xref: /freebsd/sys/dev/usb/usb_transfer.c (revision 5ab1c5846ff41be24b1f6beb0317bf8258cd4409)
1 /* $FreeBSD$ */
2 /*-
3  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
4  *
5  * Copyright (c) 2008 Hans Petter Selasky. All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #ifdef USB_GLOBAL_INCLUDE_FILE
30 #include USB_GLOBAL_INCLUDE_FILE
31 #else
32 #include <sys/stdint.h>
33 #include <sys/stddef.h>
34 #include <sys/param.h>
35 #include <sys/queue.h>
36 #include <sys/types.h>
37 #include <sys/systm.h>
38 #include <sys/kernel.h>
39 #include <sys/bus.h>
40 #include <sys/module.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/condvar.h>
44 #include <sys/sysctl.h>
45 #include <sys/sx.h>
46 #include <sys/unistd.h>
47 #include <sys/callout.h>
48 #include <sys/malloc.h>
49 #include <sys/priv.h>
50 
51 #include <dev/usb/usb.h>
52 #include <dev/usb/usbdi.h>
53 #include <dev/usb/usbdi_util.h>
54 
55 #define	USB_DEBUG_VAR usb_debug
56 
57 #include <dev/usb/usb_core.h>
58 #include <dev/usb/usb_busdma.h>
59 #include <dev/usb/usb_process.h>
60 #include <dev/usb/usb_transfer.h>
61 #include <dev/usb/usb_device.h>
62 #include <dev/usb/usb_debug.h>
63 #include <dev/usb/usb_util.h>
64 
65 #include <dev/usb/usb_controller.h>
66 #include <dev/usb/usb_bus.h>
67 #include <dev/usb/usb_pf.h>
68 #endif			/* USB_GLOBAL_INCLUDE_FILE */
69 
70 struct usb_std_packet_size {
71 	struct {
72 		uint16_t min;		/* inclusive */
73 		uint16_t max;		/* inclusive */
74 	}	range;
75 
76 	uint16_t fixed[4];
77 };
78 
79 static usb_callback_t usb_request_callback;
80 
81 static const struct usb_config usb_control_ep_cfg[USB_CTRL_XFER_MAX] = {
82 
83 	/* This transfer is used for generic control endpoint transfers */
84 
85 	[0] = {
86 		.type = UE_CONTROL,
87 		.endpoint = 0x00,	/* Control endpoint */
88 		.direction = UE_DIR_ANY,
89 		.bufsize = USB_EP0_BUFSIZE,	/* bytes */
90 		.flags = {.proxy_buffer = 1,},
91 		.callback = &usb_request_callback,
92 		.usb_mode = USB_MODE_DUAL,	/* both modes */
93 	},
94 
95 	/* This transfer is used for generic clear stall only */
96 
97 	[1] = {
98 		.type = UE_CONTROL,
99 		.endpoint = 0x00,	/* Control pipe */
100 		.direction = UE_DIR_ANY,
101 		.bufsize = sizeof(struct usb_device_request),
102 		.callback = &usb_do_clear_stall_callback,
103 		.timeout = 1000,	/* 1 second */
104 		.interval = 50,	/* 50ms */
105 		.usb_mode = USB_MODE_HOST,
106 	},
107 };
108 
109 static const struct usb_config usb_control_ep_quirk_cfg[USB_CTRL_XFER_MAX] = {
110 
111 	/* This transfer is used for generic control endpoint transfers */
112 
113 	[0] = {
114 		.type = UE_CONTROL,
115 		.endpoint = 0x00,	/* Control endpoint */
116 		.direction = UE_DIR_ANY,
117 		.bufsize = 65535,	/* bytes */
118 		.callback = &usb_request_callback,
119 		.usb_mode = USB_MODE_DUAL,	/* both modes */
120 	},
121 
122 	/* This transfer is used for generic clear stall only */
123 
124 	[1] = {
125 		.type = UE_CONTROL,
126 		.endpoint = 0x00,	/* Control pipe */
127 		.direction = UE_DIR_ANY,
128 		.bufsize = sizeof(struct usb_device_request),
129 		.callback = &usb_do_clear_stall_callback,
130 		.timeout = 1000,	/* 1 second */
131 		.interval = 50,	/* 50ms */
132 		.usb_mode = USB_MODE_HOST,
133 	},
134 };
135 
136 /* function prototypes */
137 
138 static void	usbd_update_max_frame_size(struct usb_xfer *);
139 static void	usbd_transfer_unsetup_sub(struct usb_xfer_root *, uint8_t);
140 static void	usbd_control_transfer_init(struct usb_xfer *);
141 static int	usbd_setup_ctrl_transfer(struct usb_xfer *);
142 static void	usb_callback_proc(struct usb_proc_msg *);
143 static void	usbd_callback_ss_done_defer(struct usb_xfer *);
144 static void	usbd_callback_wrapper(struct usb_xfer_queue *);
145 static void	usbd_transfer_start_cb(void *);
146 static uint8_t	usbd_callback_wrapper_sub(struct usb_xfer *);
147 static void	usbd_get_std_packet_size(struct usb_std_packet_size *ptr,
148 		    uint8_t type, enum usb_dev_speed speed);
149 
150 /*------------------------------------------------------------------------*
151  *	usb_request_callback
152  *------------------------------------------------------------------------*/
153 static void
154 usb_request_callback(struct usb_xfer *xfer, usb_error_t error)
155 {
156 	if (xfer->flags_int.usb_mode == USB_MODE_DEVICE)
157 		usb_handle_request_callback(xfer, error);
158 	else
159 		usbd_do_request_callback(xfer, error);
160 }
161 
162 /*------------------------------------------------------------------------*
163  *	usbd_update_max_frame_size
164  *
165  * This function updates the maximum frame size, hence high speed USB
166  * can transfer multiple consecutive packets.
167  *------------------------------------------------------------------------*/
168 static void
169 usbd_update_max_frame_size(struct usb_xfer *xfer)
170 {
171 	/* compute maximum frame size */
172 	/* this computation should not overflow 16-bit */
173 	/* max = 15 * 1024 */
174 
175 	xfer->max_frame_size = xfer->max_packet_size * xfer->max_packet_count;
176 }
177 
178 /*------------------------------------------------------------------------*
179  *	usbd_get_dma_delay
180  *
181  * The following function is called when we need to
182  * synchronize with DMA hardware.
183  *
184  * Returns:
185  *    0: no DMA delay required
186  * Else: milliseconds of DMA delay
187  *------------------------------------------------------------------------*/
188 usb_timeout_t
189 usbd_get_dma_delay(struct usb_device *udev)
190 {
191 	const struct usb_bus_methods *mtod;
192 	uint32_t temp;
193 
194 	mtod = udev->bus->methods;
195 	temp = 0;
196 
197 	if (mtod->get_dma_delay) {
198 		(mtod->get_dma_delay) (udev, &temp);
199 		/*
200 		 * Round up and convert to milliseconds. Note that we use
201 		 * 1024 milliseconds per second. to save a division.
202 		 */
203 		temp += 0x3FF;
204 		temp /= 0x400;
205 	}
206 	return (temp);
207 }
208 
209 /*------------------------------------------------------------------------*
210  *	usbd_transfer_setup_sub_malloc
211  *
212  * This function will allocate one or more DMA'able memory chunks
213  * according to "size", "align" and "count" arguments. "ppc" is
214  * pointed to a linear array of USB page caches afterwards.
215  *
216  * If the "align" argument is equal to "1" a non-contiguous allocation
217  * can happen. Else if the "align" argument is greater than "1", the
218  * allocation will always be contiguous in memory.
219  *
220  * Returns:
221  *    0: Success
222  * Else: Failure
223  *------------------------------------------------------------------------*/
224 #if USB_HAVE_BUSDMA
225 uint8_t
226 usbd_transfer_setup_sub_malloc(struct usb_setup_params *parm,
227     struct usb_page_cache **ppc, usb_size_t size, usb_size_t align,
228     usb_size_t count)
229 {
230 	struct usb_page_cache *pc;
231 	struct usb_page *pg;
232 	void *buf;
233 	usb_size_t n_dma_pc;
234 	usb_size_t n_dma_pg;
235 	usb_size_t n_obj;
236 	usb_size_t x;
237 	usb_size_t y;
238 	usb_size_t r;
239 	usb_size_t z;
240 
241 	USB_ASSERT(align > 0, ("Invalid alignment, 0x%08x\n",
242 	    align));
243 	USB_ASSERT(size > 0, ("Invalid size = 0\n"));
244 
245 	if (count == 0) {
246 		return (0);		/* nothing to allocate */
247 	}
248 	/*
249 	 * Make sure that the size is aligned properly.
250 	 */
251 	size = -((-size) & (-align));
252 
253 	/*
254 	 * Try multi-allocation chunks to reduce the number of DMA
255 	 * allocations, hence DMA allocations are slow.
256 	 */
257 	if (align == 1) {
258 		/* special case - non-cached multi page DMA memory */
259 		n_dma_pc = count;
260 		n_dma_pg = (2 + (size / USB_PAGE_SIZE));
261 		n_obj = 1;
262 	} else if (size >= USB_PAGE_SIZE) {
263 		n_dma_pc = count;
264 		n_dma_pg = 1;
265 		n_obj = 1;
266 	} else {
267 		/* compute number of objects per page */
268 #ifdef USB_DMA_SINGLE_ALLOC
269 		n_obj = 1;
270 #else
271 		n_obj = (USB_PAGE_SIZE / size);
272 #endif
273 		/*
274 		 * Compute number of DMA chunks, rounded up
275 		 * to nearest one:
276 		 */
277 		n_dma_pc = howmany(count, n_obj);
278 		n_dma_pg = 1;
279 	}
280 
281 	/*
282 	 * DMA memory is allocated once, but mapped twice. That's why
283 	 * there is one list for auto-free and another list for
284 	 * non-auto-free which only holds the mapping and not the
285 	 * allocation.
286 	 */
287 	if (parm->buf == NULL) {
288 		/* reserve memory (auto-free) */
289 		parm->dma_page_ptr += n_dma_pc * n_dma_pg;
290 		parm->dma_page_cache_ptr += n_dma_pc;
291 
292 		/* reserve memory (no-auto-free) */
293 		parm->dma_page_ptr += count * n_dma_pg;
294 		parm->xfer_page_cache_ptr += count;
295 		return (0);
296 	}
297 	for (x = 0; x != n_dma_pc; x++) {
298 		/* need to initialize the page cache */
299 		parm->dma_page_cache_ptr[x].tag_parent =
300 		    &parm->curr_xfer->xroot->dma_parent_tag;
301 	}
302 	for (x = 0; x != count; x++) {
303 		/* need to initialize the page cache */
304 		parm->xfer_page_cache_ptr[x].tag_parent =
305 		    &parm->curr_xfer->xroot->dma_parent_tag;
306 	}
307 
308 	if (ppc != NULL) {
309 		if (n_obj != 1)
310 			*ppc = parm->xfer_page_cache_ptr;
311 		else
312 			*ppc = parm->dma_page_cache_ptr;
313 	}
314 	r = count;			/* set remainder count */
315 	z = n_obj * size;		/* set allocation size */
316 	pc = parm->xfer_page_cache_ptr;
317 	pg = parm->dma_page_ptr;
318 
319 	if (n_obj == 1) {
320 	    /*
321 	     * Avoid mapping memory twice if only a single object
322 	     * should be allocated per page cache:
323 	     */
324 	    for (x = 0; x != n_dma_pc; x++) {
325 		if (usb_pc_alloc_mem(parm->dma_page_cache_ptr,
326 		    pg, z, align)) {
327 			return (1);	/* failure */
328 		}
329 		/* Make room for one DMA page cache and "n_dma_pg" pages */
330 		parm->dma_page_cache_ptr++;
331 		pg += n_dma_pg;
332 	    }
333 	} else {
334 	    for (x = 0; x != n_dma_pc; x++) {
335 
336 		if (r < n_obj) {
337 			/* compute last remainder */
338 			z = r * size;
339 			n_obj = r;
340 		}
341 		if (usb_pc_alloc_mem(parm->dma_page_cache_ptr,
342 		    pg, z, align)) {
343 			return (1);	/* failure */
344 		}
345 		/* Set beginning of current buffer */
346 		buf = parm->dma_page_cache_ptr->buffer;
347 		/* Make room for one DMA page cache and "n_dma_pg" pages */
348 		parm->dma_page_cache_ptr++;
349 		pg += n_dma_pg;
350 
351 		for (y = 0; (y != n_obj); y++, r--, pc++, pg += n_dma_pg) {
352 
353 			/* Load sub-chunk into DMA */
354 			if (usb_pc_dmamap_create(pc, size)) {
355 				return (1);	/* failure */
356 			}
357 			pc->buffer = USB_ADD_BYTES(buf, y * size);
358 			pc->page_start = pg;
359 
360 			USB_MTX_LOCK(pc->tag_parent->mtx);
361 			if (usb_pc_load_mem(pc, size, 1 /* synchronous */ )) {
362 				USB_MTX_UNLOCK(pc->tag_parent->mtx);
363 				return (1);	/* failure */
364 			}
365 			USB_MTX_UNLOCK(pc->tag_parent->mtx);
366 		}
367 	    }
368 	}
369 
370 	parm->xfer_page_cache_ptr = pc;
371 	parm->dma_page_ptr = pg;
372 	return (0);
373 }
374 #endif
375 
376 /*------------------------------------------------------------------------*
377  *	usbd_transfer_setup_sub - transfer setup subroutine
378  *
379  * This function must be called from the "xfer_setup" callback of the
380  * USB Host or Device controller driver when setting up an USB
381  * transfer. This function will setup correct packet sizes, buffer
382  * sizes, flags and more, that are stored in the "usb_xfer"
383  * structure.
384  *------------------------------------------------------------------------*/
385 void
386 usbd_transfer_setup_sub(struct usb_setup_params *parm)
387 {
388 	enum {
389 		REQ_SIZE = 8,
390 		MIN_PKT = 8,
391 	};
392 	struct usb_xfer *xfer = parm->curr_xfer;
393 	const struct usb_config *setup = parm->curr_setup;
394 	struct usb_endpoint_ss_comp_descriptor *ecomp;
395 	struct usb_endpoint_descriptor *edesc;
396 	struct usb_std_packet_size std_size;
397 	usb_frcount_t n_frlengths;
398 	usb_frcount_t n_frbuffers;
399 	usb_frcount_t x;
400 	uint16_t maxp_old;
401 	uint8_t type;
402 	uint8_t zmps;
403 
404 	/*
405 	 * Sanity check. The following parameters must be initialized before
406 	 * calling this function.
407 	 */
408 	if ((parm->hc_max_packet_size == 0) ||
409 	    (parm->hc_max_packet_count == 0) ||
410 	    (parm->hc_max_frame_size == 0)) {
411 		parm->err = USB_ERR_INVAL;
412 		goto done;
413 	}
414 	edesc = xfer->endpoint->edesc;
415 	ecomp = xfer->endpoint->ecomp;
416 
417 	type = (edesc->bmAttributes & UE_XFERTYPE);
418 
419 	xfer->flags = setup->flags;
420 	xfer->nframes = setup->frames;
421 	xfer->timeout = setup->timeout;
422 	xfer->callback = setup->callback;
423 	xfer->interval = setup->interval;
424 	xfer->endpointno = edesc->bEndpointAddress;
425 	xfer->max_packet_size = UGETW(edesc->wMaxPacketSize);
426 	xfer->max_packet_count = 1;
427 	/* make a shadow copy: */
428 	xfer->flags_int.usb_mode = parm->udev->flags.usb_mode;
429 
430 	parm->bufsize = setup->bufsize;
431 
432 	switch (parm->speed) {
433 	case USB_SPEED_HIGH:
434 		switch (type) {
435 		case UE_ISOCHRONOUS:
436 		case UE_INTERRUPT:
437 			xfer->max_packet_count +=
438 			    (xfer->max_packet_size >> 11) & 3;
439 
440 			/* check for invalid max packet count */
441 			if (xfer->max_packet_count > 3)
442 				xfer->max_packet_count = 3;
443 			break;
444 		default:
445 			break;
446 		}
447 		xfer->max_packet_size &= 0x7FF;
448 		break;
449 	case USB_SPEED_SUPER:
450 		xfer->max_packet_count += (xfer->max_packet_size >> 11) & 3;
451 
452 		if (ecomp != NULL)
453 			xfer->max_packet_count += ecomp->bMaxBurst;
454 
455 		if ((xfer->max_packet_count == 0) ||
456 		    (xfer->max_packet_count > 16))
457 			xfer->max_packet_count = 16;
458 
459 		switch (type) {
460 		case UE_CONTROL:
461 			xfer->max_packet_count = 1;
462 			break;
463 		case UE_ISOCHRONOUS:
464 			if (ecomp != NULL) {
465 				uint8_t mult;
466 
467 				mult = UE_GET_SS_ISO_MULT(
468 				    ecomp->bmAttributes) + 1;
469 				if (mult > 3)
470 					mult = 3;
471 
472 				xfer->max_packet_count *= mult;
473 			}
474 			break;
475 		default:
476 			break;
477 		}
478 		xfer->max_packet_size &= 0x7FF;
479 		break;
480 	default:
481 		break;
482 	}
483 	/* range check "max_packet_count" */
484 
485 	if (xfer->max_packet_count > parm->hc_max_packet_count) {
486 		xfer->max_packet_count = parm->hc_max_packet_count;
487 	}
488 
489 	/* store max packet size value before filtering */
490 
491 	maxp_old = xfer->max_packet_size;
492 
493 	/* filter "wMaxPacketSize" according to HC capabilities */
494 
495 	if ((xfer->max_packet_size > parm->hc_max_packet_size) ||
496 	    (xfer->max_packet_size == 0)) {
497 		xfer->max_packet_size = parm->hc_max_packet_size;
498 	}
499 	/* filter "wMaxPacketSize" according to standard sizes */
500 
501 	usbd_get_std_packet_size(&std_size, type, parm->speed);
502 
503 	if (std_size.range.min || std_size.range.max) {
504 
505 		if (xfer->max_packet_size < std_size.range.min) {
506 			xfer->max_packet_size = std_size.range.min;
507 		}
508 		if (xfer->max_packet_size > std_size.range.max) {
509 			xfer->max_packet_size = std_size.range.max;
510 		}
511 	} else {
512 
513 		if (xfer->max_packet_size >= std_size.fixed[3]) {
514 			xfer->max_packet_size = std_size.fixed[3];
515 		} else if (xfer->max_packet_size >= std_size.fixed[2]) {
516 			xfer->max_packet_size = std_size.fixed[2];
517 		} else if (xfer->max_packet_size >= std_size.fixed[1]) {
518 			xfer->max_packet_size = std_size.fixed[1];
519 		} else {
520 			/* only one possibility left */
521 			xfer->max_packet_size = std_size.fixed[0];
522 		}
523 	}
524 
525 	/*
526 	 * Check if the max packet size was outside its allowed range
527 	 * and clamped to a valid value:
528 	 */
529 	if (maxp_old != xfer->max_packet_size)
530 		xfer->flags_int.maxp_was_clamped = 1;
531 
532 	/* compute "max_frame_size" */
533 
534 	usbd_update_max_frame_size(xfer);
535 
536 	/* check interrupt interval and transfer pre-delay */
537 
538 	if (type == UE_ISOCHRONOUS) {
539 
540 		uint16_t frame_limit;
541 
542 		xfer->interval = 0;	/* not used, must be zero */
543 		xfer->flags_int.isochronous_xfr = 1;	/* set flag */
544 
545 		if (xfer->timeout == 0) {
546 			/*
547 			 * set a default timeout in
548 			 * case something goes wrong!
549 			 */
550 			xfer->timeout = 1000 / 4;
551 		}
552 		switch (parm->speed) {
553 		case USB_SPEED_LOW:
554 		case USB_SPEED_FULL:
555 			frame_limit = USB_MAX_FS_ISOC_FRAMES_PER_XFER;
556 			xfer->fps_shift = 0;
557 			break;
558 		default:
559 			frame_limit = USB_MAX_HS_ISOC_FRAMES_PER_XFER;
560 			xfer->fps_shift = edesc->bInterval;
561 			if (xfer->fps_shift > 0)
562 				xfer->fps_shift--;
563 			if (xfer->fps_shift > 3)
564 				xfer->fps_shift = 3;
565 			if (xfer->flags.pre_scale_frames != 0)
566 				xfer->nframes <<= (3 - xfer->fps_shift);
567 			break;
568 		}
569 
570 		if (xfer->nframes > frame_limit) {
571 			/*
572 			 * this is not going to work
573 			 * cross hardware
574 			 */
575 			parm->err = USB_ERR_INVAL;
576 			goto done;
577 		}
578 		if (xfer->nframes == 0) {
579 			/*
580 			 * this is not a valid value
581 			 */
582 			parm->err = USB_ERR_ZERO_NFRAMES;
583 			goto done;
584 		}
585 	} else {
586 
587 		/*
588 		 * If a value is specified use that else check the
589 		 * endpoint descriptor!
590 		 */
591 		if (type == UE_INTERRUPT) {
592 
593 			uint32_t temp;
594 
595 			if (xfer->interval == 0) {
596 
597 				xfer->interval = edesc->bInterval;
598 
599 				switch (parm->speed) {
600 				case USB_SPEED_LOW:
601 				case USB_SPEED_FULL:
602 					break;
603 				default:
604 					/* 125us -> 1ms */
605 					if (xfer->interval < 4)
606 						xfer->interval = 1;
607 					else if (xfer->interval > 16)
608 						xfer->interval = (1 << (16 - 4));
609 					else
610 						xfer->interval =
611 						    (1 << (xfer->interval - 4));
612 					break;
613 				}
614 			}
615 
616 			if (xfer->interval == 0) {
617 				/*
618 				 * One millisecond is the smallest
619 				 * interval we support:
620 				 */
621 				xfer->interval = 1;
622 			}
623 
624 			xfer->fps_shift = 0;
625 			temp = 1;
626 
627 			while ((temp != 0) && (temp < xfer->interval)) {
628 				xfer->fps_shift++;
629 				temp *= 2;
630 			}
631 
632 			switch (parm->speed) {
633 			case USB_SPEED_LOW:
634 			case USB_SPEED_FULL:
635 				break;
636 			default:
637 				xfer->fps_shift += 3;
638 				break;
639 			}
640 		}
641 	}
642 
643 	/*
644 	 * NOTE: we do not allow "max_packet_size" or "max_frame_size"
645 	 * to be equal to zero when setting up USB transfers, hence
646 	 * this leads to a lot of extra code in the USB kernel.
647 	 */
648 
649 	if ((xfer->max_frame_size == 0) ||
650 	    (xfer->max_packet_size == 0)) {
651 
652 		zmps = 1;
653 
654 		if ((parm->bufsize <= MIN_PKT) &&
655 		    (type != UE_CONTROL) &&
656 		    (type != UE_BULK)) {
657 
658 			/* workaround */
659 			xfer->max_packet_size = MIN_PKT;
660 			xfer->max_packet_count = 1;
661 			parm->bufsize = 0;	/* automatic setup length */
662 			usbd_update_max_frame_size(xfer);
663 
664 		} else {
665 			parm->err = USB_ERR_ZERO_MAXP;
666 			goto done;
667 		}
668 
669 	} else {
670 		zmps = 0;
671 	}
672 
673 	/*
674 	 * check if we should setup a default
675 	 * length:
676 	 */
677 
678 	if (parm->bufsize == 0) {
679 
680 		parm->bufsize = xfer->max_frame_size;
681 
682 		if (type == UE_ISOCHRONOUS) {
683 			parm->bufsize *= xfer->nframes;
684 		}
685 	}
686 	/*
687 	 * check if we are about to setup a proxy
688 	 * type of buffer:
689 	 */
690 
691 	if (xfer->flags.proxy_buffer) {
692 
693 		/* round bufsize up */
694 
695 		parm->bufsize += (xfer->max_frame_size - 1);
696 
697 		if (parm->bufsize < xfer->max_frame_size) {
698 			/* length wrapped around */
699 			parm->err = USB_ERR_INVAL;
700 			goto done;
701 		}
702 		/* subtract remainder */
703 
704 		parm->bufsize -= (parm->bufsize % xfer->max_frame_size);
705 
706 		/* add length of USB device request structure, if any */
707 
708 		if (type == UE_CONTROL) {
709 			parm->bufsize += REQ_SIZE;	/* SETUP message */
710 		}
711 	}
712 	xfer->max_data_length = parm->bufsize;
713 
714 	/* Setup "n_frlengths" and "n_frbuffers" */
715 
716 	if (type == UE_ISOCHRONOUS) {
717 		n_frlengths = xfer->nframes;
718 		n_frbuffers = 1;
719 	} else {
720 
721 		if (type == UE_CONTROL) {
722 			xfer->flags_int.control_xfr = 1;
723 			if (xfer->nframes == 0) {
724 				if (parm->bufsize <= REQ_SIZE) {
725 					/*
726 					 * there will never be any data
727 					 * stage
728 					 */
729 					xfer->nframes = 1;
730 				} else {
731 					xfer->nframes = 2;
732 				}
733 			}
734 		} else {
735 			if (xfer->nframes == 0) {
736 				xfer->nframes = 1;
737 			}
738 		}
739 
740 		n_frlengths = xfer->nframes;
741 		n_frbuffers = xfer->nframes;
742 	}
743 
744 	/*
745 	 * check if we have room for the
746 	 * USB device request structure:
747 	 */
748 
749 	if (type == UE_CONTROL) {
750 
751 		if (xfer->max_data_length < REQ_SIZE) {
752 			/* length wrapped around or too small bufsize */
753 			parm->err = USB_ERR_INVAL;
754 			goto done;
755 		}
756 		xfer->max_data_length -= REQ_SIZE;
757 	}
758 	/*
759 	 * Setup "frlengths" and shadow "frlengths" for keeping the
760 	 * initial frame lengths when a USB transfer is complete. This
761 	 * information is useful when computing isochronous offsets.
762 	 */
763 	xfer->frlengths = parm->xfer_length_ptr;
764 	parm->xfer_length_ptr += 2 * n_frlengths;
765 
766 	/* setup "frbuffers" */
767 	xfer->frbuffers = parm->xfer_page_cache_ptr;
768 	parm->xfer_page_cache_ptr += n_frbuffers;
769 
770 	/* initialize max frame count */
771 	xfer->max_frame_count = xfer->nframes;
772 
773 	/*
774 	 * check if we need to setup
775 	 * a local buffer:
776 	 */
777 
778 	if (!xfer->flags.ext_buffer) {
779 #if USB_HAVE_BUSDMA
780 		struct usb_page_search page_info;
781 		struct usb_page_cache *pc;
782 
783 		if (usbd_transfer_setup_sub_malloc(parm,
784 		    &pc, parm->bufsize, 1, 1)) {
785 			parm->err = USB_ERR_NOMEM;
786 		} else if (parm->buf != NULL) {
787 
788 			usbd_get_page(pc, 0, &page_info);
789 
790 			xfer->local_buffer = page_info.buffer;
791 
792 			usbd_xfer_set_frame_offset(xfer, 0, 0);
793 
794 			if ((type == UE_CONTROL) && (n_frbuffers > 1)) {
795 				usbd_xfer_set_frame_offset(xfer, REQ_SIZE, 1);
796 			}
797 		}
798 #else
799 		/* align data */
800 		parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1));
801 
802 		if (parm->buf != NULL) {
803 			xfer->local_buffer =
804 			    USB_ADD_BYTES(parm->buf, parm->size[0]);
805 
806 			usbd_xfer_set_frame_offset(xfer, 0, 0);
807 
808 			if ((type == UE_CONTROL) && (n_frbuffers > 1)) {
809 				usbd_xfer_set_frame_offset(xfer, REQ_SIZE, 1);
810 			}
811 		}
812 		parm->size[0] += parm->bufsize;
813 
814 		/* align data again */
815 		parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1));
816 #endif
817 	}
818 	/*
819 	 * Compute maximum buffer size
820 	 */
821 
822 	if (parm->bufsize_max < parm->bufsize) {
823 		parm->bufsize_max = parm->bufsize;
824 	}
825 #if USB_HAVE_BUSDMA
826 	if (xfer->flags_int.bdma_enable) {
827 		/*
828 		 * Setup "dma_page_ptr".
829 		 *
830 		 * Proof for formula below:
831 		 *
832 		 * Assume there are three USB frames having length "a", "b" and
833 		 * "c". These USB frames will at maximum need "z"
834 		 * "usb_page" structures. "z" is given by:
835 		 *
836 		 * z = ((a / USB_PAGE_SIZE) + 2) + ((b / USB_PAGE_SIZE) + 2) +
837 		 * ((c / USB_PAGE_SIZE) + 2);
838 		 *
839 		 * Constraining "a", "b" and "c" like this:
840 		 *
841 		 * (a + b + c) <= parm->bufsize
842 		 *
843 		 * We know that:
844 		 *
845 		 * z <= ((parm->bufsize / USB_PAGE_SIZE) + (3*2));
846 		 *
847 		 * Here is the general formula:
848 		 */
849 		xfer->dma_page_ptr = parm->dma_page_ptr;
850 		parm->dma_page_ptr += (2 * n_frbuffers);
851 		parm->dma_page_ptr += (parm->bufsize / USB_PAGE_SIZE);
852 	}
853 #endif
854 	if (zmps) {
855 		/* correct maximum data length */
856 		xfer->max_data_length = 0;
857 	}
858 	/* subtract USB frame remainder from "hc_max_frame_size" */
859 
860 	xfer->max_hc_frame_size =
861 	    (parm->hc_max_frame_size -
862 	    (parm->hc_max_frame_size % xfer->max_frame_size));
863 
864 	if (xfer->max_hc_frame_size == 0) {
865 		parm->err = USB_ERR_INVAL;
866 		goto done;
867 	}
868 
869 	/* initialize frame buffers */
870 
871 	if (parm->buf) {
872 		for (x = 0; x != n_frbuffers; x++) {
873 			xfer->frbuffers[x].tag_parent =
874 			    &xfer->xroot->dma_parent_tag;
875 #if USB_HAVE_BUSDMA
876 			if (xfer->flags_int.bdma_enable &&
877 			    (parm->bufsize_max > 0)) {
878 
879 				if (usb_pc_dmamap_create(
880 				    xfer->frbuffers + x,
881 				    parm->bufsize_max)) {
882 					parm->err = USB_ERR_NOMEM;
883 					goto done;
884 				}
885 			}
886 #endif
887 		}
888 	}
889 done:
890 	if (parm->err) {
891 		/*
892 		 * Set some dummy values so that we avoid division by zero:
893 		 */
894 		xfer->max_hc_frame_size = 1;
895 		xfer->max_frame_size = 1;
896 		xfer->max_packet_size = 1;
897 		xfer->max_data_length = 0;
898 		xfer->nframes = 0;
899 		xfer->max_frame_count = 0;
900 	}
901 }
902 
903 static uint8_t
904 usbd_transfer_setup_has_bulk(const struct usb_config *setup_start,
905     uint16_t n_setup)
906 {
907 	while (n_setup--) {
908 		uint8_t type = setup_start[n_setup].type;
909 		if (type == UE_BULK || type == UE_BULK_INTR ||
910 		    type == UE_TYPE_ANY)
911 			return (1);
912 	}
913 	return (0);
914 }
915 
916 /*------------------------------------------------------------------------*
917  *	usbd_transfer_setup - setup an array of USB transfers
918  *
919  * NOTE: You must always call "usbd_transfer_unsetup" after calling
920  * "usbd_transfer_setup" if success was returned.
921  *
922  * The idea is that the USB device driver should pre-allocate all its
923  * transfers by one call to this function.
924  *
925  * Return values:
926  *    0: Success
927  * Else: Failure
928  *------------------------------------------------------------------------*/
929 usb_error_t
930 usbd_transfer_setup(struct usb_device *udev,
931     const uint8_t *ifaces, struct usb_xfer **ppxfer,
932     const struct usb_config *setup_start, uint16_t n_setup,
933     void *priv_sc, struct mtx *xfer_mtx)
934 {
935 	const struct usb_config *setup_end = setup_start + n_setup;
936 	const struct usb_config *setup;
937 	struct usb_setup_params *parm;
938 	struct usb_endpoint *ep;
939 	struct usb_xfer_root *info;
940 	struct usb_xfer *xfer;
941 	void *buf = NULL;
942 	usb_error_t error = 0;
943 	uint16_t n;
944 	uint16_t refcount;
945 	uint8_t do_unlock;
946 
947 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
948 	    "usbd_transfer_setup can sleep!");
949 
950 	/* do some checking first */
951 
952 	if (n_setup == 0) {
953 		DPRINTFN(6, "setup array has zero length!\n");
954 		return (USB_ERR_INVAL);
955 	}
956 	if (ifaces == NULL) {
957 		DPRINTFN(6, "ifaces array is NULL!\n");
958 		return (USB_ERR_INVAL);
959 	}
960 	if (xfer_mtx == NULL) {
961 		DPRINTFN(6, "using global lock\n");
962 		xfer_mtx = &Giant;
963 	}
964 
965 	/* more sanity checks */
966 
967 	for (setup = setup_start, n = 0;
968 	    setup != setup_end; setup++, n++) {
969 		if (setup->bufsize == (usb_frlength_t)-1) {
970 			error = USB_ERR_BAD_BUFSIZE;
971 			DPRINTF("invalid bufsize\n");
972 		}
973 		if (setup->callback == NULL) {
974 			error = USB_ERR_NO_CALLBACK;
975 			DPRINTF("no callback\n");
976 		}
977 		ppxfer[n] = NULL;
978 	}
979 
980 	if (error)
981 		return (error);
982 
983 	/* Protect scratch area */
984 	do_unlock = usbd_ctrl_lock(udev);
985 
986 	refcount = 0;
987 	info = NULL;
988 
989 	parm = &udev->scratch.xfer_setup[0].parm;
990 	memset(parm, 0, sizeof(*parm));
991 
992 	parm->udev = udev;
993 	parm->speed = usbd_get_speed(udev);
994 	parm->hc_max_packet_count = 1;
995 
996 	if (parm->speed >= USB_SPEED_MAX) {
997 		parm->err = USB_ERR_INVAL;
998 		goto done;
999 	}
1000 	/* setup all transfers */
1001 
1002 	while (1) {
1003 
1004 		if (buf) {
1005 			/*
1006 			 * Initialize the "usb_xfer_root" structure,
1007 			 * which is common for all our USB transfers.
1008 			 */
1009 			info = USB_ADD_BYTES(buf, 0);
1010 
1011 			info->memory_base = buf;
1012 			info->memory_size = parm->size[0];
1013 
1014 #if USB_HAVE_BUSDMA
1015 			info->dma_page_cache_start = USB_ADD_BYTES(buf, parm->size[4]);
1016 			info->dma_page_cache_end = USB_ADD_BYTES(buf, parm->size[5]);
1017 #endif
1018 			info->xfer_page_cache_start = USB_ADD_BYTES(buf, parm->size[5]);
1019 			info->xfer_page_cache_end = USB_ADD_BYTES(buf, parm->size[2]);
1020 
1021 			cv_init(&info->cv_drain, "WDRAIN");
1022 
1023 			info->xfer_mtx = xfer_mtx;
1024 #if USB_HAVE_BUSDMA
1025 			usb_dma_tag_setup(&info->dma_parent_tag,
1026 			    parm->dma_tag_p, udev->bus->dma_parent_tag[0].tag,
1027 			    xfer_mtx, &usb_bdma_done_event, udev->bus->dma_bits,
1028 			    parm->dma_tag_max);
1029 #endif
1030 
1031 			info->bus = udev->bus;
1032 			info->udev = udev;
1033 
1034 			TAILQ_INIT(&info->done_q.head);
1035 			info->done_q.command = &usbd_callback_wrapper;
1036 #if USB_HAVE_BUSDMA
1037 			TAILQ_INIT(&info->dma_q.head);
1038 			info->dma_q.command = &usb_bdma_work_loop;
1039 #endif
1040 			info->done_m[0].hdr.pm_callback = &usb_callback_proc;
1041 			info->done_m[0].xroot = info;
1042 			info->done_m[1].hdr.pm_callback = &usb_callback_proc;
1043 			info->done_m[1].xroot = info;
1044 
1045 			/*
1046 			 * In device side mode control endpoint
1047 			 * requests need to run from a separate
1048 			 * context, else there is a chance of
1049 			 * deadlock!
1050 			 */
1051 			if (setup_start == usb_control_ep_cfg ||
1052 			    setup_start == usb_control_ep_quirk_cfg)
1053 				info->done_p =
1054 				    USB_BUS_CONTROL_XFER_PROC(udev->bus);
1055 			else if (xfer_mtx == &Giant)
1056 				info->done_p =
1057 				    USB_BUS_GIANT_PROC(udev->bus);
1058 			else if (usbd_transfer_setup_has_bulk(setup_start, n_setup))
1059 				info->done_p =
1060 				    USB_BUS_NON_GIANT_BULK_PROC(udev->bus);
1061 			else
1062 				info->done_p =
1063 				    USB_BUS_NON_GIANT_ISOC_PROC(udev->bus);
1064 		}
1065 		/* reset sizes */
1066 
1067 		parm->size[0] = 0;
1068 		parm->buf = buf;
1069 		parm->size[0] += sizeof(info[0]);
1070 
1071 		for (setup = setup_start, n = 0;
1072 		    setup != setup_end; setup++, n++) {
1073 
1074 			/* skip USB transfers without callbacks: */
1075 			if (setup->callback == NULL) {
1076 				continue;
1077 			}
1078 			/* see if there is a matching endpoint */
1079 			ep = usbd_get_endpoint(udev,
1080 			    ifaces[setup->if_index], setup);
1081 
1082 			/*
1083 			 * Check that the USB PIPE is valid and that
1084 			 * the endpoint mode is proper.
1085 			 *
1086 			 * Make sure we don't allocate a streams
1087 			 * transfer when such a combination is not
1088 			 * valid.
1089 			 */
1090 			if ((ep == NULL) || (ep->methods == NULL) ||
1091 			    ((ep->ep_mode != USB_EP_MODE_STREAMS) &&
1092 			    (ep->ep_mode != USB_EP_MODE_DEFAULT)) ||
1093 			    (setup->stream_id != 0 &&
1094 			    (setup->stream_id >= USB_MAX_EP_STREAMS ||
1095 			    (ep->ep_mode != USB_EP_MODE_STREAMS)))) {
1096 				if (setup->flags.no_pipe_ok)
1097 					continue;
1098 				if ((setup->usb_mode != USB_MODE_DUAL) &&
1099 				    (setup->usb_mode != udev->flags.usb_mode))
1100 					continue;
1101 				parm->err = USB_ERR_NO_PIPE;
1102 				goto done;
1103 			}
1104 
1105 			/* align data properly */
1106 			parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1));
1107 
1108 			/* store current setup pointer */
1109 			parm->curr_setup = setup;
1110 
1111 			if (buf) {
1112 				/*
1113 				 * Common initialization of the
1114 				 * "usb_xfer" structure.
1115 				 */
1116 				xfer = USB_ADD_BYTES(buf, parm->size[0]);
1117 				xfer->address = udev->address;
1118 				xfer->priv_sc = priv_sc;
1119 				xfer->xroot = info;
1120 
1121 				usb_callout_init_mtx(&xfer->timeout_handle,
1122 				    &udev->bus->bus_mtx, 0);
1123 			} else {
1124 				/*
1125 				 * Setup a dummy xfer, hence we are
1126 				 * writing to the "usb_xfer"
1127 				 * structure pointed to by "xfer"
1128 				 * before we have allocated any
1129 				 * memory:
1130 				 */
1131 				xfer = &udev->scratch.xfer_setup[0].dummy;
1132 				memset(xfer, 0, sizeof(*xfer));
1133 				refcount++;
1134 			}
1135 
1136 			/* set transfer endpoint pointer */
1137 			xfer->endpoint = ep;
1138 
1139 			/* set transfer stream ID */
1140 			xfer->stream_id = setup->stream_id;
1141 
1142 			parm->size[0] += sizeof(xfer[0]);
1143 			parm->methods = xfer->endpoint->methods;
1144 			parm->curr_xfer = xfer;
1145 
1146 			/*
1147 			 * Call the Host or Device controller transfer
1148 			 * setup routine:
1149 			 */
1150 			(udev->bus->methods->xfer_setup) (parm);
1151 
1152 			/* check for error */
1153 			if (parm->err)
1154 				goto done;
1155 
1156 			if (buf) {
1157 				/*
1158 				 * Increment the endpoint refcount. This
1159 				 * basically prevents setting a new
1160 				 * configuration and alternate setting
1161 				 * when USB transfers are in use on
1162 				 * the given interface. Search the USB
1163 				 * code for "endpoint->refcount_alloc" if you
1164 				 * want more information.
1165 				 */
1166 				USB_BUS_LOCK(info->bus);
1167 				if (xfer->endpoint->refcount_alloc >= USB_EP_REF_MAX)
1168 					parm->err = USB_ERR_INVAL;
1169 
1170 				xfer->endpoint->refcount_alloc++;
1171 
1172 				if (xfer->endpoint->refcount_alloc == 0)
1173 					panic("usbd_transfer_setup(): Refcount wrapped to zero\n");
1174 				USB_BUS_UNLOCK(info->bus);
1175 
1176 				/*
1177 				 * Whenever we set ppxfer[] then we
1178 				 * also need to increment the
1179 				 * "setup_refcount":
1180 				 */
1181 				info->setup_refcount++;
1182 
1183 				/*
1184 				 * Transfer is successfully setup and
1185 				 * can be used:
1186 				 */
1187 				ppxfer[n] = xfer;
1188 			}
1189 
1190 			/* check for error */
1191 			if (parm->err)
1192 				goto done;
1193 		}
1194 
1195 		if (buf != NULL || parm->err != 0)
1196 			goto done;
1197 
1198 		/* if no transfers, nothing to do */
1199 		if (refcount == 0)
1200 			goto done;
1201 
1202 		/* align data properly */
1203 		parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1));
1204 
1205 		/* store offset temporarily */
1206 		parm->size[1] = parm->size[0];
1207 
1208 		/*
1209 		 * The number of DMA tags required depends on
1210 		 * the number of endpoints. The current estimate
1211 		 * for maximum number of DMA tags per endpoint
1212 		 * is three:
1213 		 * 1) for loading memory
1214 		 * 2) for allocating memory
1215 		 * 3) for fixing memory [UHCI]
1216 		 */
1217 		parm->dma_tag_max += 3 * MIN(n_setup, USB_EP_MAX);
1218 
1219 		/*
1220 		 * DMA tags for QH, TD, Data and more.
1221 		 */
1222 		parm->dma_tag_max += 8;
1223 
1224 		parm->dma_tag_p += parm->dma_tag_max;
1225 
1226 		parm->size[0] += ((uint8_t *)parm->dma_tag_p) -
1227 		    ((uint8_t *)0);
1228 
1229 		/* align data properly */
1230 		parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1));
1231 
1232 		/* store offset temporarily */
1233 		parm->size[3] = parm->size[0];
1234 
1235 		parm->size[0] += ((uint8_t *)parm->dma_page_ptr) -
1236 		    ((uint8_t *)0);
1237 
1238 		/* align data properly */
1239 		parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1));
1240 
1241 		/* store offset temporarily */
1242 		parm->size[4] = parm->size[0];
1243 
1244 		parm->size[0] += ((uint8_t *)parm->dma_page_cache_ptr) -
1245 		    ((uint8_t *)0);
1246 
1247 		/* store end offset temporarily */
1248 		parm->size[5] = parm->size[0];
1249 
1250 		parm->size[0] += ((uint8_t *)parm->xfer_page_cache_ptr) -
1251 		    ((uint8_t *)0);
1252 
1253 		/* store end offset temporarily */
1254 
1255 		parm->size[2] = parm->size[0];
1256 
1257 		/* align data properly */
1258 		parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1));
1259 
1260 		parm->size[6] = parm->size[0];
1261 
1262 		parm->size[0] += ((uint8_t *)parm->xfer_length_ptr) -
1263 		    ((uint8_t *)0);
1264 
1265 		/* align data properly */
1266 		parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1));
1267 
1268 		/* allocate zeroed memory */
1269 		buf = malloc(parm->size[0], M_USB, M_WAITOK | M_ZERO);
1270 
1271 		if (buf == NULL) {
1272 			parm->err = USB_ERR_NOMEM;
1273 			DPRINTFN(0, "cannot allocate memory block for "
1274 			    "configuration (%d bytes)\n",
1275 			    parm->size[0]);
1276 			goto done;
1277 		}
1278 		parm->dma_tag_p = USB_ADD_BYTES(buf, parm->size[1]);
1279 		parm->dma_page_ptr = USB_ADD_BYTES(buf, parm->size[3]);
1280 		parm->dma_page_cache_ptr = USB_ADD_BYTES(buf, parm->size[4]);
1281 		parm->xfer_page_cache_ptr = USB_ADD_BYTES(buf, parm->size[5]);
1282 		parm->xfer_length_ptr = USB_ADD_BYTES(buf, parm->size[6]);
1283 	}
1284 
1285 done:
1286 	if (buf) {
1287 		if (info->setup_refcount == 0) {
1288 			/*
1289 			 * "usbd_transfer_unsetup_sub" will unlock
1290 			 * the bus mutex before returning !
1291 			 */
1292 			USB_BUS_LOCK(info->bus);
1293 
1294 			/* something went wrong */
1295 			usbd_transfer_unsetup_sub(info, 0);
1296 		}
1297 	}
1298 
1299 	/* check if any errors happened */
1300 	if (parm->err)
1301 		usbd_transfer_unsetup(ppxfer, n_setup);
1302 
1303 	error = parm->err;
1304 
1305 	if (do_unlock)
1306 		usbd_ctrl_unlock(udev);
1307 
1308 	return (error);
1309 }
1310 
1311 /*------------------------------------------------------------------------*
1312  *	usbd_transfer_unsetup_sub - factored out code
1313  *------------------------------------------------------------------------*/
1314 static void
1315 usbd_transfer_unsetup_sub(struct usb_xfer_root *info, uint8_t needs_delay)
1316 {
1317 #if USB_HAVE_BUSDMA
1318 	struct usb_page_cache *pc;
1319 #endif
1320 
1321 	USB_BUS_LOCK_ASSERT(info->bus, MA_OWNED);
1322 
1323 	/* wait for any outstanding DMA operations */
1324 
1325 	if (needs_delay) {
1326 		usb_timeout_t temp;
1327 		temp = usbd_get_dma_delay(info->udev);
1328 		if (temp != 0) {
1329 			usb_pause_mtx(&info->bus->bus_mtx,
1330 			    USB_MS_TO_TICKS(temp));
1331 		}
1332 	}
1333 
1334 	/* make sure that our done messages are not queued anywhere */
1335 	usb_proc_mwait(info->done_p, &info->done_m[0], &info->done_m[1]);
1336 
1337 	USB_BUS_UNLOCK(info->bus);
1338 
1339 #if USB_HAVE_BUSDMA
1340 	/* free DMA'able memory, if any */
1341 	pc = info->dma_page_cache_start;
1342 	while (pc != info->dma_page_cache_end) {
1343 		usb_pc_free_mem(pc);
1344 		pc++;
1345 	}
1346 
1347 	/* free DMA maps in all "xfer->frbuffers" */
1348 	pc = info->xfer_page_cache_start;
1349 	while (pc != info->xfer_page_cache_end) {
1350 		usb_pc_dmamap_destroy(pc);
1351 		pc++;
1352 	}
1353 
1354 	/* free all DMA tags */
1355 	usb_dma_tag_unsetup(&info->dma_parent_tag);
1356 #endif
1357 
1358 	cv_destroy(&info->cv_drain);
1359 
1360 	/*
1361 	 * free the "memory_base" last, hence the "info" structure is
1362 	 * contained within the "memory_base"!
1363 	 */
1364 	free(info->memory_base, M_USB);
1365 }
1366 
1367 /*------------------------------------------------------------------------*
1368  *	usbd_transfer_unsetup - unsetup/free an array of USB transfers
1369  *
1370  * NOTE: All USB transfers in progress will get called back passing
1371  * the error code "USB_ERR_CANCELLED" before this function
1372  * returns.
1373  *------------------------------------------------------------------------*/
1374 void
1375 usbd_transfer_unsetup(struct usb_xfer **pxfer, uint16_t n_setup)
1376 {
1377 	struct usb_xfer *xfer;
1378 	struct usb_xfer_root *info;
1379 	uint8_t needs_delay = 0;
1380 
1381 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
1382 	    "usbd_transfer_unsetup can sleep!");
1383 
1384 	while (n_setup--) {
1385 		xfer = pxfer[n_setup];
1386 
1387 		if (xfer == NULL)
1388 			continue;
1389 
1390 		info = xfer->xroot;
1391 
1392 		USB_XFER_LOCK(xfer);
1393 		USB_BUS_LOCK(info->bus);
1394 
1395 		/*
1396 		 * HINT: when you start/stop a transfer, it might be a
1397 		 * good idea to directly use the "pxfer[]" structure:
1398 		 *
1399 		 * usbd_transfer_start(sc->pxfer[0]);
1400 		 * usbd_transfer_stop(sc->pxfer[0]);
1401 		 *
1402 		 * That way, if your code has many parts that will not
1403 		 * stop running under the same lock, in other words
1404 		 * "xfer_mtx", the usbd_transfer_start and
1405 		 * usbd_transfer_stop functions will simply return
1406 		 * when they detect a NULL pointer argument.
1407 		 *
1408 		 * To avoid any races we clear the "pxfer[]" pointer
1409 		 * while holding the private mutex of the driver:
1410 		 */
1411 		pxfer[n_setup] = NULL;
1412 
1413 		USB_BUS_UNLOCK(info->bus);
1414 		USB_XFER_UNLOCK(xfer);
1415 
1416 		usbd_transfer_drain(xfer);
1417 
1418 #if USB_HAVE_BUSDMA
1419 		if (xfer->flags_int.bdma_enable)
1420 			needs_delay = 1;
1421 #endif
1422 		/*
1423 		 * NOTE: default endpoint does not have an
1424 		 * interface, even if endpoint->iface_index == 0
1425 		 */
1426 		USB_BUS_LOCK(info->bus);
1427 		xfer->endpoint->refcount_alloc--;
1428 		USB_BUS_UNLOCK(info->bus);
1429 
1430 		usb_callout_drain(&xfer->timeout_handle);
1431 
1432 		USB_BUS_LOCK(info->bus);
1433 
1434 		USB_ASSERT(info->setup_refcount != 0, ("Invalid setup "
1435 		    "reference count\n"));
1436 
1437 		info->setup_refcount--;
1438 
1439 		if (info->setup_refcount == 0) {
1440 			usbd_transfer_unsetup_sub(info,
1441 			    needs_delay);
1442 		} else {
1443 			USB_BUS_UNLOCK(info->bus);
1444 		}
1445 	}
1446 }
1447 
1448 /*------------------------------------------------------------------------*
1449  *	usbd_control_transfer_init - factored out code
1450  *
1451  * In USB Device Mode we have to wait for the SETUP packet which
1452  * containst the "struct usb_device_request" structure, before we can
1453  * transfer any data. In USB Host Mode we already have the SETUP
1454  * packet at the moment the USB transfer is started. This leads us to
1455  * having to setup the USB transfer at two different places in
1456  * time. This function just contains factored out control transfer
1457  * initialisation code, so that we don't duplicate the code.
1458  *------------------------------------------------------------------------*/
1459 static void
1460 usbd_control_transfer_init(struct usb_xfer *xfer)
1461 {
1462 	struct usb_device_request req;
1463 
1464 	/* copy out the USB request header */
1465 
1466 	usbd_copy_out(xfer->frbuffers, 0, &req, sizeof(req));
1467 
1468 	/* setup remainder */
1469 
1470 	xfer->flags_int.control_rem = UGETW(req.wLength);
1471 
1472 	/* copy direction to endpoint variable */
1473 
1474 	xfer->endpointno &= ~(UE_DIR_IN | UE_DIR_OUT);
1475 	xfer->endpointno |=
1476 	    (req.bmRequestType & UT_READ) ? UE_DIR_IN : UE_DIR_OUT;
1477 }
1478 
1479 /*------------------------------------------------------------------------*
1480  *	usbd_control_transfer_did_data
1481  *
1482  * This function returns non-zero if a control endpoint has
1483  * transferred the first DATA packet after the SETUP packet.
1484  * Else it returns zero.
1485  *------------------------------------------------------------------------*/
1486 static uint8_t
1487 usbd_control_transfer_did_data(struct usb_xfer *xfer)
1488 {
1489 	struct usb_device_request req;
1490 
1491 	/* SETUP packet is not yet sent */
1492 	if (xfer->flags_int.control_hdr != 0)
1493 		return (0);
1494 
1495 	/* copy out the USB request header */
1496 	usbd_copy_out(xfer->frbuffers, 0, &req, sizeof(req));
1497 
1498 	/* compare remainder to the initial value */
1499 	return (xfer->flags_int.control_rem != UGETW(req.wLength));
1500 }
1501 
1502 /*------------------------------------------------------------------------*
1503  *	usbd_setup_ctrl_transfer
1504  *
1505  * This function handles initialisation of control transfers. Control
1506  * transfers are special in that regard that they can both transmit
1507  * and receive data.
1508  *
1509  * Return values:
1510  *    0: Success
1511  * Else: Failure
1512  *------------------------------------------------------------------------*/
1513 static int
1514 usbd_setup_ctrl_transfer(struct usb_xfer *xfer)
1515 {
1516 	usb_frlength_t len;
1517 
1518 	/* Check for control endpoint stall */
1519 	if (xfer->flags.stall_pipe && xfer->flags_int.control_act) {
1520 		/* the control transfer is no longer active */
1521 		xfer->flags_int.control_stall = 1;
1522 		xfer->flags_int.control_act = 0;
1523 	} else {
1524 		/* don't stall control transfer by default */
1525 		xfer->flags_int.control_stall = 0;
1526 	}
1527 
1528 	/* Check for invalid number of frames */
1529 	if (xfer->nframes > 2) {
1530 		/*
1531 		 * If you need to split a control transfer, you
1532 		 * have to do one part at a time. Only with
1533 		 * non-control transfers you can do multiple
1534 		 * parts a time.
1535 		 */
1536 		DPRINTFN(0, "Too many frames: %u\n",
1537 		    (unsigned int)xfer->nframes);
1538 		goto error;
1539 	}
1540 
1541 	/*
1542          * Check if there is a control
1543          * transfer in progress:
1544          */
1545 	if (xfer->flags_int.control_act) {
1546 
1547 		if (xfer->flags_int.control_hdr) {
1548 
1549 			/* clear send header flag */
1550 
1551 			xfer->flags_int.control_hdr = 0;
1552 
1553 			/* setup control transfer */
1554 			if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) {
1555 				usbd_control_transfer_init(xfer);
1556 			}
1557 		}
1558 		/* get data length */
1559 
1560 		len = xfer->sumlen;
1561 
1562 	} else {
1563 
1564 		/* the size of the SETUP structure is hardcoded ! */
1565 
1566 		if (xfer->frlengths[0] != sizeof(struct usb_device_request)) {
1567 			DPRINTFN(0, "Wrong framelength %u != %zu\n",
1568 			    xfer->frlengths[0], sizeof(struct
1569 			    usb_device_request));
1570 			goto error;
1571 		}
1572 		/* check USB mode */
1573 		if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) {
1574 
1575 			/* check number of frames */
1576 			if (xfer->nframes != 1) {
1577 				/*
1578 			         * We need to receive the setup
1579 			         * message first so that we know the
1580 			         * data direction!
1581 			         */
1582 				DPRINTF("Misconfigured transfer\n");
1583 				goto error;
1584 			}
1585 			/*
1586 			 * Set a dummy "control_rem" value.  This
1587 			 * variable will be overwritten later by a
1588 			 * call to "usbd_control_transfer_init()" !
1589 			 */
1590 			xfer->flags_int.control_rem = 0xFFFF;
1591 		} else {
1592 
1593 			/* setup "endpoint" and "control_rem" */
1594 
1595 			usbd_control_transfer_init(xfer);
1596 		}
1597 
1598 		/* set transfer-header flag */
1599 
1600 		xfer->flags_int.control_hdr = 1;
1601 
1602 		/* get data length */
1603 
1604 		len = (xfer->sumlen - sizeof(struct usb_device_request));
1605 	}
1606 
1607 	/* update did data flag */
1608 
1609 	xfer->flags_int.control_did_data =
1610 	    usbd_control_transfer_did_data(xfer);
1611 
1612 	/* check if there is a length mismatch */
1613 
1614 	if (len > xfer->flags_int.control_rem) {
1615 		DPRINTFN(0, "Length (%d) greater than "
1616 		    "remaining length (%d)\n", len,
1617 		    xfer->flags_int.control_rem);
1618 		goto error;
1619 	}
1620 	/* check if we are doing a short transfer */
1621 
1622 	if (xfer->flags.force_short_xfer) {
1623 		xfer->flags_int.control_rem = 0;
1624 	} else {
1625 		if ((len != xfer->max_data_length) &&
1626 		    (len != xfer->flags_int.control_rem) &&
1627 		    (xfer->nframes != 1)) {
1628 			DPRINTFN(0, "Short control transfer without "
1629 			    "force_short_xfer set\n");
1630 			goto error;
1631 		}
1632 		xfer->flags_int.control_rem -= len;
1633 	}
1634 
1635 	/* the status part is executed when "control_act" is 0 */
1636 
1637 	if ((xfer->flags_int.control_rem > 0) ||
1638 	    (xfer->flags.manual_status)) {
1639 		/* don't execute the STATUS stage yet */
1640 		xfer->flags_int.control_act = 1;
1641 
1642 		/* sanity check */
1643 		if ((!xfer->flags_int.control_hdr) &&
1644 		    (xfer->nframes == 1)) {
1645 			/*
1646 		         * This is not a valid operation!
1647 		         */
1648 			DPRINTFN(0, "Invalid parameter "
1649 			    "combination\n");
1650 			goto error;
1651 		}
1652 	} else {
1653 		/* time to execute the STATUS stage */
1654 		xfer->flags_int.control_act = 0;
1655 	}
1656 	return (0);			/* success */
1657 
1658 error:
1659 	return (1);			/* failure */
1660 }
1661 
1662 /*------------------------------------------------------------------------*
1663  *	usbd_transfer_submit - start USB hardware for the given transfer
1664  *
1665  * This function should only be called from the USB callback.
1666  *------------------------------------------------------------------------*/
1667 void
1668 usbd_transfer_submit(struct usb_xfer *xfer)
1669 {
1670 	struct usb_xfer_root *info;
1671 	struct usb_bus *bus;
1672 	usb_frcount_t x;
1673 
1674 	info = xfer->xroot;
1675 	bus = info->bus;
1676 
1677 	DPRINTF("xfer=%p, endpoint=%p, nframes=%d, dir=%s\n",
1678 	    xfer, xfer->endpoint, xfer->nframes, USB_GET_DATA_ISREAD(xfer) ?
1679 	    "read" : "write");
1680 
1681 #ifdef USB_DEBUG
1682 	if (USB_DEBUG_VAR > 0) {
1683 		USB_BUS_LOCK(bus);
1684 
1685 		usb_dump_endpoint(xfer->endpoint);
1686 
1687 		USB_BUS_UNLOCK(bus);
1688 	}
1689 #endif
1690 
1691 	USB_XFER_LOCK_ASSERT(xfer, MA_OWNED);
1692 	USB_BUS_LOCK_ASSERT(bus, MA_NOTOWNED);
1693 
1694 	/* Only open the USB transfer once! */
1695 	if (!xfer->flags_int.open) {
1696 		xfer->flags_int.open = 1;
1697 
1698 		DPRINTF("open\n");
1699 
1700 		USB_BUS_LOCK(bus);
1701 		(xfer->endpoint->methods->open) (xfer);
1702 		USB_BUS_UNLOCK(bus);
1703 	}
1704 	/* set "transferring" flag */
1705 	xfer->flags_int.transferring = 1;
1706 
1707 #if USB_HAVE_POWERD
1708 	/* increment power reference */
1709 	usbd_transfer_power_ref(xfer, 1);
1710 #endif
1711 	/*
1712 	 * Check if the transfer is waiting on a queue, most
1713 	 * frequently the "done_q":
1714 	 */
1715 	if (xfer->wait_queue) {
1716 		USB_BUS_LOCK(bus);
1717 		usbd_transfer_dequeue(xfer);
1718 		USB_BUS_UNLOCK(bus);
1719 	}
1720 	/* clear "did_dma_delay" flag */
1721 	xfer->flags_int.did_dma_delay = 0;
1722 
1723 	/* clear "did_close" flag */
1724 	xfer->flags_int.did_close = 0;
1725 
1726 #if USB_HAVE_BUSDMA
1727 	/* clear "bdma_setup" flag */
1728 	xfer->flags_int.bdma_setup = 0;
1729 #endif
1730 	/* by default we cannot cancel any USB transfer immediately */
1731 	xfer->flags_int.can_cancel_immed = 0;
1732 
1733 	/* clear lengths and frame counts by default */
1734 	xfer->sumlen = 0;
1735 	xfer->actlen = 0;
1736 	xfer->aframes = 0;
1737 
1738 	/* clear any previous errors */
1739 	xfer->error = 0;
1740 
1741 	/* Check if the device is still alive */
1742 	if (info->udev->state < USB_STATE_POWERED) {
1743 		USB_BUS_LOCK(bus);
1744 		/*
1745 		 * Must return cancelled error code else
1746 		 * device drivers can hang.
1747 		 */
1748 		usbd_transfer_done(xfer, USB_ERR_CANCELLED);
1749 		USB_BUS_UNLOCK(bus);
1750 		return;
1751 	}
1752 
1753 	/* sanity check */
1754 	if (xfer->nframes == 0) {
1755 		if (xfer->flags.stall_pipe) {
1756 			/*
1757 			 * Special case - want to stall without transferring
1758 			 * any data:
1759 			 */
1760 			DPRINTF("xfer=%p nframes=0: stall "
1761 			    "or clear stall!\n", xfer);
1762 			USB_BUS_LOCK(bus);
1763 			xfer->flags_int.can_cancel_immed = 1;
1764 			/* start the transfer */
1765 			usb_command_wrapper(&xfer->endpoint->
1766 			    endpoint_q[xfer->stream_id], xfer);
1767 			USB_BUS_UNLOCK(bus);
1768 			return;
1769 		}
1770 		USB_BUS_LOCK(bus);
1771 		usbd_transfer_done(xfer, USB_ERR_INVAL);
1772 		USB_BUS_UNLOCK(bus);
1773 		return;
1774 	}
1775 	/* compute some variables */
1776 
1777 	for (x = 0; x != xfer->nframes; x++) {
1778 		/* make a copy of the frlenghts[] */
1779 		xfer->frlengths[x + xfer->max_frame_count] = xfer->frlengths[x];
1780 		/* compute total transfer length */
1781 		xfer->sumlen += xfer->frlengths[x];
1782 		if (xfer->sumlen < xfer->frlengths[x]) {
1783 			/* length wrapped around */
1784 			USB_BUS_LOCK(bus);
1785 			usbd_transfer_done(xfer, USB_ERR_INVAL);
1786 			USB_BUS_UNLOCK(bus);
1787 			return;
1788 		}
1789 	}
1790 
1791 	/* clear some internal flags */
1792 
1793 	xfer->flags_int.short_xfer_ok = 0;
1794 	xfer->flags_int.short_frames_ok = 0;
1795 
1796 	/* check if this is a control transfer */
1797 
1798 	if (xfer->flags_int.control_xfr) {
1799 
1800 		if (usbd_setup_ctrl_transfer(xfer)) {
1801 			USB_BUS_LOCK(bus);
1802 			usbd_transfer_done(xfer, USB_ERR_STALLED);
1803 			USB_BUS_UNLOCK(bus);
1804 			return;
1805 		}
1806 	}
1807 	/*
1808 	 * Setup filtered version of some transfer flags,
1809 	 * in case of data read direction
1810 	 */
1811 	if (USB_GET_DATA_ISREAD(xfer)) {
1812 
1813 		if (xfer->flags.short_frames_ok) {
1814 			xfer->flags_int.short_xfer_ok = 1;
1815 			xfer->flags_int.short_frames_ok = 1;
1816 		} else if (xfer->flags.short_xfer_ok) {
1817 			xfer->flags_int.short_xfer_ok = 1;
1818 
1819 			/* check for control transfer */
1820 			if (xfer->flags_int.control_xfr) {
1821 				/*
1822 				 * 1) Control transfers do not support
1823 				 * reception of multiple short USB
1824 				 * frames in host mode and device side
1825 				 * mode, with exception of:
1826 				 *
1827 				 * 2) Due to sometimes buggy device
1828 				 * side firmware we need to do a
1829 				 * STATUS stage in case of short
1830 				 * control transfers in USB host mode.
1831 				 * The STATUS stage then becomes the
1832 				 * "alt_next" to the DATA stage.
1833 				 */
1834 				xfer->flags_int.short_frames_ok = 1;
1835 			}
1836 		}
1837 	}
1838 	/*
1839 	 * Check if BUS-DMA support is enabled and try to load virtual
1840 	 * buffers into DMA, if any:
1841 	 */
1842 #if USB_HAVE_BUSDMA
1843 	if (xfer->flags_int.bdma_enable) {
1844 		/* insert the USB transfer last in the BUS-DMA queue */
1845 		usb_command_wrapper(&xfer->xroot->dma_q, xfer);
1846 		return;
1847 	}
1848 #endif
1849 	/*
1850 	 * Enter the USB transfer into the Host Controller or
1851 	 * Device Controller schedule:
1852 	 */
1853 	usbd_pipe_enter(xfer);
1854 }
1855 
1856 /*------------------------------------------------------------------------*
1857  *	usbd_pipe_enter - factored out code
1858  *------------------------------------------------------------------------*/
1859 void
1860 usbd_pipe_enter(struct usb_xfer *xfer)
1861 {
1862 	struct usb_endpoint *ep;
1863 
1864 	USB_XFER_LOCK_ASSERT(xfer, MA_OWNED);
1865 
1866 	USB_BUS_LOCK(xfer->xroot->bus);
1867 
1868 	ep = xfer->endpoint;
1869 
1870 	DPRINTF("enter\n");
1871 
1872 	/* the transfer can now be cancelled */
1873 	xfer->flags_int.can_cancel_immed = 1;
1874 
1875 	/* enter the transfer */
1876 	(ep->methods->enter) (xfer);
1877 
1878 	/* check for transfer error */
1879 	if (xfer->error) {
1880 		/* some error has happened */
1881 		usbd_transfer_done(xfer, 0);
1882 		USB_BUS_UNLOCK(xfer->xroot->bus);
1883 		return;
1884 	}
1885 
1886 	/* start the transfer */
1887 	usb_command_wrapper(&ep->endpoint_q[xfer->stream_id], xfer);
1888 	USB_BUS_UNLOCK(xfer->xroot->bus);
1889 }
1890 
1891 /*------------------------------------------------------------------------*
1892  *	usbd_transfer_start - start an USB transfer
1893  *
1894  * NOTE: Calling this function more than one time will only
1895  *       result in a single transfer start, until the USB transfer
1896  *       completes.
1897  *------------------------------------------------------------------------*/
1898 void
1899 usbd_transfer_start(struct usb_xfer *xfer)
1900 {
1901 	if (xfer == NULL) {
1902 		/* transfer is gone */
1903 		return;
1904 	}
1905 	USB_XFER_LOCK_ASSERT(xfer, MA_OWNED);
1906 
1907 	/* mark the USB transfer started */
1908 
1909 	if (!xfer->flags_int.started) {
1910 		/* lock the BUS lock to avoid races updating flags_int */
1911 		USB_BUS_LOCK(xfer->xroot->bus);
1912 		xfer->flags_int.started = 1;
1913 		USB_BUS_UNLOCK(xfer->xroot->bus);
1914 	}
1915 	/* check if the USB transfer callback is already transferring */
1916 
1917 	if (xfer->flags_int.transferring) {
1918 		return;
1919 	}
1920 	USB_BUS_LOCK(xfer->xroot->bus);
1921 	/* call the USB transfer callback */
1922 	usbd_callback_ss_done_defer(xfer);
1923 	USB_BUS_UNLOCK(xfer->xroot->bus);
1924 }
1925 
1926 /*------------------------------------------------------------------------*
1927  *	usbd_transfer_stop - stop an USB transfer
1928  *
1929  * NOTE: Calling this function more than one time will only
1930  *       result in a single transfer stop.
1931  * NOTE: When this function returns it is not safe to free nor
1932  *       reuse any DMA buffers. See "usbd_transfer_drain()".
1933  *------------------------------------------------------------------------*/
1934 void
1935 usbd_transfer_stop(struct usb_xfer *xfer)
1936 {
1937 	struct usb_endpoint *ep;
1938 
1939 	if (xfer == NULL) {
1940 		/* transfer is gone */
1941 		return;
1942 	}
1943 	USB_XFER_LOCK_ASSERT(xfer, MA_OWNED);
1944 
1945 	/* check if the USB transfer was ever opened */
1946 
1947 	if (!xfer->flags_int.open) {
1948 		if (xfer->flags_int.started) {
1949 			/* nothing to do except clearing the "started" flag */
1950 			/* lock the BUS lock to avoid races updating flags_int */
1951 			USB_BUS_LOCK(xfer->xroot->bus);
1952 			xfer->flags_int.started = 0;
1953 			USB_BUS_UNLOCK(xfer->xroot->bus);
1954 		}
1955 		return;
1956 	}
1957 	/* try to stop the current USB transfer */
1958 
1959 	USB_BUS_LOCK(xfer->xroot->bus);
1960 	/* override any previous error */
1961 	xfer->error = USB_ERR_CANCELLED;
1962 
1963 	/*
1964 	 * Clear "open" and "started" when both private and USB lock
1965 	 * is locked so that we don't get a race updating "flags_int"
1966 	 */
1967 	xfer->flags_int.open = 0;
1968 	xfer->flags_int.started = 0;
1969 
1970 	/*
1971 	 * Check if we can cancel the USB transfer immediately.
1972 	 */
1973 	if (xfer->flags_int.transferring) {
1974 		if (xfer->flags_int.can_cancel_immed &&
1975 		    (!xfer->flags_int.did_close)) {
1976 			DPRINTF("close\n");
1977 			/*
1978 			 * The following will lead to an USB_ERR_CANCELLED
1979 			 * error code being passed to the USB callback.
1980 			 */
1981 			(xfer->endpoint->methods->close) (xfer);
1982 			/* only close once */
1983 			xfer->flags_int.did_close = 1;
1984 		} else {
1985 			/* need to wait for the next done callback */
1986 		}
1987 	} else {
1988 		DPRINTF("close\n");
1989 
1990 		/* close here and now */
1991 		(xfer->endpoint->methods->close) (xfer);
1992 
1993 		/*
1994 		 * Any additional DMA delay is done by
1995 		 * "usbd_transfer_unsetup()".
1996 		 */
1997 
1998 		/*
1999 		 * Special case. Check if we need to restart a blocked
2000 		 * endpoint.
2001 		 */
2002 		ep = xfer->endpoint;
2003 
2004 		/*
2005 		 * If the current USB transfer is completing we need
2006 		 * to start the next one:
2007 		 */
2008 		if (ep->endpoint_q[xfer->stream_id].curr == xfer) {
2009 			usb_command_wrapper(
2010 			    &ep->endpoint_q[xfer->stream_id], NULL);
2011 		}
2012 	}
2013 
2014 	USB_BUS_UNLOCK(xfer->xroot->bus);
2015 }
2016 
2017 /*------------------------------------------------------------------------*
2018  *	usbd_transfer_pending
2019  *
2020  * This function will check if an USB transfer is pending which is a
2021  * little bit complicated!
2022  * Return values:
2023  * 0: Not pending
2024  * 1: Pending: The USB transfer will receive a callback in the future.
2025  *------------------------------------------------------------------------*/
2026 uint8_t
2027 usbd_transfer_pending(struct usb_xfer *xfer)
2028 {
2029 	struct usb_xfer_root *info;
2030 	struct usb_xfer_queue *pq;
2031 
2032 	if (xfer == NULL) {
2033 		/* transfer is gone */
2034 		return (0);
2035 	}
2036 	USB_XFER_LOCK_ASSERT(xfer, MA_OWNED);
2037 
2038 	if (xfer->flags_int.transferring) {
2039 		/* trivial case */
2040 		return (1);
2041 	}
2042 	USB_BUS_LOCK(xfer->xroot->bus);
2043 	if (xfer->wait_queue) {
2044 		/* we are waiting on a queue somewhere */
2045 		USB_BUS_UNLOCK(xfer->xroot->bus);
2046 		return (1);
2047 	}
2048 	info = xfer->xroot;
2049 	pq = &info->done_q;
2050 
2051 	if (pq->curr == xfer) {
2052 		/* we are currently scheduled for callback */
2053 		USB_BUS_UNLOCK(xfer->xroot->bus);
2054 		return (1);
2055 	}
2056 	/* we are not pending */
2057 	USB_BUS_UNLOCK(xfer->xroot->bus);
2058 	return (0);
2059 }
2060 
2061 /*------------------------------------------------------------------------*
2062  *	usbd_transfer_drain
2063  *
2064  * This function will stop the USB transfer and wait for any
2065  * additional BUS-DMA and HW-DMA operations to complete. Buffers that
2066  * are loaded into DMA can safely be freed or reused after that this
2067  * function has returned.
2068  *------------------------------------------------------------------------*/
2069 void
2070 usbd_transfer_drain(struct usb_xfer *xfer)
2071 {
2072 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2073 	    "usbd_transfer_drain can sleep!");
2074 
2075 	if (xfer == NULL) {
2076 		/* transfer is gone */
2077 		return;
2078 	}
2079 	if (xfer->xroot->xfer_mtx != &Giant) {
2080 		USB_XFER_LOCK_ASSERT(xfer, MA_NOTOWNED);
2081 	}
2082 	USB_XFER_LOCK(xfer);
2083 
2084 	usbd_transfer_stop(xfer);
2085 
2086 	while (usbd_transfer_pending(xfer) ||
2087 	    xfer->flags_int.doing_callback) {
2088 
2089 		/*
2090 		 * It is allowed that the callback can drop its
2091 		 * transfer mutex. In that case checking only
2092 		 * "usbd_transfer_pending()" is not enough to tell if
2093 		 * the USB transfer is fully drained. We also need to
2094 		 * check the internal "doing_callback" flag.
2095 		 */
2096 		xfer->flags_int.draining = 1;
2097 
2098 		/*
2099 		 * Wait until the current outstanding USB
2100 		 * transfer is complete !
2101 		 */
2102 		cv_wait(&xfer->xroot->cv_drain, xfer->xroot->xfer_mtx);
2103 	}
2104 	USB_XFER_UNLOCK(xfer);
2105 }
2106 
2107 struct usb_page_cache *
2108 usbd_xfer_get_frame(struct usb_xfer *xfer, usb_frcount_t frindex)
2109 {
2110 	KASSERT(frindex < xfer->max_frame_count, ("frame index overflow"));
2111 
2112 	return (&xfer->frbuffers[frindex]);
2113 }
2114 
2115 void *
2116 usbd_xfer_get_frame_buffer(struct usb_xfer *xfer, usb_frcount_t frindex)
2117 {
2118 	struct usb_page_search page_info;
2119 
2120 	KASSERT(frindex < xfer->max_frame_count, ("frame index overflow"));
2121 
2122 	usbd_get_page(&xfer->frbuffers[frindex], 0, &page_info);
2123 	return (page_info.buffer);
2124 }
2125 
2126 /*------------------------------------------------------------------------*
2127  *	usbd_xfer_get_fps_shift
2128  *
2129  * The following function is only useful for isochronous transfers. It
2130  * returns how many times the frame execution rate has been shifted
2131  * down.
2132  *
2133  * Return value:
2134  * Success: 0..3
2135  * Failure: 0
2136  *------------------------------------------------------------------------*/
2137 uint8_t
2138 usbd_xfer_get_fps_shift(struct usb_xfer *xfer)
2139 {
2140 	return (xfer->fps_shift);
2141 }
2142 
2143 usb_frlength_t
2144 usbd_xfer_frame_len(struct usb_xfer *xfer, usb_frcount_t frindex)
2145 {
2146 	KASSERT(frindex < xfer->max_frame_count, ("frame index overflow"));
2147 
2148 	return (xfer->frlengths[frindex]);
2149 }
2150 
2151 /*------------------------------------------------------------------------*
2152  *	usbd_xfer_set_frame_data
2153  *
2154  * This function sets the pointer of the buffer that should
2155  * loaded directly into DMA for the given USB frame. Passing "ptr"
2156  * equal to NULL while the corresponding "frlength" is greater
2157  * than zero gives undefined results!
2158  *------------------------------------------------------------------------*/
2159 void
2160 usbd_xfer_set_frame_data(struct usb_xfer *xfer, usb_frcount_t frindex,
2161     void *ptr, usb_frlength_t len)
2162 {
2163 	KASSERT(frindex < xfer->max_frame_count, ("frame index overflow"));
2164 
2165 	/* set virtual address to load and length */
2166 	xfer->frbuffers[frindex].buffer = ptr;
2167 	usbd_xfer_set_frame_len(xfer, frindex, len);
2168 }
2169 
2170 void
2171 usbd_xfer_frame_data(struct usb_xfer *xfer, usb_frcount_t frindex,
2172     void **ptr, int *len)
2173 {
2174 	KASSERT(frindex < xfer->max_frame_count, ("frame index overflow"));
2175 
2176 	if (ptr != NULL)
2177 		*ptr = xfer->frbuffers[frindex].buffer;
2178 	if (len != NULL)
2179 		*len = xfer->frlengths[frindex];
2180 }
2181 
2182 /*------------------------------------------------------------------------*
2183  *	usbd_xfer_old_frame_length
2184  *
2185  * This function returns the framelength of the given frame at the
2186  * time the transfer was submitted. This function can be used to
2187  * compute the starting data pointer of the next isochronous frame
2188  * when an isochronous transfer has completed.
2189  *------------------------------------------------------------------------*/
2190 usb_frlength_t
2191 usbd_xfer_old_frame_length(struct usb_xfer *xfer, usb_frcount_t frindex)
2192 {
2193 	KASSERT(frindex < xfer->max_frame_count, ("frame index overflow"));
2194 
2195 	return (xfer->frlengths[frindex + xfer->max_frame_count]);
2196 }
2197 
2198 void
2199 usbd_xfer_status(struct usb_xfer *xfer, int *actlen, int *sumlen, int *aframes,
2200     int *nframes)
2201 {
2202 	if (actlen != NULL)
2203 		*actlen = xfer->actlen;
2204 	if (sumlen != NULL)
2205 		*sumlen = xfer->sumlen;
2206 	if (aframes != NULL)
2207 		*aframes = xfer->aframes;
2208 	if (nframes != NULL)
2209 		*nframes = xfer->nframes;
2210 }
2211 
2212 /*------------------------------------------------------------------------*
2213  *	usbd_xfer_set_frame_offset
2214  *
2215  * This function sets the frame data buffer offset relative to the beginning
2216  * of the USB DMA buffer allocated for this USB transfer.
2217  *------------------------------------------------------------------------*/
2218 void
2219 usbd_xfer_set_frame_offset(struct usb_xfer *xfer, usb_frlength_t offset,
2220     usb_frcount_t frindex)
2221 {
2222 	KASSERT(!xfer->flags.ext_buffer, ("Cannot offset data frame "
2223 	    "when the USB buffer is external\n"));
2224 	KASSERT(frindex < xfer->max_frame_count, ("frame index overflow"));
2225 
2226 	/* set virtual address to load */
2227 	xfer->frbuffers[frindex].buffer =
2228 	    USB_ADD_BYTES(xfer->local_buffer, offset);
2229 }
2230 
2231 void
2232 usbd_xfer_set_interval(struct usb_xfer *xfer, int i)
2233 {
2234 	xfer->interval = i;
2235 }
2236 
2237 void
2238 usbd_xfer_set_timeout(struct usb_xfer *xfer, int t)
2239 {
2240 	xfer->timeout = t;
2241 }
2242 
2243 void
2244 usbd_xfer_set_frames(struct usb_xfer *xfer, usb_frcount_t n)
2245 {
2246 	xfer->nframes = n;
2247 }
2248 
2249 usb_frcount_t
2250 usbd_xfer_max_frames(struct usb_xfer *xfer)
2251 {
2252 	return (xfer->max_frame_count);
2253 }
2254 
2255 usb_frlength_t
2256 usbd_xfer_max_len(struct usb_xfer *xfer)
2257 {
2258 	return (xfer->max_data_length);
2259 }
2260 
2261 usb_frlength_t
2262 usbd_xfer_max_framelen(struct usb_xfer *xfer)
2263 {
2264 	return (xfer->max_frame_size);
2265 }
2266 
2267 void
2268 usbd_xfer_set_frame_len(struct usb_xfer *xfer, usb_frcount_t frindex,
2269     usb_frlength_t len)
2270 {
2271 	KASSERT(frindex < xfer->max_frame_count, ("frame index overflow"));
2272 
2273 	xfer->frlengths[frindex] = len;
2274 }
2275 
2276 /*------------------------------------------------------------------------*
2277  *	usb_callback_proc - factored out code
2278  *
2279  * This function performs USB callbacks.
2280  *------------------------------------------------------------------------*/
2281 static void
2282 usb_callback_proc(struct usb_proc_msg *_pm)
2283 {
2284 	struct usb_done_msg *pm = (void *)_pm;
2285 	struct usb_xfer_root *info = pm->xroot;
2286 
2287 	/* Change locking order */
2288 	USB_BUS_UNLOCK(info->bus);
2289 
2290 	/*
2291 	 * We exploit the fact that the mutex is the same for all
2292 	 * callbacks that will be called from this thread:
2293 	 */
2294 	USB_MTX_LOCK(info->xfer_mtx);
2295 	USB_BUS_LOCK(info->bus);
2296 
2297 	/* Continue where we lost track */
2298 	usb_command_wrapper(&info->done_q,
2299 	    info->done_q.curr);
2300 
2301 	USB_MTX_UNLOCK(info->xfer_mtx);
2302 }
2303 
2304 /*------------------------------------------------------------------------*
2305  *	usbd_callback_ss_done_defer
2306  *
2307  * This function will defer the start, stop and done callback to the
2308  * correct thread.
2309  *------------------------------------------------------------------------*/
2310 static void
2311 usbd_callback_ss_done_defer(struct usb_xfer *xfer)
2312 {
2313 	struct usb_xfer_root *info = xfer->xroot;
2314 	struct usb_xfer_queue *pq = &info->done_q;
2315 
2316 	USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED);
2317 
2318 	if (pq->curr != xfer) {
2319 		usbd_transfer_enqueue(pq, xfer);
2320 	}
2321 	if (!pq->recurse_1) {
2322 
2323 		/*
2324 	         * We have to postpone the callback due to the fact we
2325 	         * will have a Lock Order Reversal, LOR, if we try to
2326 	         * proceed !
2327 	         */
2328 		(void) usb_proc_msignal(info->done_p,
2329 		    &info->done_m[0], &info->done_m[1]);
2330 	} else {
2331 		/* clear second recurse flag */
2332 		pq->recurse_2 = 0;
2333 	}
2334 	return;
2335 
2336 }
2337 
2338 /*------------------------------------------------------------------------*
2339  *	usbd_callback_wrapper
2340  *
2341  * This is a wrapper for USB callbacks. This wrapper does some
2342  * auto-magic things like figuring out if we can call the callback
2343  * directly from the current context or if we need to wakeup the
2344  * interrupt process.
2345  *------------------------------------------------------------------------*/
2346 static void
2347 usbd_callback_wrapper(struct usb_xfer_queue *pq)
2348 {
2349 	struct usb_xfer *xfer = pq->curr;
2350 	struct usb_xfer_root *info = xfer->xroot;
2351 
2352 	USB_BUS_LOCK_ASSERT(info->bus, MA_OWNED);
2353 	if ((pq->recurse_3 != 0 || mtx_owned(info->xfer_mtx) == 0) &&
2354 	    USB_IN_POLLING_MODE_FUNC() == 0) {
2355 		/*
2356 	       	 * Cases that end up here:
2357 		 *
2358 		 * 5) HW interrupt done callback or other source.
2359 		 * 6) HW completed transfer during callback
2360 		 */
2361 		DPRINTFN(3, "case 5 and 6\n");
2362 
2363 		/*
2364 	         * We have to postpone the callback due to the fact we
2365 	         * will have a Lock Order Reversal, LOR, if we try to
2366 	         * proceed!
2367 		 *
2368 		 * Postponing the callback also ensures that other USB
2369 		 * transfer queues get a chance.
2370 	         */
2371 		(void) usb_proc_msignal(info->done_p,
2372 		    &info->done_m[0], &info->done_m[1]);
2373 		return;
2374 	}
2375 	/*
2376 	 * Cases that end up here:
2377 	 *
2378 	 * 1) We are starting a transfer
2379 	 * 2) We are prematurely calling back a transfer
2380 	 * 3) We are stopping a transfer
2381 	 * 4) We are doing an ordinary callback
2382 	 */
2383 	DPRINTFN(3, "case 1-4\n");
2384 	/* get next USB transfer in the queue */
2385 	info->done_q.curr = NULL;
2386 
2387 	/* set flag in case of drain */
2388 	xfer->flags_int.doing_callback = 1;
2389 
2390 	USB_BUS_UNLOCK(info->bus);
2391 	USB_BUS_LOCK_ASSERT(info->bus, MA_NOTOWNED);
2392 
2393 	/* set correct USB state for callback */
2394 	if (!xfer->flags_int.transferring) {
2395 		xfer->usb_state = USB_ST_SETUP;
2396 		if (!xfer->flags_int.started) {
2397 			/* we got stopped before we even got started */
2398 			USB_BUS_LOCK(info->bus);
2399 			goto done;
2400 		}
2401 	} else {
2402 
2403 		if (usbd_callback_wrapper_sub(xfer)) {
2404 			/* the callback has been deferred */
2405 			USB_BUS_LOCK(info->bus);
2406 			goto done;
2407 		}
2408 #if USB_HAVE_POWERD
2409 		/* decrement power reference */
2410 		usbd_transfer_power_ref(xfer, -1);
2411 #endif
2412 		xfer->flags_int.transferring = 0;
2413 
2414 		if (xfer->error) {
2415 			xfer->usb_state = USB_ST_ERROR;
2416 		} else {
2417 			/* set transferred state */
2418 			xfer->usb_state = USB_ST_TRANSFERRED;
2419 #if USB_HAVE_BUSDMA
2420 			/* sync DMA memory, if any */
2421 			if (xfer->flags_int.bdma_enable &&
2422 			    (!xfer->flags_int.bdma_no_post_sync)) {
2423 				usb_bdma_post_sync(xfer);
2424 			}
2425 #endif
2426 		}
2427 	}
2428 
2429 #if USB_HAVE_PF
2430 	if (xfer->usb_state != USB_ST_SETUP) {
2431 		USB_BUS_LOCK(info->bus);
2432 		usbpf_xfertap(xfer, USBPF_XFERTAP_DONE);
2433 		USB_BUS_UNLOCK(info->bus);
2434 	}
2435 #endif
2436 	/* call processing routine */
2437 	(xfer->callback) (xfer, xfer->error);
2438 
2439 	/* pickup the USB mutex again */
2440 	USB_BUS_LOCK(info->bus);
2441 
2442 	/*
2443 	 * Check if we got started after that we got cancelled, but
2444 	 * before we managed to do the callback.
2445 	 */
2446 	if ((!xfer->flags_int.open) &&
2447 	    (xfer->flags_int.started) &&
2448 	    (xfer->usb_state == USB_ST_ERROR)) {
2449 		/* clear flag in case of drain */
2450 		xfer->flags_int.doing_callback = 0;
2451 		/* try to loop, but not recursivly */
2452 		usb_command_wrapper(&info->done_q, xfer);
2453 		return;
2454 	}
2455 
2456 done:
2457 	/* clear flag in case of drain */
2458 	xfer->flags_int.doing_callback = 0;
2459 
2460 	/*
2461 	 * Check if we are draining.
2462 	 */
2463 	if (xfer->flags_int.draining &&
2464 	    (!xfer->flags_int.transferring)) {
2465 		/* "usbd_transfer_drain()" is waiting for end of transfer */
2466 		xfer->flags_int.draining = 0;
2467 		cv_broadcast(&info->cv_drain);
2468 	}
2469 
2470 	/* do the next callback, if any */
2471 	usb_command_wrapper(&info->done_q,
2472 	    info->done_q.curr);
2473 }
2474 
2475 /*------------------------------------------------------------------------*
2476  *	usb_dma_delay_done_cb
2477  *
2478  * This function is called when the DMA delay has been exectuded, and
2479  * will make sure that the callback is called to complete the USB
2480  * transfer. This code path is usually only used when there is an USB
2481  * error like USB_ERR_CANCELLED.
2482  *------------------------------------------------------------------------*/
2483 void
2484 usb_dma_delay_done_cb(struct usb_xfer *xfer)
2485 {
2486 	USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED);
2487 
2488 	DPRINTFN(3, "Completed %p\n", xfer);
2489 
2490 	/* queue callback for execution, again */
2491 	usbd_transfer_done(xfer, 0);
2492 }
2493 
2494 /*------------------------------------------------------------------------*
2495  *	usbd_transfer_dequeue
2496  *
2497  *  - This function is used to remove an USB transfer from a USB
2498  *  transfer queue.
2499  *
2500  *  - This function can be called multiple times in a row.
2501  *------------------------------------------------------------------------*/
2502 void
2503 usbd_transfer_dequeue(struct usb_xfer *xfer)
2504 {
2505 	struct usb_xfer_queue *pq;
2506 
2507 	pq = xfer->wait_queue;
2508 	if (pq) {
2509 		TAILQ_REMOVE(&pq->head, xfer, wait_entry);
2510 		xfer->wait_queue = NULL;
2511 	}
2512 }
2513 
2514 /*------------------------------------------------------------------------*
2515  *	usbd_transfer_enqueue
2516  *
2517  *  - This function is used to insert an USB transfer into a USB *
2518  *  transfer queue.
2519  *
2520  *  - This function can be called multiple times in a row.
2521  *------------------------------------------------------------------------*/
2522 void
2523 usbd_transfer_enqueue(struct usb_xfer_queue *pq, struct usb_xfer *xfer)
2524 {
2525 	/*
2526 	 * Insert the USB transfer into the queue, if it is not
2527 	 * already on a USB transfer queue:
2528 	 */
2529 	if (xfer->wait_queue == NULL) {
2530 		xfer->wait_queue = pq;
2531 		TAILQ_INSERT_TAIL(&pq->head, xfer, wait_entry);
2532 	}
2533 }
2534 
2535 /*------------------------------------------------------------------------*
2536  *	usbd_transfer_done
2537  *
2538  *  - This function is used to remove an USB transfer from the busdma,
2539  *  pipe or interrupt queue.
2540  *
2541  *  - This function is used to queue the USB transfer on the done
2542  *  queue.
2543  *
2544  *  - This function is used to stop any USB transfer timeouts.
2545  *------------------------------------------------------------------------*/
2546 void
2547 usbd_transfer_done(struct usb_xfer *xfer, usb_error_t error)
2548 {
2549 	struct usb_xfer_root *info = xfer->xroot;
2550 
2551 	USB_BUS_LOCK_ASSERT(info->bus, MA_OWNED);
2552 
2553 	DPRINTF("err=%s\n", usbd_errstr(error));
2554 
2555 	/*
2556 	 * If we are not transferring then just return.
2557 	 * This can happen during transfer cancel.
2558 	 */
2559 	if (!xfer->flags_int.transferring) {
2560 		DPRINTF("not transferring\n");
2561 		/* end of control transfer, if any */
2562 		xfer->flags_int.control_act = 0;
2563 		return;
2564 	}
2565 	/* only set transfer error, if not already set */
2566 	if (xfer->error == USB_ERR_NORMAL_COMPLETION)
2567 		xfer->error = error;
2568 
2569 	/* stop any callouts */
2570 	usb_callout_stop(&xfer->timeout_handle);
2571 
2572 	/*
2573 	 * If we are waiting on a queue, just remove the USB transfer
2574 	 * from the queue, if any. We should have the required locks
2575 	 * locked to do the remove when this function is called.
2576 	 */
2577 	usbd_transfer_dequeue(xfer);
2578 
2579 #if USB_HAVE_BUSDMA
2580 	if (mtx_owned(info->xfer_mtx)) {
2581 		struct usb_xfer_queue *pq;
2582 
2583 		/*
2584 		 * If the private USB lock is not locked, then we assume
2585 		 * that the BUS-DMA load stage has been passed:
2586 		 */
2587 		pq = &info->dma_q;
2588 
2589 		if (pq->curr == xfer) {
2590 			/* start the next BUS-DMA load, if any */
2591 			usb_command_wrapper(pq, NULL);
2592 		}
2593 	}
2594 #endif
2595 	/* keep some statistics */
2596 	if (xfer->error) {
2597 		info->bus->stats_err.uds_requests
2598 		    [xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE]++;
2599 	} else {
2600 		info->bus->stats_ok.uds_requests
2601 		    [xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE]++;
2602 	}
2603 
2604 	/* call the USB transfer callback */
2605 	usbd_callback_ss_done_defer(xfer);
2606 }
2607 
2608 /*------------------------------------------------------------------------*
2609  *	usbd_transfer_start_cb
2610  *
2611  * This function is called to start the USB transfer when
2612  * "xfer->interval" is greater than zero, and and the endpoint type is
2613  * BULK or CONTROL.
2614  *------------------------------------------------------------------------*/
2615 static void
2616 usbd_transfer_start_cb(void *arg)
2617 {
2618 	struct usb_xfer *xfer = arg;
2619 	struct usb_endpoint *ep = xfer->endpoint;
2620 
2621 	USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED);
2622 
2623 	DPRINTF("start\n");
2624 
2625 #if USB_HAVE_PF
2626 	usbpf_xfertap(xfer, USBPF_XFERTAP_SUBMIT);
2627 #endif
2628 
2629 	/* the transfer can now be cancelled */
2630 	xfer->flags_int.can_cancel_immed = 1;
2631 
2632 	/* start USB transfer, if no error */
2633 	if (xfer->error == 0)
2634 		(ep->methods->start) (xfer);
2635 
2636 	/* check for transfer error */
2637 	if (xfer->error) {
2638 		/* some error has happened */
2639 		usbd_transfer_done(xfer, 0);
2640 	}
2641 }
2642 
2643 /*------------------------------------------------------------------------*
2644  *	usbd_xfer_set_stall
2645  *
2646  * This function is used to set the stall flag outside the
2647  * callback. This function is NULL safe.
2648  *------------------------------------------------------------------------*/
2649 void
2650 usbd_xfer_set_stall(struct usb_xfer *xfer)
2651 {
2652 	if (xfer == NULL) {
2653 		/* tearing down */
2654 		return;
2655 	}
2656 	USB_XFER_LOCK_ASSERT(xfer, MA_OWNED);
2657 
2658 	/* avoid any races by locking the USB mutex */
2659 	USB_BUS_LOCK(xfer->xroot->bus);
2660 	xfer->flags.stall_pipe = 1;
2661 	USB_BUS_UNLOCK(xfer->xroot->bus);
2662 }
2663 
2664 int
2665 usbd_xfer_is_stalled(struct usb_xfer *xfer)
2666 {
2667 	return (xfer->endpoint->is_stalled);
2668 }
2669 
2670 /*------------------------------------------------------------------------*
2671  *	usbd_transfer_clear_stall
2672  *
2673  * This function is used to clear the stall flag outside the
2674  * callback. This function is NULL safe.
2675  *------------------------------------------------------------------------*/
2676 void
2677 usbd_transfer_clear_stall(struct usb_xfer *xfer)
2678 {
2679 	if (xfer == NULL) {
2680 		/* tearing down */
2681 		return;
2682 	}
2683 	USB_XFER_LOCK_ASSERT(xfer, MA_OWNED);
2684 
2685 	/* avoid any races by locking the USB mutex */
2686 	USB_BUS_LOCK(xfer->xroot->bus);
2687 
2688 	xfer->flags.stall_pipe = 0;
2689 
2690 	USB_BUS_UNLOCK(xfer->xroot->bus);
2691 }
2692 
2693 /*------------------------------------------------------------------------*
2694  *	usbd_pipe_start
2695  *
2696  * This function is used to add an USB transfer to the pipe transfer list.
2697  *------------------------------------------------------------------------*/
2698 void
2699 usbd_pipe_start(struct usb_xfer_queue *pq)
2700 {
2701 	struct usb_endpoint *ep;
2702 	struct usb_xfer *xfer;
2703 	uint8_t type;
2704 
2705 	xfer = pq->curr;
2706 	ep = xfer->endpoint;
2707 
2708 	USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED);
2709 
2710 	/*
2711 	 * If the endpoint is already stalled we do nothing !
2712 	 */
2713 	if (ep->is_stalled) {
2714 		return;
2715 	}
2716 	/*
2717 	 * Check if we are supposed to stall the endpoint:
2718 	 */
2719 	if (xfer->flags.stall_pipe) {
2720 		struct usb_device *udev;
2721 		struct usb_xfer_root *info;
2722 
2723 		/* clear stall command */
2724 		xfer->flags.stall_pipe = 0;
2725 
2726 		/* get pointer to USB device */
2727 		info = xfer->xroot;
2728 		udev = info->udev;
2729 
2730 		/*
2731 		 * Only stall BULK and INTERRUPT endpoints.
2732 		 */
2733 		type = (ep->edesc->bmAttributes & UE_XFERTYPE);
2734 		if ((type == UE_BULK) ||
2735 		    (type == UE_INTERRUPT)) {
2736 			uint8_t did_stall;
2737 
2738 			did_stall = 1;
2739 
2740 			if (udev->flags.usb_mode == USB_MODE_DEVICE) {
2741 				(udev->bus->methods->set_stall) (
2742 				    udev, ep, &did_stall);
2743 			} else if (udev->ctrl_xfer[1]) {
2744 				info = udev->ctrl_xfer[1]->xroot;
2745 				usb_proc_msignal(
2746 				    USB_BUS_CS_PROC(info->bus),
2747 				    &udev->cs_msg[0], &udev->cs_msg[1]);
2748 			} else {
2749 				/* should not happen */
2750 				DPRINTFN(0, "No stall handler\n");
2751 			}
2752 			/*
2753 			 * Check if we should stall. Some USB hardware
2754 			 * handles set- and clear-stall in hardware.
2755 			 */
2756 			if (did_stall) {
2757 				/*
2758 				 * The transfer will be continued when
2759 				 * the clear-stall control endpoint
2760 				 * message is received.
2761 				 */
2762 				ep->is_stalled = 1;
2763 				return;
2764 			}
2765 		} else if (type == UE_ISOCHRONOUS) {
2766 
2767 			/*
2768 			 * Make sure any FIFO overflow or other FIFO
2769 			 * error conditions go away by resetting the
2770 			 * endpoint FIFO through the clear stall
2771 			 * method.
2772 			 */
2773 			if (udev->flags.usb_mode == USB_MODE_DEVICE) {
2774 				(udev->bus->methods->clear_stall) (udev, ep);
2775 			}
2776 		}
2777 	}
2778 	/* Set or clear stall complete - special case */
2779 	if (xfer->nframes == 0) {
2780 		/* we are complete */
2781 		xfer->aframes = 0;
2782 		usbd_transfer_done(xfer, 0);
2783 		return;
2784 	}
2785 	/*
2786 	 * Handled cases:
2787 	 *
2788 	 * 1) Start the first transfer queued.
2789 	 *
2790 	 * 2) Re-start the current USB transfer.
2791 	 */
2792 	/*
2793 	 * Check if there should be any
2794 	 * pre transfer start delay:
2795 	 */
2796 	if (xfer->interval > 0) {
2797 		type = (ep->edesc->bmAttributes & UE_XFERTYPE);
2798 		if ((type == UE_BULK) ||
2799 		    (type == UE_CONTROL)) {
2800 			usbd_transfer_timeout_ms(xfer,
2801 			    &usbd_transfer_start_cb,
2802 			    xfer->interval);
2803 			return;
2804 		}
2805 	}
2806 	DPRINTF("start\n");
2807 
2808 #if USB_HAVE_PF
2809 	usbpf_xfertap(xfer, USBPF_XFERTAP_SUBMIT);
2810 #endif
2811 	/* the transfer can now be cancelled */
2812 	xfer->flags_int.can_cancel_immed = 1;
2813 
2814 	/* start USB transfer, if no error */
2815 	if (xfer->error == 0)
2816 		(ep->methods->start) (xfer);
2817 
2818 	/* check for transfer error */
2819 	if (xfer->error) {
2820 		/* some error has happened */
2821 		usbd_transfer_done(xfer, 0);
2822 	}
2823 }
2824 
2825 /*------------------------------------------------------------------------*
2826  *	usbd_transfer_timeout_ms
2827  *
2828  * This function is used to setup a timeout on the given USB
2829  * transfer. If the timeout has been deferred the callback given by
2830  * "cb" will get called after "ms" milliseconds.
2831  *------------------------------------------------------------------------*/
2832 void
2833 usbd_transfer_timeout_ms(struct usb_xfer *xfer,
2834     void (*cb) (void *arg), usb_timeout_t ms)
2835 {
2836 	USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED);
2837 
2838 	/* defer delay */
2839 	usb_callout_reset(&xfer->timeout_handle,
2840 	    USB_MS_TO_TICKS(ms) + USB_CALLOUT_ZERO_TICKS, cb, xfer);
2841 }
2842 
2843 /*------------------------------------------------------------------------*
2844  *	usbd_callback_wrapper_sub
2845  *
2846  *  - This function will update variables in an USB transfer after
2847  *  that the USB transfer is complete.
2848  *
2849  *  - This function is used to start the next USB transfer on the
2850  *  ep transfer queue, if any.
2851  *
2852  * NOTE: In some special cases the USB transfer will not be removed from
2853  * the pipe queue, but remain first. To enforce USB transfer removal call
2854  * this function passing the error code "USB_ERR_CANCELLED".
2855  *
2856  * Return values:
2857  * 0: Success.
2858  * Else: The callback has been deferred.
2859  *------------------------------------------------------------------------*/
2860 static uint8_t
2861 usbd_callback_wrapper_sub(struct usb_xfer *xfer)
2862 {
2863 	struct usb_endpoint *ep;
2864 	struct usb_bus *bus;
2865 	usb_frcount_t x;
2866 
2867 	bus = xfer->xroot->bus;
2868 
2869 	if ((!xfer->flags_int.open) &&
2870 	    (!xfer->flags_int.did_close)) {
2871 		DPRINTF("close\n");
2872 		USB_BUS_LOCK(bus);
2873 		(xfer->endpoint->methods->close) (xfer);
2874 		USB_BUS_UNLOCK(bus);
2875 		/* only close once */
2876 		xfer->flags_int.did_close = 1;
2877 		return (1);		/* wait for new callback */
2878 	}
2879 	/*
2880 	 * If we have a non-hardware induced error we
2881 	 * need to do the DMA delay!
2882 	 */
2883 	if (xfer->error != 0 && !xfer->flags_int.did_dma_delay &&
2884 	    (xfer->error == USB_ERR_CANCELLED ||
2885 	    xfer->error == USB_ERR_TIMEOUT ||
2886 	    bus->methods->start_dma_delay != NULL)) {
2887 
2888 		usb_timeout_t temp;
2889 
2890 		/* only delay once */
2891 		xfer->flags_int.did_dma_delay = 1;
2892 
2893 		/* we can not cancel this delay */
2894 		xfer->flags_int.can_cancel_immed = 0;
2895 
2896 		temp = usbd_get_dma_delay(xfer->xroot->udev);
2897 
2898 		DPRINTFN(3, "DMA delay, %u ms, "
2899 		    "on %p\n", temp, xfer);
2900 
2901 		if (temp != 0) {
2902 			USB_BUS_LOCK(bus);
2903 			/*
2904 			 * Some hardware solutions have dedicated
2905 			 * events when it is safe to free DMA'ed
2906 			 * memory. For the other hardware platforms we
2907 			 * use a static delay.
2908 			 */
2909 			if (bus->methods->start_dma_delay != NULL) {
2910 				(bus->methods->start_dma_delay) (xfer);
2911 			} else {
2912 				usbd_transfer_timeout_ms(xfer,
2913 				    (void (*)(void *))&usb_dma_delay_done_cb,
2914 				    temp);
2915 			}
2916 			USB_BUS_UNLOCK(bus);
2917 			return (1);	/* wait for new callback */
2918 		}
2919 	}
2920 	/* check actual number of frames */
2921 	if (xfer->aframes > xfer->nframes) {
2922 		if (xfer->error == 0) {
2923 			panic("%s: actual number of frames, %d, is "
2924 			    "greater than initial number of frames, %d\n",
2925 			    __FUNCTION__, xfer->aframes, xfer->nframes);
2926 		} else {
2927 			/* just set some valid value */
2928 			xfer->aframes = xfer->nframes;
2929 		}
2930 	}
2931 	/* compute actual length */
2932 	xfer->actlen = 0;
2933 
2934 	for (x = 0; x != xfer->aframes; x++) {
2935 		xfer->actlen += xfer->frlengths[x];
2936 	}
2937 
2938 	/*
2939 	 * Frames that were not transferred get zero actual length in
2940 	 * case the USB device driver does not check the actual number
2941 	 * of frames transferred, "xfer->aframes":
2942 	 */
2943 	for (; x < xfer->nframes; x++) {
2944 		usbd_xfer_set_frame_len(xfer, x, 0);
2945 	}
2946 
2947 	/* check actual length */
2948 	if (xfer->actlen > xfer->sumlen) {
2949 		if (xfer->error == 0) {
2950 			panic("%s: actual length, %d, is greater than "
2951 			    "initial length, %d\n",
2952 			    __FUNCTION__, xfer->actlen, xfer->sumlen);
2953 		} else {
2954 			/* just set some valid value */
2955 			xfer->actlen = xfer->sumlen;
2956 		}
2957 	}
2958 	DPRINTFN(1, "xfer=%p endpoint=%p sts=%d alen=%d, slen=%d, afrm=%d, nfrm=%d\n",
2959 	    xfer, xfer->endpoint, xfer->error, xfer->actlen, xfer->sumlen,
2960 	    xfer->aframes, xfer->nframes);
2961 
2962 	if (xfer->error) {
2963 		/* end of control transfer, if any */
2964 		xfer->flags_int.control_act = 0;
2965 
2966 #if USB_HAVE_TT_SUPPORT
2967 		switch (xfer->error) {
2968 		case USB_ERR_NORMAL_COMPLETION:
2969 		case USB_ERR_SHORT_XFER:
2970 		case USB_ERR_STALLED:
2971 		case USB_ERR_CANCELLED:
2972 			/* nothing to do */
2973 			break;
2974 		default:
2975 			/* try to reset the TT, if any */
2976 			USB_BUS_LOCK(bus);
2977 			uhub_tt_buffer_reset_async_locked(xfer->xroot->udev, xfer->endpoint);
2978 			USB_BUS_UNLOCK(bus);
2979 			break;
2980 		}
2981 #endif
2982 		/* check if we should block the execution queue */
2983 		if ((xfer->error != USB_ERR_CANCELLED) &&
2984 		    (xfer->flags.pipe_bof)) {
2985 			DPRINTFN(2, "xfer=%p: Block On Failure "
2986 			    "on endpoint=%p\n", xfer, xfer->endpoint);
2987 			goto done;
2988 		}
2989 	} else {
2990 		/* check for short transfers */
2991 		if (xfer->actlen < xfer->sumlen) {
2992 
2993 			/* end of control transfer, if any */
2994 			xfer->flags_int.control_act = 0;
2995 
2996 			if (!xfer->flags_int.short_xfer_ok) {
2997 				xfer->error = USB_ERR_SHORT_XFER;
2998 				if (xfer->flags.pipe_bof) {
2999 					DPRINTFN(2, "xfer=%p: Block On Failure on "
3000 					    "Short Transfer on endpoint %p.\n",
3001 					    xfer, xfer->endpoint);
3002 					goto done;
3003 				}
3004 			}
3005 		} else {
3006 			/*
3007 			 * Check if we are in the middle of a
3008 			 * control transfer:
3009 			 */
3010 			if (xfer->flags_int.control_act) {
3011 				DPRINTFN(5, "xfer=%p: Control transfer "
3012 				    "active on endpoint=%p\n", xfer, xfer->endpoint);
3013 				goto done;
3014 			}
3015 		}
3016 	}
3017 
3018 	ep = xfer->endpoint;
3019 
3020 	/*
3021 	 * If the current USB transfer is completing we need to start the
3022 	 * next one:
3023 	 */
3024 	USB_BUS_LOCK(bus);
3025 	if (ep->endpoint_q[xfer->stream_id].curr == xfer) {
3026 		usb_command_wrapper(&ep->endpoint_q[xfer->stream_id], NULL);
3027 
3028 		if (ep->endpoint_q[xfer->stream_id].curr != NULL ||
3029 		    TAILQ_FIRST(&ep->endpoint_q[xfer->stream_id].head) != NULL) {
3030 			/* there is another USB transfer waiting */
3031 		} else {
3032 			/* this is the last USB transfer */
3033 			/* clear isochronous sync flag */
3034 			xfer->endpoint->is_synced = 0;
3035 		}
3036 	}
3037 	USB_BUS_UNLOCK(bus);
3038 done:
3039 	return (0);
3040 }
3041 
3042 /*------------------------------------------------------------------------*
3043  *	usb_command_wrapper
3044  *
3045  * This function is used to execute commands non-recursivly on an USB
3046  * transfer.
3047  *------------------------------------------------------------------------*/
3048 void
3049 usb_command_wrapper(struct usb_xfer_queue *pq, struct usb_xfer *xfer)
3050 {
3051 	if (xfer) {
3052 		/*
3053 		 * If the transfer is not already processing,
3054 		 * queue it!
3055 		 */
3056 		if (pq->curr != xfer) {
3057 			usbd_transfer_enqueue(pq, xfer);
3058 			if (pq->curr != NULL) {
3059 				/* something is already processing */
3060 				DPRINTFN(6, "busy %p\n", pq->curr);
3061 				return;
3062 			}
3063 		}
3064 	} else {
3065 		/* Get next element in queue */
3066 		pq->curr = NULL;
3067 	}
3068 
3069 	if (!pq->recurse_1) {
3070 
3071 		/* clear third recurse flag */
3072 		pq->recurse_3 = 0;
3073 
3074 		do {
3075 			/* set two first recurse flags */
3076 			pq->recurse_1 = 1;
3077 			pq->recurse_2 = 1;
3078 
3079 			if (pq->curr == NULL) {
3080 				xfer = TAILQ_FIRST(&pq->head);
3081 				if (xfer) {
3082 					TAILQ_REMOVE(&pq->head, xfer,
3083 					    wait_entry);
3084 					xfer->wait_queue = NULL;
3085 					pq->curr = xfer;
3086 				} else {
3087 					break;
3088 				}
3089 			}
3090 			DPRINTFN(6, "cb %p (enter)\n", pq->curr);
3091 			(pq->command) (pq);
3092 			DPRINTFN(6, "cb %p (leave)\n", pq->curr);
3093 
3094 			/*
3095 			 * Set third recurse flag to indicate
3096 			 * recursion happened:
3097 			 */
3098 			pq->recurse_3 = 1;
3099 
3100 		} while (!pq->recurse_2);
3101 
3102 		/* clear first recurse flag */
3103 		pq->recurse_1 = 0;
3104 
3105 	} else {
3106 		/* clear second recurse flag */
3107 		pq->recurse_2 = 0;
3108 	}
3109 }
3110 
3111 /*------------------------------------------------------------------------*
3112  *	usbd_ctrl_transfer_setup
3113  *
3114  * This function is used to setup the default USB control endpoint
3115  * transfer.
3116  *------------------------------------------------------------------------*/
3117 void
3118 usbd_ctrl_transfer_setup(struct usb_device *udev)
3119 {
3120 	struct usb_xfer *xfer;
3121 	uint8_t no_resetup;
3122 	uint8_t iface_index;
3123 
3124 	/* check for root HUB */
3125 	if (udev->parent_hub == NULL)
3126 		return;
3127 repeat:
3128 
3129 	xfer = udev->ctrl_xfer[0];
3130 	if (xfer) {
3131 		USB_XFER_LOCK(xfer);
3132 		no_resetup =
3133 		    ((xfer->address == udev->address) &&
3134 		    (udev->ctrl_ep_desc.wMaxPacketSize[0] ==
3135 		    udev->ddesc.bMaxPacketSize));
3136 		if (udev->flags.usb_mode == USB_MODE_DEVICE) {
3137 			if (no_resetup) {
3138 				/*
3139 				 * NOTE: checking "xfer->address" and
3140 				 * starting the USB transfer must be
3141 				 * atomic!
3142 				 */
3143 				usbd_transfer_start(xfer);
3144 			}
3145 		}
3146 		USB_XFER_UNLOCK(xfer);
3147 	} else {
3148 		no_resetup = 0;
3149 	}
3150 
3151 	if (no_resetup) {
3152 		/*
3153 	         * All parameters are exactly the same like before.
3154 	         * Just return.
3155 	         */
3156 		return;
3157 	}
3158 	/*
3159 	 * Update wMaxPacketSize for the default control endpoint:
3160 	 */
3161 	udev->ctrl_ep_desc.wMaxPacketSize[0] =
3162 	    udev->ddesc.bMaxPacketSize;
3163 
3164 	/*
3165 	 * Unsetup any existing USB transfer:
3166 	 */
3167 	usbd_transfer_unsetup(udev->ctrl_xfer, USB_CTRL_XFER_MAX);
3168 
3169 	/*
3170 	 * Reset clear stall error counter.
3171 	 */
3172 	udev->clear_stall_errors = 0;
3173 
3174 	/*
3175 	 * Try to setup a new USB transfer for the
3176 	 * default control endpoint:
3177 	 */
3178 	iface_index = 0;
3179 	if (usbd_transfer_setup(udev, &iface_index,
3180 	    udev->ctrl_xfer, udev->bus->control_ep_quirk ?
3181 	    usb_control_ep_quirk_cfg : usb_control_ep_cfg, USB_CTRL_XFER_MAX, NULL,
3182 	    &udev->device_mtx)) {
3183 		DPRINTFN(0, "could not setup default "
3184 		    "USB transfer\n");
3185 	} else {
3186 		goto repeat;
3187 	}
3188 }
3189 
3190 /*------------------------------------------------------------------------*
3191  *	usbd_clear_data_toggle - factored out code
3192  *
3193  * NOTE: the intention of this function is not to reset the hardware
3194  * data toggle.
3195  *------------------------------------------------------------------------*/
3196 void
3197 usbd_clear_stall_locked(struct usb_device *udev, struct usb_endpoint *ep)
3198 {
3199 	USB_BUS_LOCK_ASSERT(udev->bus, MA_OWNED);
3200 
3201 	/* check that we have a valid case */
3202 	if (udev->flags.usb_mode == USB_MODE_HOST &&
3203 	    udev->parent_hub != NULL &&
3204 	    udev->bus->methods->clear_stall != NULL &&
3205 	    ep->methods != NULL) {
3206 		(udev->bus->methods->clear_stall) (udev, ep);
3207 	}
3208 }
3209 
3210 /*------------------------------------------------------------------------*
3211  *	usbd_clear_data_toggle - factored out code
3212  *
3213  * NOTE: the intention of this function is not to reset the hardware
3214  * data toggle on the USB device side.
3215  *------------------------------------------------------------------------*/
3216 void
3217 usbd_clear_data_toggle(struct usb_device *udev, struct usb_endpoint *ep)
3218 {
3219 	DPRINTFN(5, "udev=%p endpoint=%p\n", udev, ep);
3220 
3221 	USB_BUS_LOCK(udev->bus);
3222 	ep->toggle_next = 0;
3223 	/* some hardware needs a callback to clear the data toggle */
3224 	usbd_clear_stall_locked(udev, ep);
3225 	USB_BUS_UNLOCK(udev->bus);
3226 }
3227 
3228 /*------------------------------------------------------------------------*
3229  *	usbd_clear_stall_callback - factored out clear stall callback
3230  *
3231  * Input parameters:
3232  *  xfer1: Clear Stall Control Transfer
3233  *  xfer2: Stalled USB Transfer
3234  *
3235  * This function is NULL safe.
3236  *
3237  * Return values:
3238  *   0: In progress
3239  *   Else: Finished
3240  *
3241  * Clear stall config example:
3242  *
3243  * static const struct usb_config my_clearstall =  {
3244  *	.type = UE_CONTROL,
3245  *	.endpoint = 0,
3246  *	.direction = UE_DIR_ANY,
3247  *	.interval = 50, //50 milliseconds
3248  *	.bufsize = sizeof(struct usb_device_request),
3249  *	.timeout = 1000, //1.000 seconds
3250  *	.callback = &my_clear_stall_callback, // **
3251  *	.usb_mode = USB_MODE_HOST,
3252  * };
3253  *
3254  * ** "my_clear_stall_callback" calls "usbd_clear_stall_callback"
3255  * passing the correct parameters.
3256  *------------------------------------------------------------------------*/
3257 uint8_t
3258 usbd_clear_stall_callback(struct usb_xfer *xfer1,
3259     struct usb_xfer *xfer2)
3260 {
3261 	struct usb_device_request req;
3262 
3263 	if (xfer2 == NULL) {
3264 		/* looks like we are tearing down */
3265 		DPRINTF("NULL input parameter\n");
3266 		return (0);
3267 	}
3268 	USB_XFER_LOCK_ASSERT(xfer1, MA_OWNED);
3269 	USB_XFER_LOCK_ASSERT(xfer2, MA_OWNED);
3270 
3271 	switch (USB_GET_STATE(xfer1)) {
3272 	case USB_ST_SETUP:
3273 
3274 		/*
3275 		 * pre-clear the data toggle to DATA0 ("umass.c" and
3276 		 * "ata-usb.c" depends on this)
3277 		 */
3278 
3279 		usbd_clear_data_toggle(xfer2->xroot->udev, xfer2->endpoint);
3280 
3281 		/* setup a clear-stall packet */
3282 
3283 		req.bmRequestType = UT_WRITE_ENDPOINT;
3284 		req.bRequest = UR_CLEAR_FEATURE;
3285 		USETW(req.wValue, UF_ENDPOINT_HALT);
3286 		req.wIndex[0] = xfer2->endpoint->edesc->bEndpointAddress;
3287 		req.wIndex[1] = 0;
3288 		USETW(req.wLength, 0);
3289 
3290 		/*
3291 		 * "usbd_transfer_setup_sub()" will ensure that
3292 		 * we have sufficient room in the buffer for
3293 		 * the request structure!
3294 		 */
3295 
3296 		/* copy in the transfer */
3297 
3298 		usbd_copy_in(xfer1->frbuffers, 0, &req, sizeof(req));
3299 
3300 		/* set length */
3301 		xfer1->frlengths[0] = sizeof(req);
3302 		xfer1->nframes = 1;
3303 
3304 		usbd_transfer_submit(xfer1);
3305 		return (0);
3306 
3307 	case USB_ST_TRANSFERRED:
3308 		break;
3309 
3310 	default:			/* Error */
3311 		if (xfer1->error == USB_ERR_CANCELLED) {
3312 			return (0);
3313 		}
3314 		break;
3315 	}
3316 	return (1);			/* Clear Stall Finished */
3317 }
3318 
3319 /*------------------------------------------------------------------------*
3320  *	usbd_transfer_poll
3321  *
3322  * The following function gets called from the USB keyboard driver and
3323  * UMASS when the system has paniced.
3324  *
3325  * NOTE: It is currently not possible to resume normal operation on
3326  * the USB controller which has been polled, due to clearing of the
3327  * "up_dsleep" and "up_msleep" flags.
3328  *------------------------------------------------------------------------*/
3329 void
3330 usbd_transfer_poll(struct usb_xfer **ppxfer, uint16_t max)
3331 {
3332 	struct usb_xfer *xfer;
3333 	struct usb_xfer_root *xroot;
3334 	struct usb_device *udev;
3335 	struct usb_proc_msg *pm;
3336 	struct usb_bus *bus;
3337 	uint16_t n;
3338 	uint16_t drop_bus_spin;
3339 	uint16_t drop_bus;
3340 	uint16_t drop_xfer;
3341 
3342 	for (n = 0; n != max; n++) {
3343 		/* Extra checks to avoid panic */
3344 		xfer = ppxfer[n];
3345 		if (xfer == NULL)
3346 			continue;	/* no USB transfer */
3347 		xroot = xfer->xroot;
3348 		if (xroot == NULL)
3349 			continue;	/* no USB root */
3350 		udev = xroot->udev;
3351 		if (udev == NULL)
3352 			continue;	/* no USB device */
3353 		bus = udev->bus;
3354 		if (bus == NULL)
3355 			continue;	/* no BUS structure */
3356 		if (bus->methods == NULL)
3357 			continue;	/* no BUS methods */
3358 		if (bus->methods->xfer_poll == NULL)
3359 			continue;	/* no poll method */
3360 
3361 		drop_bus_spin = 0;
3362 		drop_bus = 0;
3363 		drop_xfer = 0;
3364 
3365 		if (USB_IN_POLLING_MODE_FUNC() == 0) {
3366 			/* make sure that the BUS spin mutex is not locked */
3367 			while (mtx_owned(&bus->bus_spin_lock)) {
3368 				mtx_unlock_spin(&bus->bus_spin_lock);
3369 				drop_bus_spin++;
3370 			}
3371 
3372 			/* make sure that the BUS mutex is not locked */
3373 			while (mtx_owned(&bus->bus_mtx)) {
3374 				mtx_unlock(&bus->bus_mtx);
3375 				drop_bus++;
3376 			}
3377 
3378 			/* make sure that the transfer mutex is not locked */
3379 			while (mtx_owned(xroot->xfer_mtx)) {
3380 				mtx_unlock(xroot->xfer_mtx);
3381 				drop_xfer++;
3382 			}
3383 		}
3384 
3385 		/* Make sure cv_signal() and cv_broadcast() is not called */
3386 		USB_BUS_CONTROL_XFER_PROC(bus)->up_msleep = 0;
3387 		USB_BUS_EXPLORE_PROC(bus)->up_msleep = 0;
3388 		USB_BUS_GIANT_PROC(bus)->up_msleep = 0;
3389 		USB_BUS_NON_GIANT_ISOC_PROC(bus)->up_msleep = 0;
3390 		USB_BUS_NON_GIANT_BULK_PROC(bus)->up_msleep = 0;
3391 
3392 		/* poll USB hardware */
3393 		(bus->methods->xfer_poll) (bus);
3394 
3395 		USB_BUS_LOCK(xroot->bus);
3396 
3397 		/* check for clear stall */
3398 		if (udev->ctrl_xfer[1] != NULL) {
3399 
3400 			/* poll clear stall start */
3401 			pm = &udev->cs_msg[0].hdr;
3402 			(pm->pm_callback) (pm);
3403 			/* poll clear stall done thread */
3404 			pm = &udev->ctrl_xfer[1]->
3405 			    xroot->done_m[0].hdr;
3406 			(pm->pm_callback) (pm);
3407 		}
3408 
3409 		/* poll done thread */
3410 		pm = &xroot->done_m[0].hdr;
3411 		(pm->pm_callback) (pm);
3412 
3413 		USB_BUS_UNLOCK(xroot->bus);
3414 
3415 		/* restore transfer mutex */
3416 		while (drop_xfer--)
3417 			mtx_lock(xroot->xfer_mtx);
3418 
3419 		/* restore BUS mutex */
3420 		while (drop_bus--)
3421 			mtx_lock(&bus->bus_mtx);
3422 
3423 		/* restore BUS spin mutex */
3424 		while (drop_bus_spin--)
3425 			mtx_lock_spin(&bus->bus_spin_lock);
3426 	}
3427 }
3428 
3429 static void
3430 usbd_get_std_packet_size(struct usb_std_packet_size *ptr,
3431     uint8_t type, enum usb_dev_speed speed)
3432 {
3433 	static const uint16_t intr_range_max[USB_SPEED_MAX] = {
3434 		[USB_SPEED_LOW] = 8,
3435 		[USB_SPEED_FULL] = 64,
3436 		[USB_SPEED_HIGH] = 1024,
3437 		[USB_SPEED_VARIABLE] = 1024,
3438 		[USB_SPEED_SUPER] = 1024,
3439 	};
3440 
3441 	static const uint16_t isoc_range_max[USB_SPEED_MAX] = {
3442 		[USB_SPEED_LOW] = 0,	/* invalid */
3443 		[USB_SPEED_FULL] = 1023,
3444 		[USB_SPEED_HIGH] = 1024,
3445 		[USB_SPEED_VARIABLE] = 3584,
3446 		[USB_SPEED_SUPER] = 1024,
3447 	};
3448 
3449 	static const uint16_t control_min[USB_SPEED_MAX] = {
3450 		[USB_SPEED_LOW] = 8,
3451 		[USB_SPEED_FULL] = 8,
3452 		[USB_SPEED_HIGH] = 64,
3453 		[USB_SPEED_VARIABLE] = 512,
3454 		[USB_SPEED_SUPER] = 512,
3455 	};
3456 
3457 	static const uint16_t bulk_min[USB_SPEED_MAX] = {
3458 		[USB_SPEED_LOW] = 8,
3459 		[USB_SPEED_FULL] = 8,
3460 		[USB_SPEED_HIGH] = 512,
3461 		[USB_SPEED_VARIABLE] = 512,
3462 		[USB_SPEED_SUPER] = 1024,
3463 	};
3464 
3465 	uint16_t temp;
3466 
3467 	memset(ptr, 0, sizeof(*ptr));
3468 
3469 	switch (type) {
3470 	case UE_INTERRUPT:
3471 		ptr->range.max = intr_range_max[speed];
3472 		break;
3473 	case UE_ISOCHRONOUS:
3474 		ptr->range.max = isoc_range_max[speed];
3475 		break;
3476 	default:
3477 		if (type == UE_BULK)
3478 			temp = bulk_min[speed];
3479 		else /* UE_CONTROL */
3480 			temp = control_min[speed];
3481 
3482 		/* default is fixed */
3483 		ptr->fixed[0] = temp;
3484 		ptr->fixed[1] = temp;
3485 		ptr->fixed[2] = temp;
3486 		ptr->fixed[3] = temp;
3487 
3488 		if (speed == USB_SPEED_FULL) {
3489 			/* multiple sizes */
3490 			ptr->fixed[1] = 16;
3491 			ptr->fixed[2] = 32;
3492 			ptr->fixed[3] = 64;
3493 		}
3494 		if ((speed == USB_SPEED_VARIABLE) &&
3495 		    (type == UE_BULK)) {
3496 			/* multiple sizes */
3497 			ptr->fixed[2] = 1024;
3498 			ptr->fixed[3] = 1536;
3499 		}
3500 		break;
3501 	}
3502 }
3503 
3504 void	*
3505 usbd_xfer_softc(struct usb_xfer *xfer)
3506 {
3507 	return (xfer->priv_sc);
3508 }
3509 
3510 void *
3511 usbd_xfer_get_priv(struct usb_xfer *xfer)
3512 {
3513 	return (xfer->priv_fifo);
3514 }
3515 
3516 void
3517 usbd_xfer_set_priv(struct usb_xfer *xfer, void *ptr)
3518 {
3519 	xfer->priv_fifo = ptr;
3520 }
3521 
3522 uint8_t
3523 usbd_xfer_state(struct usb_xfer *xfer)
3524 {
3525 	return (xfer->usb_state);
3526 }
3527 
3528 void
3529 usbd_xfer_set_flag(struct usb_xfer *xfer, int flag)
3530 {
3531 	switch (flag) {
3532 		case USB_FORCE_SHORT_XFER:
3533 			xfer->flags.force_short_xfer = 1;
3534 			break;
3535 		case USB_SHORT_XFER_OK:
3536 			xfer->flags.short_xfer_ok = 1;
3537 			break;
3538 		case USB_MULTI_SHORT_OK:
3539 			xfer->flags.short_frames_ok = 1;
3540 			break;
3541 		case USB_MANUAL_STATUS:
3542 			xfer->flags.manual_status = 1;
3543 			break;
3544 	}
3545 }
3546 
3547 void
3548 usbd_xfer_clr_flag(struct usb_xfer *xfer, int flag)
3549 {
3550 	switch (flag) {
3551 		case USB_FORCE_SHORT_XFER:
3552 			xfer->flags.force_short_xfer = 0;
3553 			break;
3554 		case USB_SHORT_XFER_OK:
3555 			xfer->flags.short_xfer_ok = 0;
3556 			break;
3557 		case USB_MULTI_SHORT_OK:
3558 			xfer->flags.short_frames_ok = 0;
3559 			break;
3560 		case USB_MANUAL_STATUS:
3561 			xfer->flags.manual_status = 0;
3562 			break;
3563 	}
3564 }
3565 
3566 /*
3567  * The following function returns in milliseconds when the isochronous
3568  * transfer was completed by the hardware. The returned value wraps
3569  * around 65536 milliseconds.
3570  */
3571 uint16_t
3572 usbd_xfer_get_timestamp(struct usb_xfer *xfer)
3573 {
3574 	return (xfer->isoc_time_complete);
3575 }
3576 
3577 /*
3578  * The following function returns non-zero if the max packet size
3579  * field was clamped to a valid value. Else it returns zero.
3580  */
3581 uint8_t
3582 usbd_xfer_maxp_was_clamped(struct usb_xfer *xfer)
3583 {
3584 	return (xfer->flags_int.maxp_was_clamped);
3585 }
3586