1 /* $FreeBSD$ */ 2 /*- 3 * Copyright (c) 2008 Hans Petter Selasky. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/stdint.h> 28 #include <sys/stddef.h> 29 #include <sys/param.h> 30 #include <sys/queue.h> 31 #include <sys/types.h> 32 #include <sys/systm.h> 33 #include <sys/kernel.h> 34 #include <sys/bus.h> 35 #include <sys/module.h> 36 #include <sys/lock.h> 37 #include <sys/mutex.h> 38 #include <sys/condvar.h> 39 #include <sys/sysctl.h> 40 #include <sys/sx.h> 41 #include <sys/unistd.h> 42 #include <sys/callout.h> 43 #include <sys/malloc.h> 44 #include <sys/priv.h> 45 #include <sys/proc.h> 46 47 #include <dev/usb/usb.h> 48 #include <dev/usb/usbdi.h> 49 #include <dev/usb/usbdi_util.h> 50 51 #define USB_DEBUG_VAR usb_debug 52 53 #include <dev/usb/usb_core.h> 54 #include <dev/usb/usb_busdma.h> 55 #include <dev/usb/usb_process.h> 56 #include <dev/usb/usb_transfer.h> 57 #include <dev/usb/usb_device.h> 58 #include <dev/usb/usb_debug.h> 59 #include <dev/usb/usb_util.h> 60 61 #include <dev/usb/usb_controller.h> 62 #include <dev/usb/usb_bus.h> 63 #include <dev/usb/usb_pf.h> 64 65 struct usb_std_packet_size { 66 struct { 67 uint16_t min; /* inclusive */ 68 uint16_t max; /* inclusive */ 69 } range; 70 71 uint16_t fixed[4]; 72 }; 73 74 static usb_callback_t usb_request_callback; 75 76 static const struct usb_config usb_control_ep_cfg[USB_CTRL_XFER_MAX] = { 77 78 /* This transfer is used for generic control endpoint transfers */ 79 80 [0] = { 81 .type = UE_CONTROL, 82 .endpoint = 0x00, /* Control endpoint */ 83 .direction = UE_DIR_ANY, 84 .bufsize = USB_EP0_BUFSIZE, /* bytes */ 85 .flags = {.proxy_buffer = 1,}, 86 .callback = &usb_request_callback, 87 .usb_mode = USB_MODE_DUAL, /* both modes */ 88 }, 89 90 /* This transfer is used for generic clear stall only */ 91 92 [1] = { 93 .type = UE_CONTROL, 94 .endpoint = 0x00, /* Control pipe */ 95 .direction = UE_DIR_ANY, 96 .bufsize = sizeof(struct usb_device_request), 97 .callback = &usb_do_clear_stall_callback, 98 .timeout = 1000, /* 1 second */ 99 .interval = 50, /* 50ms */ 100 .usb_mode = USB_MODE_HOST, 101 }, 102 }; 103 104 /* function prototypes */ 105 106 static void usbd_update_max_frame_size(struct usb_xfer *); 107 static void usbd_transfer_unsetup_sub(struct usb_xfer_root *, uint8_t); 108 static void usbd_control_transfer_init(struct usb_xfer *); 109 static int usbd_setup_ctrl_transfer(struct usb_xfer *); 110 static void usb_callback_proc(struct usb_proc_msg *); 111 static void usbd_callback_ss_done_defer(struct usb_xfer *); 112 static void usbd_callback_wrapper(struct usb_xfer_queue *); 113 static void usbd_transfer_start_cb(void *); 114 static uint8_t usbd_callback_wrapper_sub(struct usb_xfer *); 115 static void usbd_get_std_packet_size(struct usb_std_packet_size *ptr, 116 uint8_t type, enum usb_dev_speed speed); 117 118 /*------------------------------------------------------------------------* 119 * usb_request_callback 120 *------------------------------------------------------------------------*/ 121 static void 122 usb_request_callback(struct usb_xfer *xfer, usb_error_t error) 123 { 124 if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) 125 usb_handle_request_callback(xfer, error); 126 else 127 usbd_do_request_callback(xfer, error); 128 } 129 130 /*------------------------------------------------------------------------* 131 * usbd_update_max_frame_size 132 * 133 * This function updates the maximum frame size, hence high speed USB 134 * can transfer multiple consecutive packets. 135 *------------------------------------------------------------------------*/ 136 static void 137 usbd_update_max_frame_size(struct usb_xfer *xfer) 138 { 139 /* compute maximum frame size */ 140 /* this computation should not overflow 16-bit */ 141 /* max = 15 * 1024 */ 142 143 xfer->max_frame_size = xfer->max_packet_size * xfer->max_packet_count; 144 } 145 146 /*------------------------------------------------------------------------* 147 * usbd_get_dma_delay 148 * 149 * The following function is called when we need to 150 * synchronize with DMA hardware. 151 * 152 * Returns: 153 * 0: no DMA delay required 154 * Else: milliseconds of DMA delay 155 *------------------------------------------------------------------------*/ 156 usb_timeout_t 157 usbd_get_dma_delay(struct usb_device *udev) 158 { 159 struct usb_bus_methods *mtod; 160 uint32_t temp; 161 162 mtod = udev->bus->methods; 163 temp = 0; 164 165 if (mtod->get_dma_delay) { 166 (mtod->get_dma_delay) (udev, &temp); 167 /* 168 * Round up and convert to milliseconds. Note that we use 169 * 1024 milliseconds per second. to save a division. 170 */ 171 temp += 0x3FF; 172 temp /= 0x400; 173 } 174 return (temp); 175 } 176 177 /*------------------------------------------------------------------------* 178 * usbd_transfer_setup_sub_malloc 179 * 180 * This function will allocate one or more DMA'able memory chunks 181 * according to "size", "align" and "count" arguments. "ppc" is 182 * pointed to a linear array of USB page caches afterwards. 183 * 184 * Returns: 185 * 0: Success 186 * Else: Failure 187 *------------------------------------------------------------------------*/ 188 #if USB_HAVE_BUSDMA 189 uint8_t 190 usbd_transfer_setup_sub_malloc(struct usb_setup_params *parm, 191 struct usb_page_cache **ppc, usb_size_t size, usb_size_t align, 192 usb_size_t count) 193 { 194 struct usb_page_cache *pc; 195 struct usb_page *pg; 196 void *buf; 197 usb_size_t n_dma_pc; 198 usb_size_t n_obj; 199 usb_size_t x; 200 usb_size_t y; 201 usb_size_t r; 202 usb_size_t z; 203 204 USB_ASSERT(align > 1, ("Invalid alignment, 0x%08x\n", 205 align)); 206 USB_ASSERT(size > 0, ("Invalid size = 0\n")); 207 208 if (count == 0) { 209 return (0); /* nothing to allocate */ 210 } 211 /* 212 * Make sure that the size is aligned properly. 213 */ 214 size = -((-size) & (-align)); 215 216 /* 217 * Try multi-allocation chunks to reduce the number of DMA 218 * allocations, hence DMA allocations are slow. 219 */ 220 if (size >= PAGE_SIZE) { 221 n_dma_pc = count; 222 n_obj = 1; 223 } else { 224 /* compute number of objects per page */ 225 n_obj = (PAGE_SIZE / size); 226 /* 227 * Compute number of DMA chunks, rounded up 228 * to nearest one: 229 */ 230 n_dma_pc = ((count + n_obj - 1) / n_obj); 231 } 232 233 if (parm->buf == NULL) { 234 /* for the future */ 235 parm->dma_page_ptr += n_dma_pc; 236 parm->dma_page_cache_ptr += n_dma_pc; 237 parm->dma_page_ptr += count; 238 parm->xfer_page_cache_ptr += count; 239 return (0); 240 } 241 for (x = 0; x != n_dma_pc; x++) { 242 /* need to initialize the page cache */ 243 parm->dma_page_cache_ptr[x].tag_parent = 244 &parm->curr_xfer->xroot->dma_parent_tag; 245 } 246 for (x = 0; x != count; x++) { 247 /* need to initialize the page cache */ 248 parm->xfer_page_cache_ptr[x].tag_parent = 249 &parm->curr_xfer->xroot->dma_parent_tag; 250 } 251 252 if (ppc) { 253 *ppc = parm->xfer_page_cache_ptr; 254 } 255 r = count; /* set remainder count */ 256 z = n_obj * size; /* set allocation size */ 257 pc = parm->xfer_page_cache_ptr; 258 pg = parm->dma_page_ptr; 259 260 for (x = 0; x != n_dma_pc; x++) { 261 262 if (r < n_obj) { 263 /* compute last remainder */ 264 z = r * size; 265 n_obj = r; 266 } 267 if (usb_pc_alloc_mem(parm->dma_page_cache_ptr, 268 pg, z, align)) { 269 return (1); /* failure */ 270 } 271 /* Set beginning of current buffer */ 272 buf = parm->dma_page_cache_ptr->buffer; 273 /* Make room for one DMA page cache and one page */ 274 parm->dma_page_cache_ptr++; 275 pg++; 276 277 for (y = 0; (y != n_obj); y++, r--, pc++, pg++) { 278 279 /* Load sub-chunk into DMA */ 280 if (usb_pc_dmamap_create(pc, size)) { 281 return (1); /* failure */ 282 } 283 pc->buffer = USB_ADD_BYTES(buf, y * size); 284 pc->page_start = pg; 285 286 mtx_lock(pc->tag_parent->mtx); 287 if (usb_pc_load_mem(pc, size, 1 /* synchronous */ )) { 288 mtx_unlock(pc->tag_parent->mtx); 289 return (1); /* failure */ 290 } 291 mtx_unlock(pc->tag_parent->mtx); 292 } 293 } 294 295 parm->xfer_page_cache_ptr = pc; 296 parm->dma_page_ptr = pg; 297 return (0); 298 } 299 #endif 300 301 /*------------------------------------------------------------------------* 302 * usbd_transfer_setup_sub - transfer setup subroutine 303 * 304 * This function must be called from the "xfer_setup" callback of the 305 * USB Host or Device controller driver when setting up an USB 306 * transfer. This function will setup correct packet sizes, buffer 307 * sizes, flags and more, that are stored in the "usb_xfer" 308 * structure. 309 *------------------------------------------------------------------------*/ 310 void 311 usbd_transfer_setup_sub(struct usb_setup_params *parm) 312 { 313 enum { 314 REQ_SIZE = 8, 315 MIN_PKT = 8, 316 }; 317 struct usb_xfer *xfer = parm->curr_xfer; 318 const struct usb_config *setup = parm->curr_setup; 319 struct usb_endpoint_ss_comp_descriptor *ecomp; 320 struct usb_endpoint_descriptor *edesc; 321 struct usb_std_packet_size std_size; 322 usb_frcount_t n_frlengths; 323 usb_frcount_t n_frbuffers; 324 usb_frcount_t x; 325 uint8_t type; 326 uint8_t zmps; 327 328 /* 329 * Sanity check. The following parameters must be initialized before 330 * calling this function. 331 */ 332 if ((parm->hc_max_packet_size == 0) || 333 (parm->hc_max_packet_count == 0) || 334 (parm->hc_max_frame_size == 0)) { 335 parm->err = USB_ERR_INVAL; 336 goto done; 337 } 338 edesc = xfer->endpoint->edesc; 339 ecomp = xfer->endpoint->ecomp; 340 341 type = (edesc->bmAttributes & UE_XFERTYPE); 342 343 xfer->flags = setup->flags; 344 xfer->nframes = setup->frames; 345 xfer->timeout = setup->timeout; 346 xfer->callback = setup->callback; 347 xfer->interval = setup->interval; 348 xfer->endpointno = edesc->bEndpointAddress; 349 xfer->max_packet_size = UGETW(edesc->wMaxPacketSize); 350 xfer->max_packet_count = 1; 351 /* make a shadow copy: */ 352 xfer->flags_int.usb_mode = parm->udev->flags.usb_mode; 353 354 parm->bufsize = setup->bufsize; 355 356 switch (parm->speed) { 357 case USB_SPEED_HIGH: 358 switch (type) { 359 case UE_ISOCHRONOUS: 360 case UE_INTERRUPT: 361 xfer->max_packet_count += (xfer->max_packet_size >> 11) & 3; 362 363 /* check for invalid max packet count */ 364 if (xfer->max_packet_count > 3) 365 xfer->max_packet_count = 3; 366 break; 367 default: 368 break; 369 } 370 xfer->max_packet_size &= 0x7FF; 371 break; 372 case USB_SPEED_SUPER: 373 xfer->max_packet_count += (xfer->max_packet_size >> 11) & 3; 374 375 if (ecomp != NULL) 376 xfer->max_packet_count += ecomp->bMaxBurst; 377 378 if ((xfer->max_packet_count == 0) || 379 (xfer->max_packet_count > 16)) 380 xfer->max_packet_count = 16; 381 382 switch (type) { 383 case UE_CONTROL: 384 xfer->max_packet_count = 1; 385 break; 386 case UE_ISOCHRONOUS: 387 if (ecomp != NULL) { 388 uint8_t mult; 389 390 mult = (ecomp->bmAttributes & 3) + 1; 391 if (mult > 3) 392 mult = 3; 393 394 xfer->max_packet_count *= mult; 395 } 396 break; 397 default: 398 break; 399 } 400 xfer->max_packet_size &= 0x7FF; 401 break; 402 default: 403 break; 404 } 405 /* range check "max_packet_count" */ 406 407 if (xfer->max_packet_count > parm->hc_max_packet_count) { 408 xfer->max_packet_count = parm->hc_max_packet_count; 409 } 410 /* filter "wMaxPacketSize" according to HC capabilities */ 411 412 if ((xfer->max_packet_size > parm->hc_max_packet_size) || 413 (xfer->max_packet_size == 0)) { 414 xfer->max_packet_size = parm->hc_max_packet_size; 415 } 416 /* filter "wMaxPacketSize" according to standard sizes */ 417 418 usbd_get_std_packet_size(&std_size, type, parm->speed); 419 420 if (std_size.range.min || std_size.range.max) { 421 422 if (xfer->max_packet_size < std_size.range.min) { 423 xfer->max_packet_size = std_size.range.min; 424 } 425 if (xfer->max_packet_size > std_size.range.max) { 426 xfer->max_packet_size = std_size.range.max; 427 } 428 } else { 429 430 if (xfer->max_packet_size >= std_size.fixed[3]) { 431 xfer->max_packet_size = std_size.fixed[3]; 432 } else if (xfer->max_packet_size >= std_size.fixed[2]) { 433 xfer->max_packet_size = std_size.fixed[2]; 434 } else if (xfer->max_packet_size >= std_size.fixed[1]) { 435 xfer->max_packet_size = std_size.fixed[1]; 436 } else { 437 /* only one possibility left */ 438 xfer->max_packet_size = std_size.fixed[0]; 439 } 440 } 441 442 /* compute "max_frame_size" */ 443 444 usbd_update_max_frame_size(xfer); 445 446 /* check interrupt interval and transfer pre-delay */ 447 448 if (type == UE_ISOCHRONOUS) { 449 450 uint16_t frame_limit; 451 452 xfer->interval = 0; /* not used, must be zero */ 453 xfer->flags_int.isochronous_xfr = 1; /* set flag */ 454 455 if (xfer->timeout == 0) { 456 /* 457 * set a default timeout in 458 * case something goes wrong! 