1 /* $FreeBSD$ */ 2 /*- 3 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 4 * 5 * Copyright (c) 2008 Hans Petter Selasky. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #ifdef USB_GLOBAL_INCLUDE_FILE 30 #include USB_GLOBAL_INCLUDE_FILE 31 #else 32 #include <sys/stdint.h> 33 #include <sys/stddef.h> 34 #include <sys/param.h> 35 #include <sys/queue.h> 36 #include <sys/types.h> 37 #include <sys/systm.h> 38 #include <sys/kernel.h> 39 #include <sys/bus.h> 40 #include <sys/module.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/condvar.h> 44 #include <sys/sysctl.h> 45 #include <sys/sx.h> 46 #include <sys/unistd.h> 47 #include <sys/callout.h> 48 #include <sys/malloc.h> 49 #include <sys/priv.h> 50 51 #include <dev/usb/usb.h> 52 #include <dev/usb/usbdi.h> 53 #include <dev/usb/usbdi_util.h> 54 55 #define USB_DEBUG_VAR usb_debug 56 57 #include <dev/usb/usb_core.h> 58 #include <dev/usb/usb_busdma.h> 59 #include <dev/usb/usb_process.h> 60 #include <dev/usb/usb_transfer.h> 61 #include <dev/usb/usb_device.h> 62 #include <dev/usb/usb_debug.h> 63 #include <dev/usb/usb_util.h> 64 65 #include <dev/usb/usb_controller.h> 66 #include <dev/usb/usb_bus.h> 67 #include <dev/usb/usb_pf.h> 68 #endif /* USB_GLOBAL_INCLUDE_FILE */ 69 70 struct usb_std_packet_size { 71 struct { 72 uint16_t min; /* inclusive */ 73 uint16_t max; /* inclusive */ 74 } range; 75 76 uint16_t fixed[4]; 77 }; 78 79 static usb_callback_t usb_request_callback; 80 81 static const struct usb_config usb_control_ep_cfg[USB_CTRL_XFER_MAX] = { 82 /* This transfer is used for generic control endpoint transfers */ 83 84 [0] = { 85 .type = UE_CONTROL, 86 .endpoint = 0x00, /* Control endpoint */ 87 .direction = UE_DIR_ANY, 88 .bufsize = USB_EP0_BUFSIZE, /* bytes */ 89 .flags = {.proxy_buffer = 1,}, 90 .callback = &usb_request_callback, 91 .usb_mode = USB_MODE_DUAL, /* both modes */ 92 }, 93 94 /* This transfer is used for generic clear stall only */ 95 96 [1] = { 97 .type = UE_CONTROL, 98 .endpoint = 0x00, /* Control pipe */ 99 .direction = UE_DIR_ANY, 100 .bufsize = sizeof(struct usb_device_request), 101 .callback = &usb_do_clear_stall_callback, 102 .timeout = 1000, /* 1 second */ 103 .interval = 50, /* 50ms */ 104 .usb_mode = USB_MODE_HOST, 105 }, 106 }; 107 108 static const struct usb_config usb_control_ep_quirk_cfg[USB_CTRL_XFER_MAX] = { 109 /* This transfer is used for generic control endpoint transfers */ 110 111 [0] = { 112 .type = UE_CONTROL, 113 .endpoint = 0x00, /* Control endpoint */ 114 .direction = UE_DIR_ANY, 115 .bufsize = 65535, /* bytes */ 116 .callback = &usb_request_callback, 117 .usb_mode = USB_MODE_DUAL, /* both modes */ 118 }, 119 120 /* This transfer is used for generic clear stall only */ 121 122 [1] = { 123 .type = UE_CONTROL, 124 .endpoint = 0x00, /* Control pipe */ 125 .direction = UE_DIR_ANY, 126 .bufsize = sizeof(struct usb_device_request), 127 .callback = &usb_do_clear_stall_callback, 128 .timeout = 1000, /* 1 second */ 129 .interval = 50, /* 50ms */ 130 .usb_mode = USB_MODE_HOST, 131 }, 132 }; 133 134 /* function prototypes */ 135 136 static void usbd_update_max_frame_size(struct usb_xfer *); 137 static void usbd_transfer_unsetup_sub(struct usb_xfer_root *, uint8_t); 138 static void usbd_control_transfer_init(struct usb_xfer *); 139 static int usbd_setup_ctrl_transfer(struct usb_xfer *); 140 static void usb_callback_proc(struct usb_proc_msg *); 141 static void usbd_callback_ss_done_defer(struct usb_xfer *); 142 static void usbd_callback_wrapper(struct usb_xfer_queue *); 143 static void usbd_transfer_start_cb(void *); 144 static uint8_t usbd_callback_wrapper_sub(struct usb_xfer *); 145 static void usbd_get_std_packet_size(struct usb_std_packet_size *ptr, 146 uint8_t type, enum usb_dev_speed speed); 147 148 /*------------------------------------------------------------------------* 149 * usb_request_callback 150 *------------------------------------------------------------------------*/ 151 static void 152 usb_request_callback(struct usb_xfer *xfer, usb_error_t error) 153 { 154 if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) 155 usb_handle_request_callback(xfer, error); 156 else 157 usbd_do_request_callback(xfer, error); 158 } 159 160 /*------------------------------------------------------------------------* 161 * usbd_update_max_frame_size 162 * 163 * This function updates the maximum frame size, hence high speed USB 164 * can transfer multiple consecutive packets. 165 *------------------------------------------------------------------------*/ 166 static void 167 usbd_update_max_frame_size(struct usb_xfer *xfer) 168 { 169 /* compute maximum frame size */ 170 /* this computation should not overflow 16-bit */ 171 /* max = 15 * 1024 */ 172 173 xfer->max_frame_size = xfer->max_packet_size * xfer->max_packet_count; 174 } 175 176 /*------------------------------------------------------------------------* 177 * usbd_get_dma_delay 178 * 179 * The following function is called when we need to 180 * synchronize with DMA hardware. 181 * 182 * Returns: 183 * 0: no DMA delay required 184 * Else: milliseconds of DMA delay 185 *------------------------------------------------------------------------*/ 186 usb_timeout_t 187 usbd_get_dma_delay(struct usb_device *udev) 188 { 189 const struct usb_bus_methods *mtod; 190 uint32_t temp; 191 192 mtod = udev->bus->methods; 193 temp = 0; 194 195 if (mtod->get_dma_delay) { 196 (mtod->get_dma_delay) (udev, &temp); 197 /* 198 * Round up and convert to milliseconds. Note that we use 199 * 1024 milliseconds per second. to save a division. 200 */ 201 temp += 0x3FF; 202 temp /= 0x400; 203 } 204 return (temp); 205 } 206 207 /*------------------------------------------------------------------------* 208 * usbd_transfer_setup_sub_malloc 209 * 210 * This function will allocate one or more DMA'able memory chunks 211 * according to "size", "align" and "count" arguments. "ppc" is 212 * pointed to a linear array of USB page caches afterwards. 213 * 214 * If the "align" argument is equal to "1" a non-contiguous allocation 215 * can happen. Else if the "align" argument is greater than "1", the 216 * allocation will always be contiguous in memory. 217 * 218 * Returns: 219 * 0: Success 220 * Else: Failure 221 *------------------------------------------------------------------------*/ 222 #if USB_HAVE_BUSDMA 223 uint8_t 224 usbd_transfer_setup_sub_malloc(struct usb_setup_params *parm, 225 struct usb_page_cache **ppc, usb_size_t size, usb_size_t align, 226 usb_size_t count) 227 { 228 struct usb_page_cache *pc; 229 struct usb_page *pg; 230 void *buf; 231 usb_size_t n_dma_pc; 232 usb_size_t n_dma_pg; 233 usb_size_t n_obj; 234 usb_size_t x; 235 usb_size_t y; 236 usb_size_t r; 237 usb_size_t z; 238 239 USB_ASSERT(align > 0, ("Invalid alignment, 0x%08x\n", 240 align)); 241 USB_ASSERT(size > 0, ("Invalid size = 0\n")); 242 243 if (count == 0) { 244 return (0); /* nothing to allocate */ 245 } 246 /* 247 * Make sure that the size is aligned properly. 248 */ 249 size = -((-size) & (-align)); 250 251 /* 252 * Try multi-allocation chunks to reduce the number of DMA 253 * allocations, hence DMA allocations are slow. 254 */ 255 if (align == 1) { 256 /* special case - non-cached multi page DMA memory */ 257 n_dma_pc = count; 258 n_dma_pg = (2 + (size / USB_PAGE_SIZE)); 259 n_obj = 1; 260 } else if (size >= USB_PAGE_SIZE) { 261 n_dma_pc = count; 262 n_dma_pg = 1; 263 n_obj = 1; 264 } else { 265 /* compute number of objects per page */ 266 #ifdef USB_DMA_SINGLE_ALLOC 267 n_obj = 1; 268 #else 269 n_obj = (USB_PAGE_SIZE / size); 270 #endif 271 /* 272 * Compute number of DMA chunks, rounded up 273 * to nearest one: 274 */ 275 n_dma_pc = howmany(count, n_obj); 276 n_dma_pg = 1; 277 } 278 279 /* 280 * DMA memory is allocated once, but mapped twice. That's why 281 * there is one list for auto-free and another list for 282 * non-auto-free which only holds the mapping and not the 283 * allocation. 284 */ 285 if (parm->buf == NULL) { 286 /* reserve memory (auto-free) */ 287 parm->dma_page_ptr += n_dma_pc * n_dma_pg; 288 parm->dma_page_cache_ptr += n_dma_pc; 289 290 /* reserve memory (no-auto-free) */ 291 parm->dma_page_ptr += count * n_dma_pg; 292 parm->xfer_page_cache_ptr += count; 293 return (0); 294 } 295 for (x = 0; x != n_dma_pc; x++) { 296 /* need to initialize the page cache */ 297 parm->dma_page_cache_ptr[x].tag_parent = 298 &parm->curr_xfer->xroot->dma_parent_tag; 299 } 300 for (x = 0; x != count; x++) { 301 /* need to initialize the page cache */ 302 parm->xfer_page_cache_ptr[x].tag_parent = 303 &parm->curr_xfer->xroot->dma_parent_tag; 304 } 305 306 if (ppc != NULL) { 307 if (n_obj != 1) 308 *ppc = parm->xfer_page_cache_ptr; 309 else 310 *ppc = parm->dma_page_cache_ptr; 311 } 312 r = count; /* set remainder count */ 313 z = n_obj * size; /* set allocation size */ 314 pc = parm->xfer_page_cache_ptr; 315 pg = parm->dma_page_ptr; 316 317 if (n_obj == 1) { 318 /* 319 * Avoid mapping memory twice if only a single object 320 * should be allocated per page cache: 321 */ 322 for (x = 0; x != n_dma_pc; x++) { 323 if (usb_pc_alloc_mem(parm->dma_page_cache_ptr, 324 pg, z, align)) { 325 return (1); /* failure */ 326 } 327 /* Make room for one DMA page cache and "n_dma_pg" pages */ 328 parm->dma_page_cache_ptr++; 329 pg += n_dma_pg; 330 } 331 } else { 332 for (x = 0; x != n_dma_pc; x++) { 333 if (r < n_obj) { 334 /* compute last remainder */ 335 z = r * size; 336 n_obj = r; 337 } 338 if (usb_pc_alloc_mem(parm->dma_page_cache_ptr, 339 pg, z, align)) { 340 return (1); /* failure */ 341 } 342 /* Set beginning of current buffer */ 343 buf = parm->dma_page_cache_ptr->buffer; 344 /* Make room for one DMA page cache and "n_dma_pg" pages */ 345 parm->dma_page_cache_ptr++; 346 pg += n_dma_pg; 347 348 for (y = 0; (y != n_obj); y++, r--, pc++, pg += n_dma_pg) { 349 /* Load sub-chunk into DMA */ 350 if (usb_pc_dmamap_create(pc, size)) { 351 return (1); /* failure */ 352 } 353 pc->buffer = USB_ADD_BYTES(buf, y * size); 354 pc->page_start = pg; 355 356 USB_MTX_LOCK(pc->tag_parent->mtx); 357 if (usb_pc_load_mem(pc, size, 1 /* synchronous */ )) { 358 USB_MTX_UNLOCK(pc->tag_parent->mtx); 359 return (1); /* failure */ 360 } 361 USB_MTX_UNLOCK(pc->tag_parent->mtx); 362 } 363 } 364 } 365 366 parm->xfer_page_cache_ptr = pc; 367 parm->dma_page_ptr = pg; 368 return (0); 369 } 370 #endif 371 372 /*------------------------------------------------------------------------* 373 * usbd_get_max_frame_length 374 * 375 * This function returns the maximum single frame length as computed by 376 * usbd_transfer_setup(). It is useful when computing buffer sizes for 377 * devices having multiple alternate settings. The SuperSpeed endpoint 378 * companion pointer is allowed to be NULL. 379 *------------------------------------------------------------------------*/ 380 uint32_t 381 usbd_get_max_frame_length(const struct usb_endpoint_descriptor *edesc, 382 const struct usb_endpoint_ss_comp_descriptor *ecomp, 383 enum usb_dev_speed speed) 384 { 385 uint32_t max_packet_size; 386 uint32_t max_packet_count; 387 uint8_t type; 388 389 max_packet_size = UGETW(edesc->wMaxPacketSize); 390 max_packet_count = 1; 391 type = (edesc->bmAttributes & UE_XFERTYPE); 392 393 switch (speed) { 394 case USB_SPEED_HIGH: 395 switch (type) { 396 case UE_ISOCHRONOUS: 397 case UE_INTERRUPT: 398 max_packet_count += 399 (max_packet_size >> 11) & 3; 400 401 /* check for invalid max packet count */ 402 if (max_packet_count > 3) 403 max_packet_count = 3; 404 break; 405 default: 406 break; 407 } 408 max_packet_size &= 0x7FF; 409 break; 410 case USB_SPEED_SUPER: 411 max_packet_count += (max_packet_size >> 11) & 3; 412 413 if (ecomp != NULL) 414 max_packet_count += ecomp->bMaxBurst; 415 416 if ((max_packet_count == 0) || 417 (max_packet_count > 16)) 418 max_packet_count = 16; 419 420 switch (type) { 421 case UE_CONTROL: 422 max_packet_count = 1; 423 break; 424 case UE_ISOCHRONOUS: 425 if (ecomp != NULL) { 426 uint8_t mult; 427 428 mult = UE_GET_SS_ISO_MULT( 429 ecomp->bmAttributes) + 1; 430 if (mult > 3) 431 mult = 3; 432 433 max_packet_count *= mult; 434 } 435 break; 436 default: 437 break; 438 } 439 max_packet_size &= 0x7FF; 440 break; 441 default: 442 break; 443 } 444 return (max_packet_size * max_packet_count); 445 } 446 447 /*------------------------------------------------------------------------* 448 * usbd_transfer_setup_sub - transfer setup subroutine 449 * 450 * This function must be called from the "xfer_setup" callback of the 451 * USB Host or Device controller driver when setting up an USB 452 * transfer. This function will setup correct packet sizes, buffer 453 * sizes, flags and more, that are stored in the "usb_xfer" 454 * structure. 455 *------------------------------------------------------------------------*/ 456 void 457 usbd_transfer_setup_sub(struct usb_setup_params *parm) 458 { 459 enum { 460 REQ_SIZE = 8, 461 MIN_PKT = 8, 462 }; 463 struct usb_xfer *xfer = parm->curr_xfer; 464 const struct usb_config *setup = parm->curr_setup; 465 struct usb_endpoint_ss_comp_descriptor *ecomp; 466 struct usb_endpoint_descriptor *edesc; 467 struct usb_std_packet_size std_size; 468 usb_frcount_t n_frlengths; 469 usb_frcount_t n_frbuffers; 470 usb_frcount_t x; 471 uint16_t maxp_old; 472 uint8_t type; 473 uint8_t zmps; 474 475 /* 476 * Sanity check. The following parameters must be initialized before 477 * calling this function. 478 */ 479 if ((parm->hc_max_packet_size == 0) || 480 (parm->hc_max_packet_count == 0) || 481 (parm->hc_max_frame_size == 0)) { 482 parm->err = USB_ERR_INVAL; 483 goto done; 484 } 485 edesc = xfer->endpoint->edesc; 486 ecomp = xfer->endpoint->ecomp; 487 488 type = (edesc->bmAttributes & UE_XFERTYPE); 489 490 xfer->flags = setup->flags; 491 xfer->nframes = setup->frames; 492 xfer->timeout = setup->timeout; 493 xfer->callback = setup->callback; 494 xfer->interval = setup->interval; 495 xfer->endpointno = edesc->bEndpointAddress; 496 xfer->max_packet_size = UGETW(edesc->wMaxPacketSize); 497 xfer->max_packet_count = 1; 498 /* make a shadow copy: */ 499 xfer->flags_int.usb_mode = parm->udev->flags.usb_mode; 500 501 parm->bufsize = setup->bufsize; 502 503 switch (parm->speed) { 504 case USB_SPEED_HIGH: 505 switch (type) { 506 case UE_ISOCHRONOUS: 507 case UE_INTERRUPT: 508 xfer->max_packet_count += 509 (xfer->max_packet_size >> 11) & 3; 510 511 /* check for invalid max packet count */ 512 if (xfer->max_packet_count > 3) 513 xfer->max_packet_count = 3; 514 break; 515 default: 516 break; 517 } 518 xfer->max_packet_size &= 0x7FF; 519 break; 520 case USB_SPEED_SUPER: 521 xfer->max_packet_count += (xfer->max_packet_size >> 11) & 3; 522 523 if (ecomp != NULL) 524 xfer->max_packet_count += ecomp->bMaxBurst; 525 526 if ((xfer->max_packet_count == 0) || 527 (xfer->max_packet_count > 16)) 528 xfer->max_packet_count = 16; 529 530 switch (type) { 531 case UE_CONTROL: 532 xfer->max_packet_count = 1; 533 break; 534 case UE_ISOCHRONOUS: 535 if (ecomp != NULL) { 536 uint8_t mult; 537 538 mult = UE_GET_SS_ISO_MULT( 539 ecomp->bmAttributes) + 1; 540 if (mult > 3) 541 mult = 3; 542 543 xfer->max_packet_count *= mult; 544 } 545 break; 546 default: 547 break; 548 } 549 xfer->max_packet_size &= 0x7FF; 550 break; 551 default: 552 break; 553 } 554 /* range check "max_packet_count" */ 555 556 if (xfer->max_packet_count > parm->hc_max_packet_count) { 557 xfer->max_packet_count = parm->hc_max_packet_count; 558 } 559 560 /* store max packet size value before filtering */ 561 562 maxp_old = xfer->max_packet_size; 563 564 /* filter "wMaxPacketSize" according to HC capabilities */ 565 566 if ((xfer->max_packet_size > parm->hc_max_packet_size) || 567 (xfer->max_packet_size == 0)) { 568 xfer->max_packet_size = parm->hc_max_packet_size; 569 } 570 /* filter "wMaxPacketSize" according to standard sizes */ 571 572 usbd_get_std_packet_size(&std_size, type, parm->speed); 573 574 if (std_size.range.min || std_size.range.max) { 575 if (xfer->max_packet_size < std_size.range.min) { 576 xfer->max_packet_size = std_size.range.min; 577 } 578 if (xfer->max_packet_size > std_size.range.max) { 579 xfer->max_packet_size = std_size.range.max; 580 } 581 } else { 582 if (xfer->max_packet_size >= std_size.fixed[3]) { 583 xfer->max_packet_size = std_size.fixed[3]; 584 } else if (xfer->max_packet_size >= std_size.fixed[2]) { 585 xfer->max_packet_size = std_size.fixed[2]; 586 } else if (xfer->max_packet_size >= std_size.fixed[1]) { 587 xfer->max_packet_size = std_size.fixed[1]; 588 } else { 589 /* only one possibility left */ 590 xfer->max_packet_size = std_size.fixed[0]; 591 } 592 } 593 594 /* 595 * Check if the max packet size was outside its allowed range 596 * and clamped to a valid value: 597 */ 598 if (maxp_old != xfer->max_packet_size) 599 xfer->flags_int.maxp_was_clamped = 1; 600 601 /* compute "max_frame_size" */ 602 603 usbd_update_max_frame_size(xfer); 604 605 /* check interrupt interval and transfer pre-delay */ 606 607 if (type == UE_ISOCHRONOUS) { 608 uint16_t frame_limit; 609 610 xfer->interval = 0; /* not used, must be zero */ 611 xfer->flags_int.isochronous_xfr = 1; /* set flag */ 612 613 if (xfer->timeout == 0) { 614 /* 615 * set a default timeout in 616 * case something goes wrong! 617 */ 618 xfer->timeout = 1000 / 4; 619 } 620 switch (parm->speed) { 621 case USB_SPEED_LOW: 622 case USB_SPEED_FULL: 623 frame_limit = USB_MAX_FS_ISOC_FRAMES_PER_XFER; 624 xfer->fps_shift = 0; 625 break; 626 default: 627 frame_limit = USB_MAX_HS_ISOC_FRAMES_PER_XFER; 628 xfer->fps_shift = edesc->bInterval; 629 if (xfer->fps_shift > 0) 630 xfer->fps_shift--; 631 if (xfer->fps_shift > 3) 632 xfer->fps_shift = 3; 633 if (xfer->flags.pre_scale_frames != 0) 634 xfer->nframes <<= (3 - xfer->fps_shift); 635 break; 636 } 637 638 if (xfer->nframes > frame_limit) { 639 /* 640 * this is not going to work 641 * cross hardware 642 */ 643 parm->err = USB_ERR_INVAL; 644 goto done; 645 } 646 if (xfer->nframes == 0) { 647 /* 648 * this is not a valid value 649 */ 650 parm->err = USB_ERR_ZERO_NFRAMES; 651 goto done; 652 } 653 } else { 654 /* 655 * If a value is specified use that else check the 656 * endpoint descriptor! 657 */ 658 if (type == UE_INTERRUPT) { 659 uint32_t temp; 660 661 if (xfer->interval == 0) { 662 xfer->interval = edesc->bInterval; 663 664 switch (parm->speed) { 665 case USB_SPEED_LOW: 666 case USB_SPEED_FULL: 667 break; 668 default: 669 /* 125us -> 1ms */ 670 if (xfer->interval < 4) 671 xfer->interval = 1; 672 else if (xfer->interval > 16) 673 xfer->interval = (1 << (16 - 4)); 674 else 675 xfer->interval = 676 (1 << (xfer->interval - 4)); 677 break; 678 } 679 } 680 681 if (xfer->interval == 0) { 682 /* 683 * One millisecond is the smallest 684 * interval we support: 685 */ 686 xfer->interval = 1; 687 } 688 689 xfer->fps_shift = 0; 690 temp = 1; 691 692 while ((temp != 0) && (temp < xfer->interval)) { 693 xfer->fps_shift++; 694 temp *= 2; 695 } 696 697 switch (parm->speed) { 698 case USB_SPEED_LOW: 699 case USB_SPEED_FULL: 700 break; 701 default: 702 xfer->fps_shift += 3; 703 break; 704 } 705 } 706 } 707 708 /* 709 * NOTE: we do not allow "max_packet_size" or "max_frame_size" 710 * to be equal to zero when setting up USB transfers, hence 711 * this leads to a lot of extra code in the USB kernel. 712 */ 713 714 if ((xfer->max_frame_size == 0) || 715 (xfer->max_packet_size == 0)) { 716 zmps = 1; 717 718 if ((parm->bufsize <= MIN_PKT) && 719 (type != UE_CONTROL) && 720 (type != UE_BULK)) { 721 /* workaround */ 722 xfer->max_packet_size = MIN_PKT; 723 xfer->max_packet_count = 1; 724 parm->bufsize = 0; /* automatic setup length */ 725 usbd_update_max_frame_size(xfer); 726 727 } else { 728 parm->err = USB_ERR_ZERO_MAXP; 729 goto done; 730 } 731 732 } else { 733 zmps = 0; 734 } 735 736 /* 737 * check if we should setup a default 738 * length: 739 */ 740 741 if (parm->bufsize == 0) { 742 parm->bufsize = xfer->max_frame_size; 743 744 if (type == UE_ISOCHRONOUS) { 745 parm->bufsize *= xfer->nframes; 746 } 747 } 748 /* 749 * check if we are about to setup a proxy 750 * type of buffer: 751 */ 752 753 if (xfer->flags.proxy_buffer) { 754 /* round bufsize up */ 755 756 parm->bufsize += (xfer->max_frame_size - 1); 757 758 if (parm->bufsize < xfer->max_frame_size) { 759 /* length wrapped around */ 760 parm->err = USB_ERR_INVAL; 761 goto done; 762 } 763 /* subtract remainder */ 764 765 parm->bufsize -= (parm->bufsize % xfer->max_frame_size); 766 767 /* add length of USB device request structure, if any */ 768 769 if (type == UE_CONTROL) { 770 parm->bufsize += REQ_SIZE; /* SETUP message */ 771 } 772 } 773 xfer->max_data_length = parm->bufsize; 774 775 /* Setup "n_frlengths" and "n_frbuffers" */ 776 777 if (type == UE_ISOCHRONOUS) { 778 n_frlengths = xfer->nframes; 779 n_frbuffers = 1; 780 } else { 781 if (type == UE_CONTROL) { 782 xfer->flags_int.control_xfr = 1; 783 if (xfer->nframes == 0) { 784 if (parm->bufsize <= REQ_SIZE) { 785 /* 786 * there will never be any data 787 * stage 788 */ 789 xfer->nframes = 1; 790 } else { 791 xfer->nframes = 2; 792 } 793 } 794 } else { 795 if (xfer->nframes == 0) { 796 xfer->nframes = 1; 797 } 798 } 799 800 n_frlengths = xfer->nframes; 801 n_frbuffers = xfer->nframes; 802 } 803 804 /* 805 * check if we have room for the 806 * USB device request structure: 807 */ 808 809 if (type == UE_CONTROL) { 810 if (xfer->max_data_length < REQ_SIZE) { 811 /* length wrapped around or too small bufsize */ 812 parm->err = USB_ERR_INVAL; 813 goto done; 814 } 815 xfer->max_data_length -= REQ_SIZE; 816 } 817 /* 818 * Setup "frlengths" and shadow "frlengths" for keeping the 819 * initial frame lengths when a USB transfer is complete. This 820 * information is useful when computing isochronous offsets. 821 */ 822 xfer->frlengths = parm->xfer_length_ptr; 823 parm->xfer_length_ptr += 2 * n_frlengths; 824 825 /* setup "frbuffers" */ 826 xfer->frbuffers = parm->xfer_page_cache_ptr; 827 parm->xfer_page_cache_ptr += n_frbuffers; 828 829 /* initialize max frame count */ 830 xfer->max_frame_count = xfer->nframes; 831 832 /* 833 * check if we need to setup 834 * a local buffer: 835 */ 836 837 if (!xfer->flags.ext_buffer) { 838 #if USB_HAVE_BUSDMA 839 struct usb_page_search page_info; 840 struct usb_page_cache *pc; 841 842 if (usbd_transfer_setup_sub_malloc(parm, 843 &pc, parm->bufsize, 1, 1)) { 844 parm->err = USB_ERR_NOMEM; 845 } else if (parm->buf != NULL) { 846 usbd_get_page(pc, 0, &page_info); 847 848 xfer->local_buffer = page_info.buffer; 849 850 usbd_xfer_set_frame_offset(xfer, 0, 0); 851 852 if ((type == UE_CONTROL) && (n_frbuffers > 1)) { 853 usbd_xfer_set_frame_offset(xfer, REQ_SIZE, 1); 854 } 855 } 856 #else 857 /* align data */ 858 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 859 860 if (parm->buf != NULL) { 861 xfer->local_buffer = 862 USB_ADD_BYTES(parm->buf, parm->size[0]); 863 864 usbd_xfer_set_frame_offset(xfer, 0, 0); 865 866 if ((type == UE_CONTROL) && (n_frbuffers > 1)) { 867 usbd_xfer_set_frame_offset(xfer, REQ_SIZE, 1); 868 } 869 } 870 parm->size[0] += parm->bufsize; 871 872 /* align data again */ 873 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 874 #endif 875 } 876 /* 877 * Compute maximum buffer size 878 */ 879 880 if (parm->bufsize_max < parm->bufsize) { 881 parm->bufsize_max = parm->bufsize; 882 } 883 #if USB_HAVE_BUSDMA 884 if (xfer->flags_int.bdma_enable) { 885 /* 886 * Setup "dma_page_ptr". 887 * 888 * Proof for formula below: 889 * 890 * Assume there are three USB frames having length "a", "b" and 891 * "c". These USB frames will at maximum need "z" 892 * "usb_page" structures. "z" is given by: 893 * 894 * z = ((a / USB_PAGE_SIZE) + 2) + ((b / USB_PAGE_SIZE) + 2) + 895 * ((c / USB_PAGE_SIZE) + 2); 896 * 897 * Constraining "a", "b" and "c" like this: 898 * 899 * (a + b + c) <= parm->bufsize 900 * 901 * We know that: 902 * 903 * z <= ((parm->bufsize / USB_PAGE_SIZE) + (3*2)); 904 * 905 * Here is the general formula: 906 */ 907 xfer->dma_page_ptr = parm->dma_page_ptr; 908 parm->dma_page_ptr += (2 * n_frbuffers); 909 parm->dma_page_ptr += (parm->bufsize / USB_PAGE_SIZE); 910 } 911 #endif 912 if (zmps) { 913 /* correct maximum data length */ 914 xfer->max_data_length = 0; 915 } 916 /* subtract USB frame remainder from "hc_max_frame_size" */ 917 918 xfer->max_hc_frame_size = 919 (parm->hc_max_frame_size - 920 (parm->hc_max_frame_size % xfer->max_frame_size)); 921 922 if (xfer->max_hc_frame_size == 0) { 923 parm->err = USB_ERR_INVAL; 924 goto done; 925 } 926 927 /* initialize frame buffers */ 928 929 if (parm->buf) { 930 for (x = 0; x != n_frbuffers; x++) { 931 xfer->frbuffers[x].tag_parent = 932 &xfer->xroot->dma_parent_tag; 933 #if USB_HAVE_BUSDMA 934 if (xfer->flags_int.bdma_enable && 935 (parm->bufsize_max > 0)) { 936 if (usb_pc_dmamap_create( 937 xfer->frbuffers + x, 938 parm->bufsize_max)) { 939 parm->err = USB_ERR_NOMEM; 940 goto done; 941 } 942 } 943 #endif 944 } 945 } 946 done: 947 if (parm->err) { 948 /* 949 * Set some dummy values so that we avoid division by zero: 950 */ 951 xfer->max_hc_frame_size = 1; 952 xfer->max_frame_size = 1; 953 xfer->max_packet_size = 1; 954 xfer->max_data_length = 0; 955 xfer->nframes = 0; 956 xfer->max_frame_count = 0; 957 } 958 } 959 960 static uint8_t 961 usbd_transfer_setup_has_bulk(const struct usb_config *setup_start, 962 uint16_t n_setup) 963 { 964 while (n_setup--) { 965 uint8_t type = setup_start[n_setup].type; 966 if (type == UE_BULK || type == UE_BULK_INTR || 967 type == UE_TYPE_ANY) 968 return (1); 969 } 970 return (0); 971 } 972 973 /*------------------------------------------------------------------------* 974 * usbd_transfer_setup - setup an array of USB transfers 975 * 976 * NOTE: You must always call "usbd_transfer_unsetup" after calling 977 * "usbd_transfer_setup" if success was returned. 978 * 979 * The idea is that the USB device driver should pre-allocate all its 980 * transfers by one call to this function. 981 * 982 * Return values: 983 * 0: Success 984 * Else: Failure 985 *------------------------------------------------------------------------*/ 986 usb_error_t 987 usbd_transfer_setup(struct usb_device *udev, 988 const uint8_t *ifaces, struct usb_xfer **ppxfer, 989 const struct usb_config *setup_start, uint16_t n_setup, 990 void *priv_sc, struct mtx *xfer_mtx) 991 { 992 const struct usb_config *setup_end = setup_start + n_setup; 993 const struct usb_config *setup; 994 struct usb_setup_params *parm; 995 struct usb_endpoint *ep; 996 struct usb_xfer_root *info; 997 struct usb_xfer *xfer; 998 void *buf = NULL; 999 usb_error_t error = 0; 1000 uint16_t n; 1001 uint16_t refcount; 1002 uint8_t do_unlock; 1003 1004 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 1005 "usbd_transfer_setup can sleep!"); 1006 1007 /* do some checking first */ 1008 1009 if (n_setup == 0) { 1010 DPRINTFN(6, "setup array has zero length!\n"); 1011 return (USB_ERR_INVAL); 1012 } 1013 if (ifaces == NULL) { 1014 DPRINTFN(6, "ifaces array is NULL!\n"); 1015 return (USB_ERR_INVAL); 1016 } 1017 if (xfer_mtx == NULL) { 1018 DPRINTFN(6, "using global lock\n"); 1019 xfer_mtx = &Giant; 1020 } 1021 1022 /* more sanity checks */ 1023 1024 for (setup = setup_start, n = 0; 1025 setup != setup_end; setup++, n++) { 1026 if (setup->bufsize == (usb_frlength_t)-1) { 1027 error = USB_ERR_BAD_BUFSIZE; 1028 DPRINTF("invalid bufsize\n"); 1029 } 1030 if (setup->callback == NULL) { 1031 error = USB_ERR_NO_CALLBACK; 1032 DPRINTF("no callback\n"); 1033 } 1034 ppxfer[n] = NULL; 1035 } 1036 1037 if (error) 1038 return (error); 1039 1040 /* Protect scratch area */ 1041 do_unlock = usbd_ctrl_lock(udev); 1042 1043 refcount = 0; 1044 info = NULL; 1045 1046 parm = &udev->scratch.xfer_setup[0].parm; 1047 memset(parm, 0, sizeof(*parm)); 1048 1049 parm->udev = udev; 1050 parm->speed = usbd_get_speed(udev); 1051 parm->hc_max_packet_count = 1; 1052 1053 if (parm->speed >= USB_SPEED_MAX) { 1054 parm->err = USB_ERR_INVAL; 1055 goto done; 1056 } 1057 /* setup all transfers */ 1058 1059 while (1) { 1060 if (buf) { 1061 /* 1062 * Initialize the "usb_xfer_root" structure, 1063 * which is common for all our USB transfers. 1064 */ 1065 info = USB_ADD_BYTES(buf, 0); 1066 1067 info->memory_base = buf; 1068 info->memory_size = parm->size[0]; 1069 1070 #if USB_HAVE_BUSDMA 1071 info->dma_page_cache_start = USB_ADD_BYTES(buf, parm->size[4]); 1072 info->dma_page_cache_end = USB_ADD_BYTES(buf, parm->size[5]); 1073 #endif 1074 info->xfer_page_cache_start = USB_ADD_BYTES(buf, parm->size[5]); 1075 info->xfer_page_cache_end = USB_ADD_BYTES(buf, parm->size[2]); 1076 1077 cv_init(&info->cv_drain, "WDRAIN"); 1078 1079 info->xfer_mtx = xfer_mtx; 1080 #if USB_HAVE_BUSDMA 1081 usb_dma_tag_setup(&info->dma_parent_tag, 1082 parm->dma_tag_p, udev->bus->dma_parent_tag[0].tag, 1083 xfer_mtx, &usb_bdma_done_event, udev->bus->dma_bits, 1084 parm->dma_tag_max); 1085 #endif 1086 1087 info->bus = udev->bus; 1088 info->udev = udev; 1089 1090 TAILQ_INIT(&info->done_q.head); 1091 info->done_q.command = &usbd_callback_wrapper; 1092 #if USB_HAVE_BUSDMA 1093 TAILQ_INIT(&info->dma_q.head); 1094 info->dma_q.command = &usb_bdma_work_loop; 1095 #endif 1096 info->done_m[0].hdr.pm_callback = &usb_callback_proc; 1097 info->done_m[0].xroot = info; 1098 info->done_m[1].hdr.pm_callback = &usb_callback_proc; 1099 info->done_m[1].xroot = info; 1100 1101 /* 1102 * In device side mode control endpoint 1103 * requests need to run from a separate 1104 * context, else there is a chance of 1105 * deadlock! 1106 */ 1107 if (setup_start == usb_control_ep_cfg || 1108 setup_start == usb_control_ep_quirk_cfg) 1109 info->done_p = 1110 USB_BUS_CONTROL_XFER_PROC(udev->bus); 1111 else if (xfer_mtx == &Giant) 1112 info->done_p = 1113 USB_BUS_GIANT_PROC(udev->bus); 1114 else if (usbd_transfer_setup_has_bulk(setup_start, n_setup)) 1115 info->done_p = 1116 USB_BUS_NON_GIANT_BULK_PROC(udev->bus); 1117 else 1118 info->done_p = 1119 USB_BUS_NON_GIANT_ISOC_PROC(udev->bus); 1120 } 1121 /* reset sizes */ 1122 1123 parm->size[0] = 0; 1124 parm->buf = buf; 1125 parm->size[0] += sizeof(info[0]); 1126 1127 for (setup = setup_start, n = 0; 1128 setup != setup_end; setup++, n++) { 1129 /* skip USB transfers without callbacks: */ 1130 if (setup->callback == NULL) { 1131 continue; 1132 } 1133 /* see if there is a matching endpoint */ 1134 ep = usbd_get_endpoint(udev, 1135 ifaces[setup->if_index], setup); 1136 1137 /* 1138 * Check that the USB PIPE is valid and that 1139 * the endpoint mode is proper. 1140 * 1141 * Make sure we don't allocate a streams 1142 * transfer when such a combination is not 1143 * valid. 1144 */ 1145 if ((ep == NULL) || (ep->methods == NULL) || 1146 ((ep->ep_mode != USB_EP_MODE_STREAMS) && 1147 (ep->ep_mode != USB_EP_MODE_DEFAULT)) || 1148 (setup->stream_id != 0 && 1149 (setup->stream_id >= USB_MAX_EP_STREAMS || 1150 (ep->ep_mode != USB_EP_MODE_STREAMS)))) { 1151 if (setup->flags.no_pipe_ok) 1152 continue; 1153 if ((setup->usb_mode != USB_MODE_DUAL) && 1154 (setup->usb_mode != udev->flags.usb_mode)) 1155 continue; 1156 parm->err = USB_ERR_NO_PIPE; 1157 goto done; 1158 } 1159 1160 /* align data properly */ 1161 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1162 1163 /* store current setup pointer */ 1164 parm->curr_setup = setup; 1165 1166 if (buf) { 1167 /* 1168 * Common initialization of the 1169 * "usb_xfer" structure. 1170 */ 1171 xfer = USB_ADD_BYTES(buf, parm->size[0]); 1172 xfer->address = udev->address; 1173 xfer->priv_sc = priv_sc; 1174 xfer->xroot = info; 1175 1176 usb_callout_init_mtx(&xfer->timeout_handle, 1177 &udev->bus->bus_mtx, 0); 1178 } else { 1179 /* 1180 * Setup a dummy xfer, hence we are 1181 * writing to the "usb_xfer" 1182 * structure pointed to by "xfer" 1183 * before we have allocated any 1184 * memory: 1185 */ 1186 xfer = &udev->scratch.xfer_setup[0].dummy; 1187 memset(xfer, 0, sizeof(*xfer)); 1188 refcount++; 1189 } 1190 1191 /* set transfer endpoint pointer */ 1192 xfer->endpoint = ep; 1193 1194 /* set transfer stream ID */ 1195 xfer->stream_id = setup->stream_id; 1196 1197 parm->size[0] += sizeof(xfer[0]); 1198 parm->methods = xfer->endpoint->methods; 1199 parm->curr_xfer = xfer; 1200 1201 /* 1202 * Call the Host or Device controller transfer 1203 * setup routine: 1204 */ 1205 (udev->bus->methods->xfer_setup) (parm); 1206 1207 /* check for error */ 1208 if (parm->err) 1209 goto done; 1210 1211 if (buf) { 1212 /* 1213 * Increment the endpoint refcount. This 1214 * basically prevents setting a new 1215 * configuration and alternate setting 1216 * when USB transfers are in use on 1217 * the given interface. Search the USB 1218 * code for "endpoint->refcount_alloc" if you 1219 * want more information. 1220 */ 1221 USB_BUS_LOCK(info->bus); 1222 if (xfer->endpoint->refcount_alloc >= USB_EP_REF_MAX) 1223 parm->err = USB_ERR_INVAL; 1224 1225 xfer->endpoint->refcount_alloc++; 1226 1227 if (xfer->endpoint->refcount_alloc == 0) 1228 panic("usbd_transfer_setup(): Refcount wrapped to zero\n"); 1229 USB_BUS_UNLOCK(info->bus); 1230 1231 /* 1232 * Whenever we set ppxfer[] then we 1233 * also need to increment the 1234 * "setup_refcount": 1235 */ 1236 info->setup_refcount++; 1237 1238 /* 1239 * Transfer is successfully setup and 1240 * can be used: 1241 */ 1242 ppxfer[n] = xfer; 1243 } 1244 1245 /* check for error */ 1246 if (parm->err) 1247 goto done; 1248 } 1249 1250 if (buf != NULL || parm->err != 0) 1251 goto done; 1252 1253 /* if no transfers, nothing to do */ 1254 if (refcount == 0) 1255 goto done; 1256 1257 /* align data properly */ 1258 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1259 1260 /* store offset temporarily */ 1261 parm->size[1] = parm->size[0]; 1262 1263 /* 1264 * The number of DMA tags required depends on 1265 * the number of endpoints. The current estimate 1266 * for maximum number of DMA tags per endpoint 1267 * is three: 1268 * 1) for loading memory 1269 * 2) for allocating memory 1270 * 3) for fixing memory [UHCI] 1271 */ 1272 parm->dma_tag_max += 3 * MIN(n_setup, USB_EP_MAX); 1273 1274 /* 1275 * DMA tags for QH, TD, Data and more. 1276 */ 1277 parm->dma_tag_max += 8; 1278 1279 parm->dma_tag_p += parm->dma_tag_max; 1280 1281 parm->size[0] += ((uint8_t *)parm->dma_tag_p) - 1282 ((uint8_t *)0); 1283 1284 /* align data properly */ 1285 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1286 1287 /* store offset temporarily */ 1288 parm->size[3] = parm->size[0]; 1289 1290 parm->size[0] += ((uint8_t *)parm->dma_page_ptr) - 1291 ((uint8_t *)0); 1292 1293 /* align data properly */ 1294 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1295 1296 /* store offset temporarily */ 1297 parm->size[4] = parm->size[0]; 1298 1299 parm->size[0] += ((uint8_t *)parm->dma_page_cache_ptr) - 1300 ((uint8_t *)0); 1301 1302 /* store end offset temporarily */ 1303 parm->size[5] = parm->size[0]; 1304 1305 parm->size[0] += ((uint8_t *)parm->xfer_page_cache_ptr) - 1306 ((uint8_t *)0); 1307 1308 /* store end offset temporarily */ 1309 1310 parm->size[2] = parm->size[0]; 1311 1312 /* align data properly */ 1313 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1314 1315 parm->size[6] = parm->size[0]; 1316 1317 parm->size[0] += ((uint8_t *)parm->xfer_length_ptr) - 1318 ((uint8_t *)0); 1319 1320 /* align data properly */ 1321 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1322 1323 /* allocate zeroed memory */ 1324 buf = malloc(parm->size[0], M_USB, M_WAITOK | M_ZERO); 1325 #if (USB_HAVE_MALLOC_WAITOK == 0) 1326 if (buf == NULL) { 1327 parm->err = USB_ERR_NOMEM; 1328 DPRINTFN(0, "cannot allocate memory block for " 1329 "configuration (%d bytes)\n", 1330 parm->size[0]); 1331 goto done; 1332 } 1333 #endif 1334 parm->dma_tag_p = USB_ADD_BYTES(buf, parm->size[1]); 1335 parm->dma_page_ptr = USB_ADD_BYTES(buf, parm->size[3]); 1336 parm->dma_page_cache_ptr = USB_ADD_BYTES(buf, parm->size[4]); 1337 parm->xfer_page_cache_ptr = USB_ADD_BYTES(buf, parm->size[5]); 1338 parm->xfer_length_ptr = USB_ADD_BYTES(buf, parm->size[6]); 1339 } 1340 1341 done: 1342 if (buf) { 1343 if (info->setup_refcount == 0) { 1344 /* 1345 * "usbd_transfer_unsetup_sub" will unlock 1346 * the bus mutex before returning ! 1347 */ 1348 USB_BUS_LOCK(info->bus); 1349 1350 /* something went wrong */ 1351 usbd_transfer_unsetup_sub(info, 0); 1352 } 1353 } 1354 1355 /* check if any errors happened */ 1356 if (parm->err) 1357 usbd_transfer_unsetup(ppxfer, n_setup); 1358 1359 error = parm->err; 1360 1361 if (do_unlock) 1362 usbd_ctrl_unlock(udev); 1363 1364 return (error); 1365 } 1366 1367 /*------------------------------------------------------------------------* 1368 * usbd_transfer_unsetup_sub - factored out code 1369 *------------------------------------------------------------------------*/ 1370 static void 1371 usbd_transfer_unsetup_sub(struct usb_xfer_root *info, uint8_t needs_delay) 1372 { 1373 #if USB_HAVE_BUSDMA 1374 struct usb_page_cache *pc; 1375 #endif 1376 1377 USB_BUS_LOCK_ASSERT(info->bus, MA_OWNED); 1378 1379 /* wait for any outstanding DMA operations */ 1380 1381 if (needs_delay) { 1382 usb_timeout_t temp; 1383 temp = usbd_get_dma_delay(info->udev); 1384 if (temp != 0) { 1385 usb_pause_mtx(&info->bus->bus_mtx, 1386 USB_MS_TO_TICKS(temp)); 1387 } 1388 } 1389 1390 /* make sure that our done messages are not queued anywhere */ 1391 usb_proc_mwait(info->done_p, &info->done_m[0], &info->done_m[1]); 1392 1393 USB_BUS_UNLOCK(info->bus); 1394 1395 #if USB_HAVE_BUSDMA 1396 /* free DMA'able memory, if any */ 1397 pc = info->dma_page_cache_start; 1398 while (pc != info->dma_page_cache_end) { 1399 usb_pc_free_mem(pc); 1400 pc++; 1401 } 1402 1403 /* free DMA maps in all "xfer->frbuffers" */ 1404 pc = info->xfer_page_cache_start; 1405 while (pc != info->xfer_page_cache_end) { 1406 usb_pc_dmamap_destroy(pc); 1407 pc++; 1408 } 1409 1410 /* free all DMA tags */ 1411 usb_dma_tag_unsetup(&info->dma_parent_tag); 1412 #endif 1413 1414 cv_destroy(&info->cv_drain); 1415 1416 /* 1417 * free the "memory_base" last, hence the "info" structure is 1418 * contained within the "memory_base"! 1419 */ 1420 free(info->memory_base, M_USB); 1421 } 1422 1423 /*------------------------------------------------------------------------* 1424 * usbd_transfer_unsetup - unsetup/free an array of USB transfers 1425 * 1426 * NOTE: All USB transfers in progress will get called back passing 1427 * the error code "USB_ERR_CANCELLED" before this function 1428 * returns. 1429 *------------------------------------------------------------------------*/ 1430 void 1431 usbd_transfer_unsetup(struct usb_xfer **pxfer, uint16_t n_setup) 1432 { 1433 struct usb_xfer *xfer; 1434 struct usb_xfer_root *info; 1435 uint8_t needs_delay = 0; 1436 1437 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 1438 "usbd_transfer_unsetup can sleep!"); 1439 1440 while (n_setup--) { 1441 xfer = pxfer[n_setup]; 1442 1443 if (xfer == NULL) 1444 continue; 1445 1446 info = xfer->xroot; 1447 1448 USB_XFER_LOCK(xfer); 1449 USB_BUS_LOCK(info->bus); 1450 1451 /* 1452 * HINT: when you start/stop a transfer, it might be a 1453 * good idea to directly use the "pxfer[]" structure: 1454 * 1455 * usbd_transfer_start(sc->pxfer[0]); 1456 * usbd_transfer_stop(sc->pxfer[0]); 1457 * 1458 * That way, if your code has many parts that will not 1459 * stop running under the same lock, in other words 1460 * "xfer_mtx", the usbd_transfer_start and 1461 * usbd_transfer_stop functions will simply return 1462 * when they detect a NULL pointer argument. 1463 * 1464 * To avoid any races we clear the "pxfer[]" pointer 1465 * while holding the private mutex of the driver: 1466 */ 1467 pxfer[n_setup] = NULL; 1468 1469 USB_BUS_UNLOCK(info->bus); 1470 USB_XFER_UNLOCK(xfer); 1471 1472 usbd_transfer_drain(xfer); 1473 1474 #if USB_HAVE_BUSDMA 1475 if (xfer->flags_int.bdma_enable) 1476 needs_delay = 1; 1477 #endif 1478 /* 1479 * NOTE: default endpoint does not have an 1480 * interface, even if endpoint->iface_index == 0 1481 */ 1482 USB_BUS_LOCK(info->bus); 1483 xfer->endpoint->refcount_alloc--; 1484 USB_BUS_UNLOCK(info->bus); 1485 1486 usb_callout_drain(&xfer->timeout_handle); 1487 1488 USB_BUS_LOCK(info->bus); 1489 1490 USB_ASSERT(info->setup_refcount != 0, ("Invalid setup " 1491 "reference count\n")); 1492 1493 info->setup_refcount--; 1494 1495 if (info->setup_refcount == 0) { 1496 usbd_transfer_unsetup_sub(info, 1497 needs_delay); 1498 } else { 1499 USB_BUS_UNLOCK(info->bus); 1500 } 1501 } 1502 } 1503 1504 /*------------------------------------------------------------------------* 1505 * usbd_control_transfer_init - factored out code 1506 * 1507 * In USB Device Mode we have to wait for the SETUP packet which 1508 * containst the "struct usb_device_request" structure, before we can 1509 * transfer any data. In USB Host Mode we already have the SETUP 1510 * packet at the moment the USB transfer is started. This leads us to 1511 * having to setup the USB transfer at two different places in 1512 * time. This function just contains factored out control transfer 1513 * initialisation code, so that we don't duplicate the code. 1514 *------------------------------------------------------------------------*/ 1515 static void 1516 usbd_control_transfer_init(struct usb_xfer *xfer) 1517 { 1518 struct usb_device_request req; 1519 1520 /* copy out the USB request header */ 1521 1522 usbd_copy_out(xfer->frbuffers, 0, &req, sizeof(req)); 1523 1524 /* setup remainder */ 1525 1526 xfer->flags_int.control_rem = UGETW(req.wLength); 1527 1528 /* copy direction to endpoint variable */ 1529 1530 xfer->endpointno &= ~(UE_DIR_IN | UE_DIR_OUT); 1531 xfer->endpointno |= 1532 (req.bmRequestType & UT_READ) ? UE_DIR_IN : UE_DIR_OUT; 1533 } 1534 1535 /*------------------------------------------------------------------------* 1536 * usbd_control_transfer_did_data 1537 * 1538 * This function returns non-zero if a control endpoint has 1539 * transferred the first DATA packet after the SETUP packet. 1540 * Else it returns zero. 1541 *------------------------------------------------------------------------*/ 1542 static uint8_t 1543 usbd_control_transfer_did_data(struct usb_xfer *xfer) 1544 { 1545 struct usb_device_request req; 1546 1547 /* SETUP packet is not yet sent */ 1548 if (xfer->flags_int.control_hdr != 0) 1549 return (0); 1550 1551 /* copy out the USB request header */ 1552 usbd_copy_out(xfer->frbuffers, 0, &req, sizeof(req)); 1553 1554 /* compare remainder to the initial value */ 1555 return (xfer->flags_int.control_rem != UGETW(req.wLength)); 1556 } 1557 1558 /*------------------------------------------------------------------------* 1559 * usbd_setup_ctrl_transfer 1560 * 1561 * This function handles initialisation of control transfers. Control 1562 * transfers are special in that regard that they can both transmit 1563 * and receive data. 1564 * 1565 * Return values: 1566 * 0: Success 1567 * Else: Failure 1568 *------------------------------------------------------------------------*/ 1569 static int 1570 usbd_setup_ctrl_transfer(struct usb_xfer *xfer) 1571 { 1572 usb_frlength_t len; 1573 1574 /* Check for control endpoint stall */ 1575 if (xfer->flags.stall_pipe && xfer->flags_int.control_act) { 1576 /* the control transfer is no longer active */ 1577 xfer->flags_int.control_stall = 1; 1578 xfer->flags_int.control_act = 0; 1579 } else { 1580 /* don't stall control transfer by default */ 1581 xfer->flags_int.control_stall = 0; 1582 } 1583 1584 /* Check for invalid number of frames */ 1585 if (xfer->nframes > 2) { 1586 /* 1587 * If you need to split a control transfer, you 1588 * have to do one part at a time. Only with 1589 * non-control transfers you can do multiple 1590 * parts a time. 1591 */ 1592 DPRINTFN(0, "Too many frames: %u\n", 1593 (unsigned int)xfer->nframes); 1594 goto error; 1595 } 1596 1597 /* 1598 * Check if there is a control 1599 * transfer in progress: 1600 */ 1601 if (xfer->flags_int.control_act) { 1602 if (xfer->flags_int.control_hdr) { 1603 /* clear send header flag */ 1604 1605 xfer->flags_int.control_hdr = 0; 1606 1607 /* setup control transfer */ 1608 if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) { 1609 usbd_control_transfer_init(xfer); 1610 } 1611 } 1612 /* get data length */ 1613 1614 len = xfer->sumlen; 1615 1616 } else { 1617 /* the size of the SETUP structure is hardcoded ! */ 1618 1619 if (xfer->frlengths[0] != sizeof(struct usb_device_request)) { 1620 DPRINTFN(0, "Wrong framelength %u != %zu\n", 1621 xfer->frlengths[0], sizeof(struct 1622 usb_device_request)); 1623 goto error; 1624 } 1625 /* check USB mode */ 1626 if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) { 1627 /* check number of frames */ 1628 if (xfer->nframes != 1) { 1629 /* 1630 * We need to receive the setup 1631 * message first so that we know the 1632 * data direction! 1633 */ 1634 DPRINTF("Misconfigured transfer\n"); 1635 goto error; 1636 } 1637 /* 1638 * Set a dummy "control_rem" value. This 1639 * variable will be overwritten later by a 1640 * call to "usbd_control_transfer_init()" ! 1641 */ 1642 xfer->flags_int.control_rem = 0xFFFF; 1643 } else { 1644 /* setup "endpoint" and "control_rem" */ 1645 1646 usbd_control_transfer_init(xfer); 1647 } 1648 1649 /* set transfer-header flag */ 1650 1651 xfer->flags_int.control_hdr = 1; 1652 1653 /* get data length */ 1654 1655 len = (xfer->sumlen - sizeof(struct usb_device_request)); 1656 } 1657 1658 /* update did data flag */ 1659 1660 xfer->flags_int.control_did_data = 1661 usbd_control_transfer_did_data(xfer); 1662 1663 /* check if there is a length mismatch */ 1664 1665 if (len > xfer->flags_int.control_rem) { 1666 DPRINTFN(0, "Length (%d) greater than " 1667 "remaining length (%d)\n", len, 1668 xfer->flags_int.control_rem); 1669 goto error; 1670 } 1671 /* check if we are doing a short transfer */ 1672 1673 if (xfer->flags.force_short_xfer) { 1674 xfer->flags_int.control_rem = 0; 1675 } else { 1676 if ((len != xfer->max_data_length) && 1677 (len != xfer->flags_int.control_rem) && 1678 (xfer->nframes != 1)) { 1679 DPRINTFN(0, "Short control transfer without " 1680 "force_short_xfer set\n"); 1681 goto error; 1682 } 1683 xfer->flags_int.control_rem -= len; 1684 } 1685 1686 /* the status part is executed when "control_act" is 0 */ 1687 1688 if ((xfer->flags_int.control_rem > 0) || 1689 (xfer->flags.manual_status)) { 1690 /* don't execute the STATUS stage yet */ 1691 xfer->flags_int.control_act = 1; 1692 1693 /* sanity check */ 1694 if ((!xfer->flags_int.control_hdr) && 1695 (xfer->nframes == 1)) { 1696 /* 1697 * This is not a valid operation! 1698 */ 1699 DPRINTFN(0, "Invalid parameter " 1700 "combination\n"); 1701 goto error; 1702 } 1703 } else { 1704 /* time to execute the STATUS stage */ 1705 xfer->flags_int.control_act = 0; 1706 } 1707 return (0); /* success */ 1708 1709 error: 1710 return (1); /* failure */ 1711 } 1712 1713 /*------------------------------------------------------------------------* 1714 * usbd_transfer_submit - start USB hardware for the given transfer 1715 * 1716 * This function should only be called from the USB callback. 1717 *------------------------------------------------------------------------*/ 1718 void 1719 usbd_transfer_submit(struct usb_xfer *xfer) 1720 { 1721 struct usb_xfer_root *info; 1722 struct usb_bus *bus; 1723 usb_frcount_t x; 1724 1725 info = xfer->xroot; 1726 bus = info->bus; 1727 1728 DPRINTF("xfer=%p, endpoint=%p, nframes=%d, dir=%s\n", 1729 xfer, xfer->endpoint, xfer->nframes, USB_GET_DATA_ISREAD(xfer) ? 1730 "read" : "write"); 1731 1732 #ifdef USB_DEBUG 1733 if (USB_DEBUG_VAR > 0) { 1734 USB_BUS_LOCK(bus); 1735 1736 usb_dump_endpoint(xfer->endpoint); 1737 1738 USB_BUS_UNLOCK(bus); 1739 } 1740 #endif 1741 1742 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 1743 USB_BUS_LOCK_ASSERT(bus, MA_NOTOWNED); 1744 1745 /* Only open the USB transfer once! */ 1746 if (!xfer->flags_int.open) { 1747 xfer->flags_int.open = 1; 1748 1749 DPRINTF("open\n"); 1750 1751 USB_BUS_LOCK(bus); 1752 (xfer->endpoint->methods->open) (xfer); 1753 USB_BUS_UNLOCK(bus); 1754 } 1755 /* set "transferring" flag */ 1756 xfer->flags_int.transferring = 1; 1757 1758 #if USB_HAVE_POWERD 1759 /* increment power reference */ 1760 usbd_transfer_power_ref(xfer, 1); 1761 #endif 1762 /* 1763 * Check if the transfer is waiting on a queue, most 1764 * frequently the "done_q": 1765 */ 1766 if (xfer->wait_queue) { 1767 USB_BUS_LOCK(bus); 1768 usbd_transfer_dequeue(xfer); 1769 USB_BUS_UNLOCK(bus); 1770 } 1771 /* clear "did_dma_delay" flag */ 1772 xfer->flags_int.did_dma_delay = 0; 1773 1774 /* clear "did_close" flag */ 1775 xfer->flags_int.did_close = 0; 1776 1777 #if USB_HAVE_BUSDMA 1778 /* clear "bdma_setup" flag */ 1779 xfer->flags_int.bdma_setup = 0; 1780 #endif 1781 /* by default we cannot cancel any USB transfer immediately */ 1782 xfer->flags_int.can_cancel_immed = 0; 1783 1784 /* clear lengths and frame counts by default */ 1785 xfer->sumlen = 0; 1786 xfer->actlen = 0; 1787 xfer->aframes = 0; 1788 1789 /* clear any previous errors */ 1790 xfer->error = 0; 1791 1792 /* Check if the device is still alive */ 1793 if (info->udev->state < USB_STATE_POWERED) { 1794 USB_BUS_LOCK(bus); 1795 /* 1796 * Must return cancelled error code else 1797 * device drivers can hang. 1798 */ 1799 usbd_transfer_done(xfer, USB_ERR_CANCELLED); 1800 USB_BUS_UNLOCK(bus); 1801 return; 1802 } 1803 1804 /* sanity check */ 1805 if (xfer->nframes == 0) { 1806 if (xfer->flags.stall_pipe) { 1807 /* 1808 * Special case - want to stall without transferring 1809 * any data: 1810 */ 1811 DPRINTF("xfer=%p nframes=0: stall " 1812 "or clear stall!\n", xfer); 1813 USB_BUS_LOCK(bus); 1814 xfer->flags_int.can_cancel_immed = 1; 1815 /* start the transfer */ 1816 usb_command_wrapper(&xfer->endpoint-> 1817 endpoint_q[xfer->stream_id], xfer); 1818 USB_BUS_UNLOCK(bus); 1819 return; 1820 } 1821 USB_BUS_LOCK(bus); 1822 usbd_transfer_done(xfer, USB_ERR_INVAL); 1823 USB_BUS_UNLOCK(bus); 1824 return; 1825 } 1826 /* compute some variables */ 1827 1828 for (x = 0; x != xfer->nframes; x++) { 1829 /* make a copy of the frlenghts[] */ 1830 xfer->frlengths[x + xfer->max_frame_count] = xfer->frlengths[x]; 1831 /* compute total transfer length */ 1832 xfer->sumlen += xfer->frlengths[x]; 1833 if (xfer->sumlen < xfer->frlengths[x]) { 1834 /* length wrapped around */ 1835 USB_BUS_LOCK(bus); 1836 usbd_transfer_done(xfer, USB_ERR_INVAL); 1837 USB_BUS_UNLOCK(bus); 1838 return; 1839 } 1840 } 1841 1842 /* clear some internal flags */ 1843 1844 xfer->flags_int.short_xfer_ok = 0; 1845 xfer->flags_int.short_frames_ok = 0; 1846 1847 /* check if this is a control transfer */ 1848 1849 if (xfer->flags_int.control_xfr) { 1850 if (usbd_setup_ctrl_transfer(xfer)) { 1851 USB_BUS_LOCK(bus); 1852 usbd_transfer_done(xfer, USB_ERR_STALLED); 1853 USB_BUS_UNLOCK(bus); 1854 return; 1855 } 1856 } 1857 /* 1858 * Setup filtered version of some transfer flags, 1859 * in case of data read direction 1860 */ 1861 if (USB_GET_DATA_ISREAD(xfer)) { 1862 if (xfer->flags.short_frames_ok) { 1863 xfer->flags_int.short_xfer_ok = 1; 1864 xfer->flags_int.short_frames_ok = 1; 1865 } else if (xfer->flags.short_xfer_ok) { 1866 xfer->flags_int.short_xfer_ok = 1; 1867 1868 /* check for control transfer */ 1869 if (xfer->flags_int.control_xfr) { 1870 /* 1871 * 1) Control transfers do not support 1872 * reception of multiple short USB 1873 * frames in host mode and device side 1874 * mode, with exception of: 1875 * 1876 * 2) Due to sometimes buggy device 1877 * side firmware we need to do a 1878 * STATUS stage in case of short 1879 * control transfers in USB host mode. 1880 * The STATUS stage then becomes the 1881 * "alt_next" to the DATA stage. 