xref: /freebsd/sys/dev/usb/input/atp.c (revision f7c32ed617858bcd22f8d1b03199099d50125721)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2014 Rohit Grover
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * Some tables, structures, definitions and constant values for the
31  * touchpad protocol has been copied from Linux's
32  * "drivers/input/mouse/bcm5974.c" which has the following copyright
33  * holders under GPLv2. All device specific code in this driver has
34  * been written from scratch. The decoding algorithm is based on
35  * output from FreeBSD's usbdump.
36  *
37  * Copyright (C) 2008      Henrik Rydberg (rydberg@euromail.se)
38  * Copyright (C) 2008      Scott Shawcroft (scott.shawcroft@gmail.com)
39  * Copyright (C) 2001-2004 Greg Kroah-Hartman (greg@kroah.com)
40  * Copyright (C) 2005      Johannes Berg (johannes@sipsolutions.net)
41  * Copyright (C) 2005      Stelian Pop (stelian@popies.net)
42  * Copyright (C) 2005      Frank Arnold (frank@scirocco-5v-turbo.de)
43  * Copyright (C) 2005      Peter Osterlund (petero2@telia.com)
44  * Copyright (C) 2005      Michael Hanselmann (linux-kernel@hansmi.ch)
45  * Copyright (C) 2006      Nicolas Boichat (nicolas@boichat.ch)
46  */
47 
48 /*
49  * Author's note: 'atp' supports two distinct families of Apple trackpad
50  * products: the older Fountain/Geyser and the latest Wellspring trackpads.
51  * The first version made its appearance with FreeBSD 8 and worked only with
52  * the Fountain/Geyser hardware. A fork of this driver for Wellspring was
53  * contributed by Huang Wen Hui. This driver unifies the Wellspring effort
54  * and also improves upon the original work.
55  *
56  * I'm grateful to Stephan Scheunig, Angela Naegele, and Nokia IT-support
57  * for helping me with access to hardware. Thanks also go to Nokia for
58  * giving me an opportunity to do this work.
59  */
60 
61 #include <sys/cdefs.h>
62 __FBSDID("$FreeBSD$");
63 
64 #include <sys/stdint.h>
65 #include <sys/stddef.h>
66 #include <sys/param.h>
67 #include <sys/types.h>
68 #include <sys/systm.h>
69 #include <sys/kernel.h>
70 #include <sys/bus.h>
71 #include <sys/module.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/sysctl.h>
75 #include <sys/malloc.h>
76 #include <sys/conf.h>
77 #include <sys/fcntl.h>
78 #include <sys/file.h>
79 #include <sys/selinfo.h>
80 #include <sys/poll.h>
81 
82 #include <dev/hid/hid.h>
83 
84 #include <dev/usb/usb.h>
85 #include <dev/usb/usbdi.h>
86 #include <dev/usb/usbdi_util.h>
87 #include <dev/usb/usbhid.h>
88 
89 #include "usbdevs.h"
90 
91 #define USB_DEBUG_VAR atp_debug
92 #include <dev/usb/usb_debug.h>
93 
94 #include <sys/mouse.h>
95 
96 #define ATP_DRIVER_NAME "atp"
97 
98 /*
99  * Driver specific options: the following options may be set by
100  * `options' statements in the kernel configuration file.
101  */
102 
103 /* The divisor used to translate sensor reported positions to mickeys. */
104 #ifndef ATP_SCALE_FACTOR
105 #define ATP_SCALE_FACTOR                  16
106 #endif
107 
108 /* Threshold for small movement noise (in mickeys) */
109 #ifndef ATP_SMALL_MOVEMENT_THRESHOLD
110 #define ATP_SMALL_MOVEMENT_THRESHOLD      30
111 #endif
112 
113 /* Threshold of instantaneous deltas beyond which movement is considered fast.*/
114 #ifndef ATP_FAST_MOVEMENT_TRESHOLD
115 #define ATP_FAST_MOVEMENT_TRESHOLD        150
116 #endif
117 
118 /*
119  * This is the age in microseconds beyond which a touch is considered
120  * to be a slide; and therefore a tap event isn't registered.
121  */
122 #ifndef ATP_TOUCH_TIMEOUT
123 #define ATP_TOUCH_TIMEOUT                 125000
124 #endif
125 
126 #ifndef ATP_IDLENESS_THRESHOLD
127 #define	ATP_IDLENESS_THRESHOLD 10
128 #endif
129 
130 #ifndef FG_SENSOR_NOISE_THRESHOLD
131 #define FG_SENSOR_NOISE_THRESHOLD 2
132 #endif
133 
134 /*
135  * A double-tap followed by a single-finger slide is treated as a
136  * special gesture. The driver responds to this gesture by assuming a
137  * virtual button-press for the lifetime of the slide. The following
138  * threshold is the maximum time gap (in microseconds) between the two
139  * tap events preceding the slide for such a gesture.
140  */
141 #ifndef ATP_DOUBLE_TAP_N_DRAG_THRESHOLD
142 #define ATP_DOUBLE_TAP_N_DRAG_THRESHOLD   200000
143 #endif
144 
145 /*
146  * The wait duration in ticks after losing a touch contact before
147  * zombied strokes are reaped and turned into button events.