459 */ 460 xfer->timeout = 1000 / 4; 461 } 462 switch (parm->speed) { 463 case USB_SPEED_LOW: 464 case USB_SPEED_FULL: 465 frame_limit = USB_MAX_FS_ISOC_FRAMES_PER_XFER; 466 xfer->fps_shift = 0; 467 break; 468 default: 469 frame_limit = USB_MAX_HS_ISOC_FRAMES_PER_XFER; 470 xfer->fps_shift = edesc->bInterval; 471 if (xfer->fps_shift > 0) 472 xfer->fps_shift--; 473 if (xfer->fps_shift > 3) 474 xfer->fps_shift = 3; 475 if (xfer->flags.pre_scale_frames != 0) 476 xfer->nframes <<= (3 - xfer->fps_shift); 477 break; 478 } 479 480 if (xfer->nframes > frame_limit) { 481 /* 482 * this is not going to work 483 * cross hardware 484 */ 485 parm->err = USB_ERR_INVAL; 486 goto done; 487 } 488 if (xfer->nframes == 0) { 489 /* 490 * this is not a valid value 491 */ 492 parm->err = USB_ERR_ZERO_NFRAMES; 493 goto done; 494 } 495 } else { 496 497 /* 498 * If a value is specified use that else check the 499 * endpoint descriptor! 500 */ 501 if (type == UE_INTERRUPT) { 502 503 uint32_t temp; 504 505 if (xfer->interval == 0) { 506 507 xfer->interval = edesc->bInterval; 508 509 switch (parm->speed) { 510 case USB_SPEED_LOW: 511 case USB_SPEED_FULL: 512 break; 513 default: 514 /* 125us -> 1ms */ 515 if (xfer->interval < 4) 516 xfer->interval = 1; 517 else if (xfer->interval > 16) 518 xfer->interval = (1 << (16 - 4)); 519 else 520 xfer->interval = 521 (1 << (xfer->interval - 4)); 522 break; 523 } 524 } 525 526 if (xfer->interval == 0) { 527 /* 528 * One millisecond is the smallest 529 * interval we support: 530 */ 531 xfer->interval = 1; 532 } 533 534 xfer->fps_shift = 0; 535 temp = 1; 536 537 while ((temp != 0) && (temp < xfer->interval)) { 538 xfer->fps_shift++; 539 temp *= 2; 540 } 541 542 switch (parm->speed) { 543 case USB_SPEED_LOW: 544 case USB_SPEED_FULL: 545 break; 546 default: 547 xfer->fps_shift += 3; 548 break; 549 } 550 } 551 } 552 553 /* 554 * NOTE: we do not allow "max_packet_size" or "max_frame_size" 555 * to be equal to zero when setting up USB transfers, hence 556 * this leads to alot of extra code in the USB kernel. 557 */ 558 559 if ((xfer->max_frame_size == 0) || 560 (xfer->max_packet_size == 0)) { 561 562 zmps = 1; 563 564 if ((parm->bufsize <= MIN_PKT) && 565 (type != UE_CONTROL) && 566 (type != UE_BULK)) { 567 568 /* workaround */ 569 xfer->max_packet_size = MIN_PKT; 570 xfer->max_packet_count = 1; 571 parm->bufsize = 0; /* automatic setup length */ 572 usbd_update_max_frame_size(xfer); 573 574 } else { 575 parm->err = USB_ERR_ZERO_MAXP; 576 goto done; 577 } 578 579 } else { 580 zmps = 0; 581 } 582 583 /* 584 * check if we should setup a default 585 * length: 586 */ 587 588 if (parm->bufsize == 0) { 589 590 parm->bufsize = xfer->max_frame_size; 591 592 if (type == UE_ISOCHRONOUS) { 593 parm->bufsize *= xfer->nframes; 594 } 595 } 596 /* 597 * check if we are about to setup a proxy 598 * type of buffer: 599 */ 600 601 if (xfer->flags.proxy_buffer) { 602 603 /* round bufsize up */ 604 605 parm->bufsize += (xfer->max_frame_size - 1); 606 607 if (parm->bufsize < xfer->max_frame_size) { 608 /* length wrapped around */ 609 parm->err = USB_ERR_INVAL; 610 goto done; 611 } 612 /* subtract remainder */ 613 614 parm->bufsize -= (parm->bufsize % xfer->max_frame_size); 615 616 /* add length of USB device request structure, if any */ 617 618 if (type == UE_CONTROL) { 619 parm->bufsize += REQ_SIZE; /* SETUP message */ 620 } 621 } 622 xfer->max_data_length = parm->bufsize; 623 624 /* Setup "n_frlengths" and "n_frbuffers" */ 625 626 if (type == UE_ISOCHRONOUS) { 627 n_frlengths = xfer->nframes; 628 n_frbuffers = 1; 629 } else { 630 631 if (type == UE_CONTROL) { 632 xfer->flags_int.control_xfr = 1; 633 if (xfer->nframes == 0) { 634 if (parm->bufsize <= REQ_SIZE) { 635 /* 636 * there will never be any data 637 * stage 638 */ 639 xfer->nframes = 1; 640 } else { 641 xfer->nframes = 2; 642 } 643 } 644 } else { 645 if (xfer->nframes == 0) { 646 xfer->nframes = 1; 647 } 648 } 649 650 n_frlengths = xfer->nframes; 651 n_frbuffers = xfer->nframes; 652 } 653 654 /* 655 * check if we have room for the 656 * USB device request structure: 657 */ 658 659 if (type == UE_CONTROL) { 660 661 if (xfer->max_data_length < REQ_SIZE) { 662 /* length wrapped around or too small bufsize */ 663 parm->err = USB_ERR_INVAL; 664 goto done; 665 } 666 xfer->max_data_length -= REQ_SIZE; 667 } 668 /* 669 * Setup "frlengths" and shadow "frlengths" for keeping the 670 * initial frame lengths when a USB transfer is complete. This 671 * information is useful when computing isochronous offsets. 672 */ 673 xfer->frlengths = parm->xfer_length_ptr; 674 parm->xfer_length_ptr += 2 * n_frlengths; 675 676 /* setup "frbuffers" */ 677 xfer->frbuffers = parm->xfer_page_cache_ptr; 678 parm->xfer_page_cache_ptr += n_frbuffers; 679 680 /* initialize max frame count */ 681 xfer->max_frame_count = xfer->nframes; 682 683 /* 684 * check if we need to setup 685 * a local buffer: 686 */ 687 688 if (!xfer->flags.ext_buffer) { 689 690 /* align data */ 691 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 692 693 if (parm->buf) { 694 695 xfer->local_buffer = 696 USB_ADD_BYTES(parm->buf, parm->size[0]); 697 698 usbd_xfer_set_frame_offset(xfer, 0, 0); 699 700 if ((type == UE_CONTROL) && (n_frbuffers > 1)) { 701 usbd_xfer_set_frame_offset(xfer, REQ_SIZE, 1); 702 } 703 } 704 parm->size[0] += parm->bufsize; 705 706 /* align data again */ 707 parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1)); 708 } 709 /* 710 * Compute maximum buffer size 711 */ 712 713 if (parm->bufsize_max < parm->bufsize) { 714 parm->bufsize_max = parm->bufsize; 715 } 716 #if USB_HAVE_BUSDMA 717 if (xfer->flags_int.bdma_enable) { 718 /* 719 * Setup "dma_page_ptr". 720 * 721 * Proof for formula below: 722 * 723 * Assume there are three USB frames having length "a", "b" and 724 * "c". These USB frames will at maximum need "z" 725 * "usb_page" structures. "z" is given by: 726 * 727 * z = ((a / USB_PAGE_SIZE) + 2) + ((b / USB_PAGE_SIZE) + 2) + 728 * ((c / USB_PAGE_SIZE) + 2); 729 * 730 * Constraining "a", "b" and "c" like this: 731 * 732 * (a + b + c) <= parm->bufsize 733 * 734 * We know that: 735 * 736 * z <= ((parm->bufsize / USB_PAGE_SIZE) + (3*2)); 737 * 738 * Here is the general formula: 739 */ 740 xfer->dma_page_ptr = parm->dma_page_ptr; 741 parm->dma_page_ptr += (2 * n_frbuffers); 742 parm->dma_page_ptr += (parm->bufsize / USB_PAGE_SIZE); 743 } 744 #endif 745 if (zmps) { 746 /* correct maximum data length */ 747 xfer->max_data_length = 0; 748 } 749 /* subtract USB frame remainder from "hc_max_frame_size" */ 750 751 xfer->max_hc_frame_size = 752 (parm->hc_max_frame_size - 753 (parm->hc_max_frame_size % xfer->max_frame_size)); 754 755 if (xfer->max_hc_frame_size == 0) { 756 parm->err = USB_ERR_INVAL; 757 goto done; 758 } 759 760 /* initialize frame buffers */ 761 762 if (parm->buf) { 763 for (x = 0; x != n_frbuffers; x++) { 764 xfer->frbuffers[x].tag_parent = 765 &xfer->xroot->dma_parent_tag; 766 #if USB_HAVE_BUSDMA 767 if (xfer->flags_int.bdma_enable && 768 (parm->bufsize_max > 0)) { 769 770 if (usb_pc_dmamap_create( 771 xfer->frbuffers + x, 772 parm->bufsize_max)) { 773 parm->err = USB_ERR_NOMEM; 774 goto done; 775 } 776 } 777 #endif 778 } 779 } 780 done: 781 if (parm->err) { 782 /* 783 * Set some dummy values so that we avoid division by zero: 784 */ 785 xfer->max_hc_frame_size = 1; 786 xfer->max_frame_size = 1; 787 xfer->max_packet_size = 1; 788 xfer->max_data_length = 0; 789 xfer->nframes = 0; 790 xfer->max_frame_count = 0; 791 } 792 } 793 794 /*------------------------------------------------------------------------* 795 * usbd_transfer_setup - setup an array of USB transfers 796 * 797 * NOTE: You must always call "usbd_transfer_unsetup" after calling 798 * "usbd_transfer_setup" if success was returned. 799 * 800 * The idea is that the USB device driver should pre-allocate all its 801 * transfers by one call to this function. 802 * 803 * Return values: 804 * 0: Success 805 * Else: Failure 806 *------------------------------------------------------------------------*/ 807 usb_error_t 808 usbd_transfer_setup(struct usb_device *udev, 809 const uint8_t *ifaces, struct usb_xfer **ppxfer, 810 const struct usb_config *setup_start, uint16_t n_setup, 811 void *priv_sc, struct mtx *xfer_mtx) 812 { 813 struct usb_xfer dummy; 814 struct usb_setup_params parm; 815 const struct usb_config *setup_end = setup_start + n_setup; 816 const struct usb_config *setup; 817 struct usb_endpoint *ep; 818 struct usb_xfer_root *info; 819 struct usb_xfer *xfer; 820 void *buf = NULL; 821 uint16_t n; 822 uint16_t refcount; 823 824 parm.err = 0; 825 refcount = 0; 826 info = NULL; 827 828 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 829 "usbd_transfer_setup can sleep!"); 830 831 /* do some checking first */ 832 833 if (n_setup == 0) { 834 DPRINTFN(6, "setup array has zero length!\n"); 835 return (USB_ERR_INVAL); 836 } 837 if (ifaces == 0) { 838 DPRINTFN(6, "ifaces array is NULL!\n"); 839 return (USB_ERR_INVAL); 840 } 841 if (xfer_mtx == NULL) { 842 DPRINTFN(6, "using global lock\n"); 843 xfer_mtx = &Giant; 844 } 845 /* sanity checks */ 846 for (setup = setup_start, n = 0; 847 setup != setup_end; setup++, n++) { 848 if (setup->bufsize == (usb_frlength_t)-1) { 849 parm.err = USB_ERR_BAD_BUFSIZE; 850 DPRINTF("invalid bufsize\n"); 851 } 852 if (setup->callback == NULL) { 853 parm.err = USB_ERR_NO_CALLBACK; 854 DPRINTF("no callback\n"); 855 } 856 ppxfer[n] = NULL; 857 } 858 859 if (parm.err) { 860 goto done; 861 } 862 memset(&parm, 0, sizeof(parm)); 863 864 parm.udev = udev; 865 parm.speed = usbd_get_speed(udev); 866 parm.hc_max_packet_count = 1; 867 868 if (parm.speed >= USB_SPEED_MAX) { 869 parm.err = USB_ERR_INVAL; 870 goto done; 871 } 872 /* setup all transfers */ 873 874 while (1) { 875 876 if (buf) { 877 /* 878 * Initialize the "usb_xfer_root" structure, 879 * which is common for all our USB transfers. 