEATURE; 3176 USETW(req.wValue, UF_ENDPOINT_HALT); 3177 req.wIndex[0] = xfer2->endpoint->edesc->bEndpointAddress; 3178 req.wIndex[1] = 0; 3179 USETW(req.wLength, 0); 3180 3181 /* 3182 * "usbd_transfer_setup_sub()" will ensure that 3183 * we have sufficient room in the buffer for 3184 * the request structure! 3185 */ 3186 3187 /* copy in the transfer */ 3188 3189 usbd_copy_in(xfer1->frbuffers, 0, &req, sizeof(req)); 3190 3191 /* set length */ 3192 xfer1->frlengths[0] = sizeof(req); 3193 xfer1->nframes = 1; 3194 3195 usbd_transfer_submit(xfer1); 3196 return (0); 3197 3198 case USB_ST_TRANSFERRED: 3199 break; 3200 3201 default: /* Error */ 3202 if (xfer1->error == USB_ERR_CANCELLED) { 3203 return (0); 3204 } 3205 break; 3206 } 3207 return (1); /* Clear Stall Finished */ 3208 } 3209 3210 /*------------------------------------------------------------------------* 3211 * usbd_transfer_poll 3212 * 3213 * The following function gets called from the USB keyboard driver and 3214 * UMASS when the system has paniced. 3215 * 3216 * NOTE: It is currently not possible to resume normal operation on 3217 * the USB controller which has been polled, due to clearing of the 3218 * "up_dsleep" and "up_msleep" flags. 3219 *------------------------------------------------------------------------*/ 3220 void 3221 usbd_transfer_poll(struct usb_xfer **ppxfer, uint16_t max) 3222 { 3223 struct usb_xfer *xfer; 3224 struct usb_xfer_root *xroot; 3225 struct usb_device *udev; 3226 struct usb_proc_msg *pm; 3227 uint16_t n; 3228 uint16_t drop_bus; 3229 uint16_t drop_xfer; 3230 3231 for (n = 0; n != max; n++) { 3232 /* Extra checks to avoid panic */ 3233 xfer = ppxfer[n]; 3234 if (xfer == NULL) 3235 continue; /* no USB transfer */ 3236 xroot = xfer->xroot; 3237 if (xroot == NULL) 3238 continue; /* no USB root */ 3239 udev = xroot->udev; 3240 if (udev == NULL) 3241 continue; /* no USB device */ 3242 if (udev->bus == NULL) 3243 continue; /* no BUS structure */ 3244 if (udev->bus->methods == NULL) 3245 continue; /* no BUS methods */ 3246 if (udev->bus->methods->xfer_poll == NULL) 3247 continue; /* no poll method */ 3248 3249 /* make sure that the BUS mutex is not locked */ 3250 drop_bus = 0; 3251 while (mtx_owned(&xroot->udev->bus->bus_mtx) && !SCHEDULER_STOPPED()) { 3252 mtx_unlock(&xroot->udev->bus->bus_mtx); 3253 drop_bus++; 3254 } 3255 3256 /* make sure that the transfer mutex is not locked */ 3257 drop_xfer = 0; 3258 while (mtx_owned(xroot->xfer_mtx) && !SCHEDULER_STOPPED()) { 3259 mtx_unlock(xroot->xfer_mtx); 3260 drop_xfer++; 3261 } 3262 3263 /* Make sure cv_signal() and cv_broadcast() is not called */ 3264 USB_BUS_CONTROL_XFER_PROC(udev->bus)->up_msleep = 0; 3265 USB_BUS_EXPLORE_PROC(udev->bus)->up_msleep = 0; 3266 USB_BUS_GIANT_PROC(udev->bus)->up_msleep = 0; 3267 USB_BUS_NON_GIANT_PROC(udev->bus)->up_msleep = 0; 3268 3269 /* poll USB hardware */ 3270 (udev->bus->methods->xfer_poll) (udev->bus); 3271 3272 USB_BUS_LOCK(xroot->bus); 3273 3274 /* check for clear stall */ 3275 if (udev->ctrl_xfer[1] != NULL) { 3276 3277 /* poll clear stall start */ 3278 pm = &udev->cs_msg[0].hdr; 3279 (pm->pm_callback) (pm); 3280 /* poll clear stall done thread */ 3281 pm = &udev->ctrl_xfer[1]-> 3282 xroot->done_m[0].hdr; 3283 (pm->pm_callback) (pm); 3284 } 3285 3286 /* poll done thread */ 3287 pm = &xroot->done_m[0].hdr; 3288 (pm->pm_callback) (pm); 3289 3290 USB_BUS_UNLOCK(xroot->bus); 3291 3292 /* restore transfer mutex */ 3293 while (drop_xfer--) 3294 mtx_lock(xroot->xfer_mtx); 3295 3296 /* restore BUS mutex */ 3297 while (drop_bus--) 3298 mtx_lock(&xroot->udev->bus->bus_mtx); 3299 } 3300 } 3301 3302 static void 3303 usbd_get_std_packet_size(struct usb_std_packet_size *ptr, 3304 uint8_t type, enum usb_dev_speed speed) 3305 { 3306 static const uint16_t intr_range_max[USB_SPEED_MAX] = { 3307 [USB_SPEED_LOW] = 8, 3308 [USB_SPEED_FULL] = 64, 3309 [USB_SPEED_HIGH] = 1024, 3310 [USB_SPEED_VARIABLE] = 1024, 3311 [USB_SPEED_SUPER] = 1024, 3312 }; 3313 3314 static const uint16_t isoc_range_max[USB_SPEED_MAX] = { 3315 [USB_SPEED_LOW] = 0, /* invalid */ 3316 [USB_SPEED_FULL] = 1023, 3317 [USB_SPEED_HIGH] = 1024, 3318 [USB_SPEED_VARIABLE] = 3584, 3319 [USB_SPEED_SUPER] = 1024, 3320 }; 3321 3322 static const uint16_t control_min[USB_SPEED_MAX] = { 3323 [USB_SPEED_LOW] = 8, 3324 [USB_SPEED_FULL] = 8, 3325 [USB_SPEED_HIGH] = 64, 3326 [USB_SPEED_VARIABLE] = 512, 3327 [USB_SPEED_SUPER] = 512, 3328 }; 3329 3330 static const uint16_t bulk_min[USB_SPEED_MAX] = { 3331 [USB_SPEED_LOW] = 8, 3332 [USB_SPEED_FULL] = 8, 3333 [USB_SPEED_HIGH] = 512, 3334 [USB_SPEED_VARIABLE] = 512, 3335 [USB_SPEED_SUPER] = 1024, 3336 }; 3337 3338 uint16_t temp; 3339 3340 memset(ptr, 0, sizeof(*ptr)); 3341 3342 switch (type) { 3343 case UE_INTERRUPT: 3344 ptr->range.max = intr_range_max[speed]; 3345 break; 3346 case UE_ISOCHRONOUS: 3347 ptr->range.max = isoc_range_max[speed]; 3348 break; 3349 default: 3350 if (type == UE_BULK) 3351 temp = bulk_min[speed]; 3352 else /* UE_CONTROL */ 3353 temp = control_min[speed]; 3354 3355 /* default is fixed */ 3356 ptr->fixed[0] = temp; 3357 ptr->fixed[1] = temp; 3358 ptr->fixed[2] = temp; 3359 ptr->fixed[3] = temp; 3360 3361 if (speed == USB_SPEED_FULL) { 3362 /* multiple sizes */ 3363 ptr->fixed[1] = 16; 3364 ptr->fixed[2] = 32; 3365 ptr->fixed[3] = 64; 3366 } 3367 if ((speed == USB_SPEED_VARIABLE) && 3368 (type == UE_BULK)) { 3369 /* multiple sizes */ 3370 ptr->fixed[2] = 1024; 3371 ptr->fixed[3] = 1536; 3372 } 3373 break; 3374 } 3375 } 3376 3377 void * 3378 usbd_xfer_softc(struct usb_xfer *xfer) 3379 { 3380 return (xfer->priv_sc); 3381 } 3382 3383 void * 3384 usbd_xfer_get_priv(struct usb_xfer *xfer) 3385 { 3386 return (xfer->priv_fifo); 3387 } 3388 3389 void 3390 usbd_xfer_set_priv(struct usb_xfer *xfer, void *ptr) 3391 { 3392 xfer->priv_fifo = ptr; 3393 } 3394 3395 uint8_t 3396 usbd_xfer_state(struct usb_xfer *xfer) 3397 { 3398 return (xfer->usb_state); 3399 } 3400 3401 void 3402 usbd_xfer_set_flag(struct usb_xfer *xfer, int flag) 3403 { 3404 switch (flag) { 3405 case USB_FORCE_SHORT_XFER: 3406 xfer->flags.force_short_xfer = 1; 3407 break; 3408 case USB_SHORT_XFER_OK: 3409 xfer->flags.short_xfer_ok = 1; 3410 break; 3411 case USB_MULTI_SHORT_OK: 3412 xfer->flags.short_frames_ok = 1; 3413 break; 3414 case USB_MANUAL_STATUS: 3415 xfer->flags.manual_status = 1; 3416 break; 3417 } 3418 } 3419 3420 void 3421 usbd_xfer_clr_flag(struct usb_xfer *xfer, int flag) 3422 { 3423 switch (flag) { 3424 case USB_FORCE_SHORT_XFER: 3425 xfer->flags.force_short_xfer = 0; 3426 break; 3427 case USB_SHORT_XFER_OK: 3428 xfer->flags.short_xfer_ok = 0; 3429 break; 3430 case USB_MULTI_SHORT_OK: 3431 xfer->flags.short_frames_ok = 0; 3432 break; 3433 case USB_MANUAL_STATUS: 3434 xfer->flags.manual_status = 0; 3435 break; 3436 } 3437 } 3438 3439 /* 3440 * The following function returns in milliseconds when the isochronous 3441 * transfer was completed by the hardware. The returned value wraps 3442 * around 65536 milliseconds. 3443 */ 3444 uint16_t 3445 usbd_xfer_get_timestamp(struct usb_xfer *xfer) 3446 { 3447 return (xfer->isoc_time_complete); 3448 } 3449 3450 /* 3451 * The following function returns non-zero if the max packet size 3452 * field was clamped to a valid value. Else it returns zero. 3453 */ 3454 uint8_t 3455 usbd_xfer_maxp_was_clamped(struct usb_xfer *xfer) 3456 { 3457 return (xfer->flags_int.maxp_was_clamped); 3458 } 3459