1882 */ 1883 xfer->flags_int.short_frames_ok = 1; 1884 } 1885 } 1886 } 1887 /* 1888 * Check if BUS-DMA support is enabled and try to load virtual 1889 * buffers into DMA, if any: 1890 */ 1891 #if USB_HAVE_BUSDMA 1892 if (xfer->flags_int.bdma_enable) { 1893 /* insert the USB transfer last in the BUS-DMA queue */ 1894 usb_command_wrapper(&xfer->xroot->dma_q, xfer); 1895 return; 1896 } 1897 #endif 1898 /* 1899 * Enter the USB transfer into the Host Controller or 1900 * Device Controller schedule: 1901 */ 1902 usbd_pipe_enter(xfer); 1903 } 1904 1905 /*------------------------------------------------------------------------* 1906 * usbd_pipe_enter - factored out code 1907 *------------------------------------------------------------------------*/ 1908 void 1909 usbd_pipe_enter(struct usb_xfer *xfer) 1910 { 1911 struct usb_endpoint *ep; 1912 1913 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 1914 1915 USB_BUS_LOCK(xfer->xroot->bus); 1916 1917 ep = xfer->endpoint; 1918 1919 DPRINTF("enter\n"); 1920 1921 /* the transfer can now be cancelled */ 1922 xfer->flags_int.can_cancel_immed = 1; 1923 1924 /* enter the transfer */ 1925 (ep->methods->enter) (xfer); 1926 1927 /* check for transfer error */ 1928 if (xfer->error) { 1929 /* some error has happened */ 1930 usbd_transfer_done(xfer, 0); 1931 USB_BUS_UNLOCK(xfer->xroot->bus); 1932 return; 1933 } 1934 1935 /* start the transfer */ 1936 usb_command_wrapper(&ep->endpoint_q[xfer->stream_id], xfer); 1937 USB_BUS_UNLOCK(xfer->xroot->bus); 1938 } 1939 1940 /*------------------------------------------------------------------------* 1941 * usbd_transfer_start - start an USB transfer 1942 * 1943 * NOTE: Calling this function more than one time will only 1944 * result in a single transfer start, until the USB transfer 1945 * completes. 1946 *------------------------------------------------------------------------*/ 1947 void 1948 usbd_transfer_start(struct usb_xfer *xfer) 1949 { 1950 if (xfer == NULL) { 1951 /* transfer is gone */ 1952 return; 1953 } 1954 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 1955 1956 /* mark the USB transfer started */ 1957 1958 if (!xfer->flags_int.started) { 1959 /* lock the BUS lock to avoid races updating flags_int */ 1960 USB_BUS_LOCK(xfer->xroot->bus); 1961 xfer->flags_int.started = 1; 1962 USB_BUS_UNLOCK(xfer->xroot->bus); 1963 } 1964 /* check if the USB transfer callback is already transferring */ 1965 1966 if (xfer->flags_int.transferring) { 1967 return; 1968 } 1969 USB_BUS_LOCK(xfer->xroot->bus); 1970 /* call the USB transfer callback */ 1971 usbd_callback_ss_done_defer(xfer); 1972 USB_BUS_UNLOCK(xfer->xroot->bus); 1973 } 1974 1975 /*------------------------------------------------------------------------* 1976 * usbd_transfer_stop - stop an USB transfer 1977 * 1978 * NOTE: Calling this function more than one time will only 1979 * result in a single transfer stop. 1980 * NOTE: When this function returns it is not safe to free nor 1981 * reuse any DMA buffers. See "usbd_transfer_drain()". 1982 *------------------------------------------------------------------------*/ 1983 void 1984 usbd_transfer_stop(struct usb_xfer *xfer) 1985 { 1986 struct usb_endpoint *ep; 1987 1988 if (xfer == NULL) { 1989 /* transfer is gone */ 1990 return; 1991 } 1992 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 1993 1994 /* check if the USB transfer was ever opened */ 1995 1996 if (!xfer->flags_int.open) { 1997 if (xfer->flags_int.started) { 1998 /* nothing to do except clearing the "started" flag */ 1999 /* lock the BUS lock to avoid races updating flags_int */ 2000 USB_BUS_LOCK(xfer->xroot->bus); 2001 xfer->flags_int.started = 0; 2002 USB_BUS_UNLOCK(xfer->xroot->bus); 2003 } 2004 return; 2005 } 2006 /* try to stop the current USB transfer */ 2007 2008 USB_BUS_LOCK(xfer->xroot->bus); 2009 /* override any previous error */ 2010 xfer->error = USB_ERR_CANCELLED; 2011 2012 /* 2013 * Clear "open" and "started" when both private and USB lock 2014 * is locked so that we don't get a race updating "flags_int" 2015 */ 2016 xfer->flags_int.open = 0; 2017 xfer->flags_int.started = 0; 2018 2019 /* 2020 * Check if we can cancel the USB transfer immediately. 2021 */ 2022 if (xfer->flags_int.transferring) { 2023 if (xfer->flags_int.can_cancel_immed && 2024 (!xfer->flags_int.did_close)) { 2025 DPRINTF("close\n"); 2026 /* 2027 * The following will lead to an USB_ERR_CANCELLED 2028 * error code being passed to the USB callback. 2029 */ 2030 (xfer->endpoint->methods->close) (xfer); 2031 /* only close once */ 2032 xfer->flags_int.did_close = 1; 2033 } else { 2034 /* need to wait for the next done callback */ 2035 } 2036 } else { 2037 DPRINTF("close\n"); 2038 2039 /* close here and now */ 2040 (xfer->endpoint->methods->close) (xfer); 2041 2042 /* 2043 * Any additional DMA delay is done by 2044 * "usbd_transfer_unsetup()". 2045 */ 2046 2047 /* 2048 * Special case. Check if we need to restart a blocked 2049 * endpoint. 2050 */ 2051 ep = xfer->endpoint; 2052 2053 /* 2054 * If the current USB transfer is completing we need 2055 * to start the next one: 2056 */ 2057 if (ep->endpoint_q[xfer->stream_id].curr == xfer) { 2058 usb_command_wrapper( 2059 &ep->endpoint_q[xfer->stream_id], NULL); 2060 } 2061 } 2062 2063 USB_BUS_UNLOCK(xfer->xroot->bus); 2064 } 2065 2066 /*------------------------------------------------------------------------* 2067 * usbd_transfer_pending 2068 * 2069 * This function will check if an USB transfer is pending which is a 2070 * little bit complicated! 2071 * Return values: 2072 * 0: Not pending 2073 * 1: Pending: The USB transfer will receive a callback in the future. 2074 *------------------------------------------------------------------------*/ 2075 uint8_t 2076 usbd_transfer_pending(struct usb_xfer *xfer) 2077 { 2078 struct usb_xfer_root *info; 2079 struct usb_xfer_queue *pq; 2080 2081 if (xfer == NULL) { 2082 /* transfer is gone */ 2083 return (0); 2084 } 2085 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 2086 2087 if (xfer->flags_int.transferring) { 2088 /* trivial case */ 2089 return (1); 2090 } 2091 USB_BUS_LOCK(xfer->xroot->bus); 2092 if (xfer->wait_queue) { 2093 /* we are waiting on a queue somewhere */ 2094 USB_BUS_UNLOCK(xfer->xroot->bus); 2095 return (1); 2096 } 2097 info = xfer->xroot; 2098 pq = &info->done_q; 2099 2100 if (pq->curr == xfer) { 2101 /* we are currently scheduled for callback */ 2102 USB_BUS_UNLOCK(xfer->xroot->bus); 2103 return (1); 2104 } 2105 /* we are not pending */ 2106 USB_BUS_UNLOCK(xfer->xroot->bus); 2107 return (0); 2108 } 2109 2110 /*------------------------------------------------------------------------* 2111 * usbd_transfer_drain 2112 * 2113 * This function will stop the USB transfer and wait for any 2114 * additional BUS-DMA and HW-DMA operations to complete. Buffers that 2115 * are loaded into DMA can safely be freed or reused after that this 2116 * function has returned. 2117 *------------------------------------------------------------------------*/ 2118 void 2119 usbd_transfer_drain(struct usb_xfer *xfer) 2120 { 2121 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2122 "usbd_transfer_drain can sleep!"); 2123 2124 if (xfer == NULL) { 2125 /* transfer is gone */ 2126 return; 2127 } 2128 if (xfer->xroot->xfer_mtx != &Giant) { 2129 USB_XFER_LOCK_ASSERT(xfer, MA_NOTOWNED); 2130 } 2131 USB_XFER_LOCK(xfer); 2132 2133 usbd_transfer_stop(xfer); 2134 2135 while (usbd_transfer_pending(xfer) || 2136 xfer->flags_int.doing_callback) { 2137 /* 2138 * It is allowed that the callback can drop its 2139 * transfer mutex. In that case checking only 2140 * "usbd_transfer_pending()" is not enough to tell if 2141 * the USB transfer is fully drained. We also need to 2142 * check the internal "doing_callback" flag. 2143 */ 2144 xfer->flags_int.draining = 1; 2145 2146 /* 2147 * Wait until the current outstanding USB 2148 * transfer is complete ! 2149 */ 2150 cv_wait(&xfer->xroot->cv_drain, xfer->xroot->xfer_mtx); 2151 } 2152 USB_XFER_UNLOCK(xfer); 2153 } 2154 2155 struct usb_page_cache * 2156 usbd_xfer_get_frame(struct usb_xfer *xfer, usb_frcount_t frindex) 2157 { 2158 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2159 2160 return (&xfer->frbuffers[frindex]); 2161 } 2162 2163 void * 2164 usbd_xfer_get_frame_buffer(struct usb_xfer *xfer, usb_frcount_t frindex) 2165 { 2166 struct usb_page_search page_info; 2167 2168 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2169 2170 usbd_get_page(&xfer->frbuffers[frindex], 0, &page_info); 2171 return (page_info.buffer); 2172 } 2173 2174 /*------------------------------------------------------------------------* 2175 * usbd_xfer_get_fps_shift 2176 * 2177 * The following function is only useful for isochronous transfers. It 2178 * returns how many times the frame execution rate has been shifted 2179 * down. 2180 * 2181 * Return value: 2182 * Success: 0..3 2183 * Failure: 0 2184 *------------------------------------------------------------------------*/ 2185 uint8_t 2186 usbd_xfer_get_fps_shift(struct usb_xfer *xfer) 2187 { 2188 return (xfer->fps_shift); 2189 } 2190 2191 usb_frlength_t 2192 usbd_xfer_frame_len(struct usb_xfer *xfer, usb_frcount_t frindex) 2193 { 2194 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2195 2196 return (xfer->frlengths[frindex]); 2197 } 2198 2199 /*------------------------------------------------------------------------* 2200 * usbd_xfer_set_frame_data 2201 * 2202 * This function sets the pointer of the buffer that should 2203 * loaded directly into DMA for the given USB frame. Passing "ptr" 2204 * equal to NULL while the corresponding "frlength" is greater 2205 * than zero gives undefined results! 2206 *------------------------------------------------------------------------*/ 2207 void 2208 usbd_xfer_set_frame_data(struct usb_xfer *xfer, usb_frcount_t frindex, 2209 void *ptr, usb_frlength_t len) 2210 { 2211 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2212 2213 /* set virtual address to load and length */ 2214 xfer->frbuffers[frindex].buffer = ptr; 2215 usbd_xfer_set_frame_len(xfer, frindex, len); 2216 } 2217 2218 void 2219 usbd_xfer_frame_data(struct usb_xfer *xfer, usb_frcount_t frindex, 2220 void **ptr, int *len) 2221 { 2222 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2223 2224 if (ptr != NULL) 2225 *ptr = xfer->frbuffers[frindex].buffer; 2226 if (len != NULL) 2227 *len = xfer->frlengths[frindex]; 2228 } 2229 2230 /*------------------------------------------------------------------------* 2231 * usbd_xfer_old_frame_length 2232 * 2233 * This function returns the framelength of the given frame at the 2234 * time the transfer was submitted. This function can be used to 2235 * compute the starting data pointer of the next isochronous frame 2236 * when an isochronous transfer has completed. 2237 *------------------------------------------------------------------------*/ 2238 usb_frlength_t 2239 usbd_xfer_old_frame_length(struct usb_xfer *xfer, usb_frcount_t frindex) 2240 { 2241 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2242 2243 return (xfer->frlengths[frindex + xfer->max_frame_count]); 2244 } 2245 2246 void 2247 usbd_xfer_status(struct usb_xfer *xfer, int *actlen, int *sumlen, int *aframes, 2248 int *nframes) 2249 { 2250 if (actlen != NULL) 2251 *actlen = xfer->actlen; 2252 if (sumlen != NULL) 2253 *sumlen = xfer->sumlen; 2254 if (aframes != NULL) 2255 *aframes = xfer->aframes; 2256 if (nframes != NULL) 2257 *nframes = xfer->nframes; 2258 } 2259 2260 /*------------------------------------------------------------------------* 2261 * usbd_xfer_set_frame_offset 2262 * 2263 * This function sets the frame data buffer offset relative to the beginning 2264 * of the USB DMA buffer allocated for this USB transfer. 2265 *------------------------------------------------------------------------*/ 2266 void 2267 usbd_xfer_set_frame_offset(struct usb_xfer *xfer, usb_frlength_t offset, 2268 usb_frcount_t frindex) 2269 { 2270 KASSERT(!xfer->flags.ext_buffer, ("Cannot offset data frame " 2271 "when the USB buffer is external\n")); 2272 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2273 2274 /* set virtual address to load */ 2275 xfer->frbuffers[frindex].buffer = 2276 USB_ADD_BYTES(xfer->local_buffer, offset); 2277 } 2278 2279 void 2280 usbd_xfer_set_interval(struct usb_xfer *xfer, int i) 2281 { 2282 xfer->interval = i; 2283 } 2284 2285 void 2286 usbd_xfer_set_timeout(struct usb_xfer *xfer, int t) 2287 { 2288 xfer->timeout = t; 2289 } 2290 2291 void 2292 usbd_xfer_set_frames(struct usb_xfer *xfer, usb_frcount_t n) 2293 { 2294 xfer->nframes = n; 2295 } 2296 2297 usb_frcount_t 2298 usbd_xfer_max_frames(struct usb_xfer *xfer) 2299 { 2300 return (xfer->max_frame_count); 2301 } 2302 2303 usb_frlength_t 2304 usbd_xfer_max_len(struct usb_xfer *xfer) 2305 { 2306 return (xfer->max_data_length); 2307 } 2308 2309 usb_frlength_t 2310 usbd_xfer_max_framelen(struct usb_xfer *xfer) 2311 { 2312 return (xfer->max_frame_size); 2313 } 2314 2315 void 2316 usbd_xfer_set_frame_len(struct usb_xfer *xfer, usb_frcount_t frindex, 2317 usb_frlength_t len) 2318 { 2319 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2320 2321 xfer->frlengths[frindex] = len; 2322 } 2323 2324 /*------------------------------------------------------------------------* 2325 * usb_callback_proc - factored out code 2326 * 2327 * This function performs USB callbacks. 2328 *------------------------------------------------------------------------*/ 2329 static void 2330 usb_callback_proc(struct usb_proc_msg *_pm) 2331 { 2332 struct usb_done_msg *pm = (void *)_pm; 2333 struct usb_xfer_root *info = pm->xroot; 2334 2335 /* Change locking order */ 2336 USB_BUS_UNLOCK(info->bus); 2337 2338 /* 2339 * We exploit the fact that the mutex is the same for all 2340 * callbacks that will be called from this thread: 2341 */ 2342 USB_MTX_LOCK(info->xfer_mtx); 2343 USB_BUS_LOCK(info->bus); 2344 2345 /* Continue where we lost track */ 2346 usb_command_wrapper(&info->done_q, 2347 info->done_q.curr); 2348 2349 USB_MTX_UNLOCK(info->xfer_mtx); 2350 } 2351 2352 /*------------------------------------------------------------------------* 2353 * usbd_callback_ss_done_defer 2354 * 2355 * This function will defer the start, stop and done callback to the 2356 * correct thread. 2357 *------------------------------------------------------------------------*/ 2358 static void 2359 usbd_callback_ss_done_defer(struct usb_xfer *xfer) 2360 { 2361 struct usb_xfer_root *info = xfer->xroot; 2362 struct usb_xfer_queue *pq = &info->done_q; 2363 2364 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2365 2366 if (pq->curr != xfer) { 2367 usbd_transfer_enqueue(pq, xfer); 2368 } 2369 if (!pq->recurse_1) { 2370 /* 2371 * We have to postpone the callback due to the fact we 2372 * will have a Lock Order Reversal, LOR, if we try to 2373 * proceed ! 2374 */ 2375 (void) usb_proc_msignal(info->done_p, 2376 &info->done_m[0], &info->done_m[1]); 2377 } else { 2378 /* clear second recurse flag */ 2379 pq->recurse_2 = 0; 2380 } 2381 return; 2382 2383 } 2384 2385 /*------------------------------------------------------------------------* 2386 * usbd_callback_wrapper 2387 * 2388 * This is a wrapper for USB callbacks. This wrapper does some 2389 * auto-magic things like figuring out if we can call the callback 2390 * directly from the current context or if we need to wakeup the 2391 * interrupt process. 2392 *------------------------------------------------------------------------*/ 2393 static void 2394 usbd_callback_wrapper(struct usb_xfer_queue *pq) 2395 { 2396 struct usb_xfer *xfer = pq->curr; 2397 struct usb_xfer_root *info = xfer->xroot; 2398 2399 USB_BUS_LOCK_ASSERT(info->bus, MA_OWNED); 2400 if ((pq->recurse_3 != 0 || mtx_owned(info->xfer_mtx) == 0) && 2401 USB_IN_POLLING_MODE_FUNC() == 0) { 2402 /* 2403 * Cases that end up here: 2404 * 2405 * 5) HW interrupt done callback or other source. 2406 * 6) HW completed transfer during callback 2407 */ 2408 DPRINTFN(3, "case 5 and 6\n"); 2409 2410 /* 2411 * We have to postpone the callback due to the fact we 2412 * will have a Lock Order Reversal, LOR, if we try to 2413 * proceed! 2414 * 2415 * Postponing the callback also ensures that other USB 2416 * transfer queues get a chance. 2417 */ 2418 (void) usb_proc_msignal(info->done_p, 2419 &info->done_m[0], &info->done_m[1]); 2420 return; 2421 } 2422 /* 2423 * Cases that end up here: 2424 * 2425 * 1) We are starting a transfer 2426 * 2) We are prematurely calling back a transfer 2427 * 3) We are stopping a transfer 2428 * 4) We are doing an ordinary callback 2429 */ 2430 DPRINTFN(3, "case 1-4\n"); 2431 /* get next USB transfer in the queue */ 2432 info->done_q.curr = NULL; 2433 2434 /* set flag in case of drain */ 2435 xfer->flags_int.doing_callback = 1; 2436 2437 USB_BUS_UNLOCK(info->bus); 2438 USB_BUS_LOCK_ASSERT(info->bus, MA_NOTOWNED); 2439 2440 /* set correct USB state for callback */ 2441 if (!xfer->flags_int.transferring) { 2442 xfer->usb_state = USB_ST_SETUP; 2443 if (!xfer->flags_int.started) { 2444 /* we got stopped before we even got started */ 2445 USB_BUS_LOCK(info->bus); 2446 goto done; 2447 } 2448 } else { 2449 if (usbd_callback_wrapper_sub(xfer)) { 2450 /* the callback has been deferred */ 2451 USB_BUS_LOCK(info->bus); 2452 goto done; 2453 } 2454 #if USB_HAVE_POWERD 2455 /* decrement power reference */ 2456 usbd_transfer_power_ref(xfer, -1); 2457 #endif 2458 xfer->flags_int.transferring = 0; 2459 2460 if (xfer->error) { 2461 xfer->usb_state = USB_ST_ERROR; 2462 } else { 2463 /* set transferred state */ 2464 xfer->usb_state = USB_ST_TRANSFERRED; 2465 #if USB_HAVE_BUSDMA 2466 /* sync DMA memory, if any */ 2467 if (xfer->flags_int.bdma_enable && 2468 (!xfer->flags_int.bdma_no_post_sync)) { 2469 usb_bdma_post_sync(xfer); 2470 } 2471 #endif 2472 } 2473 } 2474 2475 #if USB_HAVE_PF 2476 if (xfer->usb_state != USB_ST_SETUP) { 2477 USB_BUS_LOCK(info->bus); 2478 usbpf_xfertap(xfer, USBPF_XFERTAP_DONE); 2479 USB_BUS_UNLOCK(info->bus); 2480 } 2481 #endif 2482 /* call processing routine */ 2483 (xfer->callback) (xfer, xfer->error); 2484 2485 /* pickup the USB mutex again */ 2486 USB_BUS_LOCK(info->bus); 2487 2488 /* 2489 * Check if we got started after that we got cancelled, but 2490 * before we managed to do the callback. 2491 */ 2492 if ((!xfer->flags_int.open) && 2493 (xfer->flags_int.started) && 2494 (xfer->usb_state == USB_ST_ERROR)) { 2495 /* clear flag in case of drain */ 2496 xfer->flags_int.doing_callback = 0; 2497 /* try to loop, but not recursivly */ 2498 usb_command_wrapper(&info->done_q, xfer); 2499 return; 2500 } 2501 2502 done: 2503 /* clear flag in case of drain */ 2504 xfer->flags_int.doing_callback = 0; 2505 2506 /* 2507 * Check if we are draining. 2508 */ 2509 if (xfer->flags_int.draining && 2510 (!xfer->flags_int.transferring)) { 2511 /* "usbd_transfer_drain()" is waiting for end of transfer */ 2512 xfer->flags_int.draining = 0; 2513 cv_broadcast(&info->cv_drain); 2514 } 2515 2516 /* do the next callback, if any */ 2517 usb_command_wrapper(&info->done_q, 2518 info->done_q.curr); 2519 } 2520 2521 /*------------------------------------------------------------------------* 2522 * usb_dma_delay_done_cb 2523 * 2524 * This function is called when the DMA delay has been exectuded, and 2525 * will make sure that the callback is called to complete the USB 2526 * transfer. This code path is usually only used when there is an USB 2527 * error like USB_ERR_CANCELLED. 2528 *------------------------------------------------------------------------*/ 2529 void 2530 usb_dma_delay_done_cb(struct usb_xfer *xfer) 2531 { 2532 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2533 2534 DPRINTFN(3, "Completed %p\n", xfer); 2535 2536 /* queue callback for execution, again */ 2537 usbd_transfer_done(xfer, 0); 2538 } 2539 2540 /*------------------------------------------------------------------------* 2541 * usbd_transfer_dequeue 2542 * 2543 * - This function is used to remove an USB transfer from a USB 2544 * transfer queue. 2545 * 2546 * - This function can be called multiple times in a row. 2547 *------------------------------------------------------------------------*/ 2548 void 2549 usbd_transfer_dequeue(struct usb_xfer *xfer) 2550 { 2551 struct usb_xfer_queue *pq; 2552 2553 pq = xfer->wait_queue; 2554 if (pq) { 2555 TAILQ_REMOVE(&pq->head, xfer, wait_entry); 2556 xfer->wait_queue = NULL; 2557 } 2558 } 2559 2560 /*------------------------------------------------------------------------* 2561 * usbd_transfer_enqueue 2562 * 2563 * - This function is used to insert an USB transfer into a USB * 2564 * transfer queue. 2565 * 2566 * - This function can be called multiple times in a row. 2567 *------------------------------------------------------------------------*/ 2568 void 2569 usbd_transfer_enqueue(struct usb_xfer_queue *pq, struct usb_xfer *xfer) 2570 { 2571 /* 2572 * Insert the USB transfer into the queue, if it is not 2573 * already on a USB transfer queue: 2574 */ 2575 if (xfer->wait_queue == NULL) { 2576 xfer->wait_queue = pq; 2577 TAILQ_INSERT_TAIL(&pq->head, xfer, wait_entry); 2578 } 2579 } 2580 2581 /*------------------------------------------------------------------------* 2582 * usbd_transfer_done 2583 * 2584 * - This function is used to remove an USB transfer from the busdma, 2585 * pipe or interrupt queue. 2586 * 2587 * - This function is used to queue the USB transfer on the done 2588 * queue. 2589 * 2590 * - This function is used to stop any USB transfer timeouts. 2591 *------------------------------------------------------------------------*/ 2592 void 2593 usbd_transfer_done(struct usb_xfer *xfer, usb_error_t error) 2594 { 2595 struct usb_xfer_root *info = xfer->xroot; 2596 2597 USB_BUS_LOCK_ASSERT(info->bus, MA_OWNED); 2598 2599 DPRINTF("err=%s\n", usbd_errstr(error)); 2600 2601 /* 2602 * If we are not transferring then just return. 2603 * This can happen during transfer cancel. 2604 */ 2605 if (!xfer->flags_int.transferring) { 2606 DPRINTF("not transferring\n"); 2607 /* end of control transfer, if any */ 2608 xfer->flags_int.control_act = 0; 2609 return; 2610 } 2611 /* only set transfer error, if not already set */ 2612 if (xfer->error == USB_ERR_NORMAL_COMPLETION) 2613 xfer->error = error; 2614 2615 /* stop any callouts */ 2616 usb_callout_stop(&xfer->timeout_handle); 2617 2618 /* 2619 * If we are waiting on a queue, just remove the USB transfer 2620 * from the queue, if any. We should have the required locks 2621 * locked to do the remove when this function is called. 2622 */ 2623 usbd_transfer_dequeue(xfer); 2624 2625 #if USB_HAVE_BUSDMA 2626 if (mtx_owned(info->xfer_mtx)) { 2627 struct usb_xfer_queue *pq; 2628 2629 /* 2630 * If the private USB lock is not locked, then we assume 2631 * that the BUS-DMA load stage has been passed: 2632 */ 2633 pq = &info->dma_q; 2634 2635 if (pq->curr == xfer) { 2636 /* start the next BUS-DMA load, if any */ 2637 usb_command_wrapper(pq, NULL); 2638 } 2639 } 2640 #endif 2641 /* keep some statistics */ 2642 if (xfer->error == USB_ERR_CANCELLED) { 2643 info->udev->stats_cancelled.uds_requests 2644 [xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE]++; 2645 } else if (xfer->error != USB_ERR_NORMAL_COMPLETION) { 2646 info->udev->stats_err.uds_requests 2647 [xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE]++; 2648 } else { 2649 info->udev->stats_ok.uds_requests 2650 [xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE]++; 2651 } 2652 2653 /* call the USB transfer callback */ 2654 usbd_callback_ss_done_defer(xfer); 2655 } 2656 2657 /*------------------------------------------------------------------------* 2658 * usbd_transfer_start_cb 2659 * 2660 * This function is called to start the USB transfer when 2661 * "xfer->interval" is greater than zero, and and the endpoint type is 2662 * BULK or CONTROL. 2663 *------------------------------------------------------------------------*/ 2664 static void 2665 usbd_transfer_start_cb(void *arg) 2666 { 2667 struct usb_xfer *xfer = arg; 2668 struct usb_endpoint *ep = xfer->endpoint; 2669 2670 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2671 2672 DPRINTF("start\n"); 2673 2674 #if USB_HAVE_PF 2675 usbpf_xfertap(xfer, USBPF_XFERTAP_SUBMIT); 2676 #endif 2677 2678 /* the transfer can now be cancelled */ 2679 xfer->flags_int.can_cancel_immed = 1; 2680 2681 /* start USB transfer, if no error */ 2682 if (xfer->error == 0) 2683 (ep->methods->start) (xfer); 2684 2685 /* check for transfer error */ 2686 if (xfer->error) { 2687 /* some error has happened */ 2688 usbd_transfer_done(xfer, 0); 2689 } 2690 } 2691 2692 /*------------------------------------------------------------------------* 2693 * usbd_xfer_set_stall 2694 * 2695 * This function is used to set the stall flag outside the 2696 * callback. This function is NULL safe. 2697 *------------------------------------------------------------------------*/ 2698 void 2699 usbd_xfer_set_stall(struct usb_xfer *xfer) 2700 { 2701 if (xfer == NULL) { 2702 /* tearing down */ 2703 return; 2704 } 2705 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 2706 2707 /* avoid any races by locking the USB mutex */ 2708 USB_BUS_LOCK(xfer->xroot->bus); 2709 xfer->flags.stall_pipe = 1; 2710 USB_BUS_UNLOCK(xfer->xroot->bus); 2711 } 2712 2713 int 2714 usbd_xfer_is_stalled(struct usb_xfer *xfer) 2715 { 2716 return (xfer->endpoint->is_stalled); 2717 } 2718 2719 /*------------------------------------------------------------------------* 2720 * usbd_transfer_clear_stall 2721 * 2722 * This function is used to clear the stall flag outside the 2723 * callback. This function is NULL safe. 2724 *------------------------------------------------------------------------*/ 2725 void 2726 usbd_transfer_clear_stall(struct usb_xfer *xfer) 2727 { 2728 if (xfer == NULL) { 2729 /* tearing down */ 2730 return; 2731 } 2732 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 2733 2734 /* avoid any races by locking the USB mutex */ 2735 USB_BUS_LOCK(xfer->xroot->bus); 2736 2737 xfer->flags.stall_pipe = 0; 2738 2739 USB_BUS_UNLOCK(xfer->xroot->bus); 2740 } 2741 2742 /*------------------------------------------------------------------------* 2743 * usbd_pipe_start 2744 * 2745 * This function is used to add an USB transfer to the pipe transfer list. 2746 *------------------------------------------------------------------------*/ 2747 void 2748 usbd_pipe_start(struct usb_xfer_queue *pq) 2749 { 2750 struct usb_endpoint *ep; 2751 struct usb_xfer *xfer; 2752 uint8_t type; 2753 2754 xfer = pq->curr; 2755 ep = xfer->endpoint; 2756 2757 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2758 2759 /* 2760 * If the endpoint is already stalled we do nothing ! 