880 */ 881 info = USB_ADD_BYTES(buf, 0); 882 883 info->memory_base = buf; 884 info->memory_size = parm.size[0]; 885 886 #if USB_HAVE_BUSDMA 887 info->dma_page_cache_start = USB_ADD_BYTES(buf, parm.size[4]); 888 info->dma_page_cache_end = USB_ADD_BYTES(buf, parm.size[5]); 889 #endif 890 info->xfer_page_cache_start = USB_ADD_BYTES(buf, parm.size[5]); 891 info->xfer_page_cache_end = USB_ADD_BYTES(buf, parm.size[2]); 892 893 cv_init(&info->cv_drain, "WDRAIN"); 894 895 info->xfer_mtx = xfer_mtx; 896 #if USB_HAVE_BUSDMA 897 usb_dma_tag_setup(&info->dma_parent_tag, 898 parm.dma_tag_p, udev->bus->dma_parent_tag[0].tag, 899 xfer_mtx, &usb_bdma_done_event, 32, parm.dma_tag_max); 900 #endif 901 902 info->bus = udev->bus; 903 info->udev = udev; 904 905 TAILQ_INIT(&info->done_q.head); 906 info->done_q.command = &usbd_callback_wrapper; 907 #if USB_HAVE_BUSDMA 908 TAILQ_INIT(&info->dma_q.head); 909 info->dma_q.command = &usb_bdma_work_loop; 910 #endif 911 info->done_m[0].hdr.pm_callback = &usb_callback_proc; 912 info->done_m[0].xroot = info; 913 info->done_m[1].hdr.pm_callback = &usb_callback_proc; 914 info->done_m[1].xroot = info; 915 916 /* 917 * In device side mode control endpoint 918 * requests need to run from a separate 919 * context, else there is a chance of 920 * deadlock! 921 */ 922 if (setup_start == usb_control_ep_cfg) 923 info->done_p = 924 &udev->bus->control_xfer_proc; 925 else if (xfer_mtx == &Giant) 926 info->done_p = 927 &udev->bus->giant_callback_proc; 928 else 929 info->done_p = 930 &udev->bus->non_giant_callback_proc; 931 } 932 /* reset sizes */ 933 934 parm.size[0] = 0; 935 parm.buf = buf; 936 parm.size[0] += sizeof(info[0]); 937 938 for (setup = setup_start, n = 0; 939 setup != setup_end; setup++, n++) { 940 941 /* skip USB transfers without callbacks: */ 942 if (setup->callback == NULL) { 943 continue; 944 } 945 /* see if there is a matching endpoint */ 946 ep = usbd_get_endpoint(udev, 947 ifaces[setup->if_index], setup); 948 949 if ((ep == NULL) || (ep->methods == NULL)) { 950 if (setup->flags.no_pipe_ok) 951 continue; 952 if ((setup->usb_mode != USB_MODE_DUAL) && 953 (setup->usb_mode != udev->flags.usb_mode)) 954 continue; 955 parm.err = USB_ERR_NO_PIPE; 956 goto done; 957 } 958 959 /* align data properly */ 960 parm.size[0] += ((-parm.size[0]) & (USB_HOST_ALIGN - 1)); 961 962 /* store current setup pointer */ 963 parm.curr_setup = setup; 964 965 if (buf) { 966 /* 967 * Common initialization of the 968 * "usb_xfer" structure. 969 */ 970 xfer = USB_ADD_BYTES(buf, parm.size[0]); 971 xfer->address = udev->address; 972 xfer->priv_sc = priv_sc; 973 xfer->xroot = info; 974 975 usb_callout_init_mtx(&xfer->timeout_handle, 976 &udev->bus->bus_mtx, 0); 977 } else { 978 /* 979 * Setup a dummy xfer, hence we are 980 * writing to the "usb_xfer" 981 * structure pointed to by "xfer" 982 * before we have allocated any 983 * memory: 984 */ 985 xfer = &dummy; 986 memset(&dummy, 0, sizeof(dummy)); 987 refcount++; 988 } 989 990 /* set transfer endpoint pointer */ 991 xfer->endpoint = ep; 992 993 parm.size[0] += sizeof(xfer[0]); 994 parm.methods = xfer->endpoint->methods; 995 parm.curr_xfer = xfer; 996 997 /* 998 * Call the Host or Device controller transfer 999 * setup routine: 1000 */ 1001 (udev->bus->methods->xfer_setup) (&parm); 1002 1003 /* check for error */ 1004 if (parm.err) 1005 goto done; 1006 1007 if (buf) { 1008 /* 1009 * Increment the endpoint refcount. This 1010 * basically prevents setting a new 1011 * configuration and alternate setting 1012 * when USB transfers are in use on 1013 * the given interface. Search the USB 1014 * code for "endpoint->refcount_alloc" if you 1015 * want more information. 1016 */ 1017 USB_BUS_LOCK(info->bus); 1018 if (xfer->endpoint->refcount_alloc >= USB_EP_REF_MAX) 1019 parm.err = USB_ERR_INVAL; 1020 1021 xfer->endpoint->refcount_alloc++; 1022 1023 if (xfer->endpoint->refcount_alloc == 0) 1024 panic("usbd_transfer_setup(): Refcount wrapped to zero\n"); 1025 USB_BUS_UNLOCK(info->bus); 1026 1027 /* 1028 * Whenever we set ppxfer[] then we 1029 * also need to increment the 1030 * "setup_refcount": 1031 */ 1032 info->setup_refcount++; 1033 1034 /* 1035 * Transfer is successfully setup and 1036 * can be used: 1037 */ 1038 ppxfer[n] = xfer; 1039 } 1040 1041 /* check for error */ 1042 if (parm.err) 1043 goto done; 1044 } 1045 1046 if (buf || parm.err) { 1047 goto done; 1048 } 1049 if (refcount == 0) { 1050 /* no transfers - nothing to do ! */ 1051 goto done; 1052 } 1053 /* align data properly */ 1054 parm.size[0] += ((-parm.size[0]) & (USB_HOST_ALIGN - 1)); 1055 1056 /* store offset temporarily */ 1057 parm.size[1] = parm.size[0]; 1058 1059 /* 1060 * The number of DMA tags required depends on 1061 * the number of endpoints. The current estimate 1062 * for maximum number of DMA tags per endpoint 1063 * is two. 1064 */ 1065 parm.dma_tag_max += 2 * MIN(n_setup, USB_EP_MAX); 1066 1067 /* 1068 * DMA tags for QH, TD, Data and more. 1069 */ 1070 parm.dma_tag_max += 8; 1071 1072 parm.dma_tag_p += parm.dma_tag_max; 1073 1074 parm.size[0] += ((uint8_t *)parm.dma_tag_p) - 1075 ((uint8_t *)0); 1076 1077 /* align data properly */ 1078 parm.size[0] += ((-parm.size[0]) & (USB_HOST_ALIGN - 1)); 1079 1080 /* store offset temporarily */ 1081 parm.size[3] = parm.size[0]; 1082 1083 parm.size[0] += ((uint8_t *)parm.dma_page_ptr) - 1084 ((uint8_t *)0); 1085 1086 /* align data properly */ 1087 parm.size[0] += ((-parm.size[0]) & (USB_HOST_ALIGN - 1)); 1088 1089 /* store offset temporarily */ 1090 parm.size[4] = parm.size[0]; 1091 1092 parm.size[0] += ((uint8_t *)parm.dma_page_cache_ptr) - 1093 ((uint8_t *)0); 1094 1095 /* store end offset temporarily */ 1096 parm.size[5] = parm.size[0]; 1097 1098 parm.size[0] += ((uint8_t *)parm.xfer_page_cache_ptr) - 1099 ((uint8_t *)0); 1100 1101 /* store end offset temporarily */ 1102 1103 parm.size[2] = parm.size[0]; 1104 1105 /* align data properly */ 1106 parm.size[0] += ((-parm.size[0]) & (USB_HOST_ALIGN - 1)); 1107 1108 parm.size[6] = parm.size[0]; 1109 1110 parm.size[0] += ((uint8_t *)parm.xfer_length_ptr) - 1111 ((uint8_t *)0); 1112 1113 /* align data properly */ 1114 parm.size[0] += ((-parm.size[0]) & (USB_HOST_ALIGN - 1)); 1115 1116 /* allocate zeroed memory */ 1117 buf = malloc(parm.size[0], M_USB, M_WAITOK | M_ZERO); 1118 1119 if (buf == NULL) { 1120 parm.err = USB_ERR_NOMEM; 1121 DPRINTFN(0, "cannot allocate memory block for " 1122 "configuration (%d bytes)\n", 1123 parm.size[0]); 1124 goto done; 1125 } 1126 parm.dma_tag_p = USB_ADD_BYTES(buf, parm.size[1]); 1127 parm.dma_page_ptr = USB_ADD_BYTES(buf, parm.size[3]); 1128 parm.dma_page_cache_ptr = USB_ADD_BYTES(buf, parm.size[4]); 1129 parm.xfer_page_cache_ptr = USB_ADD_BYTES(buf, parm.size[5]); 1130 parm.xfer_length_ptr = USB_ADD_BYTES(buf, parm.size[6]); 1131 } 1132 1133 done: 1134 if (buf) { 1135 if (info->setup_refcount == 0) { 1136 /* 1137 * "usbd_transfer_unsetup_sub" will unlock 1138 * the bus mutex before returning ! 1139 */ 1140 USB_BUS_LOCK(info->bus); 1141 1142 /* something went wrong */ 1143 usbd_transfer_unsetup_sub(info, 0); 1144 } 1145 } 1146 if (parm.err) { 1147 usbd_transfer_unsetup(ppxfer, n_setup); 1148 } 1149 return (parm.err); 1150 } 1151 1152 /*------------------------------------------------------------------------* 1153 * usbd_transfer_unsetup_sub - factored out code 1154 *------------------------------------------------------------------------*/ 1155 static void 1156 usbd_transfer_unsetup_sub(struct usb_xfer_root *info, uint8_t needs_delay) 1157 { 1158 #if USB_HAVE_BUSDMA 1159 struct usb_page_cache *pc; 1160 #endif 1161 1162 USB_BUS_LOCK_ASSERT(info->bus, MA_OWNED); 1163 1164 /* wait for any outstanding DMA operations */ 1165 1166 if (needs_delay) { 1167 usb_timeout_t temp; 1168 temp = usbd_get_dma_delay(info->udev); 1169 if (temp != 0) { 1170 usb_pause_mtx(&info->bus->bus_mtx, 1171 USB_MS_TO_TICKS(temp)); 1172 } 1173 } 1174 1175 /* make sure that our done messages are not queued anywhere */ 1176 usb_proc_mwait(info->done_p, &info->done_m[0], &info->done_m[1]); 1177 1178 USB_BUS_UNLOCK(info->bus); 1179 1180 #if USB_HAVE_BUSDMA 1181 /* free DMA'able memory, if any */ 1182 pc = info->dma_page_cache_start; 1183 while (pc != info->dma_page_cache_end) { 1184 usb_pc_free_mem(pc); 1185 pc++; 1186 } 1187 1188 /* free DMA maps in all "xfer->frbuffers" */ 1189 pc = info->xfer_page_cache_start; 1190 while (pc != info->xfer_page_cache_end) { 1191 usb_pc_dmamap_destroy(pc); 1192 pc++; 1193 } 1194 1195 /* free all DMA tags */ 1196 usb_dma_tag_unsetup(&info->dma_parent_tag); 1197 #endif 1198 1199 cv_destroy(&info->cv_drain); 1200 1201 /* 1202 * free the "memory_base" last, hence the "info" structure is 1203 * contained within the "memory_base"! 1204 */ 1205 free(info->memory_base, M_USB); 1206 } 1207 1208 /*------------------------------------------------------------------------* 1209 * usbd_transfer_unsetup - unsetup/free an array of USB transfers 1210 * 1211 * NOTE: All USB transfers in progress will get called back passing 1212 * the error code "USB_ERR_CANCELLED" before this function 1213 * returns. 1214 *------------------------------------------------------------------------*/ 1215 void 1216 usbd_transfer_unsetup(struct usb_xfer **pxfer, uint16_t n_setup) 1217 { 1218 struct usb_xfer *xfer; 1219 struct usb_xfer_root *info; 1220 uint8_t needs_delay = 0; 1221 1222 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 1223 "usbd_transfer_unsetup can sleep!"); 1224 1225 while (n_setup--) { 1226 xfer = pxfer[n_setup]; 1227 1228 if (xfer == NULL) 1229 continue; 1230 1231 info = xfer->xroot; 1232 1233 USB_XFER_LOCK(xfer); 1234 USB_BUS_LOCK(info->bus); 1235 1236 /* 1237 * HINT: when you start/stop a transfer, it might be a 1238 * good idea to directly use the "pxfer[]" structure: 1239 * 1240 * usbd_transfer_start(sc->pxfer[0]); 1241 * usbd_transfer_stop(sc->pxfer[0]); 1242 * 1243 * That way, if your code has many parts that will not 1244 * stop running under the same lock, in other words 1245 * "xfer_mtx", the usbd_transfer_start and 1246 * usbd_transfer_stop functions will simply return 1247 * when they detect a NULL pointer argument. 1248 * 1249 * To avoid any races we clear the "pxfer[]" pointer 1250 * while holding the private mutex of the driver: 1251 */ 1252 pxfer[n_setup] = NULL; 1253 1254 USB_BUS_UNLOCK(info->bus); 1255 USB_XFER_UNLOCK(xfer); 1256 1257 usbd_transfer_drain(xfer); 1258 1259 #if USB_HAVE_BUSDMA 1260 if (xfer->flags_int.bdma_enable) 1261 needs_delay = 1; 1262 #endif 1263 /* 1264 * NOTE: default endpoint does not have an 1265 * interface, even if endpoint->iface_index == 0 1266 */ 1267 USB_BUS_LOCK(info->bus); 1268 xfer->endpoint->refcount_alloc--; 1269 USB_BUS_UNLOCK(info->bus); 1270 1271 usb_callout_drain(&xfer->timeout_handle); 1272 1273 USB_BUS_LOCK(info->bus); 1274 1275 USB_ASSERT(info->setup_refcount != 0, ("Invalid setup " 1276 "reference count\n")); 1277 1278 info->setup_refcount--; 1279 1280 if (info->setup_refcount == 0) { 1281 usbd_transfer_unsetup_sub(info, 1282 needs_delay); 1283 } else { 1284 USB_BUS_UNLOCK(info->bus); 1285 } 1286 } 1287 } 1288 1289 /*------------------------------------------------------------------------* 1290 * usbd_control_transfer_init - factored out code 1291 * 1292 * In USB Device Mode we have to wait for the SETUP packet which 1293 * containst the "struct usb_device_request" structure, before we can 1294 * transfer any data. In USB Host Mode we already have the SETUP 1295 * packet at the moment the USB transfer is started. This leads us to 1296 * having to setup the USB transfer at two different places in 1297 * time. This function just contains factored out control transfer 1298 * initialisation code, so that we don't duplicate the code. 1299 *------------------------------------------------------------------------*/ 1300 static void 1301 usbd_control_transfer_init(struct usb_xfer *xfer) 1302 { 1303 struct usb_device_request req; 1304 1305 /* copy out the USB request header */ 1306 1307 usbd_copy_out(xfer->frbuffers, 