148  */
149 #define ATP_ZOMBIE_STROKE_REAP_INTERVAL   (hz / 20)	/* 50 ms */
150 
151 /* The multiplier used to translate sensor reported positions to mickeys. */
152 #define FG_SCALE_FACTOR                   380
153 
154 /*
155  * The movement threshold for a stroke; this is the maximum difference
156  * in position which will be resolved as a continuation of a stroke
157  * component.
158  */
159 #define FG_MAX_DELTA_MICKEYS             ((3 * (FG_SCALE_FACTOR)) >> 1)
160 
161 /* Distance-squared threshold for matching a finger with a known stroke */
162 #ifndef WSP_MAX_ALLOWED_MATCH_DISTANCE_SQ
163 #define WSP_MAX_ALLOWED_MATCH_DISTANCE_SQ 1000000
164 #endif
165 
166 /* Ignore pressure spans with cumulative press. below this value. */
167 #define FG_PSPAN_MIN_CUM_PRESSURE         10
168 
169 /* Maximum allowed width for pressure-spans.*/
170 #define FG_PSPAN_MAX_WIDTH                4
171 
172 /* end of driver specific options */
173 
174 /* Tunables */
175 static SYSCTL_NODE(_hw_usb, OID_AUTO, atp, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
176     "USB ATP");
177 
178 #ifdef USB_DEBUG
179 enum atp_log_level {
180 	ATP_LLEVEL_DISABLED = 0,
181 	ATP_LLEVEL_ERROR,
182 	ATP_LLEVEL_DEBUG,       /* for troubleshooting */
183 	ATP_LLEVEL_INFO,        /* for diagnostics */
184 };
185 static int atp_debug = ATP_LLEVEL_ERROR; /* the default is to only log errors */
186 SYSCTL_INT(_hw_usb_atp, OID_AUTO, debug, CTLFLAG_RWTUN,
187     &atp_debug, ATP_LLEVEL_ERROR, "ATP debug level");
188 #endif /* USB_DEBUG */
189 
190 static u_int atp_touch_timeout = ATP_TOUCH_TIMEOUT;
191 SYSCTL_UINT(_hw_usb_atp, OID_AUTO, touch_timeout, CTLFLAG_RWTUN,
192     &atp_touch_timeout, 125000, "age threshold in microseconds for a touch");
193 
194 static u_int atp_double_tap_threshold = ATP_DOUBLE_TAP_N_DRAG_THRESHOLD;
195 SYSCTL_UINT(_hw_usb_atp, OID_AUTO, double_tap_threshold, CTLFLAG_RWTUN,
196     &atp_double_tap_threshold, ATP_DOUBLE_TAP_N_DRAG_THRESHOLD,
197     "maximum time in microseconds to allow association between a double-tap and "
198     "drag gesture");
199 
200 static u_int atp_mickeys_scale_factor = ATP_SCALE_FACTOR;
201 static int atp_sysctl_scale_factor_handler(SYSCTL_HANDLER_ARGS);
202 SYSCTL_PROC(_hw_usb_atp, OID_AUTO, scale_factor,
203     CTLTYPE_UINT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE,
204     &atp_mickeys_scale_factor, sizeof(atp_mickeys_scale_factor),
205     atp_sysctl_scale_factor_handler, "IU",
206     "movement scale factor");
207 
208 static u_int atp_small_movement_threshold = ATP_SMALL_MOVEMENT_THRESHOLD;
209 SYSCTL_UINT(_hw_usb_atp, OID_AUTO, small_movement, CTLFLAG_RWTUN,
210     &atp_small_movement_threshold, ATP_SMALL_MOVEMENT_THRESHOLD,
211     "the small movement black-hole for filtering noise");
212 
213 static u_int atp_tap_minimum = 1;
214 SYSCTL_UINT(_hw_usb_atp, OID_AUTO, tap_minimum, CTLFLAG_RWTUN,
215     &atp_tap_minimum, 1, "Minimum number of taps before detection");
216 
217 /*
218  * Strokes which accumulate at least this amount of absolute movement
219  * from the aggregate of their components are considered as
220  * slides. Unit: mickeys.
221  */
222 static u_int atp_slide_min_movement = 2 * ATP_SMALL_MOVEMENT_THRESHOLD;
223 SYSCTL_UINT(_hw_usb_atp, OID_AUTO, slide_min_movement, CTLFLAG_RWTUN,
224     &atp_slide_min_movement, 2 * ATP_SMALL_MOVEMENT_THRESHOLD,
225     "strokes with at least this amt. of movement are considered slides");
226 
227 /*
228  * The minimum age of a stroke for it to be considered mature; this
229  * helps filter movements (noise) from immature strokes. Units: interrupts.
230  */
231 static u_int atp_stroke_maturity_threshold = 4;
232 SYSCTL_UINT(_hw_usb_atp, OID_AUTO, stroke_maturity_threshold, CTLFLAG_RWTUN,
233     &atp_stroke_maturity_threshold, 4,
234     "the minimum age of a stroke for it to be considered mature");
235 
236 typedef enum atp_trackpad_family {
237 	TRACKPAD_FAMILY_FOUNTAIN_GEYSER,
238 	TRACKPAD_FAMILY_WELLSPRING,
239 	TRACKPAD_FAMILY_MAX /* keep this at the tail end of the enumeration */
240 } trackpