1 /* $FreeBSD$ */ 2 /*- 3 * Copyright (c) 2008 Hans Petter Selasky. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #ifdef USB_GLOBAL_INCLUDE_FILE 28 #include USB_GLOBAL_INCLUDE_FILE 29 #else 30 #include <sys/stdint.h> 31 #include <sys/stddef.h> 32 #include <sys/param.h> 33 #include <sys/queue.h> 34 #include <sys/types.h> 35 #include <sys/systm.h> 36 #include <sys/kernel.h> 37 #include <sys/bus.h> 38 #include <sys/module.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/condvar.h> 42 #include <sys/sysctl.h> 43 #include <sys/sx.h> 44 #include <sys/unistd.h> 45 #include <sys/callout.h> 46 #include <sys/malloc.h> 47 #include <sys/priv.h> 48 #include <sys/proc.h> 49 50 #include <dev/usb/usb.h> 51 #include <dev/usb/usbdi.h> 52 #include <dev/usb/usbdi_util.h> 53 54 #define USB_DEBUG_VAR usb_debug 55 56 #include <dev/usb/usb_core.h> 57 #include <dev/usb/usb_busdma.h> 58 #include <dev/usb/usb_process.h> 59 #include <dev/usb/usb_transfer.h> 60 #include <dev/usb/usb_device.h> 61 #include <dev/usb/usb_debug.h> 62 #include <dev/usb/usb_util.h> 63 64 #include <dev/usb/usb_controller.h> 65 #include <dev/usb/usb_bus.h> 66 #include <dev/usb/usb_pf.h> 67 #endif /* USB_GLOBAL_INCLUDE_FILE */ 68 69 struct usb_std_packet_size { 70 struct { 71 uint16_t min; /* inclusive */ 72 uint16_t max; /* inclusive */ 73 } range; 74 75 uint16_t fixed[4]; 76 }; 77 78 static usb_callback_t usb_request_callback; 79 80 static const struct usb_config usb_control_ep_cfg[USB_CTRL_XFER_MAX] = { 81 82 /* This transfer is used for generic control endpoint transfers */ 83 84 [0] = { 85 .type = UE_CONTROL, 86 .endpoint = 0x00, /* Control endpoint */ 87 .direction = UE_DIR_ANY, 88 .bufsize = USB_EP0_BUFSIZE, /* bytes */ 89 .flags = {.proxy_buffer = 1,}, 90 .callback = &usb_request_callback, 91 .usb_mode = USB_MODE_DUAL, /* both modes */ 92 }, 93 94 /* This transfer is used for generic clear stall only */ 95 96 [1] = { 97 .type = UE_CONTROL, 98 .endpoint = 0x00, /* Control pipe */ 99 .direction = UE_DIR_ANY, 100 .bufsize = sizeof(struct usb_device_request), 101 .callback = &usb_do_clear_stall_callback, 102 .timeout = 1000, /* 1 second */ 103 .interval = 50, /* 50ms */ 104 .usb_mode = USB_MODE_HOST, 105 }, 106 }; 107 108 /* function prototypes */ 109 110 static void usbd_update_max_frame_size(struct usb_xfer *); 111 static void usbd_transfer_unsetup_sub(struct usb_xfer_root *, uint8_t); 112 static void usbd_control_transfer_init(struct usb_xfer *); 113 static int usbd_setup_ctrl_transfer(struct usb_xfer *); 114 static void usb_callback_proc(struct usb_proc_msg *); 115 static void usbd_callback_ss_done_defer(struct usb_xfer *); 116 static void usbd_callback_wrapper(struct usb_xfer_queue *); 117 static void usbd_transfer_start_cb(void *); 118 static uint8_t usbd_callback_wrapper_sub(struct usb_xfer *); 119 static void usbd_get_std_packet_size(struct usb_std_packet_size *ptr, 120 uint8_t type, enum usb_dev_speed speed); 121 122 /*------------------------------------------------------------------------* 123 * usb_request_callback 124 *------------------------------------------------------------------------*/ 125 static void 126 usb_request_callback(struct usb_xfer *xfer, usb_error_t error) 127 { 128 if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) 129 usb_handle_request_callback(xfer, error); 130 else 131 usbd_do_request_callback(xfer, error); 132 } 133 134 /*------------------------------------------------------------------------* 135 * usbd_update_max_frame_size 136 * 137 * This function updates the maximum frame size, hence high speed USB 138 * can transfer multiple consecutive packets. 139 *------------------------------------------------------------------------*/ 140 static void 141 usbd_update_max_frame_size(struct usb_xfer *xfer) 142 { 143 /* compute maximum frame size */ 144 /* this computation should not overflow 16-bit */ 145 /* max = 15 * 1024 */ 146 147 xfer->max_frame_size = xfer->max_packet_size * xfer->max_packet_count; 148 } 149 150 /*------------------------------------------------------------------------* 151 * usbd_get_dma_delay 152 * 153 * The following function is called when we need to 154 * synchronize with DMA hardware. 155 * 156 * Returns: 157 * 0: no DMA delay required 158 * Else: milliseconds of DMA delay 159 *------------------------------------------------------------------------*/ 160 usb_timeout_t 161 usbd_get_dma_delay(struct usb_device *udev) 162 { 163 const struct usb_bus_methods *mtod; 164 uint32_t temp; 165 166 mtod = udev->bus->methods; 167 temp = 0; 168 169 if (mtod->get_dma_delay) { 170 (mtod->get_dma_delay) (udev, &temp); 171 /* 172 * Round up and convert to milliseconds. Note that we use 173 * 1024 milliseconds per second. to save a division. 174 */ 175 temp += 0x3FF; 176 temp /= 0x400; 177 } 178 return (temp); 179 } 180 181 /*------------------------------------------------------------------------* 182 * usbd_transfer_setup_sub_malloc 183 * 184 * This function will allocate one or more DMA'able memory chunks 185 * according to "size", "align" and "count" arguments. "ppc" is 186 * pointed to a linear array of USB page caches afterwards. 187 * 188 * If the "align" argument is equal to "1" a non-contiguous allocation 189 * can happen. Else if the "align" argument is greater than "1", the 190 * allocation will always be contiguous in memory. 191 * 192 * Returns: 193 * 0: Success 194 * Else: Failure 195 *------------------------------------------------------------------------*/ 196 #if USB_HAVE_BUSDMA 197 uint8_t 198 usbd_transfer_setup_sub_malloc(struct usb_setup_params *parm, 199 struct usb_page_cache **ppc, usb_size_t size, usb_size_t align, 200 usb_size_t count) 201 { 202 struct usb_page_cache *pc; 203 struct usb_page *pg; 204 void *buf; 205 usb_size_t n_dma_pc; 206 usb_size_t n_dma_pg; 207 usb_size_t n_obj; 208 usb_size_t x; 209 usb_size_t y; 210 usb_size_t r; 211 usb_size_t z; 212 213 USB_ASSERT(align > 0, ("Invalid alignment, 0x%08x\n", 214 align)); 215 USB_ASSERT(size > 0, ("Invalid size = 0\n")); 216 217 if (count == 0) { 218 return (0); /* nothing to allocate */ 219 } 220 /* 221 * Make sure that the size is aligned properly. 222 */ 223 size = -((-size) & (-align)); 224 225 /* 226 * Try multi-allocation chunks to reduce the number of DMA 227 * allocations, hence DMA allocations are slow. 228 */ 229 if (align == 1) { 230 /* special case - non-cached multi page DMA memory */ 231 n_dma_pc = count; 232 n_dma_pg = (2 + (size / USB_PAGE_SIZE)); 233 n_obj = 1; 234 } else if (size >= USB_PAGE_SIZE) { 235 n_dma_pc = count; 236 n_dma_pg = 1; 237 n_obj = 1; 238 } else { 239 /* compute number of objects per page */ 240 n_obj = (USB_PAGE_SIZE / size); 241 /* 242 * Compute number of DMA chunks, rounded up 243 * to nearest one: 244 */ 245 n_dma_pc = ((count + n_obj - 1) / n_obj); 246 n_dma_pg = 1; 247 } 248 249 /* 250 * DMA memory is allocated once, but mapped twice. That's why 251 * there is one list for auto-free and another list for 252 * non-auto-free which only holds the mapping and not the 253 * allocation. 254 */ 255 if (parm->buf == NULL) { 256 /* reserve memory (auto-free) */ 257 parm->dma_page_ptr += n_dma_pc * n_dma_pg; 258 parm->dma_page_cache_ptr += n_dma_pc; 259 260 /* reserve memory (no-auto-free) */ 261 parm->dma_page_ptr += count * n_dma_pg; 262 parm->xfer_page_cache_ptr += count; 263 return (0); 264 } 265 for (x = 0; x != n_dma_pc; x++) { 266 /* need to initialize the page cache */ 267 parm->dma_page_cache_ptr[x].tag_parent = 268 &parm->curr_xfer->xroot->dma_parent_tag; 269 } 270 for (x = 0; x != count; x++) { 271 /* need to initialize the page cache */ 272 parm->xfer_page_cache_ptr[x].tag_parent = 273 &parm->curr_xfer->xroot->dma_parent_tag; 274 } 275 276 if (ppc) { 277 *ppc = parm->xfer_page_cache_ptr; 278 } 279 r = count; /* set remainder count */ 280 z = n_obj * size; /* set allocation size */ 281 pc = parm->xfer_page_cache_ptr; 282 pg = parm->dma_page_ptr; 283 284 for (x = 0; x != n_dma_pc; x++) { 285 286 if (r < n_obj) { 287 /* compute last remainder */ 288 z = r * size; 289 n_obj = r; 290 } 291 if (usb_pc_alloc_mem(parm->dma_page_cache_ptr, 292 pg, z, align)) { 293 return (1); /* failure */ 294 } 295 /* Set beginning of current buffer */ 296 buf = parm->dma_page_cache_ptr->buffer; 297 /* Make room for one DMA page cache and one page */ 298 parm->dma_page_cache_ptr++; 299 pg += n_dma_pg; 300 301 for (y = 0; (y != n_obj); y++, r--, pc++, pg += n_dma_pg) { 302 303 /* Load sub-chunk into DMA */ 304 if (usb_pc_dmamap_create(pc, size)) { 305 return (1); /* failure */ 306 } 307 pc->buffer = USB_ADD_BYTES(buf, y * size); 308 pc->page_start = pg; 309 310 mtx_lock(pc->tag_parent->mtx); 311 if (usb_pc_load_mem(pc, size, 1 /* synchronous */ )) { 312 mtx_unlock(pc->tag_parent->mtx); 313 return (1); /* failure */ 314 } 315 mtx_unlock(pc->tag_parent->mtx); 316 } 317 } 318 319 parm->xfer_page_cache_ptr = pc; 320 parm->dma_page_ptr = pg; 321 return (0); 322 } 323 #endif 324 325 /*------------------------------------------------------------------------* 326 * usbd_transfer_setup_sub - transfer setup subroutine 327 * 328 * This function must be called from the "xfer_setup" callback of the 329 * USB Host or Device controller driver when setting up an USB 330 * transfer. This function will setup correct packet sizes, buffer 331 * sizes, flags and more, that are stored in the "usb_xfer" 332 * structure. 333 *------------------------------------------------------------------------*/ 334 void 335 usbd_transfer_setup_sub(struct usb_setup_params *parm) 336 { 337 enum { 338 REQ_SIZE = 8, 339 MIN_PKT = 8, 340 }; 341 struct usb_xfer *xfer = parm->curr_xfer; 342 const struct usb_config *setup = parm->curr_setup; 343 struct usb_endpoint_ss_comp_descriptor *ecomp; 344 struct usb_endpoint_descriptor *edesc; 345 struct usb_std_packet_size std_size; 346 usb_frcount_t n_frlengths; 347 usb_frcount_t n_frbuffers; 348 usb_frcount_t x; 349 uint16_t maxp_old; 350 uint8_t type; 351 uint8_t zmps; 352 353 /* 354 * Sanity check. The following parameters must be initialized before 355 * calling this function. 356 */ 357 if ((parm->hc_max_packet_size == 0) || 358 (parm->hc_max_packet_count == 0) || 359 (parm->hc_max_frame_size == 0)) { 360 parm->err = USB_ERR_INVAL; 361 goto done; 362 } 363 edesc = xfer->endpoint->edesc; 364 ecomp = xfer->endpoint->ecomp; 365 366 type = (edesc->bmAttributes & UE_XFERTYPE); 367 368 xfer->flags = setup->flags; 369 xfer->nframes = setup->frames; 370 xfer->timeout = setup->timeout; 371 xfer->callback = setup->callback; 372 xfer->interval = setup->interval; 373 xfer->endpointno = edesc->bEndpointAddress; 374 xfer->max_packet_size = UGETW(edesc->wMaxPacketSize); 375 xfer->max_packet_count = 1; 376 /* make a shadow copy: */ 377 xfer->flags_int.usb_mode = parm->udev->flags.usb_mode; 378 379 parm->bufsize = setup->bufsize; 380 381 switch (parm->speed) { 382 case USB_SPEED_HIGH: 383 switch (type) { 384 case UE_ISOCHRONOUS: 385 case UE_INTERRUPT: 386 xfer->max_packet_count += 387 (xfer->max_packet_size >> 11) & 3; 388 389 /* check for invalid max packet count */ 390 if (xfer->max_packet_count > 3) 391 xfer->max_packet_count = 3; 392 break; 393 default: 394 break; 395 } 396 xfer->max_packet_size &= 0x7FF; 397 break; 398 case USB_SPEED_SUPER: 399 xfer->max_packet_count += (xfer->max_packet_size >> 11) & 3; 400 401 if (ecomp != NULL) 402 xfer->max_packet_count += ecomp->bMaxBurst; 403 404 if ((xfer->max_packet_count == 0) || 405 (xfer->max_packet_count > 16)) 406 xfer->max_packet_count = 16; 407 408 switch (type) { 409 case UE_CONTROL: 410 xfer->max_packet_count = 1; 411 break; 412 case UE_ISOCHRONOUS: 413 if (ecomp != NULL) { 414 uint8_t mult; 415 416 mult = UE_GET_SS_ISO_MULT( 417 ecomp->bmAttributes) + 1; 418 if (mult > 3) 419 mult = 3; 420 421 xfer->max_packet_count *= mult; 422 } 423 break; 424 default: 425 break; 426 } 427 xfer->max_packet_size &= 0x7FF; 428 break; 429 default: 430 break; 431 } 432 /* range check "max_packet_count" */ 433 434 if (xfer->max_packet_count > parm->hc_max_packet_count) { 435 