0, &req, sizeof(req)); 1308 1309 /* setup remainder */ 1310 1311 xfer->flags_int.control_rem = UGETW(req.wLength); 1312 1313 /* copy direction to endpoint variable */ 1314 1315 xfer->endpointno &= ~(UE_DIR_IN | UE_DIR_OUT); 1316 xfer->endpointno |= 1317 (req.bmRequestType & UT_READ) ? UE_DIR_IN : UE_DIR_OUT; 1318 } 1319 1320 /*------------------------------------------------------------------------* 1321 * usbd_setup_ctrl_transfer 1322 * 1323 * This function handles initialisation of control transfers. Control 1324 * transfers are special in that regard that they can both transmit 1325 * and receive data. 1326 * 1327 * Return values: 1328 * 0: Success 1329 * Else: Failure 1330 *------------------------------------------------------------------------*/ 1331 static int 1332 usbd_setup_ctrl_transfer(struct usb_xfer *xfer) 1333 { 1334 usb_frlength_t len; 1335 1336 /* Check for control endpoint stall */ 1337 if (xfer->flags.stall_pipe && xfer->flags_int.control_act) { 1338 /* the control transfer is no longer active */ 1339 xfer->flags_int.control_stall = 1; 1340 xfer->flags_int.control_act = 0; 1341 } else { 1342 /* don't stall control transfer by default */ 1343 xfer->flags_int.control_stall = 0; 1344 } 1345 1346 /* Check for invalid number of frames */ 1347 if (xfer->nframes > 2) { 1348 /* 1349 * If you need to split a control transfer, you 1350 * have to do one part at a time. Only with 1351 * non-control transfers you can do multiple 1352 * parts a time. 1353 */ 1354 DPRINTFN(0, "Too many frames: %u\n", 1355 (unsigned int)xfer->nframes); 1356 goto error; 1357 } 1358 1359 /* 1360 * Check if there is a control 1361 * transfer in progress: 1362 */ 1363 if (xfer->flags_int.control_act) { 1364 1365 if (xfer->flags_int.control_hdr) { 1366 1367 /* clear send header flag */ 1368 1369 xfer->flags_int.control_hdr = 0; 1370 1371 /* setup control transfer */ 1372 if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) { 1373 usbd_control_transfer_init(xfer); 1374 } 1375 } 1376 /* get data length */ 1377 1378 len = xfer->sumlen; 1379 1380 } else { 1381 1382 /* the size of the SETUP structure is hardcoded ! */ 1383 1384 if (xfer->frlengths[0] != sizeof(struct usb_device_request)) { 1385 DPRINTFN(0, "Wrong framelength %u != %zu\n", 1386 xfer->frlengths[0], sizeof(struct 1387 usb_device_request)); 1388 goto error; 1389 } 1390 /* check USB mode */ 1391 if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) { 1392 1393 /* check number of frames */ 1394 if (xfer->nframes != 1) { 1395 /* 1396 * We need to receive the setup 1397 * message first so that we know the 1398 * data direction! 1399 */ 1400 DPRINTF("Misconfigured transfer\n"); 1401 goto error; 1402 } 1403 /* 1404 * Set a dummy "control_rem" value. This 1405 * variable will be overwritten later by a 1406 * call to "usbd_control_transfer_init()" ! 1407 */ 1408 xfer->flags_int.control_rem = 0xFFFF; 1409 } else { 1410 1411 /* setup "endpoint" and "control_rem" */ 1412 1413 usbd_control_transfer_init(xfer); 1414 } 1415 1416 /* set transfer-header flag */ 1417 1418 xfer->flags_int.control_hdr = 1; 1419 1420 /* get data length */ 1421 1422 len = (xfer->sumlen - sizeof(struct usb_device_request)); 1423 } 1424 1425 /* check if there is a length mismatch */ 1426 1427 if (len > xfer->flags_int.control_rem) { 1428 DPRINTFN(0, "Length (%d) greater than " 1429 "remaining length (%d)\n", len, 1430 xfer->flags_int.control_rem); 1431 goto error; 1432 } 1433 /* check if we are doing a short transfer */ 1434 1435 if (xfer->flags.force_short_xfer) { 1436 xfer->flags_int.control_rem = 0; 1437 } else { 1438 if ((len != xfer->max_data_length) && 1439 (len != xfer->flags_int.control_rem) && 1440 (xfer->nframes != 1)) { 1441 DPRINTFN(0, "Short control transfer without " 1442 "force_short_xfer set\n"); 1443 goto error; 1444 } 1445 xfer->flags_int.control_rem -= len; 1446 } 1447 1448 /* the status part is executed when "control_act" is 0 */ 1449 1450 if ((xfer->flags_int.control_rem > 0) || 1451 (xfer->flags.manual_status)) { 1452 /* don't execute the STATUS stage yet */ 1453 xfer->flags_int.control_act = 1; 1454 1455 /* sanity check */ 1456 if ((!xfer->flags_int.control_hdr) && 1457 (xfer->nframes == 1)) { 1458 /* 1459 * This is not a valid operation! 1460 */ 1461 DPRINTFN(0, "Invalid parameter " 1462 "combination\n"); 1463 goto error; 1464 } 1465 } else { 1466 /* time to execute the STATUS stage */ 1467 xfer->flags_int.control_act = 0; 1468 } 1469 return (0); /* success */ 1470 1471 error: 1472 return (1); /* failure */ 1473 } 1474 1475 /*------------------------------------------------------------------------* 1476 * usbd_transfer_submit - start USB hardware for the given transfer 1477 * 1478 * This function should only be called from the USB callback. 1479 *------------------------------------------------------------------------*/ 1480 void 1481 usbd_transfer_submit(struct usb_xfer *xfer) 1482 { 1483 struct usb_xfer_root *info; 1484 struct usb_bus *bus; 1485 usb_frcount_t x; 1486 1487 info = xfer->xroot; 1488 bus = info->bus; 1489 1490 DPRINTF("xfer=%p, endpoint=%p, nframes=%d, dir=%s\n", 1491 xfer, xfer->endpoint, xfer->nframes, USB_GET_DATA_ISREAD(xfer) ? 1492 "read" : "write"); 1493 1494 #ifdef USB_DEBUG 1495 if (USB_DEBUG_VAR > 0) { 1496 USB_BUS_LOCK(bus); 1497 1498 usb_dump_endpoint(xfer->endpoint); 1499 1500 USB_BUS_UNLOCK(bus); 1501 } 1502 #endif 1503 1504 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 1505 USB_BUS_LOCK_ASSERT(bus, MA_NOTOWNED); 1506 1507 /* Only open the USB transfer once! */ 1508 if (!xfer->flags_int.open) { 1509 xfer->flags_int.open = 1; 1510 1511 DPRINTF("open\n"); 1512 1513 USB_BUS_LOCK(bus); 1514 (xfer->endpoint->methods->open) (xfer); 1515 USB_BUS_UNLOCK(bus); 1516 } 1517 /* set "transferring" flag */ 1518 xfer->flags_int.transferring = 1; 1519 1520 #if USB_HAVE_POWERD 1521 /* increment power reference */ 1522 usbd_transfer_power_ref(xfer, 1); 1523 #endif 1524 /* 1525 * Check if the transfer is waiting on a queue, most 1526 * frequently the "done_q": 1527 */ 1528 if (xfer->wait_queue) { 1529 USB_BUS_LOCK(bus); 1530 usbd_transfer_dequeue(xfer); 1531 USB_BUS_UNLOCK(bus); 1532 } 1533 /* clear "did_dma_delay" flag */ 1534 xfer->flags_int.did_dma_delay = 0; 1535 1536 /* clear "did_close" flag */ 1537 xfer->flags_int.did_close = 0; 1538 1539 #if USB_HAVE_BUSDMA 1540 /* clear "bdma_setup" flag */ 1541 xfer->flags_int.bdma_setup = 0; 1542 #endif 1543 /* by default we cannot cancel any USB transfer immediately */ 1544 xfer->flags_int.can_cancel_immed = 0; 1545 1546 /* clear lengths and frame counts by default */ 1547 xfer->sumlen = 0; 1548 xfer->actlen = 0; 1549 xfer->aframes = 0; 1550 1551 /* clear any previous errors */ 1552 xfer->error = 0; 1553 1554 /* Check if the device is still alive */ 1555 if (info->udev->state < USB_STATE_POWERED) { 1556 USB_BUS_LOCK(bus); 1557 /* 1558 * Must return cancelled error code else 1559 * device drivers can hang. 1560 */ 1561 usbd_transfer_done(xfer, USB_ERR_CANCELLED); 1562 USB_BUS_UNLOCK(bus); 1563 return; 1564 } 1565 1566 /* sanity check */ 1567 if (xfer->nframes == 0) { 1568 if (xfer->flags.stall_pipe) { 1569 /* 1570 * Special case - want to stall without transferring 1571 * any data: 1572 */ 1573 DPRINTF("xfer=%p nframes=0: stall " 1574 "or clear stall!\n", xfer); 1575 USB_BUS_LOCK(bus); 1576 xfer->flags_int.can_cancel_immed = 1; 1577 /* start the transfer */ 1578 usb_command_wrapper(&xfer->endpoint->endpoint_q, xfer); 1579 USB_BUS_UNLOCK(bus); 1580 return; 1581 } 1582 USB_BUS_LOCK(bus); 1583 usbd_transfer_done(xfer, USB_ERR_INVAL); 1584 USB_BUS_UNLOCK(bus); 1585 return; 1586 } 1587 /* compute some variables */ 1588 1589 for (x = 0; x != xfer->nframes; x++) { 1590 /* make a copy of the frlenghts[] */ 1591 xfer->frlengths[x + xfer->max_frame_count] = xfer->frlengths[x]; 1592 /* compute total transfer length */ 1593 xfer->sumlen += xfer->frlengths[x]; 1594 if (xfer->sumlen < xfer->frlengths[x]) { 1595 /* length wrapped around */ 1596 USB_BUS_LOCK(bus); 1597 usbd_transfer_done(xfer, USB_ERR_INVAL); 1598 USB_BUS_UNLOCK(bus); 1599 return; 1600 } 1601 } 1602 1603 /* clear some internal flags */ 1604 1605 xfer->flags_int.short_xfer_ok = 0; 1606 xfer->flags_int.short_frames_ok = 0; 1607 1608 /* check if this is a control transfer */ 1609 1610 if (xfer->flags_int.control_xfr) { 1611 1612 if (usbd_setup_ctrl_transfer(xfer)) { 1613 USB_BUS_LOCK(bus); 1614 usbd_transfer_done(xfer, USB_ERR_STALLED); 1615 USB_BUS_UNLOCK(bus); 1616 return; 1617 } 1618 } 1619 /* 1620 * Setup filtered version of some transfer flags, 1621 * in case of data read direction 1622 */ 1623 if (USB_GET_DATA_ISREAD(xfer)) { 1624 1625 if (xfer->flags.short_frames_ok) { 1626 xfer->flags_int.short_xfer_ok = 1; 1627 xfer->flags_int.short_frames_ok = 1; 1628 } else if (xfer->flags.short_xfer_ok) { 1629 xfer->flags_int.short_xfer_ok = 1; 1630 1631 /* check for control transfer */ 1632 if (xfer->flags_int.control_xfr) { 1633 /* 1634 * 1) Control transfers do not support 1635 * reception of multiple short USB 1636 * frames in host mode and device side 1637 * mode, with exception of: 1638 * 1639 * 2) Due to sometimes buggy device 1640 * side firmware we need to do a 1641 * STATUS stage in case of short 1642 * control transfers in USB host mode. 1643 * The STATUS stage then becomes the 1644 * "alt_next" to the DATA stage. 1645 */ 1646 xfer->flags_int.short_frames_ok = 1; 1647 } 1648 } 1649 } 1650 /* 1651 * Check if BUS-DMA support is enabled and try to load virtual 1652 * buffers into DMA, if any: 1653 */ 1654 #if USB_HAVE_BUSDMA 1655 if (xfer->flags_int.bdma_enable) { 1656 /* insert the USB transfer last in the BUS-DMA queue */ 1657 usb_command_wrapper(&xfer->xroot->dma_q, xfer); 1658 return; 1659 } 1660 #endif 1661 /* 1662 * Enter the USB transfer into the Host Controller or 1663 * Device Controller schedule: 1664 */ 1665 usbd_pipe_enter(xfer); 1666 } 1667 1668 /*------------------------------------------------------------------------* 1669 * usbd_pipe_enter - factored out code 1670 *------------------------------------------------------------------------*/ 1671 void 1672 usbd_pipe_enter(struct usb_xfer *xfer) 1673 { 1674 struct usb_endpoint *ep; 1675 1676 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 1677 1678 USB_BUS_LOCK(xfer->xroot->bus); 1679 1680 ep = xfer->endpoint; 1681 1682 DPRINTF("enter\n"); 1683 1684 /* enter the transfer */ 1685 (ep->methods->enter) (xfer); 1686 1687 xfer->flags_int.can_cancel_immed = 1; 1688 1689 /* check for transfer error */ 1690 if (xfer->error) { 1691 /* some error has happened */ 1692 usbd_transfer_done(xfer, 0); 1693 USB_BUS_UNLOCK(xfer->xroot->bus); 1694 return; 1695 } 1696 1697 /* start the transfer */ 1698 usb_command_wrapper(&ep->endpoint_q, xfer); 1699 USB_BUS_UNLOCK(xfer->xroot->bus); 1700 } 1701 1702 /*------------------------------------------------------------------------* 1703 * usbd_transfer_start - start an USB transfer 1704 * 1705 * NOTE: Calling this function more than one time will only 1706 * result in a single transfer start, until the USB transfer 1707 * completes. 