2761 */ 2762 if (ep->is_stalled) { 2763 return; 2764 } 2765 /* 2766 * Check if we are supposed to stall the endpoint: 2767 */ 2768 if (xfer->flags.stall_pipe) { 2769 struct usb_device *udev; 2770 struct usb_xfer_root *info; 2771 2772 /* clear stall command */ 2773 xfer->flags.stall_pipe = 0; 2774 2775 /* get pointer to USB device */ 2776 info = xfer->xroot; 2777 udev = info->udev; 2778 2779 /* 2780 * Only stall BULK and INTERRUPT endpoints. 2781 */ 2782 type = (ep->edesc->bmAttributes & UE_XFERTYPE); 2783 if ((type == UE_BULK) || 2784 (type == UE_INTERRUPT)) { 2785 uint8_t did_stall; 2786 2787 did_stall = 1; 2788 2789 if (udev->flags.usb_mode == USB_MODE_DEVICE) { 2790 (udev->bus->methods->set_stall) ( 2791 udev, ep, &did_stall); 2792 } else if (udev->ctrl_xfer[1]) { 2793 info = udev->ctrl_xfer[1]->xroot; 2794 usb_proc_msignal( 2795 USB_BUS_CS_PROC(info->bus), 2796 &udev->cs_msg[0], &udev->cs_msg[1]); 2797 } else { 2798 /* should not happen */ 2799 DPRINTFN(0, "No stall handler\n"); 2800 } 2801 /* 2802 * Check if we should stall. Some USB hardware 2803 * handles set- and clear-stall in hardware. 2804 */ 2805 if (did_stall) { 2806 /* 2807 * The transfer will be continued when 2808 * the clear-stall control endpoint 2809 * message is received. 2810 */ 2811 ep->is_stalled = 1; 2812 return; 2813 } 2814 } else if (type == UE_ISOCHRONOUS) { 2815 /* 2816 * Make sure any FIFO overflow or other FIFO 2817 * error conditions go away by resetting the 2818 * endpoint FIFO through the clear stall 2819 * method. 2820 */ 2821 if (udev->flags.usb_mode == USB_MODE_DEVICE) { 2822 (udev->bus->methods->clear_stall) (udev, ep); 2823 } 2824 } 2825 } 2826 /* Set or clear stall complete - special case */ 2827 if (xfer->nframes == 0) { 2828 /* we are complete */ 2829 xfer->aframes = 0; 2830 usbd_transfer_done(xfer, 0); 2831 return; 2832 } 2833 /* 2834 * Handled cases: 2835 * 2836 * 1) Start the first transfer queued. 2837 * 2838 * 2) Re-start the current USB transfer. 2839 */ 2840 /* 2841 * Check if there should be any 2842 * pre transfer start delay: 2843 */ 2844 if (xfer->interval > 0) { 2845 type = (ep->edesc->bmAttributes & UE_XFERTYPE); 2846 if ((type == UE_BULK) || 2847 (type == UE_CONTROL)) { 2848 usbd_transfer_timeout_ms(xfer, 2849 &usbd_transfer_start_cb, 2850 xfer->interval); 2851 return; 2852 } 2853 } 2854 DPRINTF("start\n"); 2855 2856 #if USB_HAVE_PF 2857 usbpf_xfertap(xfer, USBPF_XFERTAP_SUBMIT); 2858 #endif 2859 /* the transfer can now be cancelled */ 2860 xfer->flags_int.can_cancel_immed = 1; 2861 2862 /* start USB transfer, if no error */ 2863 if (xfer->error == 0) 2864 (ep->methods->start) (xfer); 2865 2866 /* check for transfer error */ 2867 if (xfer->error) { 2868 /* some error has happened */ 2869 usbd_transfer_done(xfer, 0); 2870 } 2871 } 2872 2873 /*------------------------------------------------------------------------* 2874 * usbd_transfer_timeout_ms 2875 * 2876 * This function is used to setup a timeout on the given USB 2877 * transfer. If the timeout has been deferred the callback given by 2878 * "cb" will get called after "ms" milliseconds. 2879 *------------------------------------------------------------------------*/ 2880 void 2881 usbd_transfer_timeout_ms(struct usb_xfer *xfer, 2882 void (*cb) (void *arg), usb_timeout_t ms) 2883 { 2884 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2885 2886 /* defer delay */ 2887 usb_callout_reset(&xfer->timeout_handle, 2888 USB_MS_TO_TICKS(ms) + USB_CALLOUT_ZERO_TICKS, cb, xfer); 2889 } 2890 2891 /*------------------------------------------------------------------------* 2892 * usbd_callback_wrapper_sub 2893 * 2894 * - This function will update variables in an USB transfer after 2895 * that the USB transfer is complete. 2896 * 2897 * - This function is used to start the next USB transfer on the 2898 * ep transfer queue, if any. 2899 * 2900 * NOTE: In some special cases the USB transfer will not be removed from 2901 * the pipe queue, but remain first. To enforce USB transfer removal call 2902 * this function passing the error code "USB_ERR_CANCELLED". 2903 * 2904 * Return values: 2905 * 0: Success. 2906 * Else: The callback has been deferred. 2907 *------------------------------------------------------------------------*/ 2908 static uint8_t 2909 usbd_callback_wrapper_sub(struct usb_xfer *xfer) 2910 { 2911 struct usb_endpoint *ep; 2912 struct usb_bus *bus; 2913 usb_frcount_t x; 2914 2915 bus = xfer->xroot->bus; 2916 2917 if ((!xfer->flags_int.open) && 2918 (!xfer->flags_int.did_close)) { 2919 DPRINTF("close\n"); 2920 USB_BUS_LOCK(bus); 2921 (xfer->endpoint->methods->close) (xfer); 2922 USB_BUS_UNLOCK(bus); 2923 /* only close once */ 2924 xfer->flags_int.did_close = 1; 2925 return (1); /* wait for new callback */ 2926 } 2927 /* 2928 * If we have a non-hardware induced error we 2929 * need to do the DMA delay! 2930 */ 2931 if (xfer->error != 0 && !xfer->flags_int.did_dma_delay && 2932 (xfer->error == USB_ERR_CANCELLED || 2933 xfer->error == USB_ERR_TIMEOUT || 2934 bus->methods->start_dma_delay != NULL)) { 2935 usb_timeout_t temp; 2936 2937 /* only delay once */ 2938 xfer->flags_int.did_dma_delay = 1; 2939 2940 /* we can not cancel this delay */ 2941 xfer->flags_int.can_cancel_immed = 0; 2942 2943 temp = usbd_get_dma_delay(xfer->xroot->udev); 2944 2945 DPRINTFN(3, "DMA delay, %u ms, " 2946 "on %p\n", temp, xfer); 2947 2948 if (temp != 0) { 2949 USB_BUS_LOCK(bus); 2950 /* 2951 * Some hardware solutions have dedicated 2952 * events when it is safe to free DMA'ed 2953 * memory. For the other hardware platforms we 2954 * use a static delay. 2955 */ 2956 if (bus->methods->start_dma_delay != NULL) { 2957 (bus->methods->start_dma_delay) (xfer); 2958 } else { 2959 usbd_transfer_timeout_ms(xfer, 2960 (void (*)(void *))&usb_dma_delay_done_cb, 2961 temp); 2962 } 2963 USB_BUS_UNLOCK(bus); 2964 return (1); /* wait for new callback */ 2965 } 2966 } 2967 /* check actual number of frames */ 2968 if (xfer->aframes > xfer->nframes) { 2969 if (xfer->error == 0) { 2970 panic("%s: actual number of frames, %d, is " 2971 "greater than initial number of frames, %d\n", 2972 __FUNCTION__, xfer->aframes, xfer->nframes); 2973 } else { 2974 /* just set some valid value */ 2975 xfer->aframes = xfer->nframes; 2976 } 2977 } 2978 /* compute actual length */ 2979 xfer->actlen = 0; 2980 2981 for (x = 0; x != xfer->aframes; x++) { 2982 xfer->actlen += xfer->frlengths[x]; 2983 } 2984 2985 /* 2986 * Frames that were not transferred get zero actual length in 2987 * case the USB device driver does not check the actual number 2988 * of frames transferred, "xfer->aframes": 2989 */ 2990 for (; x < xfer->nframes; x++) { 2991 usbd_xfer_set_frame_len(xfer, x, 0); 2992 } 2993 2994 /* check actual length */ 2995 if (xfer->actlen > xfer->sumlen) { 2996 if (xfer->error == 0) { 2997 panic("%s: actual length, %d, is greater than " 2998 "initial length, %d\n", 2999 __FUNCTION__, xfer->actlen, xfer->sumlen); 3000 } else { 3001 /* just set some valid value */ 3002 xfer->actlen = xfer->sumlen; 3003 } 3004 } 3005 DPRINTFN(1, "xfer=%p endpoint=%p sts=%d alen=%d, slen=%d, afrm=%d, nfrm=%d\n", 3006 xfer, xfer->endpoint, xfer->error, xfer->actlen, xfer->sumlen, 3007 xfer->aframes, xfer->nframes); 3008 3009 if (xfer->error) { 3010 /* end of control transfer, if any */ 3011 xfer->flags_int.control_act = 0; 3012 3013 #if USB_HAVE_TT_SUPPORT 3014 switch (xfer->error) { 3015 case USB_ERR_NORMAL_COMPLETION: 3016 case USB_ERR_SHORT_XFER: 3017 case USB_ERR_STALLED: 3018 case USB_ERR_CANCELLED: 3019 /* nothing to do */ 3020 break; 3021 default: 3022 /* try to reset the TT, if any */ 3023 USB_BUS_LOCK(bus); 3024 uhub_tt_buffer_reset_async_locked(xfer->xroot->udev, xfer->endpoint); 3025 USB_BUS_UNLOCK(bus); 3026 break; 3027 } 3028 #endif 3029 /* check if we should block the execution queue */ 3030 if ((xfer->error != USB_ERR_CANCELLED) && 3031 (xfer->flags.pipe_bof)) { 3032 DPRINTFN(2, "xfer=%p: Block On Failure " 3033 "on endpoint=%p\n", xfer, xfer->endpoint); 3034 goto done; 3035 } 3036 } else { 3037 /* check for short transfers */ 3038 if (xfer->actlen < xfer->sumlen) { 3039 /* end of control transfer, if any */ 3040 xfer->flags_int.control_act = 0; 3041 3042 if (!xfer->flags_int.short_xfer_ok) { 3043 xfer->error = USB_ERR_SHORT_XFER; 3044 if (xfer->flags.pipe_bof) { 3045 DPRINTFN(2, "xfer=%p: Block On Failure on " 3046 "Short Transfer on endpoint %p.\n", 3047 xfer, xfer->endpoint); 3048 goto done; 3049 } 3050 } 3051 } else { 3052 /* 3053 * Check if we are in the middle of a 3054 * control transfer: 3055 */ 3056 if (xfer->flags_int.control_act) { 3057 DPRINTFN(5, "xfer=%p: Control transfer " 3058 "active on endpoint=%p\n", xfer, xfer->endpoint); 3059 goto done; 3060 } 3061 } 3062 } 3063 3064 ep = xfer->endpoint; 3065 3066 /* 3067 * If the current USB transfer is completing we need to start the 3068 * next one: 3069 */ 3070 USB_BUS_LOCK(bus); 3071 if (ep->endpoint_q[xfer->stream_id].curr == xfer) { 3072 usb_command_wrapper(&ep->endpoint_q[xfer->stream_id], NULL); 3073 3074 if (ep->endpoint_q[xfer->stream_id].curr != NULL || 3075 TAILQ_FIRST(&ep->endpoint_q[xfer->stream_id].head) != NULL) { 3076 /* there is another USB transfer waiting */ 3077 } else { 3078 /* this is the last USB transfer */ 3079 /* clear isochronous sync flag */ 3080 xfer->endpoint->is_synced = 0; 3081 } 3082 } 3083 USB_BUS_UNLOCK(bus); 3084 done: 3085 return (0); 3086 } 3087 3088 /*------------------------------------------------------------------------* 3089 * usb_command_wrapper 3090 * 3091 * This function is used to execute commands non-recursivly on an USB 3092 * transfer. 3093 *------------------------------------------------------------------------*/ 3094 void 3095 usb_command_wrapper(struct usb_xfer_queue *pq, struct usb_xfer *xfer) 3096 { 3097 if (xfer) { 3098 /* 3099 * If the transfer is not already processing, 3100 * queue it! 3101 */ 3102 if (pq->curr != xfer) { 3103 usbd_transfer_enqueue(pq, xfer); 3104 if (pq->curr != NULL) { 3105 /* something is already processing */ 3106 DPRINTFN(6, "busy %p\n", pq->curr); 3107 return; 3108 } 3109 } 3110 } else { 3111 /* Get next element in queue */ 3112 pq->curr = NULL; 3113 } 3114 3115 if (!pq->recurse_1) { 3116 /* clear third recurse flag */ 3117 pq->recurse_3 = 0; 3118 3119 do { 3120 /* set two first recurse flags */ 3121 pq->recurse_1 = 1; 3122 pq->recurse_2 = 1; 3123 3124 if (pq->curr == NULL) { 3125 xfer = TAILQ_FIRST(&pq->head); 3126 if (xfer) { 3127 TAILQ_REMOVE(&pq->head, xfer, 3128 wait_entry); 3129 xfer->wait_queue = NULL; 3130 pq->curr = xfer; 3131 } else { 3132 break; 3133 } 3134 } 3135 DPRINTFN(6, "cb %p (enter)\n", pq->curr); 3136 (pq->command) (pq); 3137 DPRINTFN(6, "cb %p (leave)\n", pq->curr); 3138 3139 /* 3140 * Set third recurse flag to indicate 3141 * recursion happened: 3142 */ 3143 pq->recurse_3 = 1; 3144 3145 } while (!pq->recurse_2); 3146 3147 /* clear first recurse flag */ 3148 pq->recurse_1 = 0; 3149 3150 } else { 3151 /* clear second recurse flag */ 3152 pq->recurse_2 = 0; 3153 } 3154 } 3155 3156 /*------------------------------------------------------------------------* 3157 * usbd_ctrl_transfer_setup 3158 * 3159 * This function is used to setup the default USB control endpoint 3160 * transfer. 3161 *------------------------------------------------------------------------*/ 3162 void 3163 usbd_ctrl_transfer_setup(struct usb_device *udev) 3164 { 3165 struct usb_xfer *xfer; 3166 uint8_t no_resetup; 3167 uint8_t iface_index; 3168 3169 /* check for root HUB */ 3170 if (udev->parent_hub == NULL) 3171 return; 3172 repeat: 3173 3174 xfer = udev->ctrl_xfer[0]; 3175 if (xfer) { 3176 USB_XFER_LOCK(xfer); 3177 no_resetup = 3178 ((xfer->address == udev->address) && 3179 (udev->ctrl_ep_desc.wMaxPacketSize[0] == 3180 udev->ddesc.bMaxPacketSize)); 3181 if (udev->flags.usb_mode == USB_MODE_DEVICE) { 3182 if (no_resetup) { 3183 /* 3184 * NOTE: checking "xfer->address" and 3185 * starting the USB transfer must be 3186 * atomic! 3187 */ 3188 usbd_transfer_start(xfer); 3189 } 3190 } 3191 USB_XFER_UNLOCK(xfer); 3192 } else { 3193 no_resetup = 0; 3194 } 3195 3196 if (no_resetup) { 3197 /* 3198 * All parameters are exactly the same like before. 3199 * Just return. 3200 */ 3201 return; 3202 } 3203 /* 3204 * Update wMaxPacketSize for the default control endpoint: 3205 */ 3206 udev->ctrl_ep_desc.wMaxPacketSize[0] = 3207 udev->ddesc.bMaxPacketSize; 3208 3209 /* 3210 * Unsetup any existing USB transfer: 3211 */ 3212 usbd_transfer_unsetup(udev->ctrl_xfer, USB_CTRL_XFER_MAX); 3213 3214 /* 3215 * Reset clear stall error counter. 3216 */ 3217 udev->clear_stall_errors = 0; 3218 3219 /* 3220 * Try to setup a new USB transfer for the 3221 * default control endpoint: 3222 */ 3223 iface_index = 0; 3224 if (usbd_transfer_setup(udev, &iface_index, 3225 udev->ctrl_xfer, udev->bus->control_ep_quirk ? 3226 usb_control_ep_quirk_cfg : usb_control_ep_cfg, USB_CTRL_XFER_MAX, NULL, 3227 &udev->device_mtx)) { 3228 DPRINTFN(0, "could not setup default " 3229 "USB transfer\n"); 3230 } else { 3231 goto repeat; 3232 } 3233 } 3234 3235 /*------------------------------------------------------------------------* 3236 * usbd_clear_data_toggle - factored out code 3237 * 3238 * NOTE: the intention of this function is not to reset the hardware 3239 * data toggle. 