1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2008-2021 Hans Petter Selasky. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #ifdef USB_GLOBAL_INCLUDE_FILE 29 #include USB_GLOBAL_INCLUDE_FILE 30 #else 31 #include <sys/stdint.h> 32 #include <sys/stddef.h> 33 #include <sys/param.h> 34 #include <sys/queue.h> 35 #include <sys/types.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 #include <sys/bus.h> 39 #include <sys/module.h> 40 #include <sys/lock.h> 41 #include <sys/mutex.h> 42 #include <sys/condvar.h> 43 #include <sys/sysctl.h> 44 #include <sys/sx.h> 45 #include <sys/unistd.h> 46 #include <sys/callout.h> 47 #include <sys/malloc.h> 48 #include <sys/priv.h> 49 50 #include <dev/usb/usb.h> 51 #include <dev/usb/usbdi.h> 52 #include <dev/usb/usbdi_util.h> 53 54 #define USB_DEBUG_VAR usb_debug 55 56 #include <dev/usb/usb_core.h> 57 #include <dev/usb/usb_busdma.h> 58 #include <dev/usb/usb_process.h> 59 #include <dev/usb/usb_transfer.h> 60 #include <dev/usb/usb_device.h> 61 #include <dev/usb/usb_debug.h> 62 #include <dev/usb/usb_util.h> 63 64 #include <dev/usb/usb_controller.h> 65 #include <dev/usb/usb_bus.h> 66 #include <dev/usb/usb_pf.h> 67 #endif /* USB_GLOBAL_INCLUDE_FILE */ 68 69 struct usb_std_packet_size { 70 struct { 71 uint16_t min; /* inclusive */ 72 uint16_t max; /* inclusive */ 73 } range; 74 75 uint16_t fixed[4]; 76 }; 77 78 static usb_callback_t usb_request_callback; 79 80 static const struct usb_config usb_control_ep_cfg[USB_CTRL_XFER_MAX] = { 81 /* This transfer is used for generic control endpoint transfers */ 82 83 [0] = { 84 .type = UE_CONTROL, 85 .endpoint = 0x00, /* Control endpoint */ 86 .direction = UE_DIR_ANY, 87 .bufsize = USB_EP0_BUFSIZE, /* bytes */ 88 .flags = {.proxy_buffer = 1,}, 89 .callback = &usb_request_callback, 90 .usb_mode = USB_MODE_DUAL, /* both modes */ 91 }, 92 93 /* This transfer is used for generic clear stall only */ 94 95 [1] = { 96 .type = UE_CONTROL, 97 .endpoint = 0x00, /* Control pipe */ 98 .direction = UE_DIR_ANY, 99 .bufsize = sizeof(struct usb_device_request), 100 .callback = &usb_do_clear_stall_callback, 101 .timeout = 1000, /* 1 second */ 102 .interval = 50, /* 50ms */ 103 .usb_mode = USB_MODE_HOST, 104 }, 105 }; 106 107 static const struct usb_config usb_control_ep_quirk_cfg[USB_CTRL_XFER_MAX] = { 108 /* This transfer is used for generic control endpoint transfers */ 109 110 [0] = { 111 .type = UE_CONTROL, 112 .endpoint = 0x00, /* Control endpoint */ 113 .direction = UE_DIR_ANY, 114 .bufsize = 65535, /* bytes */ 115 .callback = &usb_request_callback, 116 .usb_mode = USB_MODE_DUAL, /* both modes */ 117 }, 118 119 /* This transfer is used for generic clear stall only */ 120 121 [1] = { 122 .type = UE_CONTROL, 123 .endpoint = 0x00, /* Control pipe */ 124 .direction = UE_DIR_ANY, 125 .bufsize = sizeof(struct usb_device_request), 126 .callback = &usb_do_clear_stall_callback, 127 .timeout = 1000, /* 1 second */ 128 .interval = 50, /* 50ms */ 129 .usb_mode = USB_MODE_HOST, 130 }, 131 }; 132 133 /* function prototypes */ 134 135 static void usbd_update_max_frame_size(struct usb_xfer *); 136 static void usbd_transfer_unsetup_sub(struct usb_xfer_root *, uint8_t); 137 static void usbd_control_transfer_init(struct usb_xfer *); 138 static int usbd_setup_ctrl_transfer(struct usb_xfer *); 139 static void usb_callback_proc(struct usb_proc_msg *); 140 static void usbd_callback_ss_done_defer(struct usb_xfer *); 141 static void usbd_callback_wrapper(struct usb_xfer_queue *); 142 static void usbd_transfer_start_cb(void *); 143 static uint8_t usbd_callback_wrapper_sub(struct usb_xfer *); 144 static void usbd_get_std_packet_size(struct usb_std_packet_size *ptr, 145 uint8_t type, enum usb_dev_speed speed); 146 147 /*------------------------------------------------------------------------* 148 * usb_request_callback 149 *------------------------------------------------------------------------*/ 150 static void 151 usb_request_callback(struct usb_xfer *xfer, usb_error_t error) 152 { 153 if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) 154 usb_handle_request_callback(xfer, error); 155 else 156 usbd_do_request_callback(xfer, error); 157 } 158 159 /*------------------------------------------------------------------------* 160 * usbd_update_max_frame_size 161 * 162 * This function updates the maximum frame size, hence high speed USB 163 * can transfer multiple consecutive packets. 164 *------------------------------------------------------------------------*/ 165 static void 166 usbd_update_max_frame_size(struct usb_xfer *xfer) 167 { 168 /* compute maximum frame size */ 169 /* this computation should not overflow 16-bit */ 170 /* max = 15 * 1024 */ 171 172 xfer->max_frame_size = xfer->max_packet_size * xfer->max_packet_count; 173 } 174 175 /*------------------------------------------------------------------------* 176 * usbd_get_dma_delay 177 * 178 * The following function is called when we need to 179 * synchronize with DMA hardware. 180 * 181 * Returns: 182 * 0: no DMA delay required 183 * Else: milliseconds of DMA delay 184 *------------------------------------------------------------------------*/ 185 usb_timeout_t 186 usbd_get_dma_delay(struct usb_device *udev) 187 { 188 const struct usb_bus_methods *mtod; 189 uint32_t temp; 190 191 mtod = udev->bus->methods; 192 temp = 0; 193 194 if (mtod->get_dma_delay) { 195 (mtod->get_dma_delay) (udev, &temp); 196 /* 197 * Round up and convert to milliseconds. Note that we use 198 * 1024 milliseconds per second. to save a division. 199 */ 200 temp += 0x3FF; 201 temp /= 0x400; 202 } 203 return (temp); 204 } 205 206 /*------------------------------------------------------------------------* 207 * usbd_transfer_setup_sub_malloc 208 * 209 * This function will allocate one or more DMA'able memory chunks 210 * according to "size", "align" and "count" arguments. "ppc" is 211 * pointed to a linear array of USB page caches afterwards. 212 * 213 * If the "align" argument is equal to "1" a non-contiguous allocation 214 * can happen. Else if the "align" argument is greater than "1", the 215 * allocation will always be contiguous in memory. 216 * 217 * Returns: 218 * 0: Success 219 * Else: Failure 220 *------------------------------------------------------------------------*/ 221 #if USB_HAVE_BUSDMA 222 uint8_t 223 usbd_transfer_setup_sub_malloc(struct usb_setup_params *parm, 224 struct usb_page_cache **ppc, usb_size_t size, usb_size_t align, 225 usb_size_t count) 226 { 227 struct usb_page_cache *pc; 228 struct usb_page *pg; 229 void *buf; 230 usb_size_t n_dma_pc; 231 usb_size_t n_dma_pg; 232 usb_size_t n_obj; 233 usb_size_t x; 234 usb_size_t y; 235 usb_size_t r; 236 usb_size_t z; 237 238 USB_ASSERT(align > 0, ("Invalid alignment, 0x%08x\n", 239 align)); 240 USB_ASSERT(size > 0, ("Invalid size = 0\n")); 241 242 if (count == 0) { 243 return (0); /* nothing to allocate */ 244 } 245 /* 246 * Make sure that the size is aligned properly. 247 */ 248 size = -((-size) & (-align)); 249 250 /* 251 * Try multi-allocation chunks to reduce the number of DMA 252 * allocations, hence DMA allocations are slow. 253 */ 254 if (align == 1) { 255 /* special case - non-cached multi page DMA memory */ 256 n_dma_pc = count; 257 n_dma_pg = (2 + (size / USB_PAGE_SIZE)); 258 n_obj = 1; 259 } else if (size >= USB_PAGE_SIZE) { 260 n_dma_pc = count; 261 n_dma_pg = 1; 262 n_obj = 1; 263 } else { 264 /* compute number of objects per page */ 265 #ifdef USB_DMA_SINGLE_ALLOC 266 n_obj = 1; 267 #else 268 n_obj = (USB_PAGE_SIZE / size); 269 #endif 270 /* 271 * Compute number of DMA chunks, rounded up 272 * to nearest one: 273 */ 274 n_dma_pc = howmany(count, n_obj); 275 n_dma_pg = 1; 276 } 277 278 /* 279 * DMA memory is allocated once, but mapped twice. That's why 280 * there is one list for auto-free and another list for 281 * non-auto-free which only holds the mapping and not the 282 * allocation. 283 */ 284 if (parm->buf == NULL) { 285 /* reserve memory (auto-free) */ 286 parm->dma_page_ptr += n_dma_pc * n_dma_pg; 287 parm->dma_page_cache_ptr += n_dma_pc; 288 289 /* reserve memory (no-auto-free) */ 290 parm->dma_page_ptr += count * n_dma_pg; 291 parm->xfer_page_cache_ptr += count; 292 return (0); 293 } 294 for (x = 0; x != n_dma_pc; x++) { 295 /* need to initialize the page cache */ 296 parm->dma_page_cache_ptr[x].tag_parent = 297 &parm->curr_xfer->xroot->dma_parent_tag; 298 } 299 for (x = 0; x != count; x++) { 300 /* need to initialize the page cache */ 301 parm->xfer_page_cache_ptr[x].tag_parent = 302 &parm->curr_xfer->xroot->dma_parent_tag; 303 } 304 305 if (ppc != NULL) { 306 if (n_obj != 1) 307 *ppc = parm->xfer_page_cache_ptr; 308 else 309 *ppc = parm->dma_page_cache_ptr; 310 } 311 r = count; /* set remainder count */ 312 z = n_obj * size; /* set allocation size */ 313 pc = parm->xfer_page_cache_ptr; 314 pg = parm->dma_page_ptr; 315 316 if (n_obj == 1) { 317 /* 318 * Avoid mapping memory twice if only a single object 319 * should be allocated per page cache: 320 */ 321 for (x = 0; x != n_dma_pc; x++) { 322 if (usb_pc_alloc_mem(parm->dma_page_cache_ptr, 323 pg, z, align)) { 324 return (1); /* failure */ 325 } 326 /* Make room for one DMA page cache and "n_dma_pg" pages */ 327 parm->dma_page_cache_ptr++; 328 pg += n_dma_pg; 329 } 330 } else { 331 for (x = 0; x != n_dma_pc; x++) { 332 if (r < n_obj) { 333 /* compute last remainder */ 334 z = r * size; 335 n_obj = r; 336 } 337 if (usb_pc_alloc_mem(parm->dma_page_cache_ptr, 338 pg, z, align)) { 339 return (1); /* failure */ 340 } 341 /* Set beginning of current buffer */ 342 buf = parm->dma_page_cache_ptr->buffer; 343 /* Make room for one DMA page cache and "n_dma_pg" pages */ 344 parm->dma_page_cache_ptr++; 345 pg += n_dma_pg; 346 347 for (y = 0; (y != n_obj); y++, r--, pc++, pg += n_dma_pg) { 348 /* Load sub-chunk into DMA */ 349 if (usb_pc_dmamap_create(pc, size)) { 350 return (1); /* failure */ 351 } 352 pc->buffer = USB_ADD_BYTES(buf, y * size); 353 pc->page_start = pg; 354 355 USB_MTX_LOCK(pc->tag_parent->mtx); 356 if (usb_pc_load_mem(pc, size, 1 /* synchronous */ )) { 357 USB_MTX_UNLOCK(pc->tag_parent->mtx); 358 return (1); /* failure */ 359 } 360 USB_MTX_UNLOCK(pc->tag_parent->mtx); 361 } 362 } 363 } 364 365 parm->xfer_page_cache_ptr = pc; 366 parm->dma_page_ptr = pg; 367 return (0); 368 } 369 #endif 370 371 /*------------------------------------------------------------------------* 372 * usbd_get_max_frame_length 373 * 374 * This function returns the maximum single frame length as computed by 375 * usbd_transfer_setup(). It is useful when computing buffer sizes for 376 * devices having multiple alternate settings. The SuperSpeed endpoint 377 * companion pointer is allowed to be NULL. 378 *------------------------------------------------------------------------*/ 379 uint32_t 380 usbd_get_max_frame_length(const struct usb_endpoint_descriptor *edesc, 381 const struct usb_endpoint_ss_comp_descriptor *ecomp, 382 enum usb_dev_speed speed) 383 { 384 uint32_t max_packet_size; 385 uint32_t max_packet_count; 386 uint8_t type; 387 388 max_packet_size = UGETW(edesc->wMaxPacketSize); 389 max_packet_count = 1; 390 type = (edesc->bmAttributes & UE_XFERTYPE); 391 392 switch (speed) { 393 case USB_SPEED_HIGH: 394 switch (type) { 395 case UE_ISOCHRONOUS: 396 case UE_INTERRUPT: 397 max_packet_count += 398 (max_packet_size >> 11) & 3; 399 400 /* check for invalid max packet count */ 401 if (max_packet_count > 3) 402 max_packet_count = 3; 403 break; 404 default: 405 break; 406 } 407 max_packet_size &= 0x7FF; 408 break; 409 case USB_SPEED_SUPER: 410 max_packet_count += (max_packet_size >> 11) & 3; 411 412 if (ecomp != NULL) 413 max_packet_count += ecomp->bMaxBurst; 414 415 if ((max_packet_count == 0) || 416 (max_packet_count > 16)) 417 max_packet_count = 16; 418 419 switch (type) { 420 case UE_CONTROL: 421 max_packet_count = 1; 422 break; 423 case UE_ISOCHRONOUS: 424 if (ecomp != NULL) { 425 uint8_t mult; 426 427 mult = UE_GET_SS_ISO_MULT( 428 ecomp->bmAttributes) + 1; 429 if (mult > 3) 430 mult = 3; 431 432 max_packet_count *= mult; 433 } 434 break; 435 default: 436 break; 437 } 438 max_packet_size &= 0x7FF; 439 break; 440 default: 441 break; 442 } 443 return (max_packet_size * max_packet_count); 444 } 445 446 /*------------------------------------------------------------------------* 447 * usbd_transfer_setup_sub - transfer setup subroutine 448 * 449 * This function must be called from the "xfer_setup" callback of the 450 * USB Host or Device controller driver when setting up an USB 451 * transfer. This function will setup correct packet sizes, buffer 452 * sizes, flags and more, that are stored in the "usb_xfer" 453 * structure. 454 *------------------------------------------------------------------------*/ 455 void 456 usbd_transfer_setup_sub(struct usb_setup_params *parm) 457 { 458 enum { 459 REQ_SIZE = 8, 460 MIN_PKT = 8, 461 }; 462 struct usb_xfer *xfer = parm->curr_xfer; 463 const struct usb_config *setup = parm->curr_setup; 464 struct usb_endpoint_ss_comp_descriptor *ecomp; 465 struct usb_endpoint_descriptor *edesc; 466 struct usb_std_packet_size std_size; 467 usb_frcount_t n_frlengths; 468 usb_frcount_t n_frbuffers; 469 usb_frcount_t x; 470 uint16_t maxp_old; 471 uint8_t type; 472 uint8_t zmps; 473 474 /* 475 * Sanity check. The following parameters must be initialized before 476 * calling this function. 477 */ 478 if ((parm->hc_max_packet_size == 0) || 479 (parm->hc_max_packet_count == 0) || 480 (parm->hc_max_frame_size == 0)) { 481 parm->err = USB_ERR_INVAL; 482 goto done; 483 } 484 edesc = xfer->endpoint->edesc; 485 ecomp = xfer->endpoint->ecomp; 486 487 type = (edesc->bmAttributes & UE_XFERTYPE); 488 489 xfer->flags = setup->flags; 490 xfer->nframes = setup->frames; 491 xfer->timeout = setup->timeout; 492 xfer->callback = setup->callback; 493 xfer->interval = setup->interval; 494 xfer->endpointno = edesc->bEndpointAddress; 495 xfer->max_packet_size = UGETW(edesc->wMaxPacketSize); 496 xfer->max_packet_count = 1; 497 /* make a shadow copy: */ 498 xfer->flags_int.usb_mode = parm->udev->flags.usb_mode; 499 500 parm->bufsize = setup->bufsize; 501 502 switch (parm->speed) { 503 case USB_SPEED_HIGH: 504 switch (type) { 505 case UE_ISOCHRONOUS: 506 case UE_INTERRUPT: 507 xfer->max_packet_count += 508 (xfer->max_packet_size >> 11) & 3; 509 510 /* check for invalid max packet count */ 511 if (xfer->max_packet_count > 3) 512 xfer->max_packet_count = 3; 513 break; 514 default: 515 break; 516 } 517 xfer->max_packet_size &= 0x7FF; 518 break; 519 case USB_SPEED_SUPER: 520 xfer->max_packet_count += (xfer->max_packet_size >> 11) & 3; 521 522 if (ecomp != NULL) 523 xfer->max_packet_count += ecomp->bMaxBurst; 524 525 if ((xfer->max_packet_count == 0) || 526 (xfer->max_packet_count > 16)) 527 xfer->max_packet_count = 16; 528 529 switch (type) { 530 case UE_CONTROL: 531 xfer->max_packet_count = 1; 532 break; 533 case UE_ISOCHRONOUS: 534 if (ecomp != NULL) { 535 uint8_t mult; 536 537 mult = UE_GET_SS_ISO_MULT( 538 ecomp->bmAttributes) + 1; 539 if (mult > 3) 540 mult = 3; 541 542 xfer->max_packet_count *= mult; 543 } 544 break; 545 default: 546 break; 547 } 548 xfer->max_packet_size &= 0x7FF; 549 break; 550 default: 551 break; 552 } 553 /* range check "max_packet_count" */ 554 555 if (xfer->max_packet_count > parm->hc_max_packet_count) { 556 xfer->max_packet_count = parm->hc_max_packet_count; 557 } 558 559 /* store max packet size value before filtering */ 560 561 maxp_old = xfer->max_packet_size; 562 563 /* filter "wMaxPacketSize" according to HC capabilities */ 564 565 if ((xfer->max_packet_size > parm->hc_max_packet_size) || 566 (xfer->max_packet_size == 0)) { 567 xfer->max_packet_size = parm->hc_max_packet_size; 568 } 569 /* filter "wMaxPacketSize" according to standard sizes */ 570 571 usbd_get_std_packet_size(&std_size, type, parm->speed); 572 573 if (std_size.range.min || std_size.range.max) { 574 if (xfer->max_packet_size < std_size.range.min) { 575 xfer->max_packet_size = std_size.range.min; 576 } 577 if (xfer->max_packet_size > std_size.range.max) { 578 xfer->max_packet_size = std_size.range.max; 579 } 580 } else { 581 if (xfer->max_packet_size >= std_size.fixed[3]) { 582 xfer->max_packet_size = std_size.fixed[3]; 583 } else if (xfer->max_packet_size >= std_size.fixed[2]) { 584 xfer->max_packet_size = std_size.fixed[2]; 585 } else if (xfer->max_packet_size >= std_size.fixed[1]) { 586 xfer->max_packet_size = std_size.fixed[1]; 587 } else { 588 /* only one possibility left */ 589 xfer->max_packet_size = std_size.fixed[0]; 590 } 591 } 592 593 /* 594 * Check if the max packet size was outside its allowed range 595 * and clamped to a valid value: 596 */ 597 if (maxp_old != xfer->max_packet_size) 598 xfer->flags_int.maxp_was_clamped = 1; 599 600 /* compute "max_frame_size" */ 601 602 usbd_update_max_frame_size(xfer); 603 604 /* check interrupt interval and transfer pre-delay */ 605 606 if (type == UE_ISOCHRONOUS) { 607 uint16_t frame_limit; 608 609 xfer->interval = 0; /* not used, must be zero */ 610 xfer->flags_int.isochronous_xfr = 1; /* set flag */ 611 612 if (xfer->timeout == 0) { 613 /* 614 * set a default timeout in 615 * case something goes wrong! 616 */ 617 xfer->timeout = 1000 / 4; 618 } 619 switch (parm->speed) { 620 case USB_SPEED_LOW: 621 case USB_SPEED_FULL: 622 frame_limit = USB_MAX_FS_ISOC_FRAMES_PER_XFER; 623 xfer->fps_shift = 0; 624 break; 625 default: 626 frame_limit = USB_MAX_HS_ISOC_FRAMES_PER_XFER; 627 xfer->fps_shift = edesc->bInterval; 628 if (xfer->fps_shift > 0) 629 xfer->fps_shift--; 630 if (xfer->fps_shift > 3) 631 xfer->fps_shift = 3; 632 if (xfer->flags.pre_scale_frames != 0) 633 xfer->nframes <<= (3 - xfer->fps_shift); 634 break; 635 } 636 637 if (xfer->nframes > frame_limit) { 638 /* 639 * this is not going to work 640 * cross hardware 641 */ 642 parm->err = USB_ERR_INVAL; 643 goto done; 644 } 645 if (xfer->nframes == 0) { 646 /* 647 * this is not a valid value 648 */ 649 parm->err = USB_ERR_ZERO_NFRAMES; 650 goto done; 651 } 652 } else { 653 /* 654 * If a value is specified use that else check the 655 * endpoint descriptor! 656 */ 657 if (type == UE_INTERRUPT) { 658 uint32_t temp; 659 660 if (xfer->interval == 0) { 661 xfer->interval = edesc->bInterval; 662 663 switch (parm->speed) { 664 case USB_SPEED_LOW: 665 case USB_SPEED_FULL: 666 break; 667 default: 668 /* 125us -> 1ms */ 669 if (xfer->interval < 4) 670 xfer->interval = 1; 671 else if (xfer->interval > 16) 672 xfer->interval = (1 << (16 - 4)); 673 else 674 xfer->interval = 675 (1 << (xfer->interval - 4)); 676 break; 677 } 678 } 679 680 if (xfer->interval == 0) { 681 /* 682 * One millisecond is the smallest 683 * interval we support: 684 */ 685 xfer->interval = 1; 686 } 687 688 xfer->fps_shift = 0; 689 temp = 1; 690 691 while ((temp != 0) && (temp < xfer->interval)) { 692 xfer->fps_shift++; 693 temp *= 2; 694 } 695 696 switch (parm->speed) { 697 case USB_SPEED_LOW: 698 case USB_SPEED_FULL: 699 break; 700 default: 701 xfer->fps_shift += 3; 702 break; 703 } 704 } 705 } 706 707 /* 708 * NOTE: we do not allow "max_packet_size" or "max_frame_size" 709 * to be equal to zero when setting up USB transfers, hence 710 * this leads to a lot of extra code in the USB kernel. 711 */ 712 713 if ((xfer->max_frame_size == 0) || 714 (xfer->max_packet_size == 0)) { 715 zmps = 1; 716 717 if ((parm->bufsize <= MIN_PKT) && 718 (type != UE_CONTROL) && 719 (type != UE_BULK)) { 720 /* workaround */ 721 xfer->max_packet_size = MIN_PKT; 722 xfer->max_packet_count = 1; 723 parm->bufsize = 0; /* automatic setup length */ 724 usbd_update_max_frame_size(xfer); 725 726 } else { 727 parm->err = USB_ERR_ZERO_MAXP; 728 goto done; 729 } 730 731 } else { 732 zmps = 0; 733 } 734 735 /* 736 * check if we should setup a default 737 * length: 738 */ 739 740 if (parm->bufsize == 0) { 741 parm->bufsize = xfer->max_frame_size; 742 743 if (type == UE_ISOCHRONOUS) { 744 parm->bufsize *= xfer->nframes; 745 } 746 } 747 /* 748 * check if we are about to setup a proxy 749 * type of buffer: 750 */ 751 752 if (xfer->flags.proxy_buffer) { 753 /* round bufsize up */ 754 755 parm->bufsize += (xfer->max_frame_size - 1); 756 757 if (parm->bufsize < xfer->max_frame_size) { 758 /* length wrapped around */ 759 parm->err = USB_ERR_INVAL; 760 goto done; 761 } 762 /* subtract remainder */ 763 764 parm->bufsize -= (parm->bufsize % xfer->max_frame_size); 765 766 /* add length of USB device request structure, if any */ 767 768 if (type == UE_CONTROL) { 769 parm->bufsize += REQ_SIZE; /* SETUP message */ 770 } 771 } 772 xfer->max_data_length = parm->bufsize; 773 774 /* Setup "n_frlengths" and "n_frbuffers" */ 775 776 if (type == UE_ISOCHRONOUS) { 777 n_frlengths = xfer->nframes; 778 n_frbuffers = 1; 779 } else { 780 if (type == UE_CONTROL) { 781 xfer->flags_int.control_xfr = 1; 782 if (xfer->nframes == 0) { 783 if (parm->bufsize <= REQ_SIZE) { 784 /* 785 * there will never be any data 786 * stage 787 */ 788 xfer->nframes = 1; 789 } else { 790 xfer->nframes = 2; 791 } 792 } 793 } else { 794 if (xfer->nframes == 0) { 795 xfer->nframes = 1; 796 } 797 } 798 799 n_frlengths = xfer->nframes; 800 n_frbuffers = xfer->nframes; 801 } 802 803 /* 804 * check if we have room for the 805 * USB device request structure: 806 */ 807 808 if (type == UE_CONTROL) { 809 if (xfer->max_data_length < REQ_SIZE) { 810 /* length wrapped around or too small bufsize */ 811 parm->err = USB_ERR_INVAL; 812 goto done; 813 } 814 xfer->max_data_length -= REQ_SIZE; 815 } 816 /* 817 * Setup "frlengths" and shadow "frlengths" for keeping the 818 * initial frame lengths when a USB transfer is complete. This 819 * information is useful when computing isochronous offsets. 820 */ 821 xfer->frlengths = parm->xfer_length_ptr; 822 parm->xfer_length_ptr += 2 * n_frlengths; 823 824 /* setup "frbuffers" */ 825 xfer->frbuffers = parm->xfer_page_cache_ptr; 826 parm->xfer_page_cache_ptr += n_frbuffers; 827 828 /* initialize max frame count */ 829 xfer->max_frame_count = xfer->nframes; 830 831 /* 832 * check if we need to setup 833 * a local buffer: 834 */ 835 836 if (!xfer->flags.ext_buffer) { 837 #if USB_HAVE_BUSDMA 838 struct usb_page_search page_info; 839 struct usb_page_cache *pc; 840 841 if (usbd_transfer_setup_sub_malloc(parm, 842 &pc, parm->bufsize, 1, 1)) { 843 parm->err = USB_ERR_NOMEM; 844 } else if (parm->buf != NULL) { 845 usbd_get_page(pc, 0, &page_info); 846 847 xfer->local_buffer = page_info.buffer; 848 849 usbd_xfer_set_frame_offset(xfer, 0, 0); 850 851 if ((type == UE_CONTROL) && (n_frbuffers > 1)) { 852 usbd_xfer_set_frame_offset(xfer, REQ_SIZE, 1); 853 } 854 } 855 #else 856 /* align data */ 857 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 858 859 if (parm->buf != NULL) { 860 xfer->local_buffer = 861 USB_ADD_BYTES(parm->buf, parm->size[0]); 862 863 usbd_xfer_set_frame_offset(xfer, 0, 0); 864 865 if ((type == UE_CONTROL) && (n_frbuffers > 1)) { 866 usbd_xfer_set_frame_offset(xfer, REQ_SIZE, 1); 867 } 868 } 869 parm->size[0] += parm->bufsize; 870 871 /* align data again */ 872 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 873 #endif 874 } 875 /* 876 * Compute maximum buffer size 877 */ 878 879 if (parm->bufsize_max < parm->bufsize) { 880 parm->bufsize_max = parm->bufsize; 881 } 882 #if USB_HAVE_BUSDMA 883 if (xfer->flags_int.bdma_enable) { 884 /* 885 * Setup "dma_page_ptr". 886 * 887 * Proof for formula below: 888 * 889 * Assume there are three USB frames having length "a", "b" and 890 * "c". These USB frames will at maximum need "z" 891 * "usb_page" structures. "z" is given by: 892 * 893 * z = ((a / USB_PAGE_SIZE) + 2) + ((b / USB_PAGE_SIZE) + 2) + 894 * ((c / USB_PAGE_SIZE) + 2); 895 * 896 * Constraining "a", "b" and "c" like this: 897 * 898 * (a + b + c) <= parm->bufsize 899 * 900 * We know that: 901 * 902 * z <= ((parm->bufsize / USB_PAGE_SIZE) + (3*2)); 903 * 904 * Here is the general formula: 905 */ 906 xfer->dma_page_ptr = parm->dma_page_ptr; 907 parm->dma_page_ptr += (2 * n_frbuffers); 908 parm->dma_page_ptr += (parm->bufsize / USB_PAGE_SIZE); 909 } 910 #endif 911 if (zmps) { 912 /* correct maximum data length */ 913 xfer->max_data_length = 0; 914 } 915 /* subtract USB frame remainder from "hc_max_frame_size" */ 916 917 xfer->max_hc_frame_size = 918 (parm->hc_max_frame_size - 919 (parm->hc_max_frame_size % xfer->max_frame_size)); 920 921 if (xfer->max_hc_frame_size == 0) { 922 parm->err = USB_ERR_INVAL; 923 goto done; 924 } 925 926 /* initialize frame buffers */ 927 928 if (parm->buf) { 929 for (x = 0; x != n_frbuffers; x++) { 930 xfer->frbuffers[x].tag_parent = 931 &xfer->xroot->dma_parent_tag; 932 #if USB_HAVE_BUSDMA 933 if (xfer->flags_int.bdma_enable && 934 (parm->bufsize_max > 0)) { 935 if (usb_pc_dmamap_create( 936 xfer->frbuffers + x, 937 parm->bufsize_max)) { 938 parm->err = USB_ERR_NOMEM; 939 goto done; 940 } 941 } 942 #endif 943 } 944 } 945 done: 946 if (parm->err) { 947 /* 948 * Set some dummy values so that we avoid division by zero: 949 */ 950 xfer->max_hc_frame_size = 1; 951 xfer->max_frame_size = 1; 952 xfer->max_packet_size = 1; 953 xfer->max_data_length = 0; 954 xfer->nframes = 0; 955 xfer->max_frame_count = 0; 956 } 957 } 958 959 static uint8_t 960 usbd_transfer_setup_has_bulk(const struct usb_config *setup_start, 961 uint16_t n_setup) 962 { 963 while (n_setup--) { 964 uint8_t type = setup_start[n_setup].type; 965 if (type == UE_BULK || type == UE_BULK_INTR || 966 type == UE_TYPE_ANY) 967 return (1); 968 } 969 return (0); 970 } 971 972 /*------------------------------------------------------------------------* 973 * usbd_transfer_setup - setup an array of USB transfers 974 * 975 * NOTE: You must always call "usbd_transfer_unsetup" after calling 976 * "usbd_transfer_setup" if success was returned. 977 * 978 * The idea is that the USB device driver should pre-allocate all its 979 * transfers by one call to this function. 980 * 981 * Return values: 982 * 0: Success 983 * Else: Failure 984 *------------------------------------------------------------------------*/ 985 usb_error_t 986 usbd_transfer_setup(struct usb_device *udev, 987 const uint8_t *ifaces, struct usb_xfer **ppxfer, 988 const struct usb_config *setup_start, uint16_t n_setup, 989 void *priv_sc, struct mtx *xfer_mtx) 990 { 991 const struct usb_config *setup_end = setup_start + n_setup; 992 const struct usb_config *setup; 993 struct usb_setup_params *parm; 994 struct usb_endpoint *ep; 995 struct usb_xfer_root *info; 996 struct usb_xfer *xfer; 997 void *buf = NULL; 998 usb_error_t error = 0; 999 uint16_t n; 1000 uint16_t refcount; 1001 uint8_t do_unlock; 1002 1003 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 1004 "usbd_transfer_setup can sleep!"); 1005 1006 /* do some checking first */ 1007 1008 if (n_setup == 0) { 1009 DPRINTFN(6, "setup array has zero length!