1708 *------------------------------------------------------------------------*/ 1709 void 1710 usbd_transfer_start(struct usb_xfer *xfer) 1711 { 1712 if (xfer == NULL) { 1713 /* transfer is gone */ 1714 return; 1715 } 1716 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 1717 1718 /* mark the USB transfer started */ 1719 1720 if (!xfer->flags_int.started) { 1721 /* lock the BUS lock to avoid races updating flags_int */ 1722 USB_BUS_LOCK(xfer->xroot->bus); 1723 xfer->flags_int.started = 1; 1724 USB_BUS_UNLOCK(xfer->xroot->bus); 1725 } 1726 /* check if the USB transfer callback is already transferring */ 1727 1728 if (xfer->flags_int.transferring) { 1729 return; 1730 } 1731 USB_BUS_LOCK(xfer->xroot->bus); 1732 /* call the USB transfer callback */ 1733 usbd_callback_ss_done_defer(xfer); 1734 USB_BUS_UNLOCK(xfer->xroot->bus); 1735 } 1736 1737 /*------------------------------------------------------------------------* 1738 * usbd_transfer_stop - stop an USB transfer 1739 * 1740 * NOTE: Calling this function more than one time will only 1741 * result in a single transfer stop. 1742 * NOTE: When this function returns it is not safe to free nor 1743 * reuse any DMA buffers. See "usbd_transfer_drain()". 1744 *------------------------------------------------------------------------*/ 1745 void 1746 usbd_transfer_stop(struct usb_xfer *xfer) 1747 { 1748 struct usb_endpoint *ep; 1749 1750 if (xfer == NULL) { 1751 /* transfer is gone */ 1752 return; 1753 } 1754 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 1755 1756 /* check if the USB transfer was ever opened */ 1757 1758 if (!xfer->flags_int.open) { 1759 if (xfer->flags_int.started) { 1760 /* nothing to do except clearing the "started" flag */ 1761 /* lock the BUS lock to avoid races updating flags_int */ 1762 USB_BUS_LOCK(xfer->xroot->bus); 1763 xfer->flags_int.started = 0; 1764 USB_BUS_UNLOCK(xfer->xroot->bus); 1765 } 1766 return; 1767 } 1768 /* try to stop the current USB transfer */ 1769 1770 USB_BUS_LOCK(xfer->xroot->bus); 1771 /* override any previous error */ 1772 xfer->error = USB_ERR_CANCELLED; 1773 1774 /* 1775 * Clear "open" and "started" when both private and USB lock 1776 * is locked so that we don't get a race updating "flags_int" 1777 */ 1778 xfer->flags_int.open = 0; 1779 xfer->flags_int.started = 0; 1780 1781 /* 1782 * Check if we can cancel the USB transfer immediately. 1783 */ 1784 if (xfer->flags_int.transferring) { 1785 if (xfer->flags_int.can_cancel_immed && 1786 (!xfer->flags_int.did_close)) { 1787 DPRINTF("close\n"); 1788 /* 1789 * The following will lead to an USB_ERR_CANCELLED 1790 * error code being passed to the USB callback. 1791 */ 1792 (xfer->endpoint->methods->close) (xfer); 1793 /* only close once */ 1794 xfer->flags_int.did_close = 1; 1795 } else { 1796 /* need to wait for the next done callback */ 1797 } 1798 } else { 1799 DPRINTF("close\n"); 1800 1801 /* close here and now */ 1802 (xfer->endpoint->methods->close) (xfer); 1803 1804 /* 1805 * Any additional DMA delay is done by 1806 * "usbd_transfer_unsetup()". 1807 */ 1808 1809 /* 1810 * Special case. Check if we need to restart a blocked 1811 * endpoint. 1812 */ 1813 ep = xfer->endpoint; 1814 1815 /* 1816 * If the current USB transfer is completing we need 1817 * to start the next one: 1818 */ 1819 if (ep->endpoint_q.curr == xfer) { 1820 usb_command_wrapper(&ep->endpoint_q, NULL); 1821 } 1822 } 1823 1824 USB_BUS_UNLOCK(xfer->xroot->bus); 1825 } 1826 1827 /*------------------------------------------------------------------------* 1828 * usbd_transfer_pending 1829 * 1830 * This function will check if an USB transfer is pending which is a 1831 * little bit complicated! 1832 * Return values: 1833 * 0: Not pending 1834 * 1: Pending: The USB transfer will receive a callback in the future. 1835 *------------------------------------------------------------------------*/ 1836 uint8_t 1837 usbd_transfer_pending(struct usb_xfer *xfer) 1838 { 1839 struct usb_xfer_root *info; 1840 struct usb_xfer_queue *pq; 1841 1842 if (xfer == NULL) { 1843 /* transfer is gone */ 1844 return (0); 1845 } 1846 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 1847 1848 if (xfer->flags_int.transferring) { 1849 /* trivial case */ 1850 return (1); 1851 } 1852 USB_BUS_LOCK(xfer->xroot->bus); 1853 if (xfer->wait_queue) { 1854 /* we are waiting on a queue somewhere */ 1855 USB_BUS_UNLOCK(xfer->xroot->bus); 1856 return (1); 1857 } 1858 info = xfer->xroot; 1859 pq = &info->done_q; 1860 1861 if (pq->curr == xfer) { 1862 /* we are currently scheduled for callback */ 1863 USB_BUS_UNLOCK(xfer->xroot->bus); 1864 return (1); 1865 } 1866 /* we are not pending */ 1867 USB_BUS_UNLOCK(xfer->xroot->bus); 1868 return (0); 1869 } 1870 1871 /*------------------------------------------------------------------------* 1872 * usbd_transfer_drain 1873 * 1874 * This function will stop the USB transfer and wait for any 1875 * additional BUS-DMA and HW-DMA operations to complete. Buffers that 1876 * are loaded into DMA can safely be freed or reused after that this 1877 * function has returned. 1878 *------------------------------------------------------------------------*/ 1879 void 1880 usbd_transfer_drain(struct usb_xfer *xfer) 1881 { 1882 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 1883 "usbd_transfer_drain can sleep!"); 1884 1885 if (xfer == NULL) { 1886 /* transfer is gone */ 1887 return; 1888 } 1889 if (xfer->xroot->xfer_mtx != &Giant) { 1890 USB_XFER_LOCK_ASSERT(xfer, MA_NOTOWNED); 1891 } 1892 USB_XFER_LOCK(xfer); 1893 1894 usbd_transfer_stop(xfer); 1895 1896 while (usbd_transfer_pending(xfer) || 1897 xfer->flags_int.doing_callback) { 1898 1899 /* 1900 * It is allowed that the callback can drop its 1901 * transfer mutex. In that case checking only 1902 * "usbd_transfer_pending()" is not enough to tell if 1903 * the USB transfer is fully drained. We also need to 1904 * check the internal "doing_callback" flag. 1905 */ 1906 xfer->flags_int.draining = 1; 1907 1908 /* 1909 * Wait until the current outstanding USB 1910 * transfer is complete ! 1911 */ 1912 cv_wait(&xfer->xroot->cv_drain, xfer->xroot->xfer_mtx); 1913 } 1914 USB_XFER_UNLOCK(xfer); 1915 } 1916 1917 struct usb_page_cache * 1918 usbd_xfer_get_frame(struct usb_xfer *xfer, usb_frcount_t frindex) 1919 { 1920 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 1921 1922 return (&xfer->frbuffers[frindex]); 1923 } 1924 1925 /*------------------------------------------------------------------------* 1926 * usbd_xfer_get_fps_shift 1927 * 1928 * The following function is only useful for isochronous transfers. It 1929 * returns how many times the frame execution rate has been shifted 1930 * down. 1931 * 1932 * Return value: 1933 * Success: 0..3 1934 * Failure: 0 1935 *------------------------------------------------------------------------*/ 1936 uint8_t 1937 usbd_xfer_get_fps_shift(struct usb_xfer *xfer) 1938 { 1939 return (xfer->fps_shift); 1940 } 1941 1942 usb_frlength_t 1943 usbd_xfer_frame_len(struct usb_xfer *xfer, usb_frcount_t frindex) 1944 { 1945 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 1946 1947 return (xfer->frlengths[frindex]); 1948 } 1949 1950 /*------------------------------------------------------------------------* 1951 * usbd_xfer_set_frame_data 1952 * 1953 * This function sets the pointer of the buffer that should 1954 * loaded directly into DMA for the given USB frame. Passing "ptr" 1955 * equal to NULL while the corresponding "frlength" is greater 1956 * than zero gives undefined results! 1957 *------------------------------------------------------------------------*/ 1958 void 1959 usbd_xfer_set_frame_data(struct usb_xfer *xfer, usb_frcount_t frindex, 1960 void *ptr, usb_frlength_t len) 1961 { 1962 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 1963 1964 /* set virtual address to load and length */ 1965 xfer->frbuffers[frindex].buffer = ptr; 1966 usbd_xfer_set_frame_len(xfer, frindex, len); 1967 } 1968 1969 void 1970 usbd_xfer_frame_data(struct usb_xfer *xfer, usb_frcount_t frindex, 1971 void **ptr, int *len) 1972 { 1973 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 1974 1975 if (ptr != NULL) 1976 *ptr = xfer->frbuffers[frindex].buffer; 1977 if (len != NULL) 1978 *len = xfer->frlengths[frindex]; 1979 } 1980 1981 /*------------------------------------------------------------------------* 1982 * usbd_xfer_old_frame_length 1983 * 1984 * This function returns the framelength of the given frame at the 1985 * time the transfer was submitted. This function can be used to 1986 * compute the starting data pointer of the next isochronous frame 1987 * when an isochronous transfer has completed. 1988 *------------------------------------------------------------------------*/ 1989 usb_frlength_t 1990 usbd_xfer_old_frame_length(struct usb_xfer *xfer, usb_frcount_t frindex) 1991 { 1992 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 1993 1994 return (xfer->frlengths[frindex + xfer->max_frame_count]); 1995 } 1996 1997 void 1998 usbd_xfer_status(struct usb_xfer *xfer, int *actlen, int *sumlen, int *aframes, 1999 int *nframes) 2000 { 2001 if (actlen != NULL) 2002 *actlen = xfer->actlen; 2003 if (sumlen != NULL) 2004 *sumlen = xfer->sumlen; 2005 if (aframes != NULL) 2006 *aframes = xfer->aframes; 2007 if (nframes != NULL) 2008 *nframes = xfer->nframes; 2009 } 2010 2011 /*------------------------------------------------------------------------* 2012 * usbd_xfer_set_frame_offset 2013 * 2014 * This function sets the frame data buffer offset relative to the beginning 2015 * of the USB DMA buffer allocated for this USB transfer. 2016 *------------------------------------------------------------------------*/ 2017 void 2018 usbd_xfer_set_frame_offset(struct usb_xfer *xfer, usb_frlength_t offset, 2019 usb_frcount_t frindex) 2020 { 2021 KASSERT(!xfer->flags.ext_buffer, ("Cannot offset data frame " 2022 "when the USB buffer is external\n")); 2023 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2024 2025 /* set virtual address to load */ 2026 xfer->frbuffers[frindex].buffer = 2027 USB_ADD_BYTES(xfer->local_buffer, offset); 2028 } 2029 2030 void 2031 usbd_xfer_set_interval(struct usb_xfer *xfer, int i) 2032 { 2033 xfer->interval = i; 2034 } 2035 2036 void 2037 usbd_xfer_set_timeout(struct usb_xfer *xfer, int t) 2038 { 2039 xfer->timeout = t; 2040 } 2041 2042 void 2043 usbd_xfer_set_frames(struct usb_xfer *xfer, usb_frcount_t n) 2044 { 2045 xfer->nframes = n; 2046 } 2047 2048 usb_frcount_t 2049 usbd_xfer_max_frames(struct usb_xfer *xfer) 2050 { 2051 return (xfer->max_frame_count); 2052 } 2053 2054 usb_frlength_t 2055 usbd_xfer_max_len(struct usb_xfer *xfer) 2056 { 2057 return (xfer->max_data_length); 2058 } 2059 2060 usb_frlength_t 2061 usbd_xfer_max_framelen(struct usb_xfer *xfer) 2062 { 2063 return (xfer->max_frame_size); 2064 } 2065 2066 void 2067 usbd_xfer_set_frame_len(struct usb_xfer *xfer, usb_frcount_t frindex, 2068 usb_frlength_t len) 2069 { 2070 KASSERT(frindex < xfer->max_frame_count, ("frame index overflow")); 2071 2072 xfer->frlengths[frindex] = len; 2073 } 2074 2075 /*------------------------------------------------------------------------* 2076 * usb_callback_proc - factored out code 2077 * 2078 * This function performs USB callbacks. 2079 *------------------------------------------------------------------------*/ 2080 static void 2081 usb_callback_proc(struct usb_proc_msg *_pm) 2082 { 2083 struct usb_done_msg *pm = (void *)_pm; 2084 struct usb_xfer_root *info = pm->xroot; 2085 2086 /* Change locking order */ 2087 USB_BUS_UNLOCK(info->bus); 2088 2089 /* 2090 * We exploit the fact that the mutex is the same for all 2091 * callbacks that will be called from this thread: 2092 */ 2093 mtx_lock(info->xfer_mtx); 2094 USB_BUS_LOCK(info->bus); 2095 2096 /* Continue where we lost track */ 2097 usb_command_wrapper(&info->done_q, 2098 info->done_q.curr); 2099 2100 mtx_unlock(info->xfer_mtx); 2101 } 2102 2103 /*------------------------------------------------------------------------* 2104 * usbd_callback_ss_done_defer 2105 * 2106 * This function will defer the start, stop and done callback to the 2107 * correct thread. 