xfer->max_packet_count = parm->hc_max_packet_count; 436 } 437 438 /* store max packet size value before filtering */ 439 440 maxp_old = xfer->max_packet_size; 441 442 /* filter "wMaxPacketSize" according to HC capabilities */ 443 444 if ((xfer->max_packet_size > parm->hc_max_packet_size) || 445 (xfer->max_packet_size == 0)) { 446 xfer->max_packet_size = parm->hc_max_packet_size; 447 } 448 /* filter "wMaxPacketSize" according to standard sizes */ 449 450 usbd_get_std_packet_size(&std_size, type, parm->speed); 451 452 if (std_size.range.min || std_size.range.max) { 453 454 if (xfer->max_packet_size < std_size.range.min) { 455 xfer->max_packet_size = std_size.range.min; 456 } 457 if (xfer->max_packet_size > std_size.range.max) { 458 xfer->max_packet_size = std_size.range.max; 459 } 460 } else { 461 462 if (xfer->max_packet_size >= std_size.fixed[3]) { 463 xfer->max_packet_size = std_size.fixed[3]; 464 } else if (xfer->max_packet_size >= std_size.fixed[2]) { 465 xfer->max_packet_size = std_size.fixed[2]; 466 } else if (xfer->max_packet_size >= std_size.fixed[1]) { 467 xfer->max_packet_size = std_size.fixed[1]; 468 } else { 469 /* only one possibility left */ 470 xfer->max_packet_size = std_size.fixed[0]; 471 } 472 } 473 474 /* 475 * Check if the max packet size was outside its allowed range 476 * and clamped to a valid value: 477 */ 478 if (maxp_old != xfer->max_packet_size) 479 xfer->flags_int.maxp_was_clamped = 1; 480 481 /* compute "max_frame_size" */ 482 483 usbd_update_max_frame_size(xfer); 484 485 /* check interrupt interval and transfer pre-delay */ 486 487 if (type == UE_ISOCHRONOUS) { 488 489 uint16_t frame_limit; 490 491 xfer->interval = 0; /* not used, must be zero */ 492 xfer->flags_int.isochronous_xfr = 1; /* set flag */ 493 494 if (xfer->timeout == 0) { 495 /* 496 * set a default timeout in 497 * case something goes wrong! 498 */ 499 xfer->timeout = 1000 / 4; 500 } 501 switch (parm->speed) { 502 case USB_SPEED_LOW: 503 case USB_SPEED_FULL: 504 frame_limit = USB_MAX_FS_ISOC_FRAMES_PER_XFER; 505 xfer->fps_shift = 0; 506 break; 507 default: 508 frame_limit = USB_MAX_HS_ISOC_FRAMES_PER_XFER; 509 xfer->fps_shift = edesc->bInterval; 510 if (xfer->fps_shift > 0) 511 xfer->fps_shift--; 512 if (xfer->fps_shift > 3) 513 xfer->fps_shift = 3; 514 if (xfer->flags.pre_scale_frames != 0) 515 xfer->nframes <<= (3 - xfer->fps_shift); 516 break; 517 } 518 519 if (xfer->nframes > frame_limit) { 520 /* 521 * this is not going to work 522 * cross hardware 523 */ 524 parm->err = USB_ERR_INVAL; 525 goto done; 526 } 527 if (xfer->nframes == 0) { 528 /* 529 * this is not a valid value 530 */ 531 parm->err = USB_ERR_ZERO_NFRAMES; 532 goto done; 533 } 534 } else { 535 536 /* 537 * If a value is specified use that else check the 538 * endpoint descriptor! 539 */ 540 if (type == UE_INTERRUPT) { 541 542 uint32_t temp; 543 544 if (xfer->interval == 0) { 545 546 xfer->interval = edesc->bInterval; 547 548 switch (parm->speed) { 549 case USB_SPEED_LOW: 550 case USB_SPEED_FULL: 551 break; 552 default: 553 /* 125us -> 1ms */ 554 if (xfer->interval < 4) 555 xfer->interval = 1; 556 else if (xfer->interval > 16) 557 xfer->interval = (1 << (16 - 4)); 558 else 559 xfer->interval = 560 (1 << (xfer->interval - 4)); 561 break; 562 } 563 } 564 565 if (xfer->interval == 0) { 566 /* 567 * One millisecond is the smallest 568 * interval we support: 569 */ 570 xfer->interval = 1; 571 } 572 573 xfer->fps_shift = 0; 574 temp = 1; 575 576 while ((temp != 0) && (temp < xfer->interval)) { 577 xfer->fps_shift++; 578 temp *= 2; 579 } 580 581 switch (parm->speed) { 582 case USB_SPEED_LOW: 583 case USB_SPEED_FULL: 584 break; 585 default: 586 xfer->fps_shift += 3; 587 break; 588 } 589 } 590 } 591 592 /* 593 * NOTE: we do not allow "max_packet_size" or "max_frame_size" 594 * to be equal to zero when setting up USB transfers, hence 595 * this leads to alot of extra code in the USB kernel. 596 */ 597 598 if ((xfer->max_frame_size == 0) || 599 (xfer->max_packet_size == 0)) { 600 601 zmps = 1; 602 603 if ((parm->bufsize <= MIN_PKT) && 604 (type != UE_CONTROL) && 605 (type != UE_BULK)) { 606 607 /* workaround */ 608 xfer->max_packet_size = MIN_PKT; 609 xfer->max_packet_count = 1; 610 parm->bufsize = 0; /* automatic setup length */ 611 usbd_update_max_frame_size(xfer); 612 613 } else { 614 parm->err = USB_ERR_ZERO_MAXP; 615 goto done; 616 } 617 618 } else { 619 zmps = 0; 620 } 621 622 /* 623 * check if we should setup a default 624 * length: 625 */ 626 627 if (parm->bufsize == 0) { 628 629 parm->bufsize = xfer->max_frame_size; 630 631 if (type == UE_ISOCHRONOUS) { 632 parm->bufsize *= xfer->nframes; 633 } 634 } 635 /* 636 * check if we are about to setup a proxy 637 * type of buffer: 638 */ 639 640 if (xfer->flags.proxy_buffer) { 641 642 /* round bufsize up */ 643 644 parm->bufsize += (xfer->max_frame_size - 1); 645 646 if (parm->bufsize < xfer->max_frame_size) { 647 /* length wrapped around */ 648 parm->err = USB_ERR_INVAL; 649 goto done; 650 } 651 /* subtract remainder */ 652 653 parm->bufsize -= (parm->bufsize % xfer->max_frame_size); 654 655 /* add length of USB device request structure, if any */ 656 657 if (type == UE_CONTROL) { 658 parm->bufsize += REQ_SIZE; /* SETUP message */ 659 } 660 } 661 xfer->max_data_length = parm->bufsize; 662 663 /* Setup "n_frlengths" and "n_frbuffers" */ 664 665 if (type == UE_ISOCHRONOUS) { 666 n_frlengths = xfer->nframes; 667 n_frbuffers = 1; 668 } else { 669 670 if (type == UE_CONTROL) { 671 xfer->flags_int.control_xfr = 1; 672 if (xfer->nframes == 0) { 673 if (parm->bufsize <= REQ_SIZE) { 674 /* 675 * there will never be any data 676 * stage 677 */ 678 xfer->nframes = 1; 679 } else { 680 xfer->nframes = 2; 681 } 682 } 683 } else { 684 if (xfer->nframes == 0) { 685 xfer->nframes = 1; 686 } 687 } 688 689 n_frlengths = xfer->nframes; 690 n_frbuffers = xfer->nframes; 691 } 692 693 /* 694 * check if we have room for the 695 * USB device request structure: 696 */ 697 698 if (type == UE_CONTROL) { 699 700 if (xfer->max_data_length < REQ_SIZE) { 701 /* length wrapped around or too small bufsize */ 702 parm->err = USB_ERR_INVAL; 703 goto done; 704 } 705 xfer->max_data_length -= REQ_SIZE; 706 } 707 /* 708 * Setup "frlengths" and shadow "frlengths" for keeping the 709 * initial frame lengths when a USB transfer is complete. This 710 * information is useful when computing isochronous offsets. 711 */ 712 xfer->frlengths = parm->xfer_length_ptr; 713 parm->xfer_length_ptr += 2 * n_frlengths; 714 715 /* setup "frbuffers" */ 716 xfer->frbuffers = parm->xfer_page_cache_ptr; 717 parm->xfer_page_cache_ptr += n_frbuffers; 718 719 /* initialize max frame count */ 720 xfer->max_frame_count = xfer->nframes; 721 722 /* 723 * check if we need to setup 724 * a local buffer: 725 */ 726 727 if (!xfer->flags.ext_buffer) { 728 #if USB_HAVE_BUSDMA 729 struct usb_page_search page_info; 730 struct usb_page_cache *pc; 731 732 if (usbd_transfer_setup_sub_malloc(parm, 733 &pc, parm->bufsize, 1, 1)) { 734 parm->err = USB_ERR_NOMEM; 735 } else if (parm->buf != NULL) { 736 737 usbd_get_page(pc, 0, &page_info); 738 739 xfer->local_buffer = page_info.buffer; 740 741 usbd_xfer_set_frame_offset(xfer, 0, 0); 742 743 if ((type == UE_CONTROL) && (n_frbuffers > 1)) { 744 usbd_xfer_set_frame_offset(xfer, REQ_SIZE, 1); 745 } 746 } 747 #else 748 /* align data */ 749 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 750 751 if (parm->buf != NULL) { 752 xfer->local_buffer = 753 USB_ADD_BYTES(parm->buf, parm->size[0]); 754 755 usbd_xfer_set_frame_offset(xfer, 0, 0); 756 757 if ((type == UE_CONTROL) && (n_frbuffers > 1)) { 758 usbd_xfer_set_frame_offset(xfer, REQ_SIZE, 1); 759 } 760 } 761 parm->size[0] += parm->bufsize; 762 763 /* align data again */ 764 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 765 #endif 766 } 767 /* 768 * Compute maximum buffer size 769 */ 770 771 if (parm->bufsize_max < parm->bufsize) { 772 parm->bufsize_max = parm->bufsize; 773 } 774 #if USB_HAVE_BUSDMA 775 if (xfer->flags_int.bdma_enable) { 776 /* 777 * Setup "dma_page_ptr". 778 * 779 * Proof for formula below: 780 * 781 * Assume there are three USB frames having length "a", "b" and 782 * "c". These USB frames will at maximum need "z" 783 * "usb_page" structures. "z" is given by: 784 * 785 * z = ((a / USB_PAGE_SIZE) + 2) + ((b / USB_PAGE_SIZE) + 2) + 786 * ((c / USB_PAGE_SIZE) + 2); 787 * 788 * Constraining "a", "b" and "c" like this: 789 * 790 * (a + b + c) <= parm->bufsize 791 * 792 * We know that: 793 * 794 * z <= ((parm->bufsize / USB_PAGE_SIZE) + (3*2)); 795 * 796 * Here is the general formula: 797 */ 798 xfer->dma_page_ptr = parm->dma_page_ptr; 799 parm->dma_page_ptr += (2 * n_frbuffers); 800 parm->dma_page_ptr += (parm->bufsize / USB_PAGE_SIZE); 801 } 802 #endif 803 if (zmps) { 804 /* correct maximum data length */ 805 xfer->max_data_length = 0; 806 } 807 /* subtract USB frame remainder from "hc_max_frame_size" */ 808 809 xfer->max_hc_frame_size = 810 (parm->hc_max_frame_size - 811 (parm->hc_max_frame_size % xfer->max_frame_size)); 812 813 if (xfer->max_hc_frame_size == 0) { 814 parm->err = USB_ERR_INVAL; 815 goto done; 816 } 817 818 /* initialize frame buffers */ 819 820 if (parm->buf) { 821 for (x = 0; x != n_frbuffers; x++) { 822 xfer->frbuffers[x].tag_parent = 823 &xfer->xroot->dma_parent_tag; 824 #if USB_HAVE_BUSDMA 825 if (xfer->flags_int.bdma_enable && 826 (parm->bufsize_max > 0)) { 827 828 if (usb_pc_dmamap_create( 829 xfer->frbuffers + x, 830 parm->bufsize_max)) { 831 parm->err = USB_ERR_NOMEM; 832 goto done; 833 } 834 } 835 #endif 836 } 837 } 838 done: 839 if (parm->err) { 840 /* 841 * Set some dummy values so that we avoid division by zero: 842 */ 843 xfer->max_hc_frame_size = 1; 844 xfer->max_frame_size = 1; 845 xfer->max_packet_size = 1; 846 xfer->max_data_length = 0; 847 xfer->nframes = 0; 848 xfer->max_frame_count = 0; 849 } 850 } 851 852 /*------------------------------------------------------------------------* 853 * usbd_transfer_setup - setup an array of USB transfers 854 * 855 * NOTE: You must always call "usbd_transfer_unsetup" after calling 856 * "usbd_transfer_setup" if success was returned. 857 * 858 * The idea is that the USB device driver should pre-allocate all its 859 * transfers by one call to this function. 860 * 861 * Return values: 862 * 0: Success 863 * Else: Failure 864 *------------------------------------------------------------------------*/ 865 usb_error_t 866 usbd_transfer_setup(struct usb_device *udev, 867 const uint8_t *ifaces, struct usb_xfer **ppxfer, 868 const struct usb_config *setup_start, uint16_t n_setup, 869 void *priv_sc, struct mtx *xfer_mtx) 870 { 871 const struct usb_config *setup_end = setup_start + n_setup; 872 const struct usb_config *setup; 873 struct usb_setup_params *parm; 874 struct usb_endpoint *ep; 875 struct usb_xfer_root *info; 876 struct usb_xfer *xfer; 877 void *buf = NULL; 878 usb_error_t error = 0; 879 uint16_t n; 880 uint16_t refcount; 881 uint8_t do_unlock; 882 883 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 884 "usbd_transfer_setup can sleep!"); 885 886 /* do some checking first */ 887 888 if (n_setup == 0) { 889 DPRINTFN(6, "setup array has zero length!\n"); 890 return (USB_ERR_INVAL); 891 } 892 if (ifaces == 0) { 893 DPRINTFN(6, "ifaces array is NULL!\n"); 894 return (USB_ERR_INVAL); 895 } 896 if (xfer_mtx == NULL) { 897 DPRINTFN(6, "using global lock\n"); 898 xfer_mtx = &Giant; 899 } 900 901 /* more sanity checks */ 902 903 for (setup = setup_start, n = 0; 904 setup != setup_end; setup++, n++) { 905 if (setup->bufsize == (usb_frlength_t)-1) { 906 error = USB_ERR_BAD_BUFSIZE; 907 DPRINTF("invalid bufsize\n"); 908 } 909 if (setup->callback == NULL) { 910 error = USB_ERR_NO_CALLBACK; 911 DPRINTF("no callback\n"); 912 } 913 ppxfer[n] = NULL; 914 } 915 916 if (error) 917 return (error); 918 919 /* Protect scratch area */ 920 do_unlock = usbd_enum_lock(udev); 921 922 refcount = 0; 923 info = NULL; 924 925 parm = &udev->scratch.xfer_setup[0].parm; 926 memset(parm, 0, sizeof(*parm)); 927 928 parm->udev = udev; 929 parm->speed = usbd_get_speed(udev); 930 parm->hc_max_packet_count = 1; 931 932 if (parm->speed >= USB_SPEED_MAX) { 933 parm->err = USB_ERR_INVAL; 934 goto done; 935 } 936 /* setup all transfers */ 937 938 while (1) { 939 940 if (buf) { 941 /* 942 * Initialize the "usb_xfer_root" structure, 943 * which is common for all our USB transfers. 944 */ 945 info = USB_ADD_BYTES(buf, 0); 946 947 info->memory_base = buf; 948 info->memory_size = parm->size[0]; 949 950 #if USB_HAVE_BUSDMA 951 info->dma_page_cache_start = USB_ADD_BYTES(buf, parm->size[4]); 952 info->dma_page_cache_end = USB_ADD_BYTES(buf, parm->size[5]); 953 #endif 954 info->xfer_page_cache_start = USB_ADD_BYTES(buf, parm->size[5]); 955 info->xfer_page_cache_end = USB_ADD_BYTES(buf, parm->size[2]); 956 957 cv_init(&info->cv_drain, "WDRAIN"); 958 959 info->xfer_mtx = xfer_mtx; 960 #if USB_HAVE_BUSDMA 961 usb_dma_tag_setup(&info->dma_parent_tag, 962 parm->dma_tag_p, udev->bus->dma_parent_tag[0].tag, 963 xfer_mtx, &usb_bdma_done_event, 32, parm->dma_tag_max); 964 #endif 965 966 info->bus = udev->bus; 967 info->udev = udev; 968 969 TAILQ_INIT(&info->done_q.head); 970 info->done_q.command = &usbd_callback_wrapper; 971 #if USB_HAVE_BUSDMA 972 TAILQ_INIT(&info->dma_q.head); 973 info->dma_q.command = &usb_bdma_work_loop; 974 #endif 975 info->done_m[0].hdr.pm_callback = &usb_callback_proc; 976 info->done_m[0].xroot = info; 977 info->done_m[1].hdr.pm_callback = &usb_callback_proc; 978 info->done_m[1].xroot = info; 979 980 /* 981 * In device side mode control endpoint 982 * requests need to run from a separate 983 * context, else there is a chance of 984 * deadlock! 985 */ 986 if (setup_start == usb_control_ep_cfg) 987 info->done_p = 988 USB_BUS_CONTROL_XFER_PROC(udev->bus); 989 else if (xfer_mtx == &Giant) 990 info->done_p = 991 USB_BUS_GIANT_PROC(udev->bus); 992 else 993 info->done_p = 994 USB_BUS_NON_GIANT_PROC(udev->bus); 995 } 996 /* reset sizes */ 997 998 parm->size[0] = 0; 999 parm->buf = buf; 1000 parm->size[0] += sizeof(info[0]); 1001 1002 for (setup = setup_start, n = 0; 1003 setup != setup_end; setup++, n++) { 1004 1005 /* skip USB transfers without callbacks: */ 1006 if (setup->callback == NULL) { 1007 continue; 1008 } 1009 /* see if there is a matching endpoint */ 1010 ep = usbd_get_endpoint(udev, 1011 ifaces[setup->if_index], setup); 1012 1013 /* 1014 * Check that the USB PIPE is valid and that 1015 * the endpoint mode is proper. 1016 * 1017 * Make sure we don't allocate a streams 1018 * transfer when such a combination is not 1019 * valid. 1020 */ 1021 if ((ep == NULL) || (ep->methods == NULL) || 1022 ((ep->ep_mode != USB_EP_MODE_STREAMS) && 1023 (ep->ep_mode != USB_EP_MODE_DEFAULT)) || 1024 (setup->stream_id != 0 && 1025 (setup->stream_id >= USB_MAX_EP_STREAMS || 1026 (ep->ep_mode != USB_EP_MODE_STREAMS)))) { 1027 if (setup->flags.no_pipe_ok) 1028 continue; 1029 if ((setup->usb_mode != USB_MODE_DUAL) && 1030 (setup->usb_mode != udev->flags.usb_mode)) 1031 continue; 1032 parm->err = USB_ERR_NO_PIPE; 1033 goto done; 1034 } 1035 1036 /* align data properly */ 1037 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1038 1039 /* store current setup pointer */ 1040 parm->curr_setup = setup; 1041 1042 if (buf) { 1043 /* 1044 * Common initialization of the 1045 * "usb_xfer" structure. 1046 */ 1047 xfer = USB_ADD_BYTES(buf, parm->size[0]); 1048 xfer->address = udev->address; 1049 xfer->priv_sc = priv_sc; 1050 xfer->xroot = info; 1051 1052 usb_callout_init_mtx(&xfer->timeout_handle, 1053 &udev->bus->bus_mtx, 0); 1054 } else { 1055 /* 1056 * Setup a dummy xfer, hence we are 1057 * writing to the "usb_xfer" 1058 * structure pointed to by "xfer" 1059 * before we have allocated any 1060 * memory: 1061 */ 1062 xfer = &udev->scratch.xfer_setup[0].dummy; 1063 memset(xfer, 0, sizeof(*xfer)); 1064 refcount++; 1065 } 1066 1067 /* set transfer endpoint pointer */ 1068 xfer->endpoint = ep; 1069 1070 /* set transfer stream ID */ 1071 xfer->stream_id = setup->stream_id; 1072 1073 parm->size[0] += sizeof(xfer[0]); 1074 parm->methods = xfer->endpoint->methods; 1075 parm->curr_xfer = xfer; 1076 1077 /* 1078 * Call the Host or Device controller transfer 1079 * setup routine: 1080 */ 1081 (udev->bus->methods->xfer_setup) (parm); 1082 1083 /* check for error */ 1084 if (parm->err) 1085 goto done; 1086 1087 if (buf) { 1088 /* 1089 * Increment the endpoint refcount. This 1090 * basically prevents setting a new 1091 * configuration and alternate setting 1092 * when USB transfers are in use on 1093 * the given interface. Search the USB 1094 * code for "endpoint->refcount_alloc" if you 1095 * want more information. 1096 */ 1097 USB_BUS_LOCK(info->bus); 1098 if (xfer->endpoint->refcount_alloc >= USB_EP_REF_MAX) 1099 parm->err = USB_ERR_INVAL; 1100 1101 xfer->endpoint->refcount_alloc++; 1102 1103 if (xfer->endpoint->refcount_alloc == 0) 1104 panic("usbd_transfer_setup(): Refcount wrapped to zero\n"); 1105 USB_BUS_UNLOCK(info->bus); 1106 1107 /* 1108 * Whenever we set ppxfer[] then we 1109 * also need to increment the 1110 * "setup_refcount": 1111 */ 1112 info->setup_refcount++; 1113 1114 /* 1115 * Transfer is successfully setup and 1116 * can be used: 1117 */ 1118 ppxfer[n] = xfer; 1119 } 1120 1121 /* check for error */ 1122 if (parm->err) 1123 goto done; 1124 } 1125 1126 if (buf != NULL || parm->err != 0) 1127 goto done; 1128 1129 /* if no transfers, nothing to do */ 1130 if (refcount == 0) 1131 goto done; 1132 1133 /* align data properly */ 1134 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1135 1136 /* store offset temporarily */ 1137 parm->size[1] = parm->size[0]; 1138 1139 /* 1140 * The number of DMA tags required depends on 1141 * the number of endpoints. The current estimate 1142 * for maximum number of DMA tags per endpoint 1143 * is three: 1144 * 1) for loading memory 1145 * 2) for allocating memory 1146 * 3) for fixing memory [UHCI] 1147 */ 1148 parm->dma_tag_max += 3 * MIN(n_setup, USB_EP_MAX); 1149 1150 /* 1151 * DMA tags for QH, TD, Data and more. 1152 */ 1153 parm->dma_tag_max += 8; 1154 1155 parm->dma_tag_p += parm->dma_tag_max; 1156 1157 parm->size[0] += ((uint8_t *)parm->dma_tag_p) - 1158 ((uint8_t *)0); 1159 1160 /* align data properly */ 1161 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1162 1163 /* store offset temporarily */ 1164 parm->size[3] = parm->size[0]; 1165 1166 parm->size[0] += ((uint8_t *)parm->dma_page_ptr) - 1167 ((uint8_t *)0); 1168 1169 /* align data properly */ 1170 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1171 1172 /* store offset temporarily */ 1173 parm->size[4] = parm->size[0]; 1174 1175 parm->size[0] += ((uint8_t *)parm->dma_page_cache_ptr) - 1176 ((uint8_t *)0); 1177 1178 /* store end offset temporarily */ 1179 parm->size[5] = parm->size[0]; 1180 1181 parm->size[0] += ((uint8_t *)parm->xfer_page_cache_ptr) - 1182 ((uint8_t *)0); 1183 1184 /* store end offset temporarily */ 1185 1186 parm->size[2] = parm->size[0]; 1187 1188 /* align data properly */ 1189 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1190 1191 parm->size[6] = parm->size[0]; 1192 1193 parm->size[0] += ((uint8_t *)parm->xfer_length_ptr) - 1194 ((uint8_t *)0); 1195 1196 /* align data properly */ 1197 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1198 1199 /* allocate zeroed memory */ 1200 buf = malloc(parm->size[0], M_USB, M_WAITOK | M_ZERO); 1201 1202 if (buf == NULL) { 1203 parm->err = USB_ERR_NOMEM; 1204 DPRINTFN(0, "cannot allocate memory block for " 1205 "configuration (%d bytes)\n", 1206 parm->size[0]); 1207 goto done; 1208 } 1209 parm->dma_tag_p = USB_ADD_BYTES(buf, parm->size[1]); 1210 parm->dma_page_ptr = USB_ADD_BYTES(buf, parm->size[3]); 1211 parm->dma_page_cache_ptr = USB_ADD_BYTES(buf, parm->size[4]); 1212 parm->xfer_page_cache_ptr = USB_ADD_BYTES(buf, parm->size[5]); 1213 parm->xfer_length_ptr = USB_ADD_BYTES(buf, parm->size[6]); 1214 } 1215 1216 done: 1217 if (buf) { 1218 if (info->setup_refcount == 0) { 1219 /* 1220 * "usbd_transfer_unsetup_sub" will unlock 1221 * the bus mutex before returning ! 1222 */ 1223 USB_BUS_LOCK(info->bus); 1224 1225 /* something went wrong */ 1226 usbd_transfer_unsetup_sub(info, 0); 1227 } 1228 } 1229 1230 /* check if any errors happened */ 1231 if (parm->err) 1232 usbd_transfer_unsetup(ppxfer, n_setup); 1233 1234 error = parm->err; 1235 1236 if (do_unlock) 1237 usbd_enum_unlock(udev); 1238 1239 return (error); 1240 } 1241 1242 /*------------------------------------------------------------------------* 1243 * usbd_transfer_unsetup_sub - factored out code 1244 *------------------------------------------------------------------------*/ 1245 static void 1246 usbd_transfer_unsetup_sub(struct usb_xfer_root *info, uint8_t needs_delay) 1247 { 1248 #if USB_HAVE_BUSDMA 1249 struct usb_page_cache *pc; 1250 #endif 1251 1252 USB_BUS_LOCK_ASSERT(info->bus, MA_OWNED); 1253 1254 /* wait for any outstanding DMA operations */ 1255 1256 if (needs_delay) { 1257 usb_timeout_t temp; 1258 temp = usbd_get_dma_delay(info->udev); 1259 if (temp != 0) { 1260 usb_pause_mtx(&info->bus->bus_mtx, 1261 USB_MS_TO_TICKS(temp)); 1262 } 1263 } 1264 1265 /* make sure that our done messages are not queued anywhere */ 1266 usb_proc_mwait(info->done_p, &info->done_m[0], &info->done_m[1]); 1267 1268 USB_BUS_UNLOCK(info->bus); 1269 1270 #if USB_HAVE_BUSDMA 1271 /* free DMA'able memory, if any */ 1272 pc = info->dma_page_cache_start; 1273 while (pc != info->dma_page_cache_end) { 1274 usb_pc_free_mem(pc); 1275 pc++; 1276 } 1277 1278 /* free DMA maps in all "xfer->frbuffers" */ 1279 pc = info->xfer_page_cache_start; 1280 while (pc != info->xfer_page_cache_end) { 1281 usb_pc_dmamap_destroy(pc); 1282 pc++; 1283 } 1284 1285 /* free all DMA tags */ 1286 usb_dma_tag_unsetup(&info->dma_parent_tag); 1287 #endif 1288 1289 cv_destroy(&info->cv_drain); 1290 1291 /* 1292 * free the "memory_base" last, hence the "info" structure is 1293 * contained within the "memory_base"! 1294 */ 1295 free(info->memory_base, M_USB); 1296 } 1297 1298 /*------------------------------------------------------------------------* 1299 * usbd_transfer_unsetup - unsetup/free an array of USB transfers 1300 * 1301 * NOTE: All USB transfers in progress will get called back passing 1302 * the error code "USB_ERR_CANCELLED" before this function 1303 * returns. 1304 *------------------------------------------------------------------------*/ 1305 void 1306 usbd_transfer_unsetup(struct usb_xfer **pxfer, uint16_t n_setup) 1307 { 1308 struct usb_xfer *xfer; 1309 struct usb_xfer_root *info; 1310 uint8_t needs_delay = 0; 1311 1312 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 1313 "usbd_transfer_unsetup can sleep!"); 1314 1315 while (n_setup--) { 1316 xfer = pxfer[n_setup]; 1317 1318 if (xfer == NULL) 1319 continue; 1320 1321 info = xfer->xroot; 1322 1323 USB_XFER_LOCK(xfer); 1324 USB_BUS_LOCK(info->bus); 1325 1326 /* 1327 * HINT: when you start/stop a transfer, it might be a 1328 * good idea to directly use the "pxfer[]" structure: 1329 * 1330 * usbd_transfer_start(sc->pxfer[0]); 1331 * usbd_transfer_stop(sc->pxfer[0]); 1332 * 1333 * That way, if your code has many parts that will not 1334 * stop running under the same lock, in other words 1335 * "xfer_mtx", the usbd_transfer_start and 1336 * usbd_transfer_stop functions will simply return 1337 * when they detect a NULL pointer argument. 