\n"); 1010 return (USB_ERR_INVAL); 1011 } 1012 if (ifaces == NULL) { 1013 DPRINTFN(6, "ifaces array is NULL!\n"); 1014 return (USB_ERR_INVAL); 1015 } 1016 if (xfer_mtx == NULL) { 1017 DPRINTFN(6, "using global lock\n"); 1018 xfer_mtx = &Giant; 1019 } 1020 1021 /* more sanity checks */ 1022 1023 for (setup = setup_start, n = 0; 1024 setup != setup_end; setup++, n++) { 1025 if (setup->bufsize == (usb_frlength_t)-1) { 1026 error = USB_ERR_BAD_BUFSIZE; 1027 DPRINTF("invalid bufsize\n"); 1028 } 1029 if (setup->callback == NULL) { 1030 error = USB_ERR_NO_CALLBACK; 1031 DPRINTF("no callback\n"); 1032 } 1033 ppxfer[n] = NULL; 1034 } 1035 1036 if (error) 1037 return (error); 1038 1039 /* Protect scratch area */ 1040 do_unlock = usbd_ctrl_lock(udev); 1041 1042 refcount = 0; 1043 info = NULL; 1044 1045 parm = &udev->scratch.xfer_setup[0].parm; 1046 memset(parm, 0, sizeof(*parm)); 1047 1048 parm->udev = udev; 1049 parm->speed = usbd_get_speed(udev); 1050 parm->hc_max_packet_count = 1; 1051 1052 if (parm->speed >= USB_SPEED_MAX) { 1053 parm->err = USB_ERR_INVAL; 1054 goto done; 1055 } 1056 /* setup all transfers */ 1057 1058 while (1) { 1059 if (buf) { 1060 /* 1061 * Initialize the "usb_xfer_root" structure, 1062 * which is common for all our USB transfers. 1063 */ 1064 info = USB_ADD_BYTES(buf, 0); 1065 1066 info->memory_base = buf; 1067 info->memory_size = parm->size[0]; 1068 1069 #if USB_HAVE_BUSDMA 1070 info->dma_page_cache_start = USB_ADD_BYTES(buf, parm->size[4]); 1071 info->dma_page_cache_end = USB_ADD_BYTES(buf, parm->size[5]); 1072 #endif 1073 info->xfer_page_cache_start = USB_ADD_BYTES(buf, parm->size[5]); 1074 info->xfer_page_cache_end = USB_ADD_BYTES(buf, parm->size[2]); 1075 1076 cv_init(&info->cv_drain, "WDRAIN"); 1077 1078 info->xfer_mtx = xfer_mtx; 1079 #if USB_HAVE_BUSDMA 1080 usb_dma_tag_setup(&info->dma_parent_tag, 1081 parm->dma_tag_p, udev->bus->dma_parent_tag[0].tag, 1082 xfer_mtx, &usb_bdma_done_event, udev->bus->dma_bits, 1083 parm->dma_tag_max); 1084 #endif 1085 1086 info->bus = udev->bus; 1087 info->udev = udev; 1088 1089 TAILQ_INIT(&info->done_q.head); 1090 info->done_q.command = &usbd_callback_wrapper; 1091 #if USB_HAVE_BUSDMA 1092 TAILQ_INIT(&info->dma_q.head); 1093 info->dma_q.command = &usb_bdma_work_loop; 1094 #endif 1095 info->done_m[0].hdr.pm_callback = &usb_callback_proc; 1096 info->done_m[0].xroot = info; 1097 info->done_m[1].hdr.pm_callback = &usb_callback_proc; 1098 info->done_m[1].xroot = info; 1099 1100 /* 1101 * In device side mode control endpoint 1102 * requests need to run from a separate 1103 * context, else there is a chance of 1104 * deadlock! 1105 */ 1106 if (setup_start == usb_control_ep_cfg || 1107 setup_start == usb_control_ep_quirk_cfg) 1108 info->done_p = 1109 USB_BUS_CONTROL_XFER_PROC(udev->bus); 1110 else if (xfer_mtx == &Giant) 1111 info->done_p = 1112 USB_BUS_GIANT_PROC(udev->bus); 1113 else if (usbd_transfer_setup_has_bulk(setup_start, n_setup)) 1114 info->done_p = 1115 USB_BUS_NON_GIANT_BULK_PROC(udev->bus); 1116 else 1117 info->done_p = 1118 USB_BUS_NON_GIANT_ISOC_PROC(udev->bus); 1119 } 1120 /* reset sizes */ 1121 1122 parm->size[0] = 0; 1123 parm->buf = buf; 1124 parm->size[0] += sizeof(info[0]); 1125 1126 for (setup = setup_start, n = 0; 1127 setup != setup_end; setup++, n++) { 1128 /* skip USB transfers without callbacks: */ 1129 if (setup->callback == NULL) { 1130 continue; 1131 } 1132 /* see if there is a matching endpoint */ 1133 ep = usbd_get_endpoint(udev, 1134 ifaces[setup->if_index], setup); 1135 1136 /* 1137 * Check that the USB PIPE is valid and that 1138 * the endpoint mode is proper. 1139 * 1140 * Make sure we don't allocate a streams 1141 * transfer when such a combination is not 1142 * valid. 1143 */ 1144 if ((ep == NULL) || (ep->methods == NULL) || 1145 ((ep->ep_mode != USB_EP_MODE_STREAMS) && 1146 (ep->ep_mode != USB_EP_MODE_DEFAULT)) || 1147 (setup->stream_id != 0 && 1148 (setup->stream_id >= USB_MAX_EP_STREAMS || 1149 (ep->ep_mode != USB_EP_MODE_STREAMS)))) { 1150 if (setup->flags.no_pipe_ok) 1151 continue; 1152 if ((setup->usb_mode != USB_MODE_DUAL) && 1153 (setup->usb_mode != udev->flags.usb_mode)) 1154 continue; 1155 parm->err = USB_ERR_NO_PIPE; 1156 goto done; 1157 } 1158 1159 /* align data properly */ 1160 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1161 1162 /* store current setup pointer */ 1163 parm->curr_setup = setup; 1164 1165 if (buf) { 1166 /* 1167 * Common initialization of the 1168 * "usb_xfer" structure. 1169 */ 1170 xfer = USB_ADD_BYTES(buf, parm->size[0]); 1171 xfer->address = udev->address; 1172 xfer->priv_sc = priv_sc; 1173 xfer->xroot = info; 1174 1175 usb_callout_init_mtx(&xfer->timeout_handle, 1176 &udev->bus->bus_mtx, 0); 1177 } else { 1178 /* 1179 * Setup a dummy xfer, hence we are 1180 * writing to the "usb_xfer" 1181 * structure pointed to by "xfer" 1182 * before we have allocated any 1183 * memory: 1184 */ 1185 xfer = &udev->scratch.xfer_setup[0].dummy; 1186 memset(xfer, 0, sizeof(*xfer)); 1187 refcount++; 1188 } 1189 1190 /* set transfer endpoint pointer */ 1191 xfer->endpoint = ep; 1192 1193 /* set transfer stream ID */ 1194 xfer->stream_id = setup->stream_id; 1195 1196 parm->size[0] += sizeof(xfer[0]); 1197 parm->methods = xfer->endpoint->methods; 1198 parm->curr_xfer = xfer; 1199 1200 /* 1201 * Call the Host or Device controller transfer 1202 * setup routine: 1203 */ 1204 (udev->bus->methods->xfer_setup) (parm); 1205 1206 /* check for error */ 1207 if (parm->err) 1208 goto done; 1209 1210 if (buf) { 1211 /* 1212 * Increment the endpoint refcount. This 1213 * basically prevents setting a new 1214 * configuration and alternate setting 1215 * when USB transfers are in use on 1216 * the given interface. Search the USB 1217 * code for "endpoint->refcount_alloc" if you 1218 * want more information. 1219 */ 1220 USB_BUS_LOCK(info->bus); 1221 if (xfer->endpoint->refcount_alloc >= USB_EP_REF_MAX) 1222 parm->err = USB_ERR_INVAL; 1223 1224 xfer->endpoint->refcount_alloc++; 1225 1226 if (xfer->endpoint->refcount_alloc == 0) 1227 panic("usbd_transfer_setup(): Refcount wrapped to zero\n"); 1228 USB_BUS_UNLOCK(info->bus); 1229 1230 /* 1231 * Whenever we set ppxfer[] then we 1232 * also need to increment the 1233 * "setup_refcount": 1234 */ 1235 info->setup_refcount++; 1236 1237 /* 1238 * Transfer is successfully setup and 1239 * can be used: 1240 */ 1241 ppxfer[n] = xfer; 1242 } 1243 1244 /* check for error */ 1245 if (parm->err) 1246 goto done; 1247 } 1248 1249 if (buf != NULL || parm->err != 0) 1250 goto done; 1251 1252 /* if no transfers, nothing to do */ 1253 if (refcount == 0) 1254 goto done; 1255 1256 /* align data properly */ 1257 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1258 1259 /* store offset temporarily */ 1260 parm->size[1] = parm->size[0]; 1261 1262 /* 1263 * The number of DMA tags required depends on 1264 * the number of endpoints. The current estimate 1265 * for maximum number of DMA tags per endpoint 1266 * is three: 1267 * 1) for loading memory 1268 * 2) for allocating memory 1269 * 3) for fixing memory [UHCI] 1270 */ 1271 parm->dma_tag_max += 3 * MIN(n_setup, USB_EP_MAX); 1272 1273 /* 1274 * DMA tags for QH, TD, Data and more. 1275 */ 1276 parm->dma_tag_max += 8; 1277 1278 parm->dma_tag_p += parm->dma_tag_max; 1279 1280 parm->size[0] += ((uint8_t *)parm->dma_tag_p) - 1281 ((uint8_t *)0); 1282 1283 /* align data properly */ 1284 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1285 1286 /* store offset temporarily */ 1287 parm->size[3] = parm->size[0]; 1288 1289 parm->size[0] += ((uint8_t *)parm->dma_page_ptr) - 1290 ((uint8_t *)0); 1291 1292 /* align data properly */ 1293 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1294 1295 /* store offset temporarily */ 1296 parm->size[4] = parm->size[0]; 1297 1298 parm->size[0] += ((uint8_t *)parm->dma_page_cache_ptr) - 1299 ((uint8_t *)0); 1300 1301 /* store end offset temporarily */ 1302 parm->size[5] = parm->size[0]; 1303 1304 parm->size[0] += ((uint8_t *)parm->xfer_page_cache_ptr) - 1305 ((uint8_t *)0); 1306 1307 /* store end offset temporarily */ 1308 1309 parm->size[2] = parm->size[0]; 1310 1311 /* align data properly */ 1312 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1313 1314 parm->size[6] = parm->size[0]; 1315 1316 parm->size[0] += ((uint8_t *)parm->xfer_length_ptr) - 1317 ((uint8_t *)0); 1318 1319 /* align data properly */ 1320 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 1321 1322 /* allocate zeroed memory */ 1323 buf = malloc(parm->size[0], M_USB, M_WAITOK | M_ZERO); 1324 #if (USB_HAVE_MALLOC_WAITOK == 0) 1325 if (buf == NULL) { 1326 parm->err = USB_ERR_NOMEM; 1327 DPRINTFN(0, "cannot allocate memory block for " 1328 "configuration (%d bytes)\n", 1329 parm->size[0]); 1330 goto done; 1331 } 1332 #endif 1333 parm->dma_tag_p = USB_ADD_BYTES(buf, parm->size[1]); 1334 parm->dma_page_ptr = USB_ADD_BYTES(buf, parm->size[3]); 1335 parm->dma_page_cache_ptr = USB_ADD_BYTES(buf, parm->size[4]); 1336 parm->xfer_page_cache_ptr = USB_ADD_BYTES(buf, parm->size[5]); 1337 parm->xfer_length_ptr = USB_ADD_BYTES(buf, parm->size[6]); 1338 } 1339 1340 done: 1341 if (buf) { 1342 if (info->setup_refcount == 0) { 1343 /* 1344 * "usbd_transfer_unsetup_sub" will unlock 1345 * the bus mutex before returning ! 1346 */ 1347 USB_BUS_LOCK(info->bus); 1348 1349 /* something went wrong */ 1350 usbd_transfer_unsetup_sub(info, 0); 1351 } 1352 } 1353 1354 /* check if any errors happened */ 1355 if (parm->err) 1356 usbd_transfer_unsetup(ppxfer, n_setup); 1357 1358 error = parm->err; 1359 1360 if (do_unlock) 1361 usbd_ctrl_unlock(udev); 1362 1363 return (error); 1364 } 1365 1366 /*------------------------------------------------------------------------* 1367 * usbd_transfer_unsetup_sub - factored out code 1368 *------------------------------------------------------------------------*/ 1369 static void 1370 usbd_transfer_unsetup_sub(struct usb_xfer_root *info, uint8_t needs_delay) 1371 { 1372 #if USB_HAVE_BUSDMA 1373 struct usb_page_cache *pc; 1374 #endif 1375 1376 USB_BUS_LOCK_ASSERT(info->bus, MA_OWNED); 1377 1378 /* wait for any outstanding DMA operations */ 1379 1380 if (needs_delay) { 1381 usb_timeout_t temp; 1382 temp = usbd_get_dma_delay(info->udev); 1383 if (temp != 0) { 1384 usb_pause_mtx(&info->bus->bus_mtx, 1385 USB_MS_TO_TICKS(temp)); 1386 } 1387 } 1388 1389 /* make sure that our done messages are not queued anywhere */ 1390 usb_proc_mwait(info->done_p, &info->done_m[0], &info->done_m[1]); 1391 1392 USB_BUS_UNLOCK(info->bus); 1393 1394 #if USB_HAVE_BUSDMA 1395 /* free DMA'able memory, if any */ 1396 pc = info->dma_page_cache_start; 1397 while (pc != info->dma_page_cache_end) { 1398 usb_pc_free_mem(pc); 1399 pc++; 1400 } 1401 1402 /* free DMA maps in all "xfer->frbuffers" */ 1403 pc = info->xfer_page_cache_start; 1404 while (pc != info->xfer_page_cache_end) { 1405 usb_pc_dmamap_destroy(pc); 1406 pc++; 1407 } 1408 1409 /* free all DMA tags */ 1410 usb_dma_tag_unsetup(&info->dma_parent_tag); 1411 #endif 1412 1413 cv_destroy(&info->cv_drain); 1414 1415 /* 1416 * free the "memory_base" last, hence the "info" structure is 1417 * contained within the "memory_base"! 1418 */ 1419 free(info->memory_base, M_USB); 1420 } 1421 1422 /*------------------------------------------------------------------------* 1423 * usbd_transfer_unsetup - unsetup/free an array of USB transfers 1424 * 1425 * NOTE: All USB transfers in progress will get called back passing 1426 * the error code "USB_ERR_CANCELLED" before this function 1427 * returns. 1428 *------------------------------------------------------------------------*/ 1429 void 1430 usbd_transfer_unsetup(struct usb_xfer **pxfer, uint16_t n_setup) 1431 { 1432 struct usb_xfer *xfer; 1433 struct usb_xfer_root *info; 1434 uint8_t needs_delay = 0; 1435 1436 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 1437 "usbd_transfer_unsetup can sleep!"); 1438 1439 while (n_setup--) { 1440 xfer = pxfer[n_setup]; 1441 1442 if (xfer == NULL) 1443 continue; 1444 1445 info = xfer->xroot; 1446 1447 USB_XFER_LOCK(xfer); 1448 USB_BUS_LOCK(info->bus); 1449 1450 /* 1451 * HINT: when you start/stop a transfer, it might be a 1452 * good idea to directly use the "pxfer[]" structure: 1453 * 1454 * usbd_transfer_start(sc->pxfer[0]); 1455 * usbd_transfer_stop(sc->pxfer[0]); 1456 * 1457 * That way, if your code has many parts that will not 1458 * stop running under the same lock, in other words 1459 * "xfer_mtx", the usbd_transfer_start and 1460 * usbd_transfer_stop functions will simply return 1461 * when they detect a NULL pointer argument. 1462 * 1463 * To avoid any races we clear the "pxfer[]" pointer 1464 * while holding the private mutex of the driver: 1465 */ 1466 pxfer[n_setup] = NULL; 1467 1468 USB_BUS_UNLOCK(info->bus); 1469 USB_XFER_UNLOCK(xfer); 1470 1471 usbd_transfer_drain(xfer); 1472 1473 #if USB_HAVE_BUSDMA 1474 if (xfer->flags_int.bdma_enable) 1475 needs_delay = 1; 1476 #endif 1477 /* 1478 * NOTE: default endpoint does not have an 1479 * interface, even if endpoint->iface_index == 0 1480 */ 1481 USB_BUS_LOCK(info->bus); 1482 xfer->endpoint->refcount_alloc--; 1483 USB_BUS_UNLOCK(info->bus); 1484 1485 usb_callout_drain(&xfer->timeout_handle); 1486 1487 USB_BUS_LOCK(info->bus); 1488 1489 USB_ASSERT(info->setup_refcount != 0, ("Invalid setup " 1490 "reference count\n")); 1491 1492 info->setup_refcount--; 1493 1494 if (info->setup_refcount == 0) { 1495 usbd_transfer_unsetup_sub(info, 1496 needs_delay); 1497 } else { 1498 USB_BUS_UNLOCK(info->bus); 1499 } 1500 } 1501 } 1502 1503 /*------------------------------------------------------------------------* 1504 * usbd_control_transfer_init - factored out code 1505 * 1506 * In USB Device Mode we have to wait for the SETUP packet which 1507 * containst the "struct usb_device_request" structure, before we can 1508 * transfer any data. In USB Host Mode we already have the SETUP 1509 * packet at the moment the USB transfer is started. This leads us to 1510 * having to setup the USB transfer at two different places in 1511 * time. This function just contains factored out control transfer 1512 * initialisation code, so that we don't duplicate the code. 1513 *------------------------------------------------------------------------*/ 1514 static void 1515 usbd_control_transfer_init(struct usb_xfer *xfer) 1516 { 1517 struct usb_device_request req; 1518 1519 /* copy out the USB request header */ 1520 1521 usbd_copy_out(xfer->frbuffers, 0, &req, sizeof(req)); 1522 1523 /* setup remainder */ 1524 1525 xfer->flags_int.control_rem = UGETW(req.wLength); 1526 1527 /* copy direction to endpoint variable */ 1528 1529 xfer->endpointno &= ~(UE_DIR_IN | UE_DIR_OUT); 1530 xfer->endpointno |= 1531 (req.bmRequestType & UT_READ) ? UE_DIR_IN : UE_DIR_OUT; 1532 } 1533 1534 /*------------------------------------------------------------------------* 1535 * usbd_control_transfer_did_data 1536 * 1537 * This function returns non-zero if a control endpoint has 1538 * transferred the first DATA packet after the SETUP packet. 1539 * Else it returns zero. 1540 *------------------------------------------------------------------------*/ 1541 static uint8_t 1542 usbd_control_transfer_did_data(struct usb_xfer *xfer) 1543 { 1544 struct usb_device_request req; 1545 1546 /* SETUP packet is not yet sent */ 1547 if (xfer->flags_int.control_hdr != 0) 1548 return (0); 1549 1550 /* copy out the USB request header */ 1551 usbd_copy_out(xfer->frbuffers, 0, &req, sizeof(req)); 1552 1553 /* compare remainder to the initial value */ 1554 return (xfer->flags_int.control_rem != UGETW(req.wLength)); 1555 } 1556 1557 /*------------------------------------------------------------------------* 1558 * usbd_setup_ctrl_transfer 1559 * 1560 * This function handles initialisation of control transfers. Control 1561 * transfers are special in that regard that they can both transmit 1562 * and receive data. 1563 * 1564 * Return values: 1565 * 0: Success 1566 * Else: Failure 1567 *------------------------------------------------------------------------*/ 1568 static int 1569 usbd_setup_ctrl_transfer(struct usb_xfer *xfer) 1570 { 1571 usb_frlength_t len; 1572 1573 /* Check for control endpoint stall */ 1574 if (xfer->flags.stall_pipe && xfer->flags_int.control_act) { 1575 /* the control transfer is no longer active */ 1576 xfer->flags_int.control_stall = 1; 1577 xfer->flags_int.control_act = 0; 1578 } else { 1579 /* don't stall control transfer by default */ 1580 xfer->flags_int.control_stall = 0; 1581 } 1582 1583 /* Check for invalid number of frames */ 1584 if (xfer->nframes > 2) { 1585 /* 1586 * If you need to split a control transfer, you 1587 * have to do one part at a time. Only with 1588 * non-control transfers you can do multiple 1589 * parts a time. 1590 */ 1591 DPRINTFN(0, "Too many frames: %u\n", 1592 (unsigned)xfer->nframes); 1593 goto error; 1594 } 1595 1596 /* 1597 * Check if there is a control 1598 * transfer in progress: 1599 */ 1600 if (xfer->flags_int.control_act) { 1601 if (xfer->flags_int.control_hdr) { 1602 /* clear send header flag */ 1603 1604 xfer->flags_int.control_hdr = 0; 1605 1606 /* setup control transfer */ 1607 if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) { 1608 usbd_control_transfer_init(xfer); 1609 } 1610 } 1611 /* get data length */ 1612 1613 len = xfer->sumlen; 1614 1615 } else { 1616 /* the size of the SETUP structure is hardcoded ! */ 1617 1618 if (xfer->frlengths[0] != sizeof(struct usb_device_request)) { 1619 DPRINTFN(0, "Wrong framelength %u != %zu\n", 1620 xfer->frlengths[0], sizeof(struct 1621 usb_device_request)); 1622 goto error; 1623 } 1624 /* check USB mode */ 1625 if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) { 1626 /* check number of frames */ 1627 if (xfer->nframes != 1) { 1628 /* 1629 * We need to receive the setup 1630 * message first so that we know the 1631 * data direction! 1632 */ 1633 DPRINTF("Misconfigured transfer\n"); 1634 goto error; 1635 } 1636 /* 1637 * Set a dummy "control_rem" value. This 1638 * variable will be overwritten later by a 1639 * call to "usbd_control_transfer_init()" ! 1640 */ 1641 xfer->flags_int.control_rem = 0xFFFF; 1642 } else { 1643 /* setup "endpoint" and "control_rem" */ 1644 1645 usbd_control_transfer_init(xfer); 1646 } 1647 1648 /* set transfer-header flag */ 1649 1650 xfer->flags_int.control_hdr = 1; 1651 1652 /* get data length */ 1653 1654 len = (xfer->sumlen - sizeof(struct usb_device_request)); 1655 } 1656 1657 /* update did data flag */ 1658 1659 xfer->flags_int.control_did_data = 1660 usbd_control_transfer_did_data(xfer); 1661 1662 /* check if there is a length mismatch */ 1663 1664 if (len > xfer->flags_int.control_rem) { 1665 DPRINTFN(0, "Length (%d) greater than " 1666 "remaining length (%d)\n", len, 1667 xfer->flags_int.control_rem); 1668 goto error; 1669 } 1670 /* check if we are doing a short transfer */ 1671 1672 if (xfer->flags.force_short_xfer) { 1673 xfer->flags_int.control_rem = 0; 1674 } else { 1675 if ((len != xfer->max_data_length) && 1676 (len != xfer->flags_int.control_rem) && 1677 (xfer->nframes != 1)) { 1678 DPRINTFN(0, "Short control transfer without " 1679 "force_short_xfer set\n"); 1680 goto error; 1681 } 1682 xfer->flags_int.control_rem -= len; 1683 } 1684 1685 /* the status part is executed when "control_act" is 0 */ 1686 1687 if ((xfer->flags_int.control_rem > 0) || 1688 (xfer->flags.manual_status)) { 1689 /* don't execute the STATUS stage yet */ 1690 xfer->flags_int.control_act = 1; 1691 1692 /* sanity check */ 1693 if ((!xfer->flags_int.control_hdr) && 1694 (xfer->nframes == 1)) { 1695 /* 1696 * This is not a valid operation! 1697 */ 1698 DPRINTFN(0, "Invalid parameter " 1699 "combination\n"); 1700 goto error; 1701 } 1702 } else { 1703 /* time to execute the STATUS stage */ 1704 xfer->flags_int.control_act = 0; 1705 } 1706 return (0); /* success */ 1707 1708 error: 1709 return (1); /* failure */ 1710 } 1711 1712 /*------------------------------------------------------------------------* 1713 * usbd_transfer_submit - start USB hardware for the given transfer 1714 * 1715 * This function should only be called from the USB callback. 1716 *------------------------------------------------------------------------*/ 1717 void 1718 usbd_transfer_submit(struct usb_xfer *xfer) 1719 { 1720 struct usb_xfer_root *info; 1721 struct usb_bus *bus; 1722 usb_frcount_t x; 1723 1724 info = xfer->xroot; 1725 bus = info->bus; 1726 1727 DPRINTF("xfer=%p, endpoint=%p, nframes=%d, dir=%s\n", 1728 xfer, xfer->endpoint, xfer->nframes, USB_GET_DATA_ISREAD(xfer) ? 1729 "read" : "write"); 1730 1731 #ifdef USB_DEBUG 1732 if (USB_DEBUG_VAR > 0) { 1733 USB_BUS_LOCK(bus); 1734 1735 usb_dump_endpoint(xfer->endpoint); 1736 1737 USB_BUS_UNLOCK(bus); 1738 } 1739 #endif 1740 1741 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 1742 USB_BUS_LOCK_ASSERT(bus, MA_NOTOWNED); 1743 1744 /* Only open the USB transfer once! */ 1745 if (!xfer->flags_int.open) { 1746 xfer->flags_int.open = 1; 1747 1748 DPRINTF("open\n"); 1749 1750 USB_BUS_LOCK(bus); 1751 (xfer->endpoint->methods->open) (xfer); 1752 USB_BUS_UNLOCK(bus); 1753 } 1754 /* set "transferring" flag */ 1755 xfer->flags_int.transferring = 1; 1756 1757 #if USB_HAVE_POWERD 1758 /* increment power reference */ 1759 usbd_transfer_power_ref(xfer, 1); 1760 #endif 1761 /* 1762 * Check if the transfer is waiting on a queue, most 1763 * frequently the "done_q": 1764 */ 1765 if (xfer->wait_queue) { 1766 USB_BUS_LOCK(bus); 1767 usbd_transfer_dequeue(xfer); 1768 USB_BUS_UNLOCK(bus); 1769 } 1770 /* clear "did_dma_delay" flag */ 1771 xfer->flags_int.did_dma_delay = 0; 1772 1773 /* clear "did_close" flag */ 1774 xfer->flags_int.did_close = 0; 1775 1776 #if USB_HAVE_BUSDMA 1777 /* clear "bdma_setup" flag */ 1778 xfer->flags_int.bdma_setup = 0; 1779 #endif 1780 /* by default we cannot cancel any USB transfer immediately */ 1781 xfer->flags_int.can_cancel_immed = 0; 1782 1783 /* clear lengths and frame counts by default */ 1784 xfer->sumlen = 0; 1785 xfer->actlen = 0; 1786 xfer->aframes = 0; 1787 1788 /* clear any previous errors */ 1789 xfer->error = 0; 1790 1791 /* Check if the device is still alive */ 1792 if (info->udev->state < USB_STATE_POWERED) { 1793 USB_BUS_LOCK(bus); 1794 /* 1795 * Must return cancelled error code else 1796 * device drivers can hang. 1797 */ 1798 usbd_transfer_done(xfer, USB_ERR_CANCELLED); 1799 USB_BUS_UNLOCK(bus); 1800 return; 1801 } 1802 1803 /* sanity check */ 1804 if (xfer->nframes == 0) { 1805 if (xfer->flags.stall_pipe) { 1806 /* 1807 * Special case - want to stall without transferring 1808 * any data: 1809 */ 1810 DPRINTF("xfer=%p nframes=0: stall " 1811 "or clear stall!\n", xfer); 1812 USB_BUS_LOCK(bus); 1813 xfer->flags_int.can_cancel_immed = 1; 1814 /* start the transfer */ 1815 usb_command_wrapper(&xfer->endpoint-> 1816 endpoint_q[xfer->stream_id], xfer); 1817 USB_BUS_UNLOCK(bus); 1818 return; 1819 } 1820 USB_BUS_LOCK(bus); 1821 usbd_transfer_done(xfer, USB_ERR_INVAL); 1822 USB_BUS_UNLOCK(bus); 1823 return; 1824 } 1825 /* compute some variables */ 1826 1827 for (x = 0; x != xfer->nframes; x++) { 1828 /* make a copy of the frlenghts[] */ 1829 xfer->frlengths[x + xfer->max_frame_count] = xfer->frlengths[x]; 1830 /* compute total transfer length */ 1831 xfer->sumlen += xfer->frlengths[x]; 1832 if (xfer->sumlen < xfer->frlengths[x]) { 1833 /* length wrapped around */ 1834 USB_BUS_LOCK(bus); 1835 usbd_transfer_done(xfer, USB_ERR_INVAL); 1836 USB_BUS_UNLOCK(bus); 1837 return; 1838 } 1839 } 1840 1841 /* clear some internal flags */ 1842 1843 xfer->flags_int.short_xfer_ok = 0; 1844 xfer->flags_int.short_frames_ok = 0; 1845 1846 /* check if this is a control transfer */ 1847 1848 if (xfer->flags_int.control_xfr) { 1849 if (usbd_setup_ctrl_transfer(xfer)) { 1850 USB_BUS_LOCK(bus); 1851 usbd_transfer_done(xfer, USB_ERR_STALLED); 1852 USB_BUS_UNLOCK(bus); 1853 return; 1854 } 1855 } 1856 /* 1857 * Setup filtered version of some transfer flags, 1858 * in case of data read direction 1859 */ 1860 if (USB_GET_DATA_ISREAD(xfer)) { 1861 if (xfer->flags.short_frames_ok) { 1862 xfer->flags_int.short_xfer_ok = 1; 1863 xfer->flags_int.short_frames_ok = 1; 1864 } else if (xfer->flags.short_xfer_ok) { 1865 xfer->flags_int.short_xfer_ok = 1; 1866 1867 /* check for control transfer */ 1868 if (xfer->flags_int.control_xfr) { 1869 /* 1870 * 1) Control transfers do not support 1871 * reception of multiple short USB 1872 * frames in host mode and device side 1873 * mode, with exception of: 1874 * 1875 * 2) Due to sometimes buggy device 1876 * side firmware we need to do a 1877 * STATUS stage in case of short 1878 * control transfers in USB host mode. 1879 * The STATUS stage then becomes the 1880 * "alt_next" to the DATA stage. 1881 */ 1882 xfer->flags_int.short_frames_ok = 1; 1883 } 1884 } 1885 } 1886 /* 1887 * Check if BUS-DMA support is enabled and try to load virtual 1888 * buffers into DMA, if any: 1889 */ 1890 #if USB_HAVE_BUSDMA 1891 if (xfer->flags_int.bdma_enable) { 1892 /* insert the USB transfer last in the BUS-DMA queue */ 1893 usb_command_wrapper(&xfer->xroot->dma_q, xfer); 1894 return; 1895 } 1896 #endif 1897 /* 1898 * Enter the USB transfer into the Host Controller or 1899 * Device Controller schedule: 1900 */ 1901 usbd_pipe_enter(xfer); 1902 } 1903 1904 /*------------------------------------------------------------------------* 1905 * usbd_pipe_enter - factored out code 1906 *------------------------------------------------------------------------*/ 1907 void 1908 usbd_pipe_enter(struct usb_xfer *xfer) 1909 { 1910 struct usb_endpoint *ep; 1911 1912 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 1913 1914 USB_BUS_LOCK(xfer->xroot->bus); 1915 1916 ep = xfer->endpoint; 1917 1918 DPRINTF("enter\n"); 1919 1920 /* the transfer can now be cancelled */ 1921 xfer->flags_int.can_cancel_immed = 1; 1922 1923 /* enter the transfer */ 1924 (ep->methods->enter) (xfer); 1925 1926 /* check for transfer error */ 1927 if (xfer->error) { 1928 /* some error has happened */ 1929 usbd_transfer_done(xfer, 0); 1930 USB_BUS_UNLOCK(xfer->xroot->bus); 1931 return; 1932 } 1933 1934 /* start the transfer */ 1935 usb_command_wrapper(&ep->endpoint_q[xfer->stream_id], xfer); 1936 USB_BUS_UNLOCK(xfer->xroot->bus); 1937 } 1938 1939 /*------------------------------------------------------------------------* 1940 * usbd_transfer_start - start an USB transfer 1941 * 1942 * NOTE: Calling this function more than one time will only 1943 * result in a single transfer start, until the USB transfer 1944 * completes. 1945 *------------------------------------------------------------------------*/ 1946 void 1947 usbd_transfer_start(struct usb_xfer *xfer) 1948 { 1949 if (xfer == NULL) { 1950 /* transfer is gone */ 1951 return; 1952 } 1953 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 1954 1955 /* mark the USB transfer started */ 1956 1957 if (!xfer->flags_int.started) { 1958 /* lock the BUS lock to avoid races updating flags_int */ 1959 USB_BUS_LOCK(xfer->xroot->bus); 1960 xfer->flags_int.started = 1; 1961 USB_BUS_UNLOCK(xfer->xroot->bus); 1962 } 1963 /* check if the USB transfer callback is already transferring */ 1964 1965 if (xfer->flags_int.transferring) { 1966 return; 1967 } 1968 USB_BUS_LOCK(xfer->xroot->bus); 1969 /* call the USB transfer callback */ 1970 usbd_callback_ss_done_defer(xfer); 1971 USB_BUS_UNLOCK(xfer->xroot->bus); 1972 } 1973 1974 /*------------------------------------------------------------------------* 1975 * usbd_transfer_stop - stop an USB transfer 1976 * 1977 * NOTE: Calling this function more than one time will only 1978 * result in a single transfer stop. 1979 * NOTE: When this function returns it is not safe to free nor 1980 * reuse any DMA buffers. See "usbd_transfer_drain()". 1981 *------------------------------------------------------------------------*/ 1982 void 1983 usbd_transfer_stop(struct usb_xfer *xfer) 1984 { 1985 struct usb_endpoint *ep; 1986 1987 if (xfer == NULL) { 1988 /* transfer is gone */ 1989 return; 1990 } 1991 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 1992 1993 /* check if the USB transfer was ever opened */ 1994 1995 if (!xfer->flags_int.open) { 1996 if (xfer->flags_int.started) { 1997 /* nothing to do except clearing the "started" flag */ 1998 /* lock the BUS lock to avoid races updating flags_int */ 1999 USB_BUS_LOCK(xfer->xroot->bus); 2000 xfer->flags_int.started = 0; 2001 USB_BUS_UNLOCK(xfer->xroot->bus); 2002 } 2003 return; 2004 } 2005 /* try to stop the current USB transfer */ 2006 2007 USB_BUS_LOCK(xfer->xroot->bus); 2008 /* override any previous error */ 2009 xfer->error = USB_ERR_CANCELLED; 2010 2011 /* 2012 * Clear "open" and "started" when both private and USB lock 2013 * is locked so that we don't get a race updating "flags_int" 2014 */ 2015 xfer->flags_int.open = 0; 2016 xfer->flags_int.started = 0; 2017 2018 /* 2019 * Check if we can cancel the USB transfer immediately. 2020 */ 2021 if (xfer->flags_int.transferring) { 2022 if (xfer->flags_int.can_cancel_immed && 2023 (!xfer->flags_int.did_close)) { 2024 DPRINTF("close\n"); 2025 /* 2026 * The following will lead to an USB_ERR_CANCELLED 2027 * error code being passed to the USB callback. 2028 */ 2029 (xfer->endpoint->methods->close) (xfer); 2030 /* only close once */ 2031 xfer->flags_int.did_close = 1; 2032 } else { 2033 /* need to wait for the next done callback */ 2034 } 2035 } else { 2036 DPRINTF("close\n"); 2037 2038 /* close here and now */ 2039 (xfer->endpoint->methods->close) (xfer); 2040 2041 /* 2042 * Any additional DMA delay is done by 2043 * "usbd_transfer_unsetup()". 2044 */ 2045 2046 /* 2047 * Special case. Check if we need to restart a blocked 2048 * endpoint. 2049 */ 2050 ep = xfer->endpoint; 2051 2052 /* 2053 * If the current USB transfer is completing we need 2054 * to start the next one: 2055 */ 2056 if (ep->endpoint_q[xfer->stream_id].curr == xfer) { 2057 usb_command_wrapper( 2058 &ep->endpoint_q[xfer->stream_id], NULL); 2059 } 2060 } 2061 2062 USB_BUS_UNLOCK(xfer->xroot->bus); 2063 } 2064 2065 /*------------------------------------------------------------------------* 2066 * usbd_transfer_pending 2067 * 2068 * This function will check if an USB transfer is pending which is a 2069 * little bit complicated! 2070 * Return values: 2071 * 0: Not pending 2072 * 1: Pending: The USB transfer will receive a callback in the future. 2073 *------------------------------------------------------------------------*/ 2074 uint8_t 2075 usbd_transfer_pending(struct usb_xfer *xfer) 2076 { 2077 struct usb_xfer_root *info; 2078 struct usb_xfer_queue *pq; 2079 2080 if (xfer == NULL) { 2081 /* transfer is gone */ 2082 return (0); 2083 } 2084 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 2085 2086 if (xfer->flags_int.transferring) { 2087 /* trivial case */ 2088 return (1); 2089 } 2090 USB_BUS_LOCK(xfer->xroot->bus); 2091 if (xfer->wait_queue) { 2092 /* we are waiting on a queue somewhere */ 2093 USB_BUS_UNLOCK(xfer->xroot->bus); 2094 return (1); 2095 } 2096 info = xfer->xroot; 2097 pq = &info->done_q; 2098 2099 if (pq->curr == xfer) { 2100 /* we are currently scheduled for callback */ 2101 USB_BUS_UNLOCK(xfer->xroot->bus); 2102 return (1); 2103 } 2104 /* we are not pending */ 2105 USB_BUS_UNLOCK(xfer->xroot->bus); 2106 return (0); 2107 } 2108 2109 /*------------------------------------------------------------------------* 2110 * usbd_transfer_drain 2111 * 2112 * This function will stop the USB transfer and wait for any 2113 * additional BUS-DMA and HW-DMA operations to complete. Buffers that 2114 * are loaded into DMA can safely be freed or reused after that this 2115 * function has returned. 2116 *------------------------------------------------------------------------*/ 2117 void 2118 usbd_transfer_drain(struct usb_xfer *xfer) 2119 { 2120 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2121 "usbd_transfer_drain can sleep!"); 2122 2123 if (xfer == NULL) { 2124 /* transfer is gone */ 2125 return; 2126 } 2127 if (xfer->xroot->xfer_mtx != &Giant) { 2128 USB_XFER_LOCK_ASSERT(xfer, MA_NOTOWNED); 2129 } 2130 USB_XFER_LOCK(xfer); 2131 2132 usbd_transfer_stop(xfer); 2133 2134 while (usbd_transfer_pending(xfer) || 2135 xfer->flags_int.doing_callback) { 2136 /* 2137 * It is allowed that the callback can drop its 2138 * transfer mutex. In that case checking only 2139 * "usbd_transfer_pending()" is not enough to tell if 2140 * the USB transfer is fully drained. We also need to 2141 * check the internal "doing_callback" flag. 2142 */ 2143 xfer->flags_int.draining = 1; 2144 2145 /* 2146 * Wait until the current outstanding USB 2147 * transfer is complete ! 2148 */ 2149 cv_wait(&xfer->xroot->cv_drain, xfer->xroot->xfer_mtx); 2150 } 2151 USB_XFER_UNLOCK(xfer); 2152 } 2153 2154 struct usb_page_cache * 2155 usbd_xfer_get_frame(struct usb_xfer *xfer, usb_frcount_t frindex) 2156 { 2157 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2158 2159 return (&xfer->frbuffers[frindex]); 2160 } 2161 2162 void * 2163 usbd_xfer_get_frame_buffer(struct usb_xfer *xfer, usb_frcount_t frindex) 2164 { 2165 struct usb_page_search page_info; 2166 2167 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2168 2169 usbd_get_page(&xfer->frbuffers[frindex], 0, &page_info); 2170 return (page_info.buffer); 2171 } 2172 2173 /*------------------------------------------------------------------------* 2174 * usbd_xfer_get_fps_shift 2175 * 2176 * The following function is only useful for isochronous transfers. It 2177 * returns how many times the frame execution rate has been shifted 2178 * down. 2179 * 2180 * Return value: 2181 * Success: 0..3 2182 * Failure: 0 2183 *------------------------------------------------------------------------*/ 2184 uint8_t 2185 usbd_xfer_get_fps_shift(struct usb_xfer *xfer) 2186 { 2187 return (xfer->fps_shift); 2188 } 2189 2190 usb_frlength_t 2191 usbd_xfer_frame_len(struct usb_xfer *xfer, usb_frcount_t frindex) 2192 { 2193 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2194 2195 return (xfer->frlengths[frindex]); 2196 } 2197 2198 /*------------------------------------------------------------------------* 2199 * usbd_xfer_set_frame_data 2200 * 2201 * This function sets the pointer of the buffer that should 2202 * loaded directly into DMA for the given USB frame. Passing "ptr" 2203 * equal to NULL while the corresponding "frlength" is greater 2204 * than zero gives undefined results! 2205 *------------------------------------------------------------------------*/ 2206 void 2207 usbd_xfer_set_frame_data(struct usb_xfer *xfer, usb_frcount_t frindex, 2208 void *ptr, usb_frlength_t len) 2209 { 2210 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2211 2212 /* set virtual address to load and length */ 2213 xfer->frbuffers[frindex].buffer = ptr; 2214 usbd_xfer_set_frame_len(xfer, frindex, len); 2215 } 2216 2217 void 2218 usbd_xfer_frame_data(struct usb_xfer *xfer, usb_frcount_t frindex, 2219 void **ptr, int *len) 2220 { 2221 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2222 2223 if (ptr != NULL) 2224 *ptr = xfer->frbuffers[frindex].buffer; 2225 if (len != NULL) 2226 *len = xfer->frlengths[frindex]; 2227 } 2228 2229 /*------------------------------------------------------------------------* 2230 * usbd_xfer_old_frame_length 2231 * 2232 * This function returns the framelength of the given frame at the 2233 * time the transfer was submitted. This function can be used to 2234 * compute the starting data pointer of the next isochronous frame 2235 * when an isochronous transfer has completed. 2236 *------------------------------------------------------------------------*/ 2237 usb_frlength_t 2238 usbd_xfer_old_frame_length(struct usb_xfer *xfer, usb_frcount_t frindex) 2239 { 2240 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2241 2242 return (xfer->frlengths[frindex + xfer->max_frame_count]); 2243 } 2244 2245 void 2246 usbd_xfer_status(struct usb_xfer *xfer, int *actlen, int *sumlen, int *aframes, 2247 int *nframes) 2248 { 2249 if (actlen != NULL) 2250 *actlen = xfer->actlen; 2251 if (sumlen != NULL) 2252 *sumlen = xfer->sumlen; 2253 if (aframes != NULL) 2254 *aframes = xfer->aframes; 2255 if (nframes != NULL) 2256 *nframes = xfer->nframes; 2257 } 2258 2259 /*------------------------------------------------------------------------* 2260 * usbd_xfer_set_frame_offset 2261 * 2262 * This function sets the frame data buffer offset relative to the beginning 2263 * of the USB DMA buffer allocated for this USB transfer. 2264 *------------------------------------------------------------------------*/ 2265 void 2266 usbd_xfer_set_frame_offset(struct usb_xfer *xfer, usb_frlength_t offset, 2267 usb_frcount_t frindex) 2268 { 2269 KASSERT(!xfer->flags.ext_buffer, ("Cannot offset data frame " 2270 "when the USB buffer is external\n")); 2271 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2272 2273 /* set virtual address to load */ 2274 xfer->frbuffers[frindex].buffer = 2275 USB_ADD_BYTES(xfer->local_buffer, offset); 2276 } 2277 2278 void 2279 usbd_xfer_set_interval(struct usb_xfer *xfer, int i) 2280 { 2281 xfer->interval = i; 2282 } 2283 2284 void 2285 usbd_xfer_set_timeout(struct usb_xfer *xfer, int t) 2286 { 2287 xfer->timeout = t; 2288 } 2289 2290 void 2291 usbd_xfer_set_frames(struct usb_xfer *xfer, usb_frcount_t n) 2292 { 2293 xfer->nframes = n; 2294 } 2295 2296 usb_frcount_t 2297 usbd_xfer_max_frames(struct usb_xfer *xfer) 2298 { 2299 return (xfer->max_frame_count); 2300 } 2301 2302 usb_frlength_t 2303 usbd_xfer_max_len(struct usb_xfer *xfer) 2304 { 2305 return (xfer->max_data_length); 2306 } 2307 2308 usb_frlength_t 2309 usbd_xfer_max_framelen(struct usb_xfer *xfer) 2310 { 2311 return (xfer->max_frame_size); 2312 } 2313 2314 void 2315 usbd_xfer_set_frame_len(struct usb_xfer *xfer, usb_frcount_t frindex, 2316 usb_frlength_t len) 2317 { 2318 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2319 2320 xfer->frlengths[frindex] = len; 2321 } 2322 2323 /*------------------------------------------------------------------------* 2324 * usb_callback_proc - factored out code 2325 * 2326 * This function performs USB callbacks. 2327 *------------------------------------------------------------------------*/ 2328 static void 2329 usb_callback_proc(struct usb_proc_msg *_pm) 2330 { 2331 struct usb_done_msg *pm = (void *)_pm; 2332 struct usb_xfer_root *info = pm->xroot; 2333 2334 /* Change locking order */ 2335 USB_BUS_UNLOCK(info->bus); 2336 2337 /* 2338 * We exploit the fact that the mutex is the same for all 2339 * callbacks that will be called from this thread: 2340 */ 2341 USB_MTX_LOCK(info->xfer_mtx); 2342 USB_BUS_LOCK(info->bus); 2343 2344 /* Continue where we lost track */ 2345 usb_command_wrapper(&info->done_q, 2346 info->done_q.curr); 2347 2348 USB_MTX_UNLOCK(info->xfer_mtx); 2349 } 2350 2351 /*------------------------------------------------------------------------* 2352 * usbd_callback_ss_done_defer 2353 * 2354 * This function will defer the start, stop and done callback to the 2355 * correct thread. 2356 *------------------------------------------------------------------------*/ 2357 static void 2358 usbd_callback_ss_done_defer(struct usb_xfer *xfer) 2359 { 2360 struct usb_xfer_root *info = xfer->xroot; 2361 struct usb_xfer_queue *pq = &info->done_q; 2362 2363 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2364 2365 if (pq->curr != xfer) { 2366 usbd_transfer_enqueue(pq, xfer); 2367 } 2368 if (!pq->recurse_1) { 2369 /* 2370 * We have to postpone the callback due to the fact we 2371 * will have a Lock Order Reversal, LOR, if we try to 2372 * proceed ! 2373 */ 2374 (void) usb_proc_msignal(info->done_p, 2375 &info->done_m[0], &info->done_m[1]); 2376 } else { 2377 /* clear second recurse flag */ 2378 pq->recurse_2 = 0; 2379 } 2380 return; 2381 2382 } 2383 2384 /*------------------------------------------------------------------------* 2385 * usbd_callback_wrapper 2386 * 2387 * This is a wrapper for USB callbacks. This wrapper does some 2388 * auto-magic things like figuring out if we can call the callback 2389 * directly from the current context or if we need to wakeup the 2390 * interrupt process. 2391 *------------------------------------------------------------------------*/ 2392 static void 2393 usbd_callback_wrapper(struct usb_xfer_queue *pq) 2394 { 2395 struct usb_xfer *xfer = pq->curr; 2396 struct usb_xfer_root *info = xfer->xroot; 2397 2398 USB_BUS_LOCK_ASSERT(info->bus, MA_OWNED); 2399 if ((pq->recurse_3 != 0 || mtx_owned(info->xfer_mtx) == 0) && 2400 USB_IN_POLLING_MODE_FUNC() == 0) { 2401 /* 2402 * Cases that end up here: 2403 * 2404 * 5) HW interrupt done callback or other source. 2405 * 6) HW completed transfer during callback 2406 */ 2407 DPRINTFN(3, "case 5 and 6\n"); 2408 2409 /* 2410 * We have to postpone the callback due to the fact we 2411 * will have a Lock Order Reversal, LOR, if we try to 2412 * proceed! 2413 * 2414 * Postponing the callback also ensures that other USB 2415 * transfer queues get a chance. 2416 */ 2417 (void) usb_proc_msignal(info->done_p, 2418 &info->done_m[0], &info->done_m[1]); 2419 return; 2420 } 2421 /* 2422 * Cases that end up here: 2423 * 2424 * 1) We are starting a transfer 2425 * 2) We are prematurely calling back a transfer 2426 * 3) We are stopping a transfer 2427 * 4) We are doing an ordinary callback 2428 */ 2429 DPRINTFN(3, "case 1-4\n"); 2430 /* get next USB transfer in the queue */ 2431 info->done_q.curr = NULL; 2432 2433 /* set flag in case of drain */ 2434 xfer->flags_int.doing_callback = 1; 2435 2436 USB_BUS_UNLOCK(info->bus); 2437 USB_BUS_LOCK_ASSERT(info->bus, MA_NOTOWNED); 2438 2439 /* set correct USB state for callback */ 2440 if (!xfer->flags_int.transferring) { 2441 xfer->usb_state = USB_ST_SETUP; 2442 if (!xfer->flags_int.started) { 2443 /* we got stopped before we even got started */ 2444 USB_BUS_LOCK(info->bus); 2445 goto done; 2446 } 2447 } else { 2448 if (usbd_callback_wrapper_sub(xfer)) { 2449 /* the callback has been deferred */ 2450 USB_BUS_LOCK(info->bus); 2451 goto done; 2452 } 2453 #if USB_HAVE_POWERD 2454 /* decrement power reference */ 2455 usbd_transfer_power_ref(xfer, -1); 2456 #endif 2457 xfer->flags_int.transferring = 0; 2458 2459 if (xfer->error) { 2460 xfer->usb_state = USB_ST_ERROR; 2461 } else { 2462 /* set transferred state */ 2463 xfer->usb_state = USB_ST_TRANSFERRED; 2464 #if USB_HAVE_BUSDMA 2465 /* sync DMA memory, if any */ 2466 if (xfer->flags_int.bdma_enable && 2467 (!xfer->flags_int.bdma_no_post_sync)) { 2468 usb_bdma_post_sync(xfer); 2469 } 2470 #endif 2471 } 2472 } 2473 2474 #if USB_HAVE_PF 2475 if (xfer->usb_state != USB_ST_SETUP) { 2476 USB_BUS_LOCK(info->bus); 2477 usbpf_xfertap(xfer, USBPF_XFERTAP_DONE); 2478 USB_BUS_UNLOCK(info->bus); 2479 } 2480 #endif 2481 /* call processing routine */ 2482 (xfer->callback) (xfer, xfer->error); 2483 2484 /* pickup the USB mutex again */ 2485 USB_BUS_LOCK(info->bus); 2486 2487 /* 2488 * Check if we got started after that we got cancelled, but 2489 * before we managed to do the callback. 2490 */ 2491 if ((!xfer->flags_int.open) && 2492 (xfer->flags_int.started) && 2493 (xfer->usb_state == USB_ST_ERROR)) { 2494 /* clear flag in case of drain */ 2495 xfer->flags_int.doing_callback = 0; 2496 /* try to loop, but not recursivly */ 2497 usb_command_wrapper(&info->done_q, xfer); 2498 return; 2499 } 2500 2501 done: 2502 /* clear flag in case of drain */ 2503 xfer->flags_int.doing_callback = 0; 2504 2505 /* 2506 * Check if we are draining. 2507 */ 2508 if (xfer->flags_int.draining && 2509 (!xfer->flags_int.transferring)) { 2510 /* "usbd_transfer_drain()" is waiting for end of transfer */ 2511 xfer->flags_int.draining = 0; 2512 cv_broadcast(&info->cv_drain); 2513 } 2514 2515 /* do the next callback, if any */ 2516 usb_command_wrapper(&info->done_q, 2517 info->done_q.curr); 2518 } 2519 2520 /*------------------------------------------------------------------------* 2521 * usb_dma_delay_done_cb 2522 * 2523 * This function is called when the DMA delay has been exectuded, and 2524 * will make sure that the callback is called to complete the USB 2525 * transfer. This code path is usually only used when there is an USB 2526 * error like USB_ERR_CANCELLED. 2527 *------------------------------------------------------------------------*/ 2528 void 2529 usb_dma_delay_done_cb(struct usb_xfer *xfer) 2530 { 2531 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2532 2533 DPRINTFN(3, "Completed %p\n", xfer); 2534 2535 /* queue callback for execution, again */ 2536 usbd_transfer_done(xfer, 0); 2537 } 2538 2539 /*------------------------------------------------------------------------* 2540 * usbd_transfer_dequeue 2541 * 2542 * - This function is used to remove an USB transfer from a USB 2543 * transfer queue. 2544 * 2545 * - This function can be called multiple times in a row. 2546 *------------------------------------------------------------------------*/ 2547 void 2548 usbd_transfer_dequeue(struct usb_xfer *xfer) 2549 { 2550 struct usb_xfer_queue *pq; 2551 2552 pq = xfer->wait_queue; 2553 if (pq) { 2554 TAILQ_REMOVE(&pq->head, xfer, wait_entry); 2555 xfer->wait_queue = NULL; 2556 } 2557 } 2558 2559 /*------------------------------------------------------------------------* 2560 * usbd_transfer_enqueue 2561 * 2562 * - This function is used to insert an USB transfer into a USB * 2563 * transfer queue. 2564 * 2565 * - This function can be called multiple times in a row. 2566 *------------------------------------------------------------------------*/ 2567 void 2568 usbd_transfer_enqueue(struct usb_xfer_queue *pq, struct usb_xfer *xfer) 2569 { 2570 /* 2571 * Insert the USB transfer into the queue, if it is not 2572 * already on a USB transfer queue: 2573 */ 2574 if (xfer->wait_queue == NULL) { 2575 xfer->wait_queue = pq; 2576 TAILQ_INSERT_TAIL(&pq->head, xfer, wait_entry); 2577 } 2578 } 2579 2580 /*------------------------------------------------------------------------* 2581 * usbd_transfer_done 2582 * 2583 * - This function is used to remove an USB transfer from the busdma, 2584 * pipe or interrupt queue. 2585 * 2586 * - This function is used to queue the USB transfer on the done 2587 * queue. 2588 * 2589 * - This function is used to stop any USB transfer timeouts. 2590 *------------------------------------------------------------------------*/ 2591 void 2592 usbd_transfer_done(struct usb_xfer *xfer, usb_error_t error) 2593 { 2594 struct usb_xfer_root *info = xfer->xroot; 2595 2596 USB_BUS_LOCK_ASSERT(info->bus, MA_OWNED); 2597 2598 DPRINTF("err=%s\n", usbd_errstr(error)); 2599 2600 /* 2601 * If we are not transferring then just return. 2602 * This can happen during transfer cancel. 2603 */ 2604 if (!xfer->flags_int.transferring) { 2605 DPRINTF("not transferring\n"); 2606 /* end of control transfer, if any */ 2607 xfer->flags_int.control_act = 0; 2608 return; 2609 } 2610 /* only set transfer error, if not already set */ 2611 if (xfer->error == USB_ERR_NORMAL_COMPLETION) 2612 xfer->error = error; 2613 2614 /* stop any callouts */ 2615 usb_callout_stop(&xfer->timeout_handle); 2616 2617 /* 2618 * If we are waiting on a queue, just remove the USB transfer 2619 * from the queue, if any. We should have the required locks 2620 * locked to do the remove when this function is called. 2621 */ 2622 usbd_transfer_dequeue(xfer); 2623 2624 #if USB_HAVE_BUSDMA 2625 if (mtx_owned(info->xfer_mtx)) { 2626 struct usb_xfer_queue *pq; 2627 2628 /* 2629 * If the private USB lock is not locked, then we assume 2630 * that the BUS-DMA load stage has been passed: 2631 */ 2632 pq = &info->dma_q; 2633 2634 if (pq->curr == xfer) { 2635 /* start the next BUS-DMA load, if any */ 2636 usb_command_wrapper(pq, NULL); 2637 } 2638 } 2639 #endif 2640 /* keep some statistics */ 2641 if (xfer->error == USB_ERR_CANCELLED) { 2642 info->udev->stats_cancelled.uds_requests 2643 [xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE]++; 2644 } else if (xfer->error != USB_ERR_NORMAL_COMPLETION) { 2645 info->udev->stats_err.uds_requests 2646 [xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE]++; 2647 } else { 2648 info->udev->stats_ok.uds_requests 2649 [xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE]++; 2650 } 2651 2652 /* call the USB transfer callback */ 2653 usbd_callback_ss_done_defer(xfer); 2654 } 2655 2656 /*------------------------------------------------------------------------* 2657 * usbd_transfer_start_cb 2658 * 2659 * This function is called to start the USB transfer when 2660 * "xfer->interval" is greater than zero, and and the endpoint type is 2661 * BULK or CONTROL. 2662 *------------------------------------------------------------------------*/ 2663 static void 2664 usbd_transfer_start_cb(void *arg) 2665 { 2666 struct usb_xfer *xfer = arg; 2667 struct usb_endpoint *ep = xfer->endpoint; 2668 2669 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2670 2671 DPRINTF("start\n"); 2672 2673 #if USB_HAVE_PF 2674 usbpf_xfertap(xfer, USBPF_XFERTAP_SUBMIT); 2675 #endif 2676 2677 /* the transfer can now be cancelled */ 2678 xfer->flags_int.can_cancel_immed = 1; 2679 2680 /* start USB transfer, if no error */ 2681 if (xfer->error == 0) 2682 (ep->methods->start) (xfer); 2683 2684 /* check for transfer error */ 2685 if (xfer->error) { 2686 /* some error has happened */ 2687 usbd_transfer_done(xfer, 0); 2688 } 2689 } 2690 2691 /*------------------------------------------------------------------------* 2692 * usbd_xfer_set_zlp 2693 * 2694 * This function sets the USB transfers ZLP flag. 2695 *------------------------------------------------------------------------*/ 2696 void 2697 usbd_xfer_set_zlp(struct usb_xfer *xfer) 2698 { 2699 if (xfer == NULL) { 2700 /* tearing down */ 2701 return; 2702 } 2703 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 2704 2705 /* avoid any races by locking the USB mutex */ 2706 USB_BUS_LOCK(xfer->xroot->bus); 2707 xfer->flags.send_zlp = 1; 2708 USB_BUS_UNLOCK(xfer->xroot->bus); 2709 } 2710 2711 /*------------------------------------------------------------------------* 2712 * usbd_xfer_get_and_clr_zlp 2713 * 2714 * This function gets and clears the USB transfers ZLP flag and 2715 * queues a zero-length USB transfer if the flag was set. 2716 *------------------------------------------------------------------------*/ 2717 uint8_t 2718 usbd_xfer_get_and_clr_zlp(struct usb_xfer *xfer) 2719 { 2720 uint8_t retval; 2721 2722 if (xfer == NULL) { 2723 /* tearing down */ 2724 return (0); 2725 } 2726 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 2727 2728 retval = xfer->flags.send_zlp; 2729 2730 if (retval != 0) { 2731 DPRINTFN(1, "Sending zero-length packet.\n"); 2732 2733 /* avoid any races by locking the USB mutex */ 2734 USB_BUS_LOCK(xfer->xroot->bus); 2735 xfer->flags.send_zlp = 0; 2736 USB_BUS_UNLOCK(xfer->xroot->bus); 2737 2738 /* queue up a zero-length packet */ 2739 usbd_xfer_set_frame_len(xfer, 0, 0); 2740 usbd_xfer_set_frames(xfer, 1); 2741 usbd_transfer_submit(xfer); 2742 } 2743 return (retval); 2744 } 2745 2746 /*------------------------------------------------------------------------* 2747 * usbd_xfer_set_stall 2748 * 2749 * This function is used to set the stall flag outside the 2750 * callback. This function is NULL safe. 2751 *------------------------------------------------------------------------*/ 2752 void 2753 usbd_xfer_set_stall(struct usb_xfer *xfer) 2754 { 2755 if (xfer == NULL) { 2756 /* tearing down */ 2757 return; 2758 } 2759 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 2760 2761 /* avoid any races by locking the USB mutex */ 2762 USB_BUS_LOCK(xfer->xroot->bus); 2763 xfer->flags.stall_pipe = 1; 2764 USB_BUS_UNLOCK(xfer->xroot->bus); 2765 } 2766 2767 int 2768 usbd_xfer_is_stalled(struct usb_xfer *xfer) 2769 { 2770 return (xfer->endpoint->is_stalled); 2771 } 2772 2773 /*------------------------------------------------------------------------* 2774 * usbd_transfer_clear_stall 2775 * 2776 * This function is used to clear the stall flag outside the 2777 * callback. This function is NULL safe. 2778 *------------------------------------------------------------------------*/ 2779 void 2780 usbd_transfer_clear_stall(struct usb_xfer *xfer) 2781 { 2782 if (xfer == NULL) { 2783 /* tearing down */ 2784 return; 2785 } 2786 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 2787 2788 /* avoid any races by locking the USB mutex */ 2789 USB_BUS_LOCK(xfer->xroot->bus); 2790 xfer->flags.stall_pipe = 0; 2791 USB_BUS_UNLOCK(xfer->xroot->bus); 2792 } 2793 2794 /*------------------------------------------------------------------------* 2795 * usbd_pipe_start 2796 * 2797 * This function is used to add an USB transfer to the pipe transfer list. 2798 *------------------------------------------------------------------------*/ 2799 void 2800 usbd_pipe_start(struct usb_xfer_queue *pq) 2801 { 2802 struct usb_endpoint *ep; 2803 struct usb_xfer *xfer; 2804 uint8_t type; 2805 2806 xfer = pq->curr; 2807 ep = xfer->endpoint; 2808 2809 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2810 2811 /* 2812 * If the endpoint is already stalled we do nothing ! 2813 */ 2814 if (ep->is_stalled) { 2815 return; 2816 } 2817 /* 2818 * Check if we are supposed to stall the endpoint: 2819 */ 2820 if (xfer->flags.stall_pipe) { 2821 struct usb_device *udev; 2822 struct usb_xfer_root *info; 2823 2824 /* clear stall command */ 2825 xfer->flags.stall_pipe = 0; 2826 2827 /* get pointer to USB device */ 2828 info = xfer->xroot; 2829 udev = info->udev; 2830 2831 /* 2832 * Only stall BULK and INTERRUPT endpoints. 2833 */ 2834 type = (ep->edesc->bmAttributes & UE_XFERTYPE); 2835 if ((type == UE_BULK) || 2836 (type == UE_INTERRUPT)) { 2837 uint8_t did_stall; 2838 2839 did_stall = 1; 2840 2841 if (udev->flags.usb_mode == USB_MODE_DEVICE) { 2842 (udev->bus->methods->set_stall) ( 2843 udev, ep, &did_stall); 2844 } else if (udev->ctrl_xfer[1]) { 2845 info = udev->ctrl_xfer[1]->xroot; 2846 usb_proc_msignal( 2847 USB_BUS_CS_PROC(info->bus), 2848 &udev->cs_msg[0], &udev->cs_msg[1]); 2849 } else { 2850 /* should not happen */ 2851 DPRINTFN(0, "No stall handler\n"); 2852 } 2853 /* 2854 * Check if we should stall. Some USB hardware 2855 * handles set- and clear-stall in hardware. 2856 */ 2857 if (did_stall) { 2858 /* 2859 * The transfer will be continued when 2860 * the clear-stall control endpoint 2861 * message is received. 2862 */ 2863 ep->is_stalled = 1; 2864 return; 2865 } 2866 } else if (type == UE_ISOCHRONOUS) { 2867 /* 2868 * Make sure any FIFO overflow or other FIFO 2869 * error conditions go away by resetting the 2870 * endpoint FIFO through the clear stall 2871 * method. 2872 */ 2873 if (udev->flags.usb_mode == USB_MODE_DEVICE) { 2874 (udev->bus->methods->clear_stall) (udev, ep); 2875 } 2876 } 2877 } 2878 /* Set or clear stall complete - special case */ 2879 if (xfer->nframes == 0) { 2880 /* we are complete */ 2881 xfer->aframes = 0; 2882 usbd_transfer_done(xfer, 0); 2883 return; 2884 } 2885 /* 2886 * Handled cases: 2887 * 2888 * 1) Start the first transfer queued. 2889 * 2890 * 2) Re-start the current USB transfer. 2891 */ 2892 /* 2893 * Check if there should be any 2894 * pre transfer start delay: 2895 */ 2896 if (xfer->interval > 0) { 2897 type = (ep->edesc->bmAttributes & UE_XFERTYPE); 2898 if ((type == UE_BULK) || 2899 (type == UE_CONTROL)) { 2900 usbd_transfer_timeout_ms(xfer, 2901 &usbd_transfer_start_cb, 2902 xfer->interval); 2903 return; 2904 } 2905 } 2906 DPRINTF("start\n"); 2907 2908 #if USB_HAVE_PF 2909 usbpf_xfertap(xfer, USBPF_XFERTAP_SUBMIT); 2910 #endif 2911 /* the transfer can now be cancelled */ 2912 xfer->flags_int.can_cancel_immed = 1; 2913 2914 /* start USB transfer, if no error */ 2915 if (xfer->error == 0) 2916 (ep->methods->start) (xfer); 2917 2918 /* check for transfer error */ 2919 if (xfer->error) { 2920 /* some error has happened */ 2921 usbd_transfer_done(xfer, 0); 2922 } 2923 } 2924 2925 /*------------------------------------------------------------------------* 2926 * usbd_transfer_timeout_ms 2927 * 2928 * This function is used to setup a timeout on the given USB 2929 * transfer. If the timeout has been deferred the callback given by 2930 * "cb" will get called after "ms" milliseconds. 2931 *------------------------------------------------------------------------*/ 2932 void 2933 usbd_transfer_timeout_ms(struct usb_xfer *xfer, 2934 void (*cb) (void *arg), usb_timeout_t ms) 2935 { 2936 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2937 2938 /* defer delay */ 2939 usb_callout_reset(&xfer->timeout_handle, 2940 USB_MS_TO_TICKS(ms) + USB_CALLOUT_ZERO_TICKS, cb, xfer); 2941 } 2942 2943 /*------------------------------------------------------------------------* 2944 * usbd_callback_wrapper_sub 2945 * 2946 * - This function will update variables in an USB transfer after 2947 * that the USB transfer is complete. 2948 * 2949 * - This function is used to start the next USB transfer on the 2950 * ep transfer queue, if any. 2951 * 2952 * NOTE: In some special cases the USB transfer will not be removed from 2953 * the pipe queue, but remain first. To enforce USB transfer removal call 2954 * this function passing the error code "USB_ERR_CANCELLED". 2955 * 2956 * Return values: 2957 * 0: Success. 2958 * Else: The callback has been deferred. 2959 *------------------------------------------------------------------------*/ 2960 static uint8_t 2961 usbd_callback_wrapper_sub(struct usb_xfer *xfer) 2962 { 2963 struct usb_endpoint *ep; 2964 struct usb_bus *bus; 2965 usb_frcount_t x; 2966 2967 bus = xfer->xroot->bus; 2968 2969 if ((!xfer->flags_int.open) && 2970 (!xfer->flags_int.did_close)) { 2971 DPRINTF("close\n"); 2972 USB_BUS_LOCK(bus); 2973 (xfer->endpoint->methods->close) (xfer); 2974 USB_BUS_UNLOCK(bus); 2975 /* only close once */ 2976 xfer->flags_int.did_close = 1; 2977 return (1); /* wait for new callback */ 2978 } 2979 /* 2980 * If we have a non-hardware induced error we 2981 * need to do the DMA delay! 2982 */ 2983 if (xfer->error != 0 && !xfer->flags_int.did_dma_delay && 2984 (xfer->error == USB_ERR_CANCELLED || 2985 xfer->error == USB_ERR_TIMEOUT || 2986 bus->methods->start_dma_delay != NULL)) { 2987 usb_timeout_t temp; 2988 2989 /* only delay once */ 2990 xfer->flags_int.did_dma_delay = 1; 2991 2992 /* we can not cancel this delay */ 2993 xfer->flags_int.can_cancel_immed = 0; 2994 2995 temp = usbd_get_dma_delay(xfer->xroot->udev); 2996 2997 DPRINTFN(3, "DMA delay, %u ms, " 2998 "on %p\n", temp, xfer); 2999 3000 if (temp != 0) { 3001 USB_BUS_LOCK(bus); 3002 /* 3003 * Some hardware solutions have dedicated 3004 * events when it is safe to free DMA'ed 3005 * memory. For the other hardware platforms we 3006 * use a static delay. 3007 */ 3008 if (bus->methods->start_dma_delay != NULL) { 3009 (bus->methods->start_dma_delay) (xfer); 3010 } else { 3011 usbd_transfer_timeout_ms(xfer, 3012 (void (*)(void *))&usb_dma_delay_done_cb, 3013 temp); 3014 } 3015 USB_BUS_UNLOCK(bus); 3016 return (1); /* wait for new callback */ 3017 } 3018 } 3019 /* check actual number of frames */ 3020 if (xfer->aframes > xfer->nframes) { 3021 if (xfer->error == 0) { 3022 panic("%s: actual number of frames, %d, is " 3023 "greater than initial number of frames, %d\n", 3024 __FUNCTION__, xfer->aframes, xfer->nframes); 3025 } else { 3026 /* just set some valid value */ 3027 xfer->aframes = xfer->nframes; 3028 } 3029 } 3030 /* compute actual length */ 3031 xfer->actlen = 0; 3032 3033 for (x = 0; x != xfer->aframes; x++) { 3034 xfer->actlen += xfer->frlengths[x]; 3035 } 3036 3037 /* 3038 * Frames that were not transferred get zero actual length in 3039 * case the USB device driver does not check the actual number 3040 * of frames transferred, "xfer->aframes": 3041 */ 3042 for (; x < xfer->nframes; x++) { 3043 usbd_xfer_set_frame_len(xfer, x, 0); 3044 } 3045 3046 /* check actual length */ 3047 if (xfer->actlen > xfer->sumlen) { 3048 if (xfer->error == 0) { 3049 panic("%s: actual length, %d, is greater than " 3050 "initial length, %d\n", 3051 __FUNCTION__, xfer->actlen, xfer->sumlen); 3052 } else { 3053 /* just set some valid value */ 3054 xfer->actlen = xfer->sumlen; 3055 } 3056 } 3057 DPRINTFN(1, "xfer=%p endpoint=%p sts=%d alen=%d, slen=%d, afrm=%d, nfrm=%d\n", 3058 xfer, xfer->endpoint, xfer->error, xfer->actlen, xfer->sumlen, 3059 xfer->aframes, xfer->nframes); 3060 3061 if (xfer->error) { 3062 /* end of control transfer, if any */ 3063 xfer->flags_int.control_act = 0; 3064 3065 #if USB_HAVE_TT_SUPPORT 3066 switch (xfer->error) { 3067 case USB_ERR_NORMAL_COMPLETION: 3068 case USB_ERR_SHORT_XFER: 3069 case USB_ERR_STALLED: 3070 case USB_ERR_CANCELLED: 3071 /* nothing to do */ 3072 break; 3073 default: 3074 /* try to reset the TT, if any */ 3075 USB_BUS_LOCK(bus); 3076 uhub_tt_buffer_reset_async_locked(xfer->xroot->udev, xfer->endpoint); 3077 USB_BUS_UNLOCK(bus); 3078 break; 3079 } 3080 #endif 3081 /* check if we should block the execution queue */ 3082 if ((xfer->error != USB_ERR_CANCELLED) && 3083 (xfer->flags.pipe_bof)) { 3084 DPRINTFN(2, "xfer=%p: Block On Failure " 3085 "on endpoint=%p\n", xfer, xfer->endpoint); 3086 goto done; 3087 } 3088 } else { 3089 /* check for short transfers */ 3090 if (xfer->actlen < xfer->sumlen) { 3091 /* end of control transfer, if any */ 3092 xfer->flags_int.control_act = 0; 3093 3094 if (!xfer->flags_int.short_xfer_ok) { 3095 xfer->error = USB_ERR_SHORT_XFER; 3096 if (xfer->flags.pipe_bof) { 3097 DPRINTFN(2, "xfer=%p: Block On Failure on " 3098 "Short Transfer on endpoint %p.\n", 3099 xfer, xfer->endpoint); 3100 goto done; 3101 } 3102 } 3103 } else { 3104 /* 3105 * Check if we are in the middle of a 3106 * control transfer: 3107 */ 3108 if (xfer->flags_int.control_act) { 3109 DPRINTFN(5, "xfer=%p: Control transfer " 3110 "active on endpoint=%p\n", xfer, xfer->endpoint); 3111 goto done; 3112 } 3113 } 3114 } 3115 3116 ep = xfer->endpoint; 3117 3118 /* 3119 * If the current USB transfer is completing we need to start the 3120 * next one: 3121 */ 3122 USB_BUS_LOCK(bus); 3123 if (ep->endpoint_q[xfer->stream_id].curr == xfer) { 3124 usb_command_wrapper(&ep->endpoint_q[xfer->stream_id], NULL); 3125 3126 if (ep->endpoint_q[xfer->stream_id].curr != NULL || 3127 TAILQ_FIRST(&ep->endpoint_q[xfer->stream_id].head) != NULL) { 3128 /* there is another USB transfer waiting */ 3129 } else { 3130 /* this is the last USB transfer */ 3131 /* clear isochronous sync flag */ 3132 xfer->endpoint->is_synced = 0; 3133 } 3134 } 3135 USB_BUS_UNLOCK(bus); 3136 done: 3137 return (0); 3138 } 3139 3140 /*------------------------------------------------------------------------* 3141 * usb_command_wrapper 3142 * 3143 * This function is used to execute commands non-recursivly on an USB 3144 * transfer. 3145 *------------------------------------------------------------------------*/ 3146 void 3147 usb_command_wrapper(struct usb_xfer_queue *pq, struct usb_xfer *xfer) 3148 { 3149 if (xfer) { 3150 /* 3151 * If the transfer is not already processing, 3152 * queue it! 3153 */ 3154 if (pq->curr != xfer) { 3155 usbd_transfer_enqueue(pq, xfer); 3156 if (pq->curr != NULL) { 3157 /* something is already processing */ 3158 DPRINTFN(6, "busy %p\n", pq->curr); 3159 return; 3160 } 3161 } 3162 } else { 3163 /* Get next element in queue */ 3164 pq->curr = NULL; 3165 } 3166 3167 if (!pq->recurse_1) { 3168 /* clear third recurse flag */ 3169 pq->recurse_3 = 0; 3170 3171 do { 3172 /* set two first recurse flags */ 3173 pq->recurse_1 = 1; 3174 pq->recurse_2 = 1; 3175 3176 if (pq->curr == NULL) { 3177 xfer = TAILQ_FIRST(&pq->head); 3178 if (xfer) { 3179 TAILQ_REMOVE(&pq->head, xfer, 3180 wait_entry); 3181 xfer->wait_queue = NULL; 3182 pq->curr = xfer; 3183 } else { 3184 break; 3185 } 3186 } 3187 DPRINTFN(6, "cb %p (enter)\n", pq->curr); 3188 (pq->command) (pq); 3189 DPRINTFN(6, "cb %p (leave)\n", pq->curr); 3190 3191 /* 3192 * Set third recurse flag to indicate 3193 * recursion happened: 3194 */ 3195 pq->recurse_3 = 1; 3196 3197 } while (!pq->recurse_2); 3198 3199 /* clear first recurse flag */ 3200 pq->recurse_1 = 0; 3201 3202 } else { 3203 /* clear second recurse flag */ 3204 pq->recurse_2 = 0; 3205 } 3206 } 3207 3208 /*------------------------------------------------------------------------* 3209 * usbd_ctrl_transfer_setup 3210 * 3211 * This function is used to setup the default USB control endpoint 3212 * transfer. 3213 *------------------------------------------------------------------------*/ 3214 void 3215 usbd_ctrl_transfer_setup(struct usb_device *udev) 3216 { 3217 struct usb_xfer *xfer; 3218 uint8_t no_resetup; 3219 uint8_t iface_index; 3220 3221 /* check for root HUB */ 3222 if (udev->parent_hub == NULL) 3223 return; 3224 repeat: 3225 3226 xfer = udev->ctrl_xfer[0]; 3227 if (xfer) { 3228 USB_XFER_LOCK(xfer); 3229 no_resetup = 3230 ((xfer->address == udev->address) && 3231 (udev->ctrl_ep_desc.wMaxPacketSize[0] == 3232 udev->ddesc.bMaxPacketSize)); 3233 if (udev->flags.usb_mode == USB_MODE_DEVICE) { 3234 if (no_resetup) { 3235 /* 3236 * NOTE: checking "xfer->address" and 3237 * starting the USB transfer must be 3238 * atomic! 3239 */ 3240 usbd_transfer_start(xfer); 3241 } 3242 } 3243 USB_XFER_UNLOCK(xfer); 3244 } else { 3245 no_resetup = 0; 3246 } 3247 3248 if (no_resetup) { 3249 /* 3250 * All parameters are exactly the same like before. 3251 * Just return. 3252 */ 3253 return; 3254 } 3255 /* 3256 * Update wMaxPacketSize for the default control endpoint: 3257 */ 3258 udev->ctrl_ep_desc.wMaxPacketSize[0] = 3259 udev->ddesc.bMaxPacketSize; 3260 3261 /* 3262 * Unsetup any existing USB transfer: 3263 */ 3264 usbd_transfer_unsetup(udev->ctrl_xfer, USB_CTRL_XFER_MAX); 3265 3266 /* 3267 * Reset clear stall error counter. 3268 */ 3269 udev->clear_stall_errors = 0; 3270 3271 /* 3272 * Try to setup a new USB transfer for the 3273 * default control endpoint: 3274 */ 3275 iface_index = 0; 3276 if (usbd_transfer_setup(udev, &iface_index, 3277 udev->ctrl_xfer, udev->bus->control_ep_quirk ? 3278 usb_control_ep_quirk_cfg : usb_control_ep_cfg, USB_CTRL_XFER_MAX, NULL, 3279 &udev->device_mtx)) { 3280 DPRINTFN(0, "could not setup default " 3281 "USB transfer\n"); 3282 } else { 3283 goto repeat; 3284 } 3285 } 3286 3287 /*------------------------------------------------------------------------* 3288 * usbd_clear_data_toggle - factored out code 3289 * 3290 * NOTE: the intention of this function is not to reset the hardware 3291 * data toggle. 3292 *------------------------------------------------------------------------*/ 3293 void 3294 usbd_clear_stall_locked(struct usb_device *udev, struct usb_endpoint *ep) 3295 { 3296 USB_BUS_LOCK_ASSERT(udev->bus, MA_OWNED); 3297 3298 /* check that we have a valid case */ 3299 if (udev->flags.usb_mode == USB_MODE_HOST && 3300 udev->parent_hub != NULL && 3301 udev->bus->methods->clear_stall != NULL && 3302 ep->methods != NULL) { 3303 (udev->bus->methods->clear_stall) (udev, ep); 3304 } 3305 } 3306 3307 /*------------------------------------------------------------------------* 3308 * usbd_clear_data_toggle - factored out code 3309 * 3310 * NOTE: the intention of this function is not to reset the hardware 3311 * data toggle on the USB device side. 3312 *------------------------------------------------------------------------*/ 3313 void 3314 usbd_clear_data_toggle(struct usb_device *udev, struct usb_endpoint *ep) 3315 { 3316 DPRINTFN(5, "udev=%p endpoint=%p\n", udev, ep); 3317 3318 USB_BUS_LOCK(udev->bus); 3319 ep->toggle_next = 0; 3320 /* some hardware needs a callback to clear the data toggle */ 3321 usbd_clear_stall_locked(udev, ep); 3322 USB_BUS_UNLOCK(udev->bus); 3323 } 3324 3325 /*------------------------------------------------------------------------* 3326 * usbd_clear_stall_callback - factored out clear stall callback 3327 * 3328 * Input parameters: 3329 * xfer1: Clear Stall Control Transfer 3330 * xfer2: Stalled USB Transfer 3331 * 3332 * This function is NULL safe. 3333 * 3334 * Return values: 3335 * 0: In progress 3336 * Else: Finished 3337 * 3338 * Clear stall config example: 3339 * 3340 * static const struct usb_config my_clearstall = { 3341 * .type = UE_CONTROL, 3342 * .endpoint = 0, 3343 * .direction = UE_DIR_ANY, 3344 * .interval = 50, //50 milliseconds 3345 * .bufsize = sizeof(struct usb_device_request), 3346 * .timeout = 1000, //1.000 seconds 3347 * .callback = &my_clear_stall_callback, // ** 3348 * .usb_mode = USB_MODE_HOST, 3349 * }; 3350 * 3351 * ** "my_clear_stall_callback" calls "usbd_clear_stall_callback" 3352 * passing the correct parameters. 3353 *------------------------------------------------------------------------*/ 3354 uint8_t 3355 usbd_clear_stall_callback(struct usb_xfer *xfer1, 3356 struct usb_xfer *xfer2) 3357 { 3358 struct usb_device_request req; 3359 3360 if (xfer2 == NULL) { 3361 /* looks like we are tearing down */ 3362 DPRINTF("NULL input parameter\n"); 3363 return (0); 3364 } 3365 USB_XFER_LOCK_ASSERT(xfer1, MA_OWNED); 3366 USB_XFER_LOCK_ASSERT(xfer2, MA_OWNED); 3367 3368 switch (USB_GET_STATE(xfer1)) { 3369 case USB_ST_SETUP: 3370 3371 /* 3372 * pre-clear the data toggle to DATA0 ("umass.c" and 3373 * "ata-usb.c" depends on this) 3374 */ 3375 3376 usbd_clear_data_toggle(xfer2->xroot->udev, xfer2->endpoint); 3377 3378 /* setup a clear-stall packet */ 3379 3380 req.bmRequestType = UT_WRITE_ENDPOINT; 3381 req.bRequest = UR_CLEAR_FEATURE; 3382 USETW(req.wValue, UF_ENDPOINT_HALT); 3383 req.wIndex[0] = xfer2->endpoint->edesc->bEndpointAddress; 3384 req.wIndex[1] = 0; 3385 USETW(req.wLength, 0); 3386 3387 /* 3388 * "usbd_transfer_setup_sub()" will ensure that 3389 * we have sufficient room in the buffer for 3390 * the request structure! 3391 */ 3392 3393 /* copy in the transfer */ 3394 3395 usbd_copy_in(xfer1->frbuffers, 0, &req, sizeof(req)); 3396 3397 /* set length */ 3398 xfer1->frlengths[0] = sizeof(req); 3399 xfer1->nframes = 1; 3400 3401 usbd_transfer_submit(xfer1); 3402 return (0); 3403 3404 case USB_ST_TRANSFERRED: 3405 break; 3406 3407 default: /* Error */ 3408 if (xfer1->error == USB_ERR_CANCELLED) { 3409 return (0); 3410 } 3411 break; 3412 } 3413 return (1); /* Clear Stall Finished */ 3414 } 3415 3416 /*------------------------------------------------------------------------* 3417 * usbd_transfer_poll 3418 * 3419 * The following function gets called from the USB keyboard driver and 3420 * UMASS when the system has panicked. 3421 * 3422 * NOTE: It is currently not possible to resume normal operation on 3423 * the USB controller which has been polled, due to clearing of the 3424 * "up_dsleep" and "up_msleep" flags. 3425 *------------------------------------------------------------------------*/ 3426 void 3427 usbd_transfer_poll(struct usb_xfer **ppxfer, uint16_t max) 3428 { 3429 struct usb_xfer *xfer; 3430 struct usb_xfer_root *xroot; 3431 struct usb_device *udev; 3432 struct usb_proc_msg *pm; 3433 struct usb_bus *bus; 3434 uint16_t n; 3435 uint16_t drop_bus_spin; 3436 uint16_t drop_bus; 3437 uint16_t drop_xfer; 3438 3439 for (n = 0; n != max; n++) { 3440 /* Extra checks to avoid panic */ 3441 xfer = ppxfer[n]; 3442 if (xfer == NULL) 3443 continue; /* no USB transfer */ 3444 xroot = xfer->xroot; 3445 if (xroot == NULL) 3446 continue; /* no USB root */ 3447 udev = xroot->udev; 3448 if (udev == NULL) 3449 continue; /* no USB device */ 3450 bus = udev->bus; 3451 if (bus == NULL) 3452 continue; /* no BUS structure */ 3453 if (bus->methods == NULL) 3454 continue; /* no BUS methods */ 3455 if (bus->methods->xfer_poll == NULL) 3456 continue; /* no poll method */ 3457 3458 drop_bus_spin = 0; 3459 drop_bus = 0; 3460 drop_xfer = 0; 3461 3462 if (USB_IN_POLLING_MODE_FUNC() == 0) { 3463 /* make sure that the BUS spin mutex is not locked */ 3464 while (mtx_owned(&bus->bus_spin_lock)) { 3465 mtx_unlock_spin(&bus->bus_spin_lock); 3466 drop_bus_spin++; 3467 } 3468 3469 /* make sure that the BUS mutex is not locked */ 3470 while (mtx_owned(&bus->bus_mtx)) { 3471 mtx_unlock(&bus->bus_mtx); 3472 drop_bus++; 3473 } 3474 3475 /* make sure that the transfer mutex is not locked */ 3476 while (mtx_owned(xroot->xfer_mtx)) { 3477 mtx_unlock(xroot->xfer_mtx); 3478 drop_xfer++; 3479 } 3480 } 3481 3482 /* Make sure cv_signal() and cv_broadcast() is not called */ 3483 USB_BUS_CONTROL_XFER_PROC(bus)->up_msleep = 0; 3484 USB_BUS_EXPLORE_PROC(bus)->up_msleep = 0; 3485 USB_BUS_GIANT_PROC(bus)->up_msleep = 0; 3486 USB_BUS_NON_GIANT_ISOC_PROC(bus)->up_msleep = 0; 3487 USB_BUS_NON_GIANT_BULK_PROC(bus)->up_msleep = 0; 3488 3489 /* poll USB hardware */ 3490 (bus->methods->xfer_poll) (bus); 3491 3492 USB_BUS_LOCK(xroot->bus); 3493 3494 /* check for clear stall */ 3495 if (udev->ctrl_xfer[1] != NULL) { 3496 /* poll clear stall start */ 3497 pm = &udev->cs_msg[0].hdr; 3498 (pm->pm_callback) (pm); 3499 /* poll clear stall done thread */ 3500 pm = &udev->ctrl_xfer[1]-> 3501 xroot->done_m[0].hdr; 3502 (pm->pm_callback) (pm); 3503 } 3504 3505 /* poll done thread */ 3506 pm = &xroot->done_m[0].hdr; 3507 (pm->pm_callback) (pm); 3508 3509 USB_BUS_UNLOCK(xroot->bus); 3510 3511 /* restore transfer mutex */ 3512 while (drop_xfer--) 3513 mtx_lock(xroot->xfer_mtx); 3514 3515 /* restore BUS mutex */ 3516 while (drop_bus--) 3517 mtx_lock(&bus->bus_mtx); 3518 3519 /* restore BUS spin mutex */ 3520 while (drop_bus_spin--) 3521 mtx_lock_spin(&bus->bus_spin_lock); 3522 } 3523 } 3524 3525 static void 3526 usbd_get_std_packet_size(struct usb_std_packet_size *ptr, 3527 uint8_t type, enum usb_dev_speed speed) 3528 { 3529 static const uint16_t intr_range_max[USB_SPEED_MAX] = { 3530 [USB_SPEED_LOW] = 8, 3531 [USB_SPEED_FULL] = 64, 3532 [USB_SPEED_HIGH] = 1024, 3533 [USB_SPEED_VARIABLE] = 1024, 3534 [USB_SPEED_SUPER] = 1024, 3535 }; 3536 3537 static const uint16_t isoc_range_max[USB_SPEED_MAX] = { 3538 [USB_SPEED_LOW] = 0, /* invalid */ 3539 [USB_SPEED_FULL] = 1023, 3540 [USB_SPEED_HIGH] = 1024, 3541 [USB_SPEED_VARIABLE] = 3584, 3542 [USB_SPEED_SUPER] = 1024, 3543 }; 3544 3545 static const uint16_t control_min[USB_SPEED_MAX] = { 3546 [USB_SPEED_LOW] = 8, 3547 [USB_SPEED_FULL] = 8, 3548 [USB_SPEED_HIGH] = 64, 3549 [USB_SPEED_VARIABLE] = 512, 3550 [USB_SPEED_SUPER] = 512, 3551 }; 3552 3553 static const uint16_t bulk_min[USB_SPEED_MAX] = { 3554 [USB_SPEED_LOW] = 8, 3555 [USB_SPEED_FULL] = 8, 3556 [USB_SPEED_HIGH] = 512, 3557 [USB_SPEED_VARIABLE] = 512, 3558 [USB_SPEED_SUPER] = 1024, 3559 }; 3560 3561 uint16_t temp; 3562 3563 memset(ptr, 0, sizeof(*ptr)); 3564 3565 switch (type) { 3566 case UE_INTERRUPT: 3567 ptr->range.max = intr_range_max[speed]; 3568 break; 3569 case UE_ISOCHRONOUS: 3570 ptr->range.max = isoc_range_max[speed]; 3571 break; 3572 default: 3573 if (type == UE_BULK) 3574 temp = bulk_min[speed]; 3575 else /* UE_CONTROL */ 3576 temp = control_min[speed]; 3577 3578 /* default is fixed */ 3579 ptr->fixed[0] = temp; 3580 ptr->fixed[1] = temp; 3581 ptr->fixed[2] = temp; 3582 ptr->fixed[3] = temp; 3583 3584 if (speed == USB_SPEED_FULL) { 3585 /* multiple sizes */ 3586 ptr->fixed[1] = 16; 3587 ptr->fixed[2] = 32; 3588 ptr->fixed[3] = 64; 3589 } 3590 if ((speed == USB_SPEED_VARIABLE) && 3591 (type == UE_BULK)) { 3592 /* multiple sizes */ 3593 ptr->fixed[2] = 1024; 3594 ptr->fixed[3] = 1536; 3595 } 3596 break; 3597 } 3598 } 3599 3600 void * 3601 usbd_xfer_softc(struct usb_xfer *xfer) 3602 { 3603 return (xfer->priv_sc); 3604 } 3605 3606 void * 3607 usbd_xfer_get_priv(struct usb_xfer *xfer) 3608 { 3609 return (xfer->priv_fifo); 3610 } 3611 3612 void 3613 usbd_xfer_set_priv(struct usb_xfer *xfer, void *ptr) 3614 { 3615 xfer->priv_fifo = ptr; 3616 } 3617 3618 uint8_t 3619 usbd_xfer_state(struct usb_xfer *xfer) 3620 { 3621 return (xfer->usb_state); 3622 } 3623 3624 void 3625 usbd_xfer_set_flag(struct usb_xfer *xfer, int flag) 3626 { 3627 switch (flag) { 3628 case USB_FORCE_SHORT_XFER: 3629 xfer->flags.force_short_xfer = 1; 3630 break; 3631 case USB_SHORT_XFER_OK: 3632 xfer->flags.short_xfer_ok = 1; 3633 break; 3634 case USB_MULTI_SHORT_OK: 3635 xfer->flags.short_frames_ok = 1; 3636 break; 3637 case USB_MANUAL_STATUS: 3638 xfer->flags.manual_status = 1; 3639 break; 3640 } 3641 } 3642 3643 void 3644 usbd_xfer_clr_flag(struct usb_xfer *xfer, int flag) 3645 { 3646 switch (flag) { 3647 case USB_FORCE_SHORT_XFER: 3648 xfer->flags.force_short_xfer = 0; 3649 break; 3650 case USB_SHORT_XFER_OK: 3651 xfer->flags.short_xfer_ok = 0; 3652 break; 3653 case USB_MULTI_SHORT_OK: 3654 xfer->flags.short_frames_ok = 0; 3655 break; 3656 case USB_MANUAL_STATUS: 3657 xfer->flags.manual_status = 0; 3658 break; 3659 } 3660 } 3661 3662 /* 3663 * The following function returns in milliseconds when the isochronous 3664 * transfer was completed by the hardware. The returned value wraps 3665 * around 65536 milliseconds. 3666 */ 3667 uint16_t 3668 usbd_xfer_get_timestamp(struct usb_xfer *xfer) 3669 { 3670 return (xfer->isoc_time_complete); 3671 } 3672 3673 /* 3674 * The following function returns non-zero if the max packet size 3675 * field was clamped to a valid value. Else it returns zero. 3676 */ 3677 uint8_t 3678 usbd_xfer_maxp_was_clamped(struct usb_xfer *xfer) 3679 { 3680 return (xfer->flags_int.maxp_was_clamped); 3681 } 3682 3683 /* 3684 * The following function computes the next isochronous frame number 3685 * where the first isochronous packet should be queued. 3686 * 3687 * The function returns non-zero if there was a discontinuity. 3688 * Else zero is returned for normal operation. 3689 */ 3690 uint8_t 3691 usbd_xfer_get_isochronous_start_frame(struct usb_xfer *xfer, uint32_t frame_curr, 3692 uint32_t frame_min, uint32_t frame_ms, uint32_t frame_mask, uint32_t *p_frame_start) 3693 { 3694 uint32_t duration; 3695 uint32_t delta; 3696 uint8_t retval; 3697 uint8_t shift; 3698 3699 /* Compute time ahead of current schedule. */ 3700 delta = (xfer->endpoint->isoc_next - frame_curr) & frame_mask; 3701 3702 /* 3703 * Check if it is the first transfer or if the future frame 3704 * delta is less than one millisecond or if the frame delta is 3705 * negative: 3706 */ 3707 if (xfer->endpoint->is_synced == 0 || 3708 delta < (frame_ms + frame_min) || 3709 delta > (frame_mask / 2)) { 3710 /* Schedule transfer 2 milliseconds into the future. */ 3711 xfer->endpoint->isoc_next = (frame_curr + 2 * frame_ms + frame_min) & frame_mask; 3712 xfer->endpoint->is_synced = 1; 3713 3714 retval = 1; 3715 } else { 3716 retval = 0; 3717 } 3718 3719 /* Store start time, if any. */ 3720 if (p_frame_start != NULL) 3721 *p_frame_start = xfer->endpoint->isoc_next & frame_mask; 3722 3723 /* Get relative completion time, in milliseconds. */ 3724 delta = xfer->endpoint->isoc_next - frame_curr + (frame_curr % frame_ms); 3725 delta &= frame_mask; 3726 delta /= frame_ms; 3727 3728 switch (usbd_get_speed(xfer->xroot->udev)) { 3729 case USB_SPEED_FULL: 3730 shift = 3; 3731 break; 3732 default: 3733 shift = usbd_xfer_get_fps_shift(xfer); 3734 break; 3735 } 3736 3737 /* Get duration in milliseconds, rounded up. */ 3738 duration = ((xfer->nframes << shift) + 7) / 8; 3739 3740 /* Compute full 32-bit completion time, in milliseconds. */ 3741 xfer->isoc_time_complete = 3742 usb_isoc_time_expand(xfer->xroot->bus, frame_curr / frame_ms) + 3743 delta + duration; 3744 3745 /* Compute next isochronous frame. */ 3746 xfer->endpoint->isoc_next += duration * frame_ms; 3747 xfer->endpoint->isoc_next &= frame_mask; 3748 3749 return (retval); 3750 } 3751