2108 *------------------------------------------------------------------------*/ 2109 static void 2110 usbd_callback_ss_done_defer(struct usb_xfer *xfer) 2111 { 2112 struct usb_xfer_root *info = xfer->xroot; 2113 struct usb_xfer_queue *pq = &info->done_q; 2114 2115 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2116 2117 if (pq->curr != xfer) { 2118 usbd_transfer_enqueue(pq, xfer); 2119 } 2120 if (!pq->recurse_1) { 2121 2122 /* 2123 * We have to postpone the callback due to the fact we 2124 * will have a Lock Order Reversal, LOR, if we try to 2125 * proceed ! 2126 */ 2127 if (usb_proc_msignal(info->done_p, 2128 &info->done_m[0], &info->done_m[1])) { 2129 /* ignore */ 2130 } 2131 } else { 2132 /* clear second recurse flag */ 2133 pq->recurse_2 = 0; 2134 } 2135 return; 2136 2137 } 2138 2139 /*------------------------------------------------------------------------* 2140 * usbd_callback_wrapper 2141 * 2142 * This is a wrapper for USB callbacks. This wrapper does some 2143 * auto-magic things like figuring out if we can call the callback 2144 * directly from the current context or if we need to wakeup the 2145 * interrupt process. 2146 *------------------------------------------------------------------------*/ 2147 static void 2148 usbd_callback_wrapper(struct usb_xfer_queue *pq) 2149 { 2150 struct usb_xfer *xfer = pq->curr; 2151 struct usb_xfer_root *info = xfer->xroot; 2152 2153 USB_BUS_LOCK_ASSERT(info->bus, MA_OWNED); 2154 if (!mtx_owned(info->xfer_mtx) && !SCHEDULER_STOPPED()) { 2155 /* 2156 * Cases that end up here: 2157 * 2158 * 5) HW interrupt done callback or other source. 2159 */ 2160 DPRINTFN(3, "case 5\n"); 2161 2162 /* 2163 * We have to postpone the callback due to the fact we 2164 * will have a Lock Order Reversal, LOR, if we try to 2165 * proceed ! 2166 */ 2167 if (usb_proc_msignal(info->done_p, 2168 &info->done_m[0], &info->done_m[1])) { 2169 /* ignore */ 2170 } 2171 return; 2172 } 2173 /* 2174 * Cases that end up here: 2175 * 2176 * 1) We are starting a transfer 2177 * 2) We are prematurely calling back a transfer 2178 * 3) We are stopping a transfer 2179 * 4) We are doing an ordinary callback 2180 */ 2181 DPRINTFN(3, "case 1-4\n"); 2182 /* get next USB transfer in the queue */ 2183 info->done_q.curr = NULL; 2184 2185 /* set flag in case of drain */ 2186 xfer->flags_int.doing_callback = 1; 2187 2188 USB_BUS_UNLOCK(info->bus); 2189 USB_BUS_LOCK_ASSERT(info->bus, MA_NOTOWNED); 2190 2191 /* set correct USB state for callback */ 2192 if (!xfer->flags_int.transferring) { 2193 xfer->usb_state = USB_ST_SETUP; 2194 if (!xfer->flags_int.started) { 2195 /* we got stopped before we even got started */ 2196 USB_BUS_LOCK(info->bus); 2197 goto done; 2198 } 2199 } else { 2200 2201 if (usbd_callback_wrapper_sub(xfer)) { 2202 /* the callback has been deferred */ 2203 USB_BUS_LOCK(info->bus); 2204 goto done; 2205 } 2206 #if USB_HAVE_POWERD 2207 /* decrement power reference */ 2208 usbd_transfer_power_ref(xfer, -1); 2209 #endif 2210 xfer->flags_int.transferring = 0; 2211 2212 if (xfer->error) { 2213 xfer->usb_state = USB_ST_ERROR; 2214 } else { 2215 /* set transferred state */ 2216 xfer->usb_state = USB_ST_TRANSFERRED; 2217 #if USB_HAVE_BUSDMA 2218 /* sync DMA memory, if any */ 2219 if (xfer->flags_int.bdma_enable && 2220 (!xfer->flags_int.bdma_no_post_sync)) { 2221 usb_bdma_post_sync(xfer); 2222 } 2223 #endif 2224 } 2225 } 2226 2227 #if USB_HAVE_PF 2228 if (xfer->usb_state != USB_ST_SETUP) 2229 usbpf_xfertap(xfer, USBPF_XFERTAP_DONE); 2230 #endif 2231 /* call processing routine */ 2232 (xfer->callback) (xfer, xfer->error); 2233 2234 /* pickup the USB mutex again */ 2235 USB_BUS_LOCK(info->bus); 2236 2237 /* 2238 * Check if we got started after that we got cancelled, but 2239 * before we managed to do the callback. 2240 */ 2241 if ((!xfer->flags_int.open) && 2242 (xfer->flags_int.started) && 2243 (xfer->usb_state == USB_ST_ERROR)) { 2244 /* clear flag in case of drain */ 2245 xfer->flags_int.doing_callback = 0; 2246 /* try to loop, but not recursivly */ 2247 usb_command_wrapper(&info->done_q, xfer); 2248 return; 2249 } 2250 2251 done: 2252 /* clear flag in case of drain */ 2253 xfer->flags_int.doing_callback = 0; 2254 2255 /* 2256 * Check if we are draining. 2257 */ 2258 if (xfer->flags_int.draining && 2259 (!xfer->flags_int.transferring)) { 2260 /* "usbd_transfer_drain()" is waiting for end of transfer */ 2261 xfer->flags_int.draining = 0; 2262 cv_broadcast(&info->cv_drain); 2263 } 2264 2265 /* do the next callback, if any */ 2266 usb_command_wrapper(&info->done_q, 2267 info->done_q.curr); 2268 } 2269 2270 /*------------------------------------------------------------------------* 2271 * usb_dma_delay_done_cb 2272 * 2273 * This function is called when the DMA delay has been exectuded, and 2274 * will make sure that the callback is called to complete the USB 2275 * transfer. This code path is ususally only used when there is an USB 2276 * error like USB_ERR_CANCELLED. 2277 *------------------------------------------------------------------------*/ 2278 void 2279 usb_dma_delay_done_cb(struct usb_xfer *xfer) 2280 { 2281 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2282 2283 DPRINTFN(3, "Completed %p\n", xfer); 2284 2285 /* queue callback for execution, again */ 2286 usbd_transfer_done(xfer, 0); 2287 } 2288 2289 /*------------------------------------------------------------------------* 2290 * usbd_transfer_dequeue 2291 * 2292 * - This function is used to remove an USB transfer from a USB 2293 * transfer queue. 2294 * 2295 * - This function can be called multiple times in a row. 2296 *------------------------------------------------------------------------*/ 2297 void 2298 usbd_transfer_dequeue(struct usb_xfer *xfer) 2299 { 2300 struct usb_xfer_queue *pq; 2301 2302 pq = xfer->wait_queue; 2303 if (pq) { 2304 TAILQ_REMOVE(&pq->head, xfer, wait_entry); 2305 xfer->wait_queue = NULL; 2306 } 2307 } 2308 2309 /*------------------------------------------------------------------------* 2310 * usbd_transfer_enqueue 2311 * 2312 * - This function is used to insert an USB transfer into a USB * 2313 * transfer queue. 2314 * 2315 * - This function can be called multiple times in a row. 2316 *------------------------------------------------------------------------*/ 2317 void 2318 usbd_transfer_enqueue(struct usb_xfer_queue *pq, struct usb_xfer *xfer) 2319 { 2320 /* 2321 * Insert the USB transfer into the queue, if it is not 2322 * already on a USB transfer queue: 2323 */ 2324 if (xfer->wait_queue == NULL) { 2325 xfer->wait_queue = pq; 2326 TAILQ_INSERT_TAIL(&pq->head, xfer, wait_entry); 2327 } 2328 } 2329 2330 /*------------------------------------------------------------------------* 2331 * usbd_transfer_done 2332 * 2333 * - This function is used to remove an USB transfer from the busdma, 2334 * pipe or interrupt queue. 2335 * 2336 * - This function is used to queue the USB transfer on the done 2337 * queue. 2338 * 2339 * - This function is used to stop any USB transfer timeouts. 2340 *------------------------------------------------------------------------*/ 2341 void 2342 usbd_transfer_done(struct usb_xfer *xfer, usb_error_t error) 2343 { 2344 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2345 2346 DPRINTF("err=%s\n", usbd_errstr(error)); 2347 2348 /* 2349 * If we are not transferring then just return. 2350 * This can happen during transfer cancel. 2351 */ 2352 if (!xfer->flags_int.transferring) { 2353 DPRINTF("not transferring\n"); 2354 /* end of control transfer, if any */ 2355 xfer->flags_int.control_act = 0; 2356 return; 2357 } 2358 /* only set transfer error if not already set */ 2359 if (!xfer->error) { 2360 xfer->error = error; 2361 } 2362 /* stop any callouts */ 2363 usb_callout_stop(&xfer->timeout_handle); 2364 2365 /* 2366 * If we are waiting on a queue, just remove the USB transfer 2367 * from the queue, if any. We should have the required locks 2368 * locked to do the remove when this function is called. 2369 */ 2370 usbd_transfer_dequeue(xfer); 2371 2372 #if USB_HAVE_BUSDMA 2373 if (mtx_owned(xfer->xroot->xfer_mtx)) { 2374 struct usb_xfer_queue *pq; 2375 2376 /* 2377 * If the private USB lock is not locked, then we assume 2378 * that the BUS-DMA load stage has been passed: 2379 */ 2380 pq = &xfer->xroot->dma_q; 2381 2382 if (pq->curr == xfer) { 2383 /* start the next BUS-DMA load, if any */ 2384 usb_command_wrapper(pq, NULL); 2385 } 2386 } 2387 #endif 2388 /* keep some statistics */ 2389 if (xfer->error) { 2390 xfer->xroot->bus->stats_err.uds_requests 2391 [xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE]++; 2392 } else { 2393 xfer->xroot->bus->stats_ok.uds_requests 2394 [xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE]++; 2395 } 2396 2397 /* call the USB transfer callback */ 2398 usbd_callback_ss_done_defer(xfer); 2399 } 2400 2401 /*------------------------------------------------------------------------* 2402 * usbd_transfer_start_cb 2403 * 2404 * This function is called to start the USB transfer when 2405 * "xfer->interval" is greater than zero, and and the endpoint type is 2406 * BULK or CONTROL. 2407 *------------------------------------------------------------------------*/ 2408 static void 2409 usbd_transfer_start_cb(void *arg) 2410 { 2411 struct usb_xfer *xfer = arg; 2412 struct usb_endpoint *ep = xfer->endpoint; 2413 2414 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2415 2416 DPRINTF("start\n"); 2417 2418 #if USB_HAVE_PF 2419 usbpf_xfertap(xfer, USBPF_XFERTAP_SUBMIT); 2420 #endif 2421 /* start USB transfer, if no error */ 2422 if (xfer->error == 0) 2423 (ep->methods->start) (xfer); 2424 2425 xfer->flags_int.can_cancel_immed = 1; 2426 2427 /* check for error */ 2428 if (xfer->error) { 2429 /* some error has happened */ 2430 usbd_transfer_done(xfer, 0); 2431 } 2432 } 2433 2434 /*------------------------------------------------------------------------* 2435 * usbd_xfer_set_stall 2436 * 2437 * This function is used to set the stall flag outside the 2438 * callback. This function is NULL safe. 2439 *------------------------------------------------------------------------*/ 2440 void 2441 usbd_xfer_set_stall(struct usb_xfer *xfer) 2442 { 2443 if (xfer == NULL) { 2444 /* tearing down */ 2445 return; 2446 } 2447 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 2448 2449 /* avoid any races by locking the USB mutex */ 2450 USB_BUS_LOCK(xfer->xroot->bus); 2451 xfer->flags.stall_pipe = 1; 2452 USB_BUS_UNLOCK(xfer->xroot->bus); 2453 } 2454 2455 int 2456 usbd_xfer_is_stalled(struct usb_xfer *xfer) 2457 { 2458 return (xfer->endpoint->is_stalled); 2459 } 2460 2461 /*------------------------------------------------------------------------* 2462 * usbd_transfer_clear_stall 2463 * 2464 * This function is used to clear the stall flag outside the 2465 * callback. This function is NULL safe. 2466 *------------------------------------------------------------------------*/ 2467 void 2468 usbd_transfer_clear_stall(struct usb_xfer *xfer) 2469 { 2470 if (xfer == NULL) { 2471 /* tearing down */ 2472 return; 2473 } 2474 USB_XFER_LOCK_ASSERT(xfer, MA_OWNED); 2475 2476 /* avoid any races by locking the USB mutex */ 2477 USB_BUS_LOCK(xfer->xroot->bus); 2478 2479 xfer->flags.stall_pipe = 0; 2480 2481 USB_BUS_UNLOCK(xfer->xroot->bus); 2482 } 2483 2484 /*------------------------------------------------------------------------* 2485 * usbd_pipe_start 2486 * 2487 * This function is used to add an USB transfer to the pipe transfer list. 2488 *------------------------------------------------------------------------*/ 2489 void 2490 usbd_pipe_start(struct usb_xfer_queue *pq) 2491 { 2492 struct usb_endpoint *ep; 2493 struct usb_xfer *xfer; 2494 uint8_t type; 2495 2496 xfer = pq->curr; 2497 ep = xfer->endpoint; 2498 2499 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2500 2501 /* 2502 * If the endpoint is already stalled we do nothing ! 