1338 * 1339 * To avoid any races we clear the "pxfer[]" pointer 1340 * while holding the private mutex of the driver: 1341 */ 1342 pxfer[n_setup] = NULL; 1343 1344 USB_BUS_UNLOCK(info->bus); 1345 USB_XFER_UNLOCK(xfer); 1346 1347 usbd_transfer_drain(xfer); 1348 1349 #if USB_HAVE_BUSDMA 1350 if (xfer->flags_int.bdma_enable) 1351 needs_delay = 1; 1352 #endif 1353 /* 1354 * NOTE: default endpoint does not have an 1355 * interface, even if endpoint->iface_index == 0 1356 */ 1357 USB_BUS_LOCK(info->bus); 1358 xfer->endpoint->refcount_alloc--; 1359 USB_BUS_UNLOCK(info->bus); 1360 1361 usb_callout_drain(&xfer->timeout_handle); 1362 1363 USB_BUS_LOCK(info->bus); 1364 1365 USB_ASSERT(info->setup_refcount != 0, ("Invalid setup " 1366 "reference count\n")); 1367 1368 info->setup_refcount--; 1369 1370 if (info->setup_refcount == 0) { 1371 usbd_transfer_unsetup_sub(info, 1372 needs_delay); 1373 } else { 1374 USB_BUS_UNLOCK(info->bus); 1375 } 1376 } 1377 } 1378 1379 /*------------------------------------------------------------------------* 1380 * usbd_control_transfer_init - factored out code 1381 * 1382 * In USB Device Mode we have to wait for the SETUP packet which 1383 * containst the "struct usb_device_request" structure, before we can 1384 * transfer any data. In USB Host Mode we already have the SETUP 1385 * packet at the moment the USB transfer is started. This leads us to 1386 * having to setup the USB transfer at two different places in 1387 * time. This function just contains factored out control transfer 1388 * initialisation code, so that we don't duplicate the code. 1389 *------------------------------------------------------------------------*/ 1390 static void 1391 usbd_control_transfer_init(struct usb_xfer *xfer) 1392 { 1393 struct usb_device_request req; 1394 1395 /* copy out the USB request header */ 1396 1397 usbd_copy_out(xfer->frbuffers, 0, &req, sizeof(req)); 1398 1399 /* setup remainder */ 1400 1401 xfer->flags_int.control_rem = UGETW(req.wLength); 1402 1403 /* copy direction to endpoint variable */ 1404 1405 xfer->endpointno &= ~(UE_DIR_IN | UE_DIR_OUT); 1406 xfer->endpointno |= 1407 (req.bmRequestType & UT_READ) ? UE_DIR_IN : UE_DIR_OUT; 1408 } 1409 1410 /*------------------------------------------------------------------------* 1411 * usbd_setup_ctrl_transfer 1412 * 1413 * This function handles initialisation of control transfers. Control 1414 * transfers are special in that regard that they can both transmit 1415 * and receive data. 1416 * 1417 * Return values: 1418 * 0: Success 1419 * Else: Failure 1420 *------------------------------------------------------------------------*/ 1421 static int 1422 usbd_setup_ctrl_transfer(struct usb_xfer *xfer) 1423 { 1424 usb_frlength_t len; 1425 1426 /* Check for control endpoint stall */ 1427 if (xfer->flags.stall_pipe && xfer->flags_int.control_act) { 1428 /* the control transfer is no longer active */ 1429 xfer->flags_int.control_stall = 1; 1430 xfer->flags_int.control_act = 0; 1431 } else { 1432 /* don't stall control transfer by default */ 1433 xfer->flags_int.control_stall = 0; 1434 } 1435 1436 /* Check for invalid number of frames */ 1437 if (xfer->nframes > 2) { 1438 /* 1439 * If you need to split a control transfer, you 1440 * have to do one part at a time. Only with 1441 * non-control transfers you can do multiple 1442 * parts a time. 1443 */ 1444 DPRINTFN(0, "Too many frames: %u\n", 1445 (unsigned int)xfer->nframes); 1446 goto error; 1447 } 1448 1449 /* 1450 * Check if there is a control 1451 * transfer in progress: 1452 */ 1453 if (xfer->flags_int.control_act) { 1454 1455 if (xfer->flags_int.control_hdr) { 1456 1457 /* clear send header flag */ 1458 1459 xfer->flags_int.control_hdr = 0; 1460 1461 /* setup control transfer */ 1462 if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) { 1463 usbd_control_transfer_init(xfer); 1464 } 1465 } 1466 /* get data length */ 1467 1468 len = xfer->sumlen; 1469 1470 } else { 1471 1472 /* the size of the SETUP structure is hardcoded ! */ 1473 1474 if (xfer->frlengths[0] != sizeof(struct usb_device_request)) { 1475 DPRINTFN(0, "Wrong framelength %u != %zu\n", 1476 xfer->frlengths[0], sizeof(struct 1477 usb_device_request)); 1478 goto error; 1479 } 1480 /* check USB mode */ 1481 if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) { 1482 1483 /* check number of frames */ 1484 if (xfer->nframes != 1) { 1485 /* 1486 * We need to receive the setup 1487 * message first so that we know the 1488 * data direction! 1489 */ 1490 DPRINTF("Misconfigured transfer\n"); 1491 goto error; 1492 } 1493 /* 1494 * Set a dummy "control_rem" value. This 1495 * variable will be overwritten later by a 1496 * call to "usbd_control_transfer_init()" ! 1497 */ 1498 xfer->flags_int.control_rem = 0xFFFF; 1499 } else { 1500 1501 /* setup "endpoint" and "control_rem" */ 1502 1503 usbd_control_transfer_init(xfer); 1504 } 1505 1506 /* set transfer-header flag */ 1507 1508 xfer->flags_int.control_hdr = 1; 1509 1510 /* get data length */ 1511 1512 len = (xfer->sumlen - sizeof(struct usb_device_request)); 1513 } 1514 1515 /* check if there is a length mismatch */ 1516 1517 if (len > xfer->flags_int.control_rem) { 1518 DPRINTFN(0, "Length (%d) greater than " 1519 "remaining length (%d)\n", len, 1520 xfer->flags_int.control_rem); 1521 goto error; 1522 } 1523 /* check if we are doing a short transfer */ 1524 1525 if (xfer->flags.force_short_xfer) { 1526 xfer->flags_int.control_rem = 0; 1527 } else { 1528 if ((len != xfer->max_data_length) && 1529 (len != xfer->flags_int.control_rem) && 1530 (xfer->nframes != 1)) { 1531 DPRINTFN(0, "Short control transfer without " 1532 "force_short_xfer set\n"); 1533 goto error; 1534 } 1535 xfer->flags_int.control_rem -= len; 1536 } 1537 1538 /* the status part is executed when "control_act" is 0 */ 1539 1540 if ((xfer->flags_int.control_rem > 0) || 1541 (xfer->flags.manual_status)) { 1542 /* don't execute the STATUS stage yet */ 1543 xfer->flags_int.control_act = 1; 1544 1545 /* sanity check */ 1546 if ((!xfer->flags_int.control_hdr) && 1547 (xfer->nframes == 1)) { 1548 /* 1549 * This is not a valid operation! 1550 */ 1551 DPRINTFN(0, "Invalid parameter " 1552 "combination\n"); 1553 goto error; 1554 } 1555 } else { 1556 /* time to execute the STATUS stage */ 1557 xfer->flags_int.control_act = 0; 1558 } 1559 return (0); /* success */ 1560 1561 error: 1562 return (1); /* failure */ 1563 } 1564 1565 /*------------------------------------------------------------------------* 1566 * usbd_transfer_submit - start USB hardware for the given transfer 1567 * 1568 * This function should only be called from the USB callback. 1569 *------------------------------------------------------------------------*/ 1570 void 1571 usbd_transfer_submit(struct usb_xfer *xfer) 1572 { 1573 struct usb_xfer_root *info; 1574 struct usb_bus *bus; 1575 usb_frcount_t x; 1576 1577 info = xfer->xroot; 1578 bus = info->bus; 1579 1580 DPRINTF("xfer=%p, endpoint=%p, nframes=%d, dir=%s\n", 1581 xfer, xfer->endpoint, xfer->nframes, USB_GET_DATA_ISREAD(xfer) ? 1582 "read" : "write"); 1583 1584 #ifdef USB_DEBUG 1585 if (USB_DEBUG_VAR > 0) { 1586 USB_BUS_LOCK(bus); 1587 1588 usb_dump_endpoint(xfer->endpoint); 1589 1590 USB_BUS_UNLOCK(bus); 1591 } 1592 #endif 1593 1594 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 1595 USB_BUS_LOCK_ASSERT(bus, MA_NOTOWNED); 1596 1597 /* Only open the USB transfer once! */ 1598 if (!xfer->flags_int.open) { 1599 xfer->flags_int.open = 1; 1600 1601 DPRINTF("open\n"); 1602 1603 USB_BUS_LOCK(bus); 1604 (xfer->endpoint->methods->open) (xfer); 1605 USB_BUS_UNLOCK(bus); 1606 } 1607 /* set "transferring" flag */ 1608 xfer->flags_int.transferring = 1; 1609 1610 #if USB_HAVE_POWERD 1611 /* increment power reference */ 1612 usbd_transfer_power_ref(xfer, 1); 1613 #endif 1614 /* 1615 * Check if the transfer is waiting on a queue, most 1616 * frequently the "done_q": 1617 */ 1618 if (xfer->wait_queue) { 1619 USB_BUS_LOCK(bus); 1620 usbd_transfer_dequeue(xfer); 1621 USB_BUS_UNLOCK(bus); 1622 } 1623 /* clear "did_dma_delay" flag */ 1624 xfer->flags_int.did_dma_delay = 0; 1625 1626 /* clear "did_close" flag */ 1627 xfer->flags_int.did_close = 0; 1628 1629 #if USB_HAVE_BUSDMA 1630 /* clear "bdma_setup" flag */ 1631 xfer->flags_int.bdma_setup = 0; 1632 #endif 1633 /* by default we cannot cancel any USB transfer immediately */ 1634 xfer->flags_int.can_cancel_immed = 0; 1635 1636 /* clear lengths and frame counts by default */ 1637 xfer->sumlen = 0; 1638 xfer->actlen = 0; 1639 xfer->aframes = 0; 1640 1641 /* clear any previous errors */ 1642 xfer->error = 0; 1643 1644 /* Check if the device is still alive */ 1645 if (info->udev->state < USB_STATE_POWERED) { 1646 USB_BUS_LOCK(bus); 1647 /* 1648 * Must return cancelled error code else 1649 * device drivers can hang. 1650 */ 1651 usbd_transfer_done(xfer, USB_ERR_CANCELLED); 1652 USB_BUS_UNLOCK(bus); 1653 return; 1654 } 1655 1656 /* sanity check */ 1657 if (xfer->nframes == 0) { 1658 if (xfer->flags.stall_pipe) { 1659 /* 1660 * Special case - want to stall without transferring 1661 * any data: 1662 */ 1663 DPRINTF("xfer=%p nframes=0: stall " 1664 "or clear stall!\n", xfer); 1665 USB_BUS_LOCK(bus); 1666 xfer->flags_int.can_cancel_immed = 1; 1667 /* start the transfer */ 1668 usb_command_wrapper(&xfer->endpoint-> 1669 endpoint_q[xfer->stream_id], xfer); 1670 USB_BUS_UNLOCK(bus); 1671 return; 1672 } 1673 USB_BUS_LOCK(bus); 1674 usbd_transfer_done(xfer, USB_ERR_INVAL); 1675 USB_BUS_UNLOCK(bus); 1676 return; 1677 } 1678 /* compute some variables */ 1679 1680 for (x = 0; x != xfer->nframes; x++) { 1681 /* make a copy of the frlenghts[] */ 1682 xfer->frlengths[x + xfer->max_frame_count] = xfer->frlengths[x]; 1683 /* compute total transfer length */ 1684 xfer->sumlen += xfer->frlengths[x]; 1685 if (xfer->sumlen < xfer->frlengths[x]) { 1686 /* length wrapped around */ 1687 USB_BUS_LOCK(bus); 1688 usbd_transfer_done(xfer, USB_ERR_INVAL); 1689 USB_BUS_UNLOCK(bus); 1690 return; 1691 } 1692 } 1693 1694 /* clear some internal flags */ 1695 1696 xfer->flags_int.short_xfer_ok = 0; 1697 xfer->flags_int.short_frames_ok = 0; 1698 1699 /* check if this is a control transfer */ 1700 1701 if (xfer->flags_int.control_xfr) { 1702 1703 if (usbd_setup_ctrl_transfer(xfer)) { 1704 USB_BUS_LOCK(bus); 1705 usbd_transfer_done(xfer, USB_ERR_STALLED); 1706 USB_BUS_UNLOCK(bus); 1707 return; 1708 } 1709 } 1710 /* 1711 * Setup filtered version of some transfer flags, 1712 * in case of data read direction 1713 */ 1714 if (USB_GET_DATA_ISREAD(xfer)) { 1715 1716 if (xfer->flags.short_frames_ok) { 1717 xfer->flags_int.short_xfer_ok = 1; 1718 xfer->flags_int.short_frames_ok = 1; 1719 } else if (xfer->flags.short_xfer_ok) { 1720 xfer->flags_int.short_xfer_ok = 1; 1721 1722 /* check for control transfer */ 1723 if (xfer->flags_int.control_xfr) { 1724 /* 1725 * 1) Control transfers do not support 1726 * reception of multiple short USB 1727 * frames in host mode and device side 1728 * mode, with exception of: 1729 * 1730 * 2) Due to sometimes buggy device 1731 * side firmware we need to do a 1732 * STATUS stage in case of short 1733 * control transfers in USB host mode. 1734 * The STATUS stage then becomes the 1735 * "alt_next" to the DATA stage. 1736 */ 1737 xfer->flags_int.short_frames_ok = 1; 1738 } 1739 } 1740 } 1741 /* 1742 * Check if BUS-DMA support is enabled and try to load virtual 1743 * buffers into DMA, if any: 1744 */ 1745 #if USB_HAVE_BUSDMA 1746 if (xfer->flags_int.bdma_enable) { 1747 /* insert the USB transfer last in the BUS-DMA queue */ 1748 usb_command_wrapper(&xfer->xroot->dma_q, xfer); 1749 return; 1750 } 1751 #endif 1752 /* 1753 * Enter the USB transfer into the Host Controller or 1754 * Device Controller schedule: 1755 */ 1756 usbd_pipe_enter(xfer); 1757 } 1758 1759 /*------------------------------------------------------------------------* 1760 * usbd_pipe_enter - factored out code 1761 *------------------------------------------------------------------------*/ 1762 void 1763 usbd_pipe_enter(struct usb_xfer *xfer) 1764 { 1765 struct usb_endpoint *ep; 1766 1767 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 1768 1769 USB_BUS_LOCK(xfer->xroot->bus); 1770 1771 ep = xfer->endpoint; 1772 1773 DPRINTF("enter\n"); 1774 1775 /* the transfer can now be cancelled */ 1776 xfer->flags_int.can_cancel_immed = 1; 1777 1778 /* enter the transfer */ 1779 (ep->methods->enter) (xfer); 1780 1781 /* check for transfer error */ 1782 if (xfer->error) { 1783 /* some error has happened */ 1784 usbd_transfer_done(xfer, 0); 1785 USB_BUS_UNLOCK(xfer->xroot->bus); 1786 return; 1787 } 1788 1789 /* start the transfer */ 1790 usb_command_wrapper(&ep->endpoint_q[xfer->stream_id], xfer); 1791 USB_BUS_UNLOCK(xfer->xroot->bus); 1792 } 1793 1794 /*------------------------------------------------------------------------* 1795 * usbd_transfer_start - start an USB transfer 1796 * 1797 * NOTE: Calling this function more than one time will only 1798 * result in a single transfer start, until the USB transfer 1799 * completes. 1800 *------------------------------------------------------------------------*/ 1801 void 1802 usbd_transfer_start(struct usb_xfer *xfer) 1803 { 1804 if (xfer == NULL) { 1805 /* transfer is gone */ 1806 return; 1807 } 1808 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 1809 1810 /* mark the USB transfer started */ 1811 1812 if (!xfer->flags_int.started) { 1813 /* lock the BUS lock to avoid races updating flags_int */ 1814 USB_BUS_LOCK(xfer->xroot->bus); 1815 xfer->flags_int.started = 1; 1816 USB_BUS_UNLOCK(xfer->xroot->bus); 1817 } 1818 /* check if the USB transfer callback is already transferring */ 1819 1820 if (xfer->flags_int.transferring) { 1821 return; 1822 } 1823 USB_BUS_LOCK(xfer->xroot->bus); 1824 /* call the USB transfer callback */ 1825 usbd_callback_ss_done_defer(xfer); 1826 USB_BUS_UNLOCK(xfer->xroot->bus); 1827 } 1828 1829 /*------------------------------------------------------------------------* 1830 * usbd_transfer_stop - stop an USB transfer 1831 * 1832 * NOTE: Calling this function more than one time will only 1833 * result in a single transfer stop. 1834 * NOTE: When this function returns it is not safe to free nor 1835 * reuse any DMA buffers. See "usbd_transfer_drain()". 1836 *------------------------------------------------------------------------*/ 1837 void 1838 usbd_transfer_stop(struct usb_xfer *xfer) 1839 { 1840 struct usb_endpoint *ep; 1841 1842 if (xfer == NULL) { 1843 /* transfer is gone */ 1844 return; 1845 } 1846 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 1847 1848 /* check if the USB transfer was ever opened */ 1849 1850 if (!xfer->flags_int.open) { 1851 if (xfer->flags_int.started) { 1852 /* nothing to do except clearing the "started" flag */ 1853 /* lock the BUS lock to avoid races updating flags_int */ 1854 USB_BUS_LOCK(xfer->xroot->bus); 1855 xfer->flags_int.started = 0; 1856 USB_BUS_UNLOCK(xfer->xroot->bus); 1857 } 1858 return; 1859 } 1860 /* try to stop the current USB transfer */ 1861 1862 USB_BUS_LOCK(xfer->xroot->bus); 1863 /* override any previous error */ 1864 xfer->error = USB_ERR_CANCELLED; 1865 1866 /* 1867 * Clear "open" and "started" when both private and USB lock 1868 * is locked so that we don't get a race updating "flags_int" 1869 */ 1870 xfer->flags_int.open = 0; 1871 xfer->flags_int.started = 0; 1872 1873 /* 1874 * Check if we can cancel the USB transfer immediately. 1875 */ 1876 if (xfer->flags_int.transferring) { 1877 if (xfer->flags_int.can_cancel_immed && 1878 (!xfer->flags_int.did_close)) { 1879 DPRINTF("close\n"); 1880 /* 1881 * The following will lead to an USB_ERR_CANCELLED 1882 * error code being passed to the USB callback. 1883 */ 1884 (xfer->endpoint->methods->close) (xfer); 1885 /* only close once */ 1886 xfer->flags_int.did_close = 1; 1887 } else { 1888 /* need to wait for the next done callback */ 1889 } 1890 } else { 1891 DPRINTF("close\n"); 1892 1893 /* close here and now */ 1894 (xfer->endpoint->methods->close) (xfer); 1895 1896 /* 1897 * Any additional DMA delay is done by 1898 * "usbd_transfer_unsetup()". 1899 */ 1900 1901 /* 1902 * Special case. Check if we need to restart a blocked 1903 * endpoint. 1904 */ 1905 ep = xfer->endpoint; 1906 1907 /* 1908 * If the current USB transfer is completing we need 1909 * to start the next one: 1910 */ 1911 if (ep->endpoint_q[xfer->stream_id].curr == xfer) { 1912 usb_command_wrapper( 1913 &ep->endpoint_q[xfer->stream_id], NULL); 1914 } 1915 } 1916 1917 USB_BUS_UNLOCK(xfer->xroot->bus); 1918 } 1919 1920 /*------------------------------------------------------------------------* 1921 * usbd_transfer_pending 1922 * 1923 * This function will check if an USB transfer is pending which is a 1924 * little bit complicated! 1925 * Return values: 1926 * 0: Not pending 1927 * 1: Pending: The USB transfer will receive a callback in the future. 1928 *------------------------------------------------------------------------*/ 1929 uint8_t 1930 usbd_transfer_pending(struct usb_xfer *xfer) 1931 { 1932 struct usb_xfer_root *info; 1933 struct usb_xfer_queue *pq; 1934 1935 if (xfer == NULL) { 1936 /* transfer is gone */ 1937 return (0); 1938 } 1939 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 1940 1941 if (xfer->flags_int.transferring) { 1942 /* trivial case */ 1943 return (1); 1944 } 1945 USB_BUS_LOCK(xfer->xroot->bus); 1946 if (xfer->wait_queue) { 1947 /* we are waiting on a queue somewhere */ 1948 USB_BUS_UNLOCK(xfer->xroot->bus); 1949 return (1); 1950 } 1951 info = xfer->xroot; 1952 pq = &info->done_q; 1953 1954 if (pq->curr == xfer) { 1955 /* we are currently scheduled for callback */ 1956 USB_BUS_UNLOCK(xfer->xroot->bus); 1957 return (1); 1958 } 1959 /* we are not pending */ 1960 USB_BUS_UNLOCK(xfer->xroot->bus); 1961 return (0); 1962 } 1963 1964 /*------------------------------------------------------------------------* 1965 * usbd_transfer_drain 1966 * 1967 * This function will stop the USB transfer and wait for any 1968 * additional BUS-DMA and HW-DMA operations to complete. Buffers that 1969 * are loaded into DMA can safely be freed or reused after that this 1970 * function has returned. 1971 *------------------------------------------------------------------------*/ 1972 void 1973 usbd_transfer_drain(struct usb_xfer *xfer) 1974 { 1975 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 1976 "usbd_transfer_drain can sleep!"); 1977 1978 if (xfer == NULL) { 1979 /* transfer is gone */ 1980 return; 1981 } 1982 if (xfer->xroot->xfer_mtx != &Giant) { 1983 USB_XFER_LOCK_ASSERT(xfer, MA_NOTOWNED); 1984 } 1985 USB_XFER_LOCK(xfer); 1986 1987 usbd_transfer_stop(xfer); 1988 1989 while (usbd_transfer_pending(xfer) || 1990 xfer->flags_int.doing_callback) { 1991 1992 /* 1993 * It is allowed that the callback can drop its 1994 * transfer mutex. In that case checking only 1995 * "usbd_transfer_pending()" is not enough to tell if 1996 * the USB transfer is fully drained. We also need to 1997 * check the internal "doing_callback" flag. 1998 */ 1999 xfer->flags_int.draining = 1; 2000 2001 /* 2002 * Wait until the current outstanding USB 2003 * transfer is complete ! 2004 */ 2005 cv_wait(&xfer->xroot->cv_drain, xfer->xroot->xfer_mtx); 2006 } 2007 USB_XFER_UNLOCK(xfer); 2008 } 2009 2010 struct usb_page_cache * 2011 usbd_xfer_get_frame(struct usb_xfer *xfer, usb_frcount_t frindex) 2012 { 2013 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2014 2015 return (&xfer->frbuffers[frindex]); 2016 } 2017 2018 void * 2019 usbd_xfer_get_frame_buffer(struct usb_xfer *xfer, usb_frcount_t frindex) 2020 { 2021 struct usb_page_search page_info; 2022 2023 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2024 2025 usbd_get_page(&xfer->frbuffers[frindex], 0, &page_info); 2026 return (page_info.buffer); 2027 } 2028 2029 /*------------------------------------------------------------------------* 2030 * usbd_xfer_get_fps_shift 2031 * 2032 * The following function is only useful for isochronous transfers. It 2033 * returns how many times the frame execution rate has been shifted 2034 * down. 2035 * 2036 * Return value: 2037 * Success: 0..3 2038 * Failure: 0 2039 *------------------------------------------------------------------------*/ 2040 uint8_t 2041 usbd_xfer_get_fps_shift(struct usb_xfer *xfer) 2042 { 2043 return (xfer->fps_shift); 2044 } 2045 2046 usb_frlength_t 2047 usbd_xfer_frame_len(struct usb_xfer *xfer, usb_frcount_t frindex) 2048 { 2049 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2050 2051 return (xfer->frlengths[frindex]); 2052 } 2053 2054 /*------------------------------------------------------------------------* 2055 * usbd_xfer_set_frame_data 2056 * 2057 * This function sets the pointer of the buffer that should 2058 * loaded directly into DMA for the given USB frame. Passing "ptr" 2059 * equal to NULL while the corresponding "frlength" is greater 2060 * than zero gives undefined results! 2061 *------------------------------------------------------------------------*/ 2062 void 2063 usbd_xfer_set_frame_data(struct usb_xfer *xfer, usb_frcount_t frindex, 2064 void *ptr, usb_frlength_t len) 2065 { 2066 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2067 2068 /* set virtual address to load and length */ 2069 xfer->frbuffers[frindex].buffer = ptr; 2070 usbd_xfer_set_frame_len(xfer, frindex, len); 2071 } 2072 2073 void 2074 usbd_xfer_frame_data(struct usb_xfer *xfer, usb_frcount_t frindex, 2075 void **ptr, int *len) 2076 { 2077 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2078 2079 if (ptr != NULL) 2080 *ptr = xfer->frbuffers[frindex].buffer; 2081 if (len != NULL) 2082 *len = xfer->frlengths[frindex]; 2083 } 2084 2085 /*------------------------------------------------------------------------* 2086 * usbd_xfer_old_frame_length 2087 * 2088 * This function returns the framelength of the given frame at the 2089 * time the transfer was submitted. This function can be used to 2090 * compute the starting data pointer of the next isochronous frame 2091 * when an isochronous transfer has completed. 2092 *------------------------------------------------------------------------*/ 2093 usb_frlength_t 2094 usbd_xfer_old_frame_length(struct usb_xfer *xfer, usb_frcount_t frindex) 2095 { 2096 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2097 2098 return (xfer->frlengths[frindex + xfer->max_frame_count]); 2099 } 2100 2101 void 2102 usbd_xfer_status(struct usb_xfer *xfer, int *actlen, int *sumlen, int *aframes, 2103 int *nframes) 2104 { 2105 if (actlen != NULL) 2106 *actlen = xfer->actlen; 2107 if (sumlen != NULL) 2108 *sumlen = xfer->sumlen; 2109 if (aframes != NULL) 2110 *aframes = xfer->aframes; 2111 if (nframes != NULL) 2112 *nframes = xfer->nframes; 2113 } 2114 2115 /*------------------------------------------------------------------------* 2116 * usbd_xfer_set_frame_offset 2117 * 2118 * This function sets the frame data buffer offset relative to the beginning 2119 * of the USB DMA buffer allocated for this USB transfer. 2120 *------------------------------------------------------------------------*/ 2121 void 2122 usbd_xfer_set_frame_offset(struct usb_xfer *xfer, usb_frlength_t offset, 2123 usb_frcount_t frindex) 2124 { 2125 KASSERT(!xfer->flags.ext_buffer, ("Cannot offset data frame " 2126 "when the USB buffer is external\n")); 2127 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2128 2129 /* set virtual address to load */ 2130 xfer->frbuffers[frindex].buffer = 2131 USB_ADD_BYTES(xfer->local_buffer, offset); 2132 } 2133 2134 void 2135 usbd_xfer_set_interval(struct usb_xfer *xfer, int i) 2136 { 2137 xfer->interval = i; 2138 } 2139 2140 void 2141 usbd_xfer_set_timeout(struct usb_xfer *xfer, int t) 2142 { 2143 xfer->timeout = t; 2144 } 2145 2146 void 2147 usbd_xfer_set_frames(struct usb_xfer *xfer, usb_frcount_t n) 2148 { 2149 xfer->nframes = n; 2150 } 2151 2152 usb_frcount_t 2153 usbd_xfer_max_frames(struct usb_xfer *xfer) 2154 { 2155 return (xfer->max_frame_count); 2156 } 2157 2158 usb_frlength_t 2159 usbd_xfer_max_len(struct usb_xfer *xfer) 2160 { 2161 return (xfer->max_data_length); 2162 } 2163 2164 usb_frlength_t 2165 usbd_xfer_max_framelen(struct usb_xfer *xfer) 2166 { 2167 return (xfer->max_frame_size); 2168 } 2169 2170 void 2171 usbd_xfer_set_frame_len(struct usb_xfer *xfer, usb_frcount_t frindex, 2172 usb_frlength_t len) 2173 { 2174 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2175 2176 xfer->frlengths[frindex] = len; 2177 } 2178 2179 /*------------------------------------------------------------------------* 2180 * usb_callback_proc - factored out code 2181 * 2182 * This function performs USB callbacks. 