3240 *------------------------------------------------------------------------*/ 3241 void 3242 usbd_clear_stall_locked(struct usb_device *udev, struct usb_endpoint *ep) 3243 { 3244 USB_BUS_LOCK_ASSERT(udev->bus, MA_OWNED); 3245 3246 /* check that we have a valid case */ 3247 if (udev->flags.usb_mode == USB_MODE_HOST && 3248 udev->parent_hub != NULL && 3249 udev->bus->methods->clear_stall != NULL && 3250 ep->methods != NULL) { 3251 (udev->bus->methods->clear_stall) (udev, ep); 3252 } 3253 } 3254 3255 /*------------------------------------------------------------------------* 3256 * usbd_clear_data_toggle - factored out code 3257 * 3258 * NOTE: the intention of this function is not to reset the hardware 3259 * data toggle on the USB device side. 3260 *------------------------------------------------------------------------*/ 3261 void 3262 usbd_clear_data_toggle(struct usb_device *udev, struct usb_endpoint *ep) 3263 { 3264 DPRINTFN(5, "udev=%p endpoint=%p\n", udev, ep); 3265 3266 USB_BUS_LOCK(udev->bus); 3267 ep->toggle_next = 0; 3268 /* some hardware needs a callback to clear the data toggle */ 3269 usbd_clear_stall_locked(udev, ep); 3270 USB_BUS_UNLOCK(udev->bus); 3271 } 3272 3273 /*------------------------------------------------------------------------* 3274 * usbd_clear_stall_callback - factored out clear stall callback 3275 * 3276 * Input parameters: 3277 * xfer1: Clear Stall Control Transfer 3278 * xfer2: Stalled USB Transfer 3279 * 3280 * This function is NULL safe. 3281 * 3282 * Return values: 3283 * 0: In progress 3284 * Else: Finished 3285 * 3286 * Clear stall config example: 3287 * 3288 * static const struct usb_config my_clearstall = { 3289 * .type = UE_CONTROL, 3290 * .endpoint = 0, 3291 * .direction = UE_DIR_ANY, 3292 * .interval = 50, //50 milliseconds 3293 * .bufsize = sizeof(struct usb_device_request), 3294 * .timeout = 1000, //1.000 seconds 3295 * .callback = &my_clear_stall_callback, // ** 3296 * .usb_mode = USB_MODE_HOST, 3297 * }; 3298 * 3299 * ** "my_clear_stall_callback" calls "usbd_clear_stall_callback" 3300 * passing the correct parameters. 3301 *------------------------------------------------------------------------*/ 3302 uint8_t 3303 usbd_clear_stall_callback(struct usb_xfer *xfer1, 3304 struct usb_xfer *xfer2) 3305 { 3306 struct usb_device_request req; 3307 3308 if (xfer2 == NULL) { 3309 /* looks like we are tearing down */ 3310 DPRINTF("NULL input parameter\n"); 3311 return (0); 3312 } 3313 USB_XFER_LOCK_ASSERT(xfer1, MA_OWNED); 3314 USB_XFER_LOCK_ASSERT(xfer2, MA_OWNED); 3315 3316 switch (USB_GET_STATE(xfer1)) { 3317 case USB_ST_SETUP: 3318 3319 /* 3320 * pre-clear the data toggle to DATA0 ("umass.c" and 3321 * "ata-usb.c" depends on this) 3322 */ 3323 3324 usbd_clear_data_toggle(xfer2->xroot->udev, xfer2->endpoint); 3325 3326 /* setup a clear-stall packet */ 3327 3328 req.bmRequestType = UT_WRITE_ENDPOINT; 3329 req.bRequest = UR_CLEAR_FEATURE; 3330 USETW(req.wValue, UF_ENDPOINT_HALT); 3331 req.wIndex[0] = xfer2->endpoint->edesc->bEndpointAddress; 3332 req.wIndex[1] = 0; 3333 USETW(req.wLength, 0); 3334 3335 /* 3336 * "usbd_transfer_setup_sub()" will ensure that 3337 * we have sufficient room in the buffer for 3338 * the request structure! 3339 */ 3340 3341 /* copy in the transfer */ 3342 3343 usbd_copy_in(xfer1->frbuffers, 0, &req, sizeof(req)); 3344 3345 /* set length */ 3346 xfer1->frlengths[0] = sizeof(req); 3347 xfer1->nframes = 1; 3348 3349 usbd_transfer_submit(xfer1); 3350 return (0); 3351 3352 case USB_ST_TRANSFERRED: 3353 break; 3354 3355 default: /* Error */ 3356 if (xfer1->error == USB_ERR_CANCELLED) { 3357 return (0); 3358 } 3359 break; 3360 } 3361 return (1); /* Clear Stall Finished */ 3362 } 3363 3364 /*------------------------------------------------------------------------* 3365 * usbd_transfer_poll 3366 * 3367 * The following function gets called from the USB keyboard driver and 3368 * UMASS when the system has paniced. 3369 * 3370 * NOTE: It is currently not possible to resume normal operation on 3371 * the USB controller which has been polled, due to clearing of the 3372 * "up_dsleep" and "up_msleep" flags. 3373 *------------------------------------------------------------------------*/ 3374 void 3375 usbd_transfer_poll(struct usb_xfer **ppxfer, uint16_t max) 3376 { 3377 struct usb_xfer *xfer; 3378 struct usb_xfer_root *xroot; 3379 struct usb_device *udev; 3380 struct usb_proc_msg *pm; 3381 struct usb_bus *bus; 3382 uint16_t n; 3383 uint16_t drop_bus_spin; 3384 uint16_t drop_bus; 3385 uint16_t drop_xfer; 3386 3387 for (n = 0; n != max; n++) { 3388 /* Extra checks to avoid panic */ 3389 xfer = ppxfer[n]; 3390 if (xfer == NULL) 3391 continue; /* no USB transfer */ 3392 xroot = xfer->xroot; 3393 if (xroot == NULL) 3394 continue; /* no USB root */ 3395 udev = xroot->udev; 3396 if (udev == NULL) 3397 continue; /* no USB device */ 3398 bus = udev->bus; 3399 if (bus == NULL) 3400 continue; /* no BUS structure */ 3401 if (bus->methods == NULL) 3402 continue; /* no BUS methods */ 3403 if (bus->methods->xfer_poll == NULL) 3404 continue; /* no poll method */ 3405 3406 drop_bus_spin = 0; 3407 drop_bus = 0; 3408 drop_xfer = 0; 3409 3410 if (USB_IN_POLLING_MODE_FUNC() == 0) { 3411 /* make sure that the BUS spin mutex is not locked */ 3412 while (mtx_owned(&bus->bus_spin_lock)) { 3413 mtx_unlock_spin(&bus->bus_spin_lock); 3414 drop_bus_spin++; 3415 } 3416 3417 /* make sure that the BUS mutex is not locked */ 3418 while (mtx_owned(&bus->bus_mtx)) { 3419 mtx_unlock(&bus->bus_mtx); 3420 drop_bus++; 3421 } 3422 3423 /* make sure that the transfer mutex is not locked */ 3424 while (mtx_owned(xroot->xfer_mtx)) { 3425 mtx_unlock(xroot->xfer_mtx); 3426 drop_xfer++; 3427 } 3428 } 3429 3430 /* Make sure cv_signal() and cv_broadcast() is not called */ 3431 USB_BUS_CONTROL_XFER_PROC(bus)->up_msleep = 0; 3432 USB_BUS_EXPLORE_PROC(bus)->up_msleep = 0; 3433 USB_BUS_GIANT_PROC(bus)->up_msleep = 0; 3434 USB_BUS_NON_GIANT_ISOC_PROC(bus)->up_msleep = 0; 3435 USB_BUS_NON_GIANT_BULK_PROC(bus)->up_msleep = 0; 3436 3437 /* poll USB hardware */ 3438 (bus->methods->xfer_poll) (bus); 3439 3440 USB_BUS_LOCK(xroot->bus); 3441 3442 /* check for clear stall */ 3443 if (udev->ctrl_xfer[1] != NULL) { 3444 /* poll clear stall start */ 3445 pm = &udev->cs_msg[0].hdr; 3446 (pm->pm_callback) (pm); 3447 /* poll clear stall done thread */ 3448 pm = &udev->ctrl_xfer[1]-> 3449 xroot->done_m[0].hdr; 3450 (pm->pm_callback) (pm); 3451 } 3452 3453 /* poll done thread */ 3454 pm = &xroot->done_m[0].hdr; 3455 (pm->pm_callback) (pm); 3456 3457 USB_BUS_UNLOCK(xroot->bus); 3458 3459 /* restore transfer mutex */ 3460 while (drop_xfer--) 3461 mtx_lock(xroot->xfer_mtx); 3462 3463 /* restore BUS mutex */ 3464 while (drop_bus--) 3465 mtx_lock(&bus->bus_mtx); 3466 3467 /* restore BUS spin mutex */ 3468 while (drop_bus_spin--) 3469 mtx_lock_spin(&bus->bus_spin_lock); 3470 } 3471 } 3472 3473 static void 3474 usbd_get_std_packet_size(struct usb_std_packet_size *ptr, 3475 uint8_t type, enum usb_dev_speed speed) 3476 { 3477 static const uint16_t intr_range_max[USB_SPEED_MAX] = { 3478 [USB_SPEED_LOW] = 8, 3479 [USB_SPEED_FULL] = 64, 3480 [USB_SPEED_HIGH] = 1024, 3481 [USB_SPEED_VARIABLE] = 1024, 3482 [USB_SPEED_SUPER] = 1024, 3483 }; 3484 3485 static const uint16_t isoc_range_max[USB_SPEED_MAX] = { 3486 [USB_SPEED_LOW] = 0, /* invalid */ 3487 [USB_SPEED_FULL] = 1023, 3488 [USB_SPEED_HIGH] = 1024, 3489 [USB_SPEED_VARIABLE] = 3584, 3490 [USB_SPEED_SUPER] = 1024, 3491 }; 3492 3493 static const uint16_t control_min[USB_SPEED_MAX] = { 3494 [USB_SPEED_LOW] = 8, 3495 [USB_SPEED_FULL] = 8, 3496 [USB_SPEED_HIGH] = 64, 3497 [USB_SPEED_VARIABLE] = 512, 3498 [USB_SPEED_SUPER] = 512, 3499 }; 3500 3501 static const uint16_t bulk_min[USB_SPEED_MAX] = { 3502 [USB_SPEED_LOW] = 8, 3503 [USB_SPEED_FULL] = 8, 3504 [USB_SPEED_HIGH] = 512, 3505 [USB_SPEED_VARIABLE] = 512, 3506 [USB_SPEED_SUPER] = 1024, 3507 }; 3508 3509 uint16_t temp; 3510 3511 memset(ptr, 0, sizeof(*ptr)); 3512 3513 switch (type) { 3514 case UE_INTERRUPT: 3515 ptr->range.max = intr_range_max[speed]; 3516 break; 3517 case UE_ISOCHRONOUS: 3518 ptr->range.max = isoc_range_max[speed]; 3519 break; 3520 default: 3521 if (type == UE_BULK) 3522 temp = bulk_min[speed]; 3523 else /* UE_CONTROL */ 3524 temp = control_min[speed]; 3525 3526 /* default is fixed */ 3527 ptr->fixed[0] = temp; 3528 ptr->fixed[1] = temp; 3529 ptr->fixed[2] = temp; 3530 ptr->fixed[3] = temp; 3531 3532 if (speed == USB_SPEED_FULL) { 3533 /* multiple sizes */ 3534 ptr->fixed[1] = 16; 3535 ptr->fixed[2] = 32; 3536 ptr->fixed[3] = 64; 3537 } 3538 if ((speed == USB_SPEED_VARIABLE) && 3539 (type == UE_BULK)) { 3540 /* multiple sizes */ 3541 ptr->fixed[2] = 1024; 3542 ptr->fixed[3] = 1536; 3543 } 3544 break; 3545 } 3546 } 3547 3548 void * 3549 usbd_xfer_softc(struct usb_xfer *xfer) 3550 { 3551 return (xfer->priv_sc); 3552 } 3553 3554 void * 3555 usbd_xfer_get_priv(struct usb_xfer *xfer) 3556 { 3557 return (xfer->priv_fifo); 3558 } 3559 3560 void 3561 usbd_xfer_set_priv(struct usb_xfer *xfer, void *ptr) 3562 { 3563 xfer->priv_fifo = ptr; 3564 } 3565 3566 uint8_t 3567 usbd_xfer_state(struct usb_xfer *xfer) 3568 { 3569 return (xfer->usb_state); 3570 } 3571 3572 void 3573 usbd_xfer_set_flag(struct usb_xfer *xfer, int flag) 3574 { 3575 switch (flag) { 3576 case USB_FORCE_SHORT_XFER: 3577 xfer->flags.force_short_xfer = 1; 3578 break; 3579 case USB_SHORT_XFER_OK: 3580 xfer->flags.short_xfer_ok = 1; 3581 break; 3582 case USB_MULTI_SHORT_OK: 3583 xfer->flags.short_frames_ok = 1; 3584 break; 3585 case USB_MANUAL_STATUS: 3586 xfer->flags.manual_status = 1; 3587 break; 3588 } 3589 } 3590 3591 void 3592 usbd_xfer_clr_flag(struct usb_xfer *xfer, int flag) 3593 { 3594 switch (flag) { 3595 case USB_FORCE_SHORT_XFER: 3596 xfer->flags.force_short_xfer = 0; 3597 break; 3598 case USB_SHORT_XFER_OK: 3599 xfer->flags.short_xfer_ok = 0; 3600 break; 3601 case USB_MULTI_SHORT_OK: 3602 xfer->flags.short_frames_ok = 0; 3603 break; 3604 case USB_MANUAL_STATUS: 3605 xfer->flags.manual_status = 0; 3606 break; 3607 } 3608 } 3609 3610 /* 3611 * The following function returns in milliseconds when the isochronous 3612 * transfer was completed by the hardware. The returned value wraps 3613 * around 65536 milliseconds. 3614 */ 3615 uint16_t 3616 usbd_xfer_get_timestamp(struct usb_xfer *xfer) 3617 { 3618 return (xfer->isoc_time_complete); 3619 } 3620 3621 /* 3622 * The following function returns non-zero if the max packet size 3623 * field was clamped to a valid value. Else it returns zero. 3624 */ 3625 uint8_t 3626 usbd_xfer_maxp_was_clamped(struct usb_xfer *xfer) 3627 { 3628 return (xfer->flags_int.maxp_was_clamped); 3629 } 3630 3631 /* 3632 * The following function computes the next isochronous frame number 3633 * where the first isochronous packet should be queued. 3634 * 3635 * The function returns non-zero if there was a discontinuity. 3636 * Else zero is returned for normal operation. 3637 */ 3638 uint8_t 3639 usbd_xfer_get_isochronous_start_frame(struct usb_xfer *xfer, uint32_t frame_curr, 3640 uint32_t frame_min, uint32_t frame_ms, uint32_t frame_mask, uint32_t *p_frame_start) 3641 { 3642 uint32_t duration; 3643 uint32_t delta; 3644 uint8_t retval; 3645 uint8_t shift; 3646 3647 /* Compute time ahead of current schedule. */ 3648 delta = (xfer->endpoint->isoc_next - frame_curr) & frame_mask; 3649 3650 /* 3651 * Check if it is the first transfer or if the future frame 3652 * delta is less than one millisecond or if the frame delta is 3653 * negative: 3654 */ 3655 if (xfer->endpoint->is_synced == 0 || 3656 delta < (frame_ms + frame_min) || 3657 delta > (frame_mask / 2)) { 3658 /* Schedule transfer 2 milliseconds into the future. */ 3659 xfer->endpoint->isoc_next = (frame_curr + 2 * frame_ms + frame_min) & frame_mask; 3660 xfer->endpoint->is_synced = 1; 3661 3662 retval = 1; 3663 } else { 3664 retval = 0; 3665 } 3666 3667 /* Store start time, if any. */ 3668 if (p_frame_start != NULL) 3669 *p_frame_start = xfer->endpoint->isoc_next & frame_mask; 3670 3671 /* Get relative completion time, in milliseconds. */ 3672 delta = xfer->endpoint->isoc_next - frame_curr + (frame_curr % frame_ms); 3673 delta &= frame_mask; 3674 delta /= frame_ms; 3675 3676 switch (usbd_get_speed(xfer->xroot->udev)) { 3677 case USB_SPEED_FULL: 3678 shift = 3; 3679 break; 3680 default: 3681 shift = usbd_xfer_get_fps_shift(xfer); 3682 break; 3683 } 3684 3685 /* Get duration in milliseconds, rounded up. */ 3686 duration = ((xfer->nframes << shift) + 7) / 8; 3687 3688 /* Compute full 32-bit completion time, in milliseconds. */ 3689 xfer->isoc_time_complete = 3690 usb_isoc_time_expand(xfer->xroot->bus, frame_curr / frame_ms) + 3691 delta + duration; 3692 3693 /* Compute next isochronous frame. */ 3694 xfer->endpoint->isoc_next += duration * frame_ms; 3695 xfer->endpoint->isoc_next &= frame_mask; 3696 3697 return (retval); 3698 } 3699