2503 */ 2504 if (ep->is_stalled) { 2505 return; 2506 } 2507 /* 2508 * Check if we are supposed to stall the endpoint: 2509 */ 2510 if (xfer->flags.stall_pipe) { 2511 struct usb_device *udev; 2512 struct usb_xfer_root *info; 2513 2514 /* clear stall command */ 2515 xfer->flags.stall_pipe = 0; 2516 2517 /* get pointer to USB device */ 2518 info = xfer->xroot; 2519 udev = info->udev; 2520 2521 /* 2522 * Only stall BULK and INTERRUPT endpoints. 2523 */ 2524 type = (ep->edesc->bmAttributes & UE_XFERTYPE); 2525 if ((type == UE_BULK) || 2526 (type == UE_INTERRUPT)) { 2527 uint8_t did_stall; 2528 2529 did_stall = 1; 2530 2531 if (udev->flags.usb_mode == USB_MODE_DEVICE) { 2532 (udev->bus->methods->set_stall) ( 2533 udev, NULL, ep, &did_stall); 2534 } else if (udev->ctrl_xfer[1]) { 2535 info = udev->ctrl_xfer[1]->xroot; 2536 usb_proc_msignal( 2537 &info->bus->non_giant_callback_proc, 2538 &udev->cs_msg[0], &udev->cs_msg[1]); 2539 } else { 2540 /* should not happen */ 2541 DPRINTFN(0, "No stall handler\n"); 2542 } 2543 /* 2544 * Check if we should stall. Some USB hardware 2545 * handles set- and clear-stall in hardware. 2546 */ 2547 if (did_stall) { 2548 /* 2549 * The transfer will be continued when 2550 * the clear-stall control endpoint 2551 * message is received. 2552 */ 2553 ep->is_stalled = 1; 2554 return; 2555 } 2556 } else if (type == UE_ISOCHRONOUS) { 2557 2558 /* 2559 * Make sure any FIFO overflow or other FIFO 2560 * error conditions go away by resetting the 2561 * endpoint FIFO through the clear stall 2562 * method. 2563 */ 2564 if (udev->flags.usb_mode == USB_MODE_DEVICE) { 2565 (udev->bus->methods->clear_stall) (udev, ep); 2566 } 2567 } 2568 } 2569 /* Set or clear stall complete - special case */ 2570 if (xfer->nframes == 0) { 2571 /* we are complete */ 2572 xfer->aframes = 0; 2573 usbd_transfer_done(xfer, 0); 2574 return; 2575 } 2576 /* 2577 * Handled cases: 2578 * 2579 * 1) Start the first transfer queued. 2580 * 2581 * 2) Re-start the current USB transfer. 2582 */ 2583 /* 2584 * Check if there should be any 2585 * pre transfer start delay: 2586 */ 2587 if (xfer->interval > 0) { 2588 type = (ep->edesc->bmAttributes & UE_XFERTYPE); 2589 if ((type == UE_BULK) || 2590 (type == UE_CONTROL)) { 2591 usbd_transfer_timeout_ms(xfer, 2592 &usbd_transfer_start_cb, 2593 xfer->interval); 2594 return; 2595 } 2596 } 2597 DPRINTF("start\n"); 2598 2599 #if USB_HAVE_PF 2600 usbpf_xfertap(xfer, USBPF_XFERTAP_SUBMIT); 2601 #endif 2602 /* start USB transfer, if no error */ 2603 if (xfer->error == 0) 2604 (ep->methods->start) (xfer); 2605 2606 xfer->flags_int.can_cancel_immed = 1; 2607 2608 /* check for error */ 2609 if (xfer->error) { 2610 /* some error has happened */ 2611 usbd_transfer_done(xfer, 0); 2612 } 2613 } 2614 2615 /*------------------------------------------------------------------------* 2616 * usbd_transfer_timeout_ms 2617 * 2618 * This function is used to setup a timeout on the given USB 2619 * transfer. If the timeout has been deferred the callback given by 2620 * "cb" will get called after "ms" milliseconds. 2621 *------------------------------------------------------------------------*/ 2622 void 2623 usbd_transfer_timeout_ms(struct usb_xfer *xfer, 2624 void (*cb) (void *arg), usb_timeout_t ms) 2625 { 2626 USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED); 2627 2628 /* defer delay */ 2629 usb_callout_reset(&xfer->timeout_handle, 2630 USB_MS_TO_TICKS(ms), cb, xfer); 2631 } 2632 2633 /*------------------------------------------------------------------------* 2634 * usbd_callback_wrapper_sub 2635 * 2636 * - This function will update variables in an USB transfer after 2637 * that the USB transfer is complete. 2638 * 2639 * - This function is used to start the next USB transfer on the 2640 * ep transfer queue, if any. 2641 * 2642 * NOTE: In some special cases the USB transfer will not be removed from 2643 * the pipe queue, but remain first. To enforce USB transfer removal call 2644 * this function passing the error code "USB_ERR_CANCELLED". 2645 * 2646 * Return values: 2647 * 0: Success. 2648 * Else: The callback has been deferred. 2649 *------------------------------------------------------------------------*/ 2650 static uint8_t 2651 usbd_callback_wrapper_sub(struct usb_xfer *xfer) 2652 { 2653 struct usb_endpoint *ep; 2654 struct usb_bus *bus; 2655 usb_frcount_t x; 2656 2657 bus = xfer->xroot->bus; 2658 2659 if ((!xfer->flags_int.open) && 2660 (!xfer->flags_int.did_close)) { 2661 DPRINTF("close\n"); 2662 USB_BUS_LOCK(bus); 2663 (xfer->endpoint->methods->close) (xfer); 2664 USB_BUS_UNLOCK(bus); 2665 /* only close once */ 2666 xfer->flags_int.did_close = 1; 2667 return (1); /* wait for new callback */ 2668 } 2669 /* 2670 * If we have a non-hardware induced error we 2671 * need to do the DMA delay! 2672 */ 2673 if (xfer->error != 0 && !xfer->flags_int.did_dma_delay && 2674 (xfer->error == USB_ERR_CANCELLED || 2675 xfer->error == USB_ERR_TIMEOUT || 2676 bus->methods->start_dma_delay != NULL)) { 2677 2678 usb_timeout_t temp; 2679 2680 /* only delay once */ 2681 xfer->flags_int.did_dma_delay = 1; 2682 2683 /* we can not cancel this delay */ 2684 xfer->flags_int.can_cancel_immed = 0; 2685 2686 temp = usbd_get_dma_delay(xfer->xroot->udev); 2687 2688 DPRINTFN(3, "DMA delay, %u ms, " 2689 "on %p\n", temp, xfer); 2690 2691 if (temp != 0) { 2692 USB_BUS_LOCK(bus); 2693 /* 2694 * Some hardware solutions have dedicated 2695 * events when it is safe to free DMA'ed 2696 * memory. For the other hardware platforms we 2697 * use a static delay. 2698 */ 2699 if (bus->methods->start_dma_delay != NULL) { 2700 (bus->methods->start_dma_delay) (xfer); 2701 } else { 2702 usbd_transfer_timeout_ms(xfer, 2703 (void (*)(void *))&usb_dma_delay_done_cb, 2704 temp); 2705 } 2706 USB_BUS_UNLOCK(bus); 2707 return (1); /* wait for new callback */ 2708 } 2709 } 2710 /* check actual number of frames */ 2711 if (xfer->aframes > xfer->nframes) { 2712 if (xfer->error == 0) { 2713 panic("%s: actual number of frames, %d, is " 2714 "greater than initial number of frames, %d\n", 2715 __FUNCTION__, xfer->aframes, xfer->nframes); 2716 } else { 2717 /* just set some valid value */ 2718 xfer->aframes = xfer->nframes; 2719 } 2720 } 2721 /* compute actual length */ 2722 xfer->actlen = 0; 2723 2724 for (x = 0; x != xfer->aframes; x++) { 2725 xfer->actlen += xfer->frlengths[x]; 2726 } 2727 2728 /* 2729 * Frames that were not transferred get zero actual length in 2730 * case the USB device driver does not check the actual number 2731 * of frames transferred, "xfer->aframes": 2732 */ 2733 for (; x < xfer->nframes; x++) { 2734 usbd_xfer_set_frame_len(xfer, x, 0); 2735 } 2736 2737 /* check actual length */ 2738 if (xfer->actlen > xfer->sumlen) { 2739 if (xfer->error == 0) { 2740 panic("%s: actual length, %d, is greater than " 2741 "initial length, %d\n", 2742 __FUNCTION__, xfer->actlen, xfer->sumlen); 2743 } else { 2744 /* just set some valid value */ 2745 xfer->actlen = xfer->sumlen; 2746 } 2747 } 2748 DPRINTFN(1, "xfer=%p endpoint=%p sts=%d alen=%d, slen=%d, afrm=%d, nfrm=%d\n", 2749 xfer, xfer->endpoint, xfer->error, xfer->actlen, xfer->sumlen, 2750 xfer->aframes, xfer->nframes); 2751 2752 if (xfer->error) { 2753 /* end of control transfer, if any */ 2754 xfer->flags_int.control_act = 0; 2755 2756 /* check if we should block the execution queue */ 2757 if ((xfer->error != USB_ERR_CANCELLED) && 2758 (xfer->flags.pipe_bof)) { 2759 DPRINTFN(2, "xfer=%p: Block On Failure " 2760 "on endpoint=%p\n", xfer, xfer->endpoint); 2761 goto done; 2762 } 2763 } else { 2764 /* check for short transfers */ 2765 if (xfer->actlen < xfer->sumlen) { 2766 2767 /* end of control transfer, if any */ 2768 xfer->flags_int.control_act = 0; 2769 2770 if (!xfer->flags_int.short_xfer_ok) { 2771 xfer->error = USB_ERR_SHORT_XFER; 2772 if (xfer->flags.pipe_bof) { 2773 DPRINTFN(2, "xfer=%p: Block On Failure on " 2774 "Short Transfer on endpoint %p.\n", 2775 xfer, xfer->endpoint); 2776 goto done; 2777 } 2778 } 2779 } else { 2780 /* 2781 * Check if we are in the middle of a 2782 * control transfer: 2783 */ 2784 if (xfer->flags_int.control_act) { 2785 DPRINTFN(5, "xfer=%p: Control transfer " 2786 "active on endpoint=%p\n", xfer, xfer->endpoint); 2787 goto done; 2788 } 2789 } 2790 } 2791 2792 ep = xfer->endpoint; 2793 2794 /* 2795 * If the current USB transfer is completing we need to start the 2796 * next one: 2797 */ 2798 USB_BUS_LOCK(bus); 2799 if (ep->endpoint_q.curr == xfer) { 2800 usb_command_wrapper(&ep->endpoint_q, NULL); 2801 2802 if (ep->endpoint_q.curr || TAILQ_FIRST(&ep->endpoint_q.head)) { 2803 /* there is another USB transfer waiting */ 2804 } else { 2805 /* this is the last USB transfer */ 2806 /* clear isochronous sync flag */ 2807 xfer->endpoint->is_synced = 0; 2808 } 2809 } 2810 USB_BUS_UNLOCK(bus); 2811 done: 2812 return (0); 2813 } 2814 2815 /*------------------------------------------------------------------------* 2816 * usb_command_wrapper 2817 * 2818 * This function is used to execute commands non-recursivly on an USB 2819 * transfer. 2820 *------------------------------------------------------------------------*/ 2821 void 2822 usb_command_wrapper(struct usb_xfer_queue *pq, struct usb_xfer *xfer) 2823 { 2824 if (xfer) { 2825 /* 2826 * If the transfer is not already processing, 2827 * queue it! 2828 */ 2829 if (pq->curr != xfer) { 2830 usbd_transfer_enqueue(pq, xfer); 2831 if (pq->curr != NULL) { 2832 /* something is already processing */ 2833 DPRINTFN(6, "busy %p\n", pq->curr); 2834 return; 2835 } 2836 } 2837 } else { 2838 /* Get next element in queue */ 2839 pq->curr = NULL; 2840 } 2841 2842 if (!pq->recurse_1) { 2843 2844 do { 2845 2846 /* set both recurse flags */ 2847 pq->recurse_1 = 1; 2848 pq->recurse_2 = 1; 2849 2850 if (pq->curr == NULL) { 2851 xfer = TAILQ_FIRST(&pq->head); 2852 if (xfer) { 2853 TAILQ_REMOVE(&pq->head, xfer, 2854 wait_entry); 2855 xfer->wait_queue = NULL; 2856 pq->curr = xfer; 2857 } else { 2858 break; 2859 } 2860 } 2861 DPRINTFN(6, "cb %p (enter)\n", pq->curr); 2862 (pq->command) (pq); 2863 DPRINTFN(6, "cb %p (leave)\n", pq->curr); 2864 2865 } while (!pq->recurse_2); 2866 2867 /* clear first recurse flag */ 2868 pq->recurse_1 = 0; 2869 2870 } else { 2871 /* clear second recurse flag */ 2872 pq->recurse_2 = 0; 2873 } 2874 } 2875 2876 /*------------------------------------------------------------------------* 2877 * usbd_ctrl_transfer_setup 2878 * 2879 * This function is used to setup the default USB control endpoint 2880 * transfer. 2881 *------------------------------------------------------------------------*/ 2882 void 2883 usbd_ctrl_transfer_setup(struct usb_device *udev) 2884 { 2885 struct usb_xfer *xfer; 2886 uint8_t no_resetup; 2887 uint8_t iface_index; 2888 2889 /* check for root HUB */ 2890 if (udev->parent_hub == NULL) 2891 return; 2892 repeat: 2893 2894 xfer = udev->ctrl_xfer[0]; 2895 if (xfer) { 2896 USB_XFER_LOCK(xfer); 2897 no_resetup = 2898 ((xfer->address == udev->address) && 2899 (udev->ctrl_ep_desc.wMaxPacketSize[0] == 2900 udev->ddesc.bMaxPacketSize)); 2901 if (udev->flags.usb_mode == USB_MODE_DEVICE) { 2902 if (no_resetup) { 2903 /* 2904 * NOTE: checking "xfer->address" and 2905 * starting the USB transfer must be 2906 * atomic! 