2183 *------------------------------------------------------------------------*/ 2184 static void 2185 usb_callback_proc(struct usb_proc_msg *_pm) 2186 { 2187 struct usb_done_msg *pm = (void *)_pm; 2188 struct usb_xfer_root *info = pm->xroot; 2189 2190 /* Change locking order */ 2191 USB_BUS_UNLOCK(info->bus); 2192 2193 /* 2194 * We exploit the fact that the mutex is the same for all 2195 * callbacks that will be called from this thread: 2196 */ 2197 mtx_lock(info->xfer_mtx); 2198 USB_BUS_LOCK(info->bus); 2199 2200 /* Continue where we lost track */ 2201 usb_command_wrapper(&info->done_q, 2202 info->done_q.curr); 2203 2204 mtx_unlock(info->xfer_mtx); 2205 } 2206 2207 /*------------------------------------------------------------------------* 2208 * usbd_callback_ss_done_defer 2209 * 2210 * This function will defer the start, stop and done callback to the 2211 * correct thread. 2212 *------------------------------------------------------------------------*/ 2213 static void 2214 usbd_callback_ss_done_defer(struct usb_xfer *xfer) 2215 { 2216 struct usb_xfer_root *info = xfer->xroot; 2217 struct usb_xfer_queue *pq = &info->done_q; 2218 2219 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2220 2221 if (pq->curr != xfer) { 2222 usbd_transfer_enqueue(pq, xfer); 2223 } 2224 if (!pq->recurse_1) { 2225 2226 /* 2227 * We have to postpone the callback due to the fact we 2228 * will have a Lock Order Reversal, LOR, if we try to 2229 * proceed ! 2230 */ 2231 if (usb_proc_msignal(info->done_p, 2232 &info->done_m[0], &info->done_m[1])) { 2233 /* ignore */ 2234 } 2235 } else { 2236 /* clear second recurse flag */ 2237 pq->recurse_2 = 0; 2238 } 2239 return; 2240 2241 } 2242 2243 /*------------------------------------------------------------------------* 2244 * usbd_callback_wrapper 2245 * 2246 * This is a wrapper for USB callbacks. This wrapper does some 2247 * auto-magic things like figuring out if we can call the callback 2248 * directly from the current context or if we need to wakeup the 2249 * interrupt process. 2250 *------------------------------------------------------------------------*/ 2251 static void 2252 usbd_callback_wrapper(struct usb_xfer_queue *pq) 2253 { 2254 struct usb_xfer *xfer = pq->curr; 2255 struct usb_xfer_root *info = xfer->xroot; 2256 2257 USB_BUS_LOCK_ASSERT(info->bus, MA_OWNED); 2258 if (!mtx_owned(info->xfer_mtx) && !SCHEDULER_STOPPED()) { 2259 /* 2260 * Cases that end up here: 2261 * 2262 * 5) HW interrupt done callback or other source. 2263 */ 2264 DPRINTFN(3, "case 5\n"); 2265 2266 /* 2267 * We have to postpone the callback due to the fact we 2268 * will have a Lock Order Reversal, LOR, if we try to 2269 * proceed ! 2270 */ 2271 if (usb_proc_msignal(info->done_p, 2272 &info->done_m[0], &info->done_m[1])) { 2273 /* ignore */ 2274 } 2275 return; 2276 } 2277 /* 2278 * Cases that end up here: 2279 * 2280 * 1) We are starting a transfer 2281 * 2) We are prematurely calling back a transfer 2282 * 3) We are stopping a transfer 2283 * 4) We are doing an ordinary callback 2284 */ 2285 DPRINTFN(3, "case 1-4\n"); 2286 /* get next USB transfer in the queue */ 2287 info->done_q.curr = NULL; 2288 2289 /* set flag in case of drain */ 2290 xfer->flags_int.doing_callback = 1; 2291 2292 USB_BUS_UNLOCK(info->bus); 2293 USB_BUS_LOCK_ASSERT(info->bus, MA_NOTOWNED); 2294 2295 /* set correct USB state for callback */ 2296 if (!xfer->flags_int.transferring) { 2297 xfer->usb_state = USB_ST_SETUP; 2298 if (!xfer->flags_int.started) { 2299 /* we got stopped before we even got started */ 2300 USB_BUS_LOCK(info->bus); 2301 goto done; 2302 } 2303 } else { 2304 2305 if (usbd_callback_wrapper_sub(xfer)) { 2306 /* the callback has been deferred */ 2307 USB_BUS_LOCK(info->bus); 2308 goto done; 2309 } 2310 #if USB_HAVE_POWERD 2311 /* decrement power reference */ 2312 usbd_transfer_power_ref(xfer, -1); 2313 #endif 2314 xfer->flags_int.transferring = 0; 2315 2316 if (xfer->error) { 2317 xfer->usb_state = USB_ST_ERROR; 2318 } else { 2319 /* set transferred state */ 2320 xfer->usb_state = USB_ST_TRANSFERRED; 2321 #if USB_HAVE_BUSDMA 2322 /* sync DMA memory, if any */ 2323 if (xfer->flags_int.bdma_enable && 2324 (!xfer->flags_int.bdma_no_post_sync)) { 2325 usb_bdma_post_sync(xfer); 2326 } 2327 #endif 2328 } 2329 } 2330 2331 #if USB_HAVE_PF 2332 if (xfer->usb_state != USB_ST_SETUP) 2333 usbpf_xfertap(xfer, USBPF_XFERTAP_DONE); 2334 #endif 2335 /* call processing routine */ 2336 (xfer->callback) (xfer, xfer->error); 2337 2338 /* pickup the USB mutex again */ 2339 USB_BUS_LOCK(info->bus); 2340 2341 /* 2342 * Check if we got started after that we got cancelled, but 2343 * before we managed to do the callback. 2344 */ 2345 if ((!xfer->flags_int.open) && 2346 (xfer->flags_int.started) && 2347 (xfer->usb_state == USB_ST_ERROR)) { 2348 /* clear flag in case of drain */ 2349 xfer->flags_int.doing_callback = 0; 2350 /* try to loop, but not recursivly */ 2351 usb_command_wrapper(&info->done_q, xfer); 2352 return; 2353 } 2354 2355 done: 2356 /* clear flag in case of drain */ 2357 xfer->flags_int.doing_callback = 0; 2358 2359 /* 2360 * Check if we are draining. 2361 */ 2362 if (xfer->flags_int.draining && 2363 (!xfer->flags_int.transferring)) { 2364 /* "usbd_transfer_drain()" is waiting for end of transfer */ 2365 xfer->flags_int.draining = 0; 2366 cv_broadcast(&info->cv_drain); 2367 } 2368 2369 /* do the next callback, if any */ 2370 usb_command_wrapper(&info->done_q, 2371 info->done_q.curr); 2372 } 2373 2374 /*------------------------------------------------------------------------* 2375 * usb_dma_delay_done_cb 2376 * 2377 * This function is called when the DMA delay has been exectuded, and 2378 * will make sure that the callback is called to complete the USB 2379 * transfer. This code path is ususally only used when there is an USB 2380 * error like USB_ERR_CANCELLED. 2381 *------------------------------------------------------------------------*/ 2382 void 2383 usb_dma_delay_done_cb(struct usb_xfer *xfer) 2384 { 2385 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2386 2387 DPRINTFN(3, "Completed %p\n", xfer); 2388 2389 /* queue callback for execution, again */ 2390 usbd_transfer_done(xfer, 0); 2391 } 2392 2393 /*------------------------------------------------------------------------* 2394 * usbd_transfer_dequeue 2395 * 2396 * - This function is used to remove an USB transfer from a USB 2397 * transfer queue. 2398 * 2399 * - This function can be called multiple times in a row. 2400 *------------------------------------------------------------------------*/ 2401 void 2402 usbd_transfer_dequeue(struct usb_xfer *xfer) 2403 { 2404 struct usb_xfer_queue *pq; 2405 2406 pq = xfer->wait_queue; 2407 if (pq) { 2408 TAILQ_REMOVE(&pq->head, xfer, wait_entry); 2409 xfer->wait_queue = NULL; 2410 } 2411 } 2412 2413 /*------------------------------------------------------------------------* 2414 * usbd_transfer_enqueue 2415 * 2416 * - This function is used to insert an USB transfer into a USB * 2417 * transfer queue. 2418 * 2419 * - This function can be called multiple times in a row. 2420 *------------------------------------------------------------------------*/ 2421 void 2422 usbd_transfer_enqueue(struct usb_xfer_queue *pq, struct usb_xfer *xfer) 2423 { 2424 /* 2425 * Insert the USB transfer into the queue, if it is not 2426 * already on a USB transfer queue: 2427 */ 2428 if (xfer->wait_queue == NULL) { 2429 xfer->wait_queue = pq; 2430 TAILQ_INSERT_TAIL(&pq->head, xfer, wait_entry); 2431 } 2432 } 2433 2434 /*------------------------------------------------------------------------* 2435 * usbd_transfer_done 2436 * 2437 * - This function is used to remove an USB transfer from the busdma, 2438 * pipe or interrupt queue. 2439 * 2440 * - This function is used to queue the USB transfer on the done 2441 * queue. 2442 * 2443 * - This function is used to stop any USB transfer timeouts. 2444 *------------------------------------------------------------------------*/ 2445 void 2446 usbd_transfer_done(struct usb_xfer *xfer, usb_error_t error) 2447 { 2448 struct usb_xfer_root *info = xfer->xroot; 2449 2450 USB_BUS_LOCK_ASSERT(info->bus, MA_OWNED); 2451 2452 DPRINTF("err=%s\n", usbd_errstr(error)); 2453 2454 /* 2455 * If we are not transferring then just return. 2456 * This can happen during transfer cancel. 2457 */ 2458 if (!xfer->flags_int.transferring) { 2459 DPRINTF("not transferring\n"); 2460 /* end of control transfer, if any */ 2461 xfer->flags_int.control_act = 0; 2462 return; 2463 } 2464 /* only set transfer error, if not already set */ 2465 if (xfer->error == USB_ERR_NORMAL_COMPLETION) 2466 xfer->error = error; 2467 2468 /* stop any callouts */ 2469 usb_callout_stop(&xfer->timeout_handle); 2470 2471 /* 2472 * If we are waiting on a queue, just remove the USB transfer 2473 * from the queue, if any. We should have the required locks 2474 * locked to do the remove when this function is called. 2475 */ 2476 usbd_transfer_dequeue(xfer); 2477 2478 #if USB_HAVE_BUSDMA 2479 if (mtx_owned(info->xfer_mtx)) { 2480 struct usb_xfer_queue *pq; 2481 2482 /* 2483 * If the private USB lock is not locked, then we assume 2484 * that the BUS-DMA load stage has been passed: 2485 */ 2486 pq = &info->dma_q; 2487 2488 if (pq->curr == xfer) { 2489 /* start the next BUS-DMA load, if any */ 2490 usb_command_wrapper(pq, NULL); 2491 } 2492 } 2493 #endif 2494 /* keep some statistics */ 2495 if (xfer->error) { 2496 info->bus->stats_err.uds_requests 2497 [xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE]++; 2498 } else { 2499 info->bus->stats_ok.uds_requests 2500 [xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE]++; 2501 } 2502 2503 /* call the USB transfer callback */ 2504 usbd_callback_ss_done_defer(xfer); 2505 } 2506 2507 /*------------------------------------------------------------------------* 2508 * usbd_transfer_start_cb 2509 * 2510 * This function is called to start the USB transfer when 2511 * "xfer->interval" is greater than zero, and and the endpoint type is 2512 * BULK or CONTROL. 2513 *------------------------------------------------------------------------*/ 2514 static void 2515 usbd_transfer_start_cb(void *arg) 2516 { 2517 struct usb_xfer *xfer = arg; 2518 struct usb_endpoint *ep = xfer->endpoint; 2519 2520 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2521 2522 DPRINTF("start\n"); 2523 2524 #if USB_HAVE_PF 2525 usbpf_xfertap(xfer, USBPF_XFERTAP_SUBMIT); 2526 #endif 2527 2528 /* the transfer can now be cancelled */ 2529 xfer->flags_int.can_cancel_immed = 1; 2530 2531 /* start USB transfer, if no error */ 2532 if (xfer->error == 0) 2533 (ep->methods->start) (xfer); 2534 2535 /* check for transfer error */ 2536 if (xfer->error) { 2537 /* some error has happened */ 2538 usbd_transfer_done(xfer, 0); 2539 } 2540 } 2541 2542 /*------------------------------------------------------------------------* 2543 * usbd_xfer_set_stall 2544 * 2545 * This function is used to set the stall flag outside the 2546 * callback. This function is NULL safe. 2547 *------------------------------------------------------------------------*/ 2548 void 2549 usbd_xfer_set_stall(struct usb_xfer *xfer) 2550 { 2551 if (xfer == NULL) { 2552 /* tearing down */ 2553 return; 2554 } 2555 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 2556 2557 /* avoid any races by locking the USB mutex */ 2558 USB_BUS_LOCK(xfer->xroot->bus); 2559 xfer->flags.stall_pipe = 1; 2560 USB_BUS_UNLOCK(xfer->xroot->bus); 2561 } 2562 2563 int 2564 usbd_xfer_is_stalled(struct usb_xfer *xfer) 2565 { 2566 return (xfer->endpoint->is_stalled); 2567 } 2568 2569 /*------------------------------------------------------------------------* 2570 * usbd_transfer_clear_stall 2571 * 2572 * This function is used to clear the stall flag outside the 2573 * callback. This function is NULL safe. 2574 *------------------------------------------------------------------------*/ 2575 void 2576 usbd_transfer_clear_stall(struct usb_xfer *xfer) 2577 { 2578 if (xfer == NULL) { 2579 /* tearing down */ 2580 return; 2581 } 2582 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 2583 2584 /* avoid any races by locking the USB mutex */ 2585 USB_BUS_LOCK(xfer->xroot->bus); 2586 2587 xfer->flags.stall_pipe = 0; 2588 2589 USB_BUS_UNLOCK(xfer->xroot->bus); 2590 } 2591 2592 /*------------------------------------------------------------------------* 2593 * usbd_pipe_start 2594 * 2595 * This function is used to add an USB transfer to the pipe transfer list. 2596 *------------------------------------------------------------------------*/ 2597 void 2598 usbd_pipe_start(struct usb_xfer_queue *pq) 2599 { 2600 struct usb_endpoint *ep; 2601 struct usb_xfer *xfer; 2602 uint8_t type; 2603 2604 xfer = pq->curr; 2605 ep = xfer->endpoint; 2606 2607 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2608 2609 /* 2610 * If the endpoint is already stalled we do nothing ! 2611 */ 2612 if (ep->is_stalled) { 2613 return; 2614 } 2615 /* 2616 * Check if we are supposed to stall the endpoint: 2617 */ 2618 if (xfer->flags.stall_pipe) { 2619 struct usb_device *udev; 2620 struct usb_xfer_root *info; 2621 2622 /* clear stall command */ 2623 xfer->flags.stall_pipe = 0; 2624 2625 /* get pointer to USB device */ 2626 info = xfer->xroot; 2627 udev = info->udev; 2628 2629 /* 2630 * Only stall BULK and INTERRUPT endpoints. 2631 */ 2632 type = (ep->edesc->bmAttributes & UE_XFERTYPE); 2633 if ((type == UE_BULK) || 2634 (type == UE_INTERRUPT)) { 2635 uint8_t did_stall; 2636 2637 did_stall = 1; 2638 2639 if (udev->flags.usb_mode == USB_MODE_DEVICE) { 2640 (udev->bus->methods->set_stall) ( 2641 udev, ep, &did_stall); 2642 } else if (udev->ctrl_xfer[1]) { 2643 info = udev->ctrl_xfer[1]->xroot; 2644 usb_proc_msignal( 2645 USB_BUS_NON_GIANT_PROC(info->bus), 2646 &udev->cs_msg[0], &udev->cs_msg[1]); 2647 } else { 2648 /* should not happen */ 2649 DPRINTFN(0, "No stall handler\n"); 2650 } 2651 /* 2652 * Check if we should stall. Some USB hardware 2653 * handles set- and clear-stall in hardware. 2654 */ 2655 if (did_stall) { 2656 /* 2657 * The transfer will be continued when 2658 * the clear-stall control endpoint 2659 * message is received. 2660 */ 2661 ep->is_stalled = 1; 2662 return; 2663 } 2664 } else if (type == UE_ISOCHRONOUS) { 2665 2666 /* 2667 * Make sure any FIFO overflow or other FIFO 2668 * error conditions go away by resetting the 2669 * endpoint FIFO through the clear stall 2670 * method. 2671 */ 2672 if (udev->flags.usb_mode == USB_MODE_DEVICE) { 2673 (udev->bus->methods->clear_stall) (udev, ep); 2674 } 2675 } 2676 } 2677 /* Set or clear stall complete - special case */ 2678 if (xfer->nframes == 0) { 2679 /* we are complete */ 2680 xfer->aframes = 0; 2681 usbd_transfer_done(xfer, 0); 2682 return; 2683 } 2684 /* 2685 * Handled cases: 2686 * 2687 * 1) Start the first transfer queued. 2688 * 2689 * 2) Re-start the current USB transfer. 2690 */ 2691 /* 2692 * Check if there should be any 2693 * pre transfer start delay: 2694 */ 2695 if (xfer->interval > 0) { 2696 type = (ep->edesc->bmAttributes & UE_XFERTYPE); 2697 if ((type == UE_BULK) || 2698 (type == UE_CONTROL)) { 2699 usbd_transfer_timeout_ms(xfer, 2700 &usbd_transfer_start_cb, 2701 xfer->interval); 2702 return; 2703 } 2704 } 2705 DPRINTF("start\n"); 2706 2707 #if USB_HAVE_PF 2708 usbpf_xfertap(xfer, USBPF_XFERTAP_SUBMIT); 2709 #endif 2710 /* the transfer can now be cancelled */ 2711 xfer->flags_int.can_cancel_immed = 1; 2712 2713 /* start USB transfer, if no error */ 2714 if (xfer->error == 0) 2715 (ep->methods->start) (xfer); 2716 2717 /* check for transfer error */ 2718 if (xfer->error) { 2719 /* some error has happened */ 2720 usbd_transfer_done(xfer, 0); 2721 } 2722 } 2723 2724 /*------------------------------------------------------------------------* 2725 * usbd_transfer_timeout_ms 2726 * 2727 * This function is used to setup a timeout on the given USB 2728 * transfer. If the timeout has been deferred the callback given by 2729 * "cb" will get called after "ms" milliseconds. 2730 *------------------------------------------------------------------------*/ 2731 void 2732 usbd_transfer_timeout_ms(struct usb_xfer *xfer, 2733 void (*cb) (void *arg), usb_timeout_t ms) 2734 { 2735 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2736 2737 /* defer delay */ 2738 usb_callout_reset(&xfer->timeout_handle, 2739 USB_MS_TO_TICKS(ms) + USB_CALLOUT_ZERO_TICKS, cb, xfer); 2740 } 2741 2742 /*------------------------------------------------------------------------* 2743 * usbd_callback_wrapper_sub 2744 * 2745 * - This function will update variables in an USB transfer after 2746 * that the USB transfer is complete. 2747 * 2748 * - This function is used to start the next USB transfer on the 2749 * ep transfer queue, if any. 2750 * 2751 * NOTE: In some special cases the USB transfer will not be removed from 2752 * the pipe queue, but remain first. To enforce USB transfer removal call 2753 * this function passing the error code "USB_ERR_CANCELLED". 2754 * 2755 * Return values: 2756 * 0: Success. 2757 * Else: The callback has been deferred. 2758 *------------------------------------------------------------------------*/ 2759 static uint8_t 2760 usbd_callback_wrapper_sub(struct usb_xfer *xfer) 2761 { 2762 struct usb_endpoint *ep; 2763 struct usb_bus *bus; 2764 usb_frcount_t x; 2765 2766 bus = xfer->xroot->bus; 2767 2768 if ((!xfer->flags_int.open) && 2769 (!xfer->flags_int.did_close)) { 2770 DPRINTF("close\n"); 2771 USB_BUS_LOCK(bus); 2772 (xfer->endpoint->methods->close) (xfer); 2773 USB_BUS_UNLOCK(bus); 2774 /* only close once */ 2775 xfer->flags_int.did_close = 1; 2776 return (1); /* wait for new callback */ 2777 } 2778 /* 2779 * If we have a non-hardware induced error we 2780 * need to do the DMA delay! 2781 */ 2782 if (xfer->error != 0 && !xfer->flags_int.did_dma_delay && 2783 (xfer->error == USB_ERR_CANCELLED || 2784 xfer->error == USB_ERR_TIMEOUT || 2785 bus->methods->start_dma_delay != NULL)) { 2786 2787 usb_timeout_t temp; 2788 2789 /* only delay once */ 2790 xfer->flags_int.did_dma_delay = 1; 2791 2792 /* we can not cancel this delay */ 2793 xfer->flags_int.can_cancel_immed = 0; 2794 2795 temp = usbd_get_dma_delay(xfer->xroot->udev); 2796 2797 DPRINTFN(3, "DMA delay, %u ms, " 2798 "on %p\n", temp, xfer); 2799 2800 if (temp != 0) { 2801 USB_BUS_LOCK(bus); 2802 /* 2803 * Some hardware solutions have dedicated 2804 * events when it is safe to free DMA'ed 2805 * memory. For the other hardware platforms we 2806 * use a static delay. 2807 */ 2808 if (bus->methods->start_dma_delay != NULL) { 2809 (bus->methods->start_dma_delay) (xfer); 2810 } else { 2811 usbd_transfer_timeout_ms(xfer, 2812 (void (*)(void *))&usb_dma_delay_done_cb, 2813 temp); 2814 } 2815 USB_BUS_UNLOCK(bus); 2816 return (1); /* wait for new callback */ 2817 } 2818 } 2819 /* check actual number of frames */ 2820 if (xfer->aframes > xfer->nframes) { 2821 if (xfer->error == 0) { 2822 panic("%s: actual number of frames, %d, is " 2823 "greater than initial number of frames, %d\n", 2824 __FUNCTION__, xfer->aframes, xfer->nframes); 2825 } else { 2826 /* just set some valid value */ 2827 xfer->aframes = xfer->nframes; 2828 } 2829 } 2830 /* compute actual length */ 2831 xfer->actlen = 0; 2832 2833 for (x = 0; x != xfer->aframes; x++) { 2834 xfer->actlen += xfer->frlengths[x]; 2835 } 2836 2837 /* 2838 * Frames that were not transferred get zero actual length in 2839 * case the USB device driver does not check the actual number 2840 * of frames transferred, "xfer->aframes": 2841 */ 2842 for (; x < xfer->nframes; x++) { 2843 usbd_xfer_set_frame_len(xfer, x, 0); 2844 } 2845 2846 /* check actual length */ 2847 if (xfer->actlen > xfer->sumlen) { 2848 if (xfer->error == 0) { 2849 panic("%s: actual length, %d, is greater than " 2850 "initial length, %d\n", 2851 __FUNCTION__, xfer->actlen, xfer->sumlen); 2852 } else { 2853 /* just set some valid value */ 2854 xfer->actlen = xfer->sumlen; 2855 } 2856 } 2857 DPRINTFN(1, "xfer=%p endpoint=%p sts=%d alen=%d, slen=%d, afrm=%d, nfrm=%d\n", 2858 xfer, xfer->endpoint, xfer->error, xfer->actlen, xfer->sumlen, 2859 xfer->aframes, xfer->nframes); 2860 2861 if (xfer->error) { 2862 /* end of control transfer, if any */ 2863 xfer->flags_int.control_act = 0; 2864 2865 #if USB_HAVE_TT_SUPPORT 2866 switch (xfer->error) { 2867 case USB_ERR_NORMAL_COMPLETION: 2868 case USB_ERR_SHORT_XFER: 2869 case USB_ERR_STALLED: 2870 case USB_ERR_CANCELLED: 2871 /* nothing to do */ 2872 break; 2873 default: 2874 /* try to reset the TT, if any */ 2875 USB_BUS_LOCK(bus); 2876 uhub_tt_buffer_reset_async_locked(xfer->xroot->udev, xfer->endpoint); 2877 USB_BUS_UNLOCK(bus); 2878 break; 2879 } 2880 #endif 2881 /* check if we should block the execution queue */ 2882 if ((xfer->error != USB_ERR_CANCELLED) && 2883 (xfer->flags.pipe_bof)) { 2884 DPRINTFN(2, "xfer=%p: Block On Failure " 2885 "on endpoint=%p\n", xfer, xfer->endpoint); 2886 goto done; 2887 } 2888 } else { 2889 /* check for short transfers */ 2890 if (xfer->actlen < xfer->sumlen) { 2891 2892 /* end of control transfer, if any */ 2893 xfer->flags_int.control_act = 0; 2894 2895 if (!xfer->flags_int.short_xfer_ok) { 2896 xfer->error = USB_ERR_SHORT_XFER; 2897 if (xfer->flags.pipe_bof) { 2898 DPRINTFN(2, "xfer=%p: Block On Failure on " 2899 "Short Transfer on endpoint %p.\n", 2900 xfer, xfer->endpoint); 2901 goto done; 2902 } 2903 } 2904 } else { 2905 /* 2906 * Check if we are in the middle of a 2907 * control transfer: 2908 */ 2909 if (xfer->flags_int.control_act) { 2910 DPRINTFN(5, "xfer=%p: Control transfer " 2911 "active on endpoint=%p\n", xfer, xfer->endpoint); 2912 goto done; 2913 } 2914 } 2915 } 2916 2917 ep = xfer->endpoint; 2918 2919 /* 2920 * If the current USB transfer is completing we need to start the 2921 * next one: 2922 */ 2923 USB_BUS_LOCK(bus); 2924 if (ep->endpoint_q[xfer->stream_id].curr == xfer) { 2925 usb_command_wrapper(&ep->endpoint_q[xfer->stream_id], NULL); 2926 2927 if (ep->endpoint_q[xfer->stream_id].curr != NULL || 2928 TAILQ_FIRST(&ep->endpoint_q[xfer->stream_id].head) != NULL) { 2929 /* there is another USB transfer waiting */ 2930 } else { 2931 /* this is the last USB transfer */ 2932 /* clear isochronous sync flag */ 2933 xfer->endpoint->is_synced = 0; 2934 } 2935 } 2936 USB_BUS_UNLOCK(bus); 2937 done: 2938 return (0); 2939 } 2940 2941 /*------------------------------------------------------------------------* 2942 * usb_command_wrapper 2943 * 2944 * This function is used to execute commands non-recursivly on an USB 2945 * transfer. 2946 *------------------------------------------------------------------------*/ 2947 void 2948 usb_command_wrapper(struct usb_xfer_queue *pq, struct usb_xfer *xfer) 2949 { 2950 if (xfer) { 2951 /* 2952 * If the transfer is not already processing, 2953 * queue it! 2954 */ 2955 if (pq->curr != xfer) { 2956 usbd_transfer_enqueue(pq, xfer); 2957 if (pq->curr != NULL) { 2958 /* something is already processing */ 2959 DPRINTFN(6, "busy %p\n", pq->curr); 2960 return; 2961 } 2962 } 2963 } else { 2964 /* Get next element in queue */ 2965 pq->curr = NULL; 2966 } 2967 2968 if (!pq->recurse_1) { 2969 2970 do { 2971 2972 /* set both recurse flags */ 2973 pq->recurse_1 = 1; 2974 pq->recurse_2 = 1; 2975 2976 if (pq->curr == NULL) { 2977 xfer = TAILQ_FIRST(&pq->head); 2978 if (xfer) { 2979 TAILQ_REMOVE(&pq->head, xfer, 2980 wait_entry); 2981 xfer->wait_queue = NULL; 2982 pq->curr = xfer; 2983 } else { 2984 break; 2985 } 2986 } 2987 DPRINTFN(6, "cb %p (enter)\n", pq->curr); 2988 (pq->command) (pq); 2989 DPRINTFN(6, "cb %p (leave)\n", pq->curr); 2990 2991 } while (!pq->recurse_2); 2992 2993 /* clear first recurse flag */ 2994 pq->recurse_1 = 0; 2995 2996 } else { 2997 /* clear second recurse flag */ 2998 pq->recurse_2 = 0; 2999 } 3000 } 3001 3002 /*------------------------------------------------------------------------* 3003 * usbd_ctrl_transfer_setup 3004 * 3005 * This function is used to setup the default USB control endpoint 3006 * transfer. 3007 *------------------------------------------------------------------------*/ 3008 void 3009 usbd_ctrl_transfer_setup(struct usb_device *udev) 3010 { 3011 struct usb_xfer *xfer; 3012 uint8_t no_resetup; 3013 uint8_t iface_index; 3014 3015 /* check for root HUB */ 3016 if (udev->parent_hub == NULL) 3017 return; 3018 repeat: 3019 3020 xfer = udev->ctrl_xfer[0]; 3021 if (xfer) { 3022 USB_XFER_LOCK(xfer); 3023 no_resetup = 3024 ((xfer->address == udev->address) && 3025 (udev->ctrl_ep_desc.wMaxPacketSize[0] == 3026 udev->ddesc.bMaxPacketSize)); 3027 if (udev->flags.usb_mode == USB_MODE_DEVICE) { 3028 if (no_resetup) { 3029 /* 3030 * NOTE: checking "xfer->address" and 3031 * starting the USB transfer must be 3032 * atomic! 3033 */ 3034 usbd_transfer_start(xfer); 3035 } 3036 } 3037 USB_XFER_UNLOCK(xfer); 3038 } else { 3039 no_resetup = 0; 3040 } 3041 3042 if (no_resetup) { 3043 /* 3044 * All parameters are exactly the same like before. 3045 * Just return. 3046 */ 3047 return; 3048 } 3049 /* 3050 * Update wMaxPacketSize for the default control endpoint: 3051 */ 3052 udev->ctrl_ep_desc.wMaxPacketSize[0] = 3053 udev->ddesc.bMaxPacketSize; 3054 3055 /* 3056 * Unsetup any existing USB transfer: 3057 */ 3058 usbd_transfer_unsetup(udev->ctrl_xfer, USB_CTRL_XFER_MAX); 3059 3060 /* 3061 * Reset clear stall error counter. 3062 */ 3063 udev->clear_stall_errors = 0; 3064 3065 /* 3066 * Try to setup a new USB transfer for the 3067 * default control endpoint: 3068 */ 3069 iface_index = 0; 3070 if (usbd_transfer_setup(udev, &iface_index, 3071 udev->ctrl_xfer, usb_control_ep_cfg, USB_CTRL_XFER_MAX, NULL, 3072 &udev->device_mtx)) { 3073 DPRINTFN(0, "could not setup default " 3074 "USB transfer\n"); 3075 } else { 3076 goto repeat; 3077 } 3078 } 3079 3080 /*------------------------------------------------------------------------* 3081 * usbd_clear_data_toggle - factored out code 3082 * 3083 * NOTE: the intention of this function is not to reset the hardware 3084 * data toggle. 3085 *------------------------------------------------------------------------*/ 3086 void 3087 usbd_clear_stall_locked(struct usb_device *udev, struct usb_endpoint *ep) 3088 { 3089 USB_BUS_LOCK_ASSERT(udev->bus, MA_OWNED); 3090 3091 /* check that we have a valid case */ 3092 if (udev->flags.usb_mode == USB_MODE_HOST && 3093 udev->parent_hub != NULL && 3094 udev->bus->methods->clear_stall != NULL && 3095 ep->methods != NULL) { 3096 (udev->bus->methods->clear_stall) (udev, ep); 3097 } 3098 } 3099 3100 /*------------------------------------------------------------------------* 3101 * usbd_clear_data_toggle - factored out code 3102 * 3103 * NOTE: the intention of this function is not to reset the hardware 3104 * data toggle on the USB device side. 3105 *------------------------------------------------------------------------*/ 3106 void 3107 usbd_clear_data_toggle(struct usb_device *udev, struct usb_endpoint *ep) 3108 { 3109 DPRINTFN(5, "udev=%p endpoint=%p\n", udev, ep); 3110 3111 USB_BUS_LOCK(udev->bus); 3112 ep->toggle_next = 0; 3113 /* some hardware needs a callback to clear the data toggle */ 3114 usbd_clear_stall_locked(udev, ep); 3115 USB_BUS_UNLOCK(udev->bus); 3116 } 3117 3118 /*------------------------------------------------------------------------* 3119 * usbd_clear_stall_callback - factored out clear stall callback 3120 * 3121 * Input parameters: 3122 * xfer1: Clear Stall Control Transfer 3123 * xfer2: Stalled USB Transfer 3124 * 3125 * This function is NULL safe. 3126 * 3127 * Return values: 3128 * 0: In progress 3129 * Else: Finished 3130 * 3131 * Clear stall config example: 3132 * 3133 * static const struct usb_config my_clearstall = { 3134 * .type = UE_CONTROL, 3135 * .endpoint = 0, 3136 * .direction = UE_DIR_ANY, 3137 * .interval = 50, //50 milliseconds 3138 * .bufsize = sizeof(struct usb_device_request), 3139 * .timeout = 1000, //1.000 seconds 3140 * .callback = &my_clear_stall_callback, // ** 3141 * .usb_mode = USB_MODE_HOST, 3142 * }; 3143 * 3144 * ** "my_clear_stall_callback" calls "usbd_clear_stall_callback" 3145 * passing the correct parameters. 3146 *------------------------------------------------------------------------*/ 3147 uint8_t 3148 usbd_clear_stall_callback(struct usb_xfer *xfer1, 3149 struct usb_xfer *xfer2) 3150 { 3151 struct usb_device_request req; 3152 3153 if (xfer2 == NULL) { 3154 /* looks like we are tearing down */ 3155 DPRINTF("NULL input parameter\n"); 3156 return (0); 3157 } 3158 USB_XFER_LOCK_ASSERT(xfer1, MA_OWNED); 3159 USB_XFER_LOCK_ASSERT(xfer2, MA_OWNED); 3160 3161 switch (USB_GET_STATE(xfer1)) { 3162 case USB_ST_SETUP: 3163 3164 /* 3165 * pre-clear the data toggle to DATA0 ("umass.c" and 3166 * "ata-usb.c" depends on this) 3167 */ 3168 3169 usbd_clear_data_toggle(xfer2->xroot->udev, xfer2->endpoint); 3170 3171 /* setup a clear-stall packet */ 3172 3173 req.bmRequestType = UT_WRITE_ENDPOINT; 3174 req.bRequest = UR_CLEAR_FEATURE; 3175 USETW(req.wValue, UF_ENDPOINT_HALT); 3176 req.wIndex[0] = xfer2->endpoint->edesc->bEndpointAddress; 3177 req.wIndex[1] = 0; 3178 USETW(req.wLength, 0); 3179 3180 /* 3181 * "usbd_transfer_setup_sub()" will ensure that 3182 * we have sufficient room in the buffer for 3183 * the request structure! 3184 */ 3185 3186 /* copy in the transfer */ 3187 3188 usbd_copy_in(xfer1->frbuffers, 0, &req, sizeof(req)); 3189 3190 /* set length */ 3191 xfer1->frlengths[0] = sizeof(req); 3192 xfer1->nframes = 1; 3193 3194 usbd_transfer_submit(xfer1); 3195 return (0); 3196 3197 case USB_ST_TRANSFERRED: 3198 break; 3199 3200 default: /* Error */ 3201 if (xfer1->error == USB_ERR_CANCELLED) { 3202 return (0); 3203 } 3204 break; 3205 } 3206 return (1); /* Clear Stall Finished */ 3207 } 3208 3209 /*------------------------------------------------------------------------* 3210 * usbd_transfer_poll 3211 * 3212 * The following function gets called from the USB keyboard driver and 3213 * UMASS when the system has paniced. 3214 * 3215 * NOTE: It is currently not possible to resume normal operation on 3216 * the USB controller which has been polled, due to clearing of the 3217 * "up_dsleep" and "up_msleep" flags. 3218 *------------------------------------------------------------------------*/ 3219 void 3220 usbd_transfer_poll(struct usb_xfer **ppxfer, uint16_t max) 3221 { 3222 struct usb_xfer *xfer; 3223 struct usb_xfer_root *xroot; 3224 struct usb_device *udev; 3225 struct usb_proc_msg *pm; 3226 uint16_t n; 3227 uint16_t drop_bus; 3228 uint16_t drop_xfer; 3229 3230 for (n = 0; n != max; n++) { 3231 /* Extra checks to avoid panic */ 3232 xfer = ppxfer[n]; 3233 if (xfer == NULL) 3234 continue; /* no USB transfer */ 3235 xroot = xfer->xroot; 3236 if (xroot == NULL) 3237 continue; /* no USB root */ 3238 udev = xroot->udev; 3239 if (udev == NULL) 3240 continue; /* no USB device */ 3241 if (udev->bus == NULL) 3242 continue; /* no BUS structure */ 3243 if (udev->bus->methods == NULL) 3244 continue; /* no BUS methods */ 3245 if (udev->bus->methods->xfer_poll == NULL) 3246 continue; /* no poll method */ 3247 3248 /* make sure that the BUS mutex is not locked */ 3249 drop_bus = 0; 3250 while (mtx_owned(&xroot->udev->bus->bus_mtx) && !SCHEDULER_STOPPED()) { 3251 mtx_unlock(&xroot->udev->bus->bus_mtx); 3252 drop_bus++; 3253 } 3254 3255 /* make sure that the transfer mutex is not locked */ 3256 drop_xfer = 0; 3257 while (mtx_owned(xroot->xfer_mtx) && !SCHEDULER_STOPPED()) { 3258 mtx_unlock(xroot->xfer_mtx); 3259 drop_xfer++; 3260 } 3261 3262 /* Make sure cv_signal() and cv_broadcast() is not called */ 3263 USB_BUS_CONTROL_XFER_PROC(udev->bus)->up_msleep = 0; 3264 USB_BUS_EXPLORE_PROC(udev->bus)->up_msleep = 0; 3265 USB_BUS_GIANT_PROC(udev->bus)->up_msleep = 0; 3266 USB_BUS_NON_GIANT_PROC(udev->bus)->up_msleep = 0; 3267 3268 /* poll USB hardware */ 3269 (udev->bus->methods->xfer_poll) (udev->bus); 3270 3271 USB_BUS_LOCK(xroot->bus); 3272 3273 /* check for clear stall */ 3274 if (udev->ctrl_xfer[1] != NULL) { 3275 3276 /* poll clear stall start */ 3277 pm = &udev->cs_msg[0].hdr; 3278 (pm->pm_callback) (pm); 3279 /* poll clear stall done thread */ 3280 pm = &udev->ctrl_xfer[1]-> 3281 xroot->done_m[0].hdr; 3282 (pm->pm_callback) (pm); 3283 } 3284 3285 /* poll done thread */ 3286 pm = &xroot->done_m[0].hdr; 3287 (pm->pm_callback) (pm); 3288 3289 USB_BUS_UNLOCK(xroot->bus); 3290 3291 /* restore transfer mutex */ 3292 while (drop_xfer--) 3293 mtx_lock(xroot->xfer_mtx); 3294 3295 /* restore BUS mutex */ 3296 while (drop_bus--) 3297 mtx_lock(&xroot->udev->bus->bus_mtx); 3298 } 3299 } 3300 3301 static void 3302 usbd_get_std_packet_size(struct usb_std_packet_size *ptr, 3303 uint8_t type, enum usb_dev_speed speed) 3304 { 3305 static const uint16_t intr_range_max[USB_SPEED_MAX] = { 3306 [USB_SPEED_LOW] = 8, 3307 [USB_SPEED_FULL] = 64, 3308 [USB_SPEED_HIGH] = 1024, 3309 [USB_SPEED_VARIABLE] = 1024, 3310 [USB_SPEED_SUPER] = 1024, 3311 }; 3312 3313 static const uint16_t isoc_range_max[USB_SPEED_MAX] = { 3314 [USB_SPEED_LOW] = 0, /* invalid */ 3315 [USB_SPEED_FULL] = 1023, 3316 [USB_SPEED_HIGH] = 1024, 3317 [USB_SPEED_VARIABLE] = 3584, 3318 [USB_SPEED_SUPER] = 1024, 3319 }; 3320 3321 static const uint16_t control_min[USB_SPEED_MAX] = { 3322 [USB_SPEED_LOW] = 8, 3323 [USB_SPEED_FULL] = 8, 3324 [USB_SPEED_HIGH] = 64, 3325 [USB_SPEED_VARIABLE] = 512, 3326 [USB_SPEED_SUPER] = 512, 3327 }; 3328 3329 static const uint16_t bulk_min[USB_SPEED_MAX] = { 3330 [USB_SPEED_LOW] = 8, 3331 [USB_SPEED_FULL] = 8, 3332 [USB_SPEED_HIGH] = 512, 3333 [USB_SPEED_VARIABLE] = 512, 3334 [USB_SPEED_SUPER] = 1024, 3335 }; 3336 3337 uint16_t temp; 3338 3339 memset(ptr, 0, sizeof(*ptr)); 3340 3341 switch (type) { 3342 case UE_INTERRUPT: 3343 ptr->range.max = intr_range_max[speed]; 3344 break; 3345 case UE_ISOCHRONOUS: 3346 ptr->range.max = isoc_range_max[speed]; 3347 break; 3348 default: 3349 if (type == UE_BULK) 3350 temp = bulk_min[speed]; 3351 else /* UE_CONTROL */ 3352 temp = control_min[speed]; 3353 3354 /* default is fixed */ 3355 ptr->fixed[0] = temp; 3356 ptr->fixed[1] = temp; 3357 ptr->fixed[2] = temp; 3358 ptr->fixed[3] = temp; 3359 3360 if (speed == USB_SPEED_FULL) { 3361 /* multiple sizes */ 3362 ptr->fixed[1] = 16; 3363 ptr->fixed[2] = 32; 3364 ptr->fixed[3] = 64; 3365 } 3366 if ((speed == USB_SPEED_VARIABLE) && 3367 (type == UE_BULK)) { 3368 /* multiple sizes */ 3369 ptr->fixed[2] = 1024; 3370 ptr->fixed[3] = 1536; 3371 } 3372 break; 3373 } 3374 } 3375 3376 void * 3377 usbd_xfer_softc(struct usb_xfer *xfer) 3378 { 3379 return (xfer->priv_sc); 3380 } 3381 3382 void * 3383 usbd_xfer_get_priv(struct usb_xfer *xfer) 3384 { 3385 return (xfer->priv_fifo); 3386 } 3387 3388 void 3389 usbd_xfer_set_priv(struct usb_xfer *xfer, void *ptr) 3390 { 3391 xfer->priv_fifo = ptr; 3392 } 3393 3394 uint8_t 3395 usbd_xfer_state(struct usb_xfer *xfer) 3396 { 3397 return (xfer->usb_state); 3398 } 3399 3400 void 3401 usbd_xfer_set_flag(struct usb_xfer *xfer, int flag) 3402 { 3403 switch (flag) { 3404 case USB_FORCE_SHORT_XFER: 3405 xfer->flags.force_short_xfer = 1; 3406 break; 3407 case USB_SHORT_XFER_OK: 3408 xfer->flags.short_xfer_ok = 1; 3409 break; 3410 case USB_MULTI_SHORT_OK: 3411 xfer->flags.short_frames_ok = 1; 3412 break; 3413 case USB_MANUAL_STATUS: 3414 xfer->flags.manual_status = 1; 3415 break; 3416 } 3417 } 3418 3419 void 3420 usbd_xfer_clr_flag(struct usb_xfer *xfer, int flag) 3421 { 3422 switch (flag) { 3423 case USB_FORCE_SHORT_XFER: 3424 xfer->flags.force_short_xfer = 0; 3425 break; 3426 case USB_SHORT_XFER_OK: 3427 xfer->flags.short_xfer_ok = 0; 3428 break; 3429 case USB_MULTI_SHORT_OK: 3430 xfer->flags.short_frames_ok = 0; 3431 break; 3432 case USB_MANUAL_STATUS: 3433 xfer->flags.manual_status = 0; 3434 break; 3435 } 3436 } 3437 3438 /* 3439 * The following function returns in milliseconds when the isochronous 3440 * transfer was completed by the hardware. The returned value wraps 3441 * around 65536 milliseconds. 3442 */ 3443 uint16_t 3444 usbd_xfer_get_timestamp(struct usb_xfer *xfer) 3445 { 3446 return (xfer->isoc_time_complete); 3447 } 3448 3449 /* 3450 * The following function returns non-zero if the max packet size 3451 * field was clamped to a valid value. Else it returns zero. 3452 */ 3453 uint8_t 3454 usbd_xfer_maxp_was_clamped(struct usb_xfer *xfer) 3455 { 3456 return (xfer->flags_int.maxp_was_clamped); 3457 } 3458