2907 */ 2908 usbd_transfer_start(xfer); 2909 } 2910 } 2911 USB_XFER_UNLOCK(xfer); 2912 } else { 2913 no_resetup = 0; 2914 } 2915 2916 if (no_resetup) { 2917 /* 2918 * All parameters are exactly the same like before. 2919 * Just return. 2920 */ 2921 return; 2922 } 2923 /* 2924 * Update wMaxPacketSize for the default control endpoint: 2925 */ 2926 udev->ctrl_ep_desc.wMaxPacketSize[0] = 2927 udev->ddesc.bMaxPacketSize; 2928 2929 /* 2930 * Unsetup any existing USB transfer: 2931 */ 2932 usbd_transfer_unsetup(udev->ctrl_xfer, USB_CTRL_XFER_MAX); 2933 2934 /* 2935 * Reset clear stall error counter. 2936 */ 2937 udev->clear_stall_errors = 0; 2938 2939 /* 2940 * Try to setup a new USB transfer for the 2941 * default control endpoint: 2942 */ 2943 iface_index = 0; 2944 if (usbd_transfer_setup(udev, &iface_index, 2945 udev->ctrl_xfer, usb_control_ep_cfg, USB_CTRL_XFER_MAX, NULL, 2946 &udev->device_mtx)) { 2947 DPRINTFN(0, "could not setup default " 2948 "USB transfer\n"); 2949 } else { 2950 goto repeat; 2951 } 2952 } 2953 2954 /*------------------------------------------------------------------------* 2955 * usbd_clear_data_toggle - factored out code 2956 * 2957 * NOTE: the intention of this function is not to reset the hardware 2958 * data toggle. 2959 *------------------------------------------------------------------------*/ 2960 void 2961 usbd_clear_stall_locked(struct usb_device *udev, struct usb_endpoint *ep) 2962 { 2963 USB_BUS_LOCK_ASSERT(udev->bus, MA_OWNED); 2964 2965 /* check that we have a valid case */ 2966 if (udev->flags.usb_mode == USB_MODE_HOST && 2967 udev->parent_hub != NULL && 2968 udev->bus->methods->clear_stall != NULL && 2969 ep->methods != NULL) { 2970 (udev->bus->methods->clear_stall) (udev, ep); 2971 } 2972 } 2973 2974 /*------------------------------------------------------------------------* 2975 * usbd_clear_data_toggle - factored out code 2976 * 2977 * NOTE: the intention of this function is not to reset the hardware 2978 * data toggle on the USB device side. 2979 *------------------------------------------------------------------------*/ 2980 void 2981 usbd_clear_data_toggle(struct usb_device *udev, struct usb_endpoint *ep) 2982 { 2983 DPRINTFN(5, "udev=%p endpoint=%p\n", udev, ep); 2984 2985 USB_BUS_LOCK(udev->bus); 2986 ep->toggle_next = 0; 2987 /* some hardware needs a callback to clear the data toggle */ 2988 usbd_clear_stall_locked(udev, ep); 2989 USB_BUS_UNLOCK(udev->bus); 2990 } 2991 2992 /*------------------------------------------------------------------------* 2993 * usbd_clear_stall_callback - factored out clear stall callback 2994 * 2995 * Input parameters: 2996 * xfer1: Clear Stall Control Transfer 2997 * xfer2: Stalled USB Transfer 2998 * 2999 * This function is NULL safe. 3000 * 3001 * Return values: 3002 * 0: In progress 3003 * Else: Finished 3004 * 3005 * Clear stall config example: 3006 * 3007 * static const struct usb_config my_clearstall = { 3008 * .type = UE_CONTROL, 3009 * .endpoint = 0, 3010 * .direction = UE_DIR_ANY, 3011 * .interval = 50, //50 milliseconds 3012 * .bufsize = sizeof(struct usb_device_request), 3013 * .timeout = 1000, //1.000 seconds 3014 * .callback = &my_clear_stall_callback, // ** 3015 * .usb_mode = USB_MODE_HOST, 3016 * }; 3017 * 3018 * ** "my_clear_stall_callback" calls "usbd_clear_stall_callback" 3019 * passing the correct parameters. 3020 *------------------------------------------------------------------------*/ 3021 uint8_t 3022 usbd_clear_stall_callback(struct usb_xfer *xfer1, 3023 struct usb_xfer *xfer2) 3024 { 3025 struct usb_device_request req; 3026 3027 if (xfer2 == NULL) { 3028 /* looks like we are tearing down */ 3029 DPRINTF("NULL input parameter\n"); 3030 return (0); 3031 } 3032 USB_XFER_LOCK_ASSERT(xfer1, MA_OWNED); 3033 USB_XFER_LOCK_ASSERT(xfer2, MA_OWNED); 3034 3035 switch (USB_GET_STATE(xfer1)) { 3036 case USB_ST_SETUP: 3037 3038 /* 3039 * pre-clear the data toggle to DATA0 ("umass.c" and 3040 * "ata-usb.c" depends on this) 3041 */ 3042 3043 usbd_clear_data_toggle(xfer2->xroot->udev, xfer2->endpoint); 3044 3045 /* setup a clear-stall packet */ 3046 3047 req.bmRequestType = UT_WRITE_ENDPOINT; 3048 req.bRequest = UR_CLEAR_FEATURE; 3049 USETW(req.wValue, UF_ENDPOINT_HALT); 3050 req.wIndex[0] = xfer2->endpoint->edesc->bEndpointAddress; 3051 req.wIndex[1] = 0; 3052 USETW(req.wLength, 0); 3053 3054 /* 3055 * "usbd_transfer_setup_sub()" will ensure that 3056 * we have sufficient room in the buffer for 3057 * the request structure! 3058 */ 3059 3060 /* copy in the transfer */ 3061 3062 usbd_copy_in(xfer1->frbuffers, 0, &req, sizeof(req)); 3063 3064 /* set length */ 3065 xfer1->frlengths[0] = sizeof(req); 3066 xfer1->nframes = 1; 3067 3068 usbd_transfer_submit(xfer1); 3069 return (0); 3070 3071 case USB_ST_TRANSFERRED: 3072 break; 3073 3074 default: /* Error */ 3075 if (xfer1->error == USB_ERR_CANCELLED) { 3076 return (0); 3077 } 3078 break; 3079 } 3080 return (1); /* Clear Stall Finished */ 3081 } 3082 3083 /*------------------------------------------------------------------------* 3084 * usbd_transfer_poll 3085 * 3086 * The following function gets called from the USB keyboard driver and 3087 * UMASS when the system has paniced. 3088 * 3089 * NOTE: It is currently not possible to resume normal operation on 3090 * the USB controller which has been polled, due to clearing of the 3091 * "up_dsleep" and "up_msleep" flags. 3092 *------------------------------------------------------------------------*/ 3093 void 3094 usbd_transfer_poll(struct usb_xfer **ppxfer, uint16_t max) 3095 { 3096 struct usb_xfer *xfer; 3097 struct usb_xfer_root *xroot; 3098 struct usb_device *udev; 3099 struct usb_proc_msg *pm; 3100 uint16_t n; 3101 uint16_t drop_bus; 3102 uint16_t drop_xfer; 3103 3104 for (n = 0; n != max; n++) { 3105 /* Extra checks to avoid panic */ 3106 xfer = ppxfer[n]; 3107 if (xfer == NULL) 3108 continue; /* no USB transfer */ 3109 xroot = xfer->xroot; 3110 if (xroot == NULL) 3111 continue; /* no USB root */ 3112 udev = xroot->udev; 3113 if (udev == NULL) 3114 continue; /* no USB device */ 3115 if (udev->bus == NULL) 3116 continue; /* no BUS structure */ 3117 if (udev->bus->methods == NULL) 3118 continue; /* no BUS methods */ 3119 if (udev->bus->methods->xfer_poll == NULL) 3120 continue; /* no poll method */ 3121 3122 /* make sure that the BUS mutex is not locked */ 3123 drop_bus = 0; 3124 while (mtx_owned(&xroot->udev->bus->bus_mtx) && !SCHEDULER_STOPPED()) { 3125 mtx_unlock(&xroot->udev->bus->bus_mtx); 3126 drop_bus++; 3127 } 3128 3129 /* make sure that the transfer mutex is not locked */ 3130 drop_xfer = 0; 3131 while (mtx_owned(xroot->xfer_mtx) && !SCHEDULER_STOPPED()) { 3132 mtx_unlock(xroot->xfer_mtx); 3133 drop_xfer++; 3134 } 3135 3136 /* Make sure cv_signal() and cv_broadcast() is not called */ 3137 udev->bus->control_xfer_proc.up_msleep = 0; 3138 udev->bus->explore_proc.up_msleep = 0; 3139 udev->bus->giant_callback_proc.up_msleep = 0; 3140 udev->bus->non_giant_callback_proc.up_msleep = 0; 3141 3142 /* poll USB hardware */ 3143 (udev->bus->methods->xfer_poll) (udev->bus); 3144 3145 USB_BUS_LOCK(xroot->bus); 3146 3147 /* check for clear stall */ 3148 if (udev->ctrl_xfer[1] != NULL) { 3149 3150 /* poll clear stall start */ 3151 pm = &udev->cs_msg[0].hdr; 3152 (pm->pm_callback) (pm); 3153 /* poll clear stall done thread */ 3154 pm = &udev->ctrl_xfer[1]-> 3155 xroot->done_m[0].hdr; 3156 (pm->pm_callback) (pm); 3157 } 3158 3159 /* poll done thread */ 3160 pm = &xroot->done_m[0].hdr; 3161 (pm->pm_callback) (pm); 3162 3163 USB_BUS_UNLOCK(xroot->bus); 3164 3165 /* restore transfer mutex */ 3166 while (drop_xfer--) 3167 mtx_lock(xroot->xfer_mtx); 3168 3169 /* restore BUS mutex */ 3170 while (drop_bus--) 3171 mtx_lock(&xroot->udev->bus->bus_mtx); 3172 } 3173 } 3174 3175 static void 3176 usbd_get_std_packet_size(struct usb_std_packet_size *ptr, 3177 uint8_t type, enum usb_dev_speed speed) 3178 { 3179 static const uint16_t intr_range_max[USB_SPEED_MAX] = { 3180 [USB_SPEED_LOW] = 8, 3181 [USB_SPEED_FULL] = 64, 3182 [USB_SPEED_HIGH] = 1024, 3183 [USB_SPEED_VARIABLE] = 1024, 3184 [USB_SPEED_SUPER] = 1024, 3185 }; 3186 3187 static const uint16_t isoc_range_max[USB_SPEED_MAX] = { 3188 [USB_SPEED_LOW] = 0, /* invalid */ 3189 [USB_SPEED_FULL] = 1023, 3190 [USB_SPEED_HIGH] = 1024, 3191 [USB_SPEED_VARIABLE] = 3584, 3192 [USB_SPEED_SUPER] = 1024, 3193 }; 3194 3195 static const uint16_t control_min[USB_SPEED_MAX] = { 3196 [USB_SPEED_LOW] = 8, 3197 [USB_SPEED_FULL] = 8, 3198 [USB_SPEED_HIGH] = 64, 3199 [USB_SPEED_VARIABLE] = 512, 3200 [USB_SPEED_SUPER] = 512, 3201 }; 3202 3203 static const uint16_t bulk_min[USB_SPEED_MAX] = { 3204 [USB_SPEED_LOW] = 8, 3205 [USB_SPEED_FULL] = 8, 3206 [USB_SPEED_HIGH] = 512, 3207 [USB_SPEED_VARIABLE] = 512, 3208 [USB_SPEED_SUPER] = 1024, 3209 }; 3210 3211 uint16_t temp; 3212 3213 memset(ptr, 0, sizeof(*ptr)); 3214 3215 switch (type) { 3216 case UE_INTERRUPT: 3217 ptr->range.max = intr_range_max[speed]; 3218 break; 3219 case UE_ISOCHRONOUS: 3220 ptr->range.max = isoc_range_max[speed]; 3221 break; 3222 default: 3223 if (type == UE_BULK) 3224 temp = bulk_min[speed]; 3225 else /* UE_CONTROL */ 3226 temp = control_min[speed]; 3227 3228 /* default is fixed */ 3229 ptr->fixed[0] = temp; 3230 ptr->fixed[1] = temp; 3231 ptr->fixed[2] = temp; 3232 ptr->fixed[3] = temp; 3233 3234 if (speed == USB_SPEED_FULL) { 3235 /* multiple sizes */ 3236 ptr->fixed[1] = 16; 3237 ptr->fixed[2] = 32; 3238 ptr->fixed[3] = 64; 3239 } 3240 if ((speed == USB_SPEED_VARIABLE) && 3241 (type == UE_BULK)) { 3242 /* multiple sizes */ 3243 ptr->fixed[2] = 1024; 3244 ptr->fixed[3] = 1536; 3245 } 3246 break; 3247 } 3248 } 3249 3250 void * 3251 usbd_xfer_softc(struct usb_xfer *xfer) 3252 { 3253 return (xfer->priv_sc); 3254 } 3255 3256 void * 3257 usbd_xfer_get_priv(struct usb_xfer *xfer) 3258 { 3259 return (xfer->priv_fifo); 3260 } 3261 3262 void 3263 usbd_xfer_set_priv(struct usb_xfer *xfer, void *ptr) 3264 { 3265 xfer->priv_fifo = ptr; 3266 } 3267 3268 uint8_t 3269 usbd_xfer_state(struct usb_xfer *xfer) 3270 { 3271 return (xfer->usb_state); 3272 } 3273 3274 void 3275 usbd_xfer_set_flag(struct usb_xfer *xfer, int flag) 3276 { 3277 switch (flag) { 3278 case USB_FORCE_SHORT_XFER: 3279 xfer->flags.force_short_xfer = 1; 3280 break; 3281 case USB_SHORT_XFER_OK: 3282 xfer->flags.short_xfer_ok = 1; 3283 break; 3284 case USB_MULTI_SHORT_OK: 3285 xfer->flags.short_frames_ok = 1; 3286 break; 3287 case USB_MANUAL_STATUS: 3288 xfer->flags.manual_status = 1; 3289 break; 3290 } 3291 } 3292 3293 void 3294 usbd_xfer_clr_flag(struct usb_xfer *xfer, int flag) 3295 { 3296 switch (flag) { 3297 case USB_FORCE_SHORT_XFER: 3298 xfer->flags.force_short_xfer = 0; 3299 break; 3300 case USB_SHORT_XFER_OK: 3301 xfer->flags.short_xfer_ok = 0; 3302 break; 3303 case USB_MULTI_SHORT_OK: 3304 xfer->flags.short_frames_ok = 0; 3305 break; 3306 case USB_MANUAL_STATUS: 3307 xfer->flags.manual_status = 0; 3308 break; 3309 } 3310 } 3311 3312 /* 3313 * The following function returns in milliseconds when the isochronous 3314 * transfer was completed by the hardware. The returned value wraps 3315 * around 65536 milliseconds. 3316 */ 3317 uint16_t 3318 usbd_xfer_get_timestamp(struct usb_xfer *xfer) 3319 { 3320 return (xfer->isoc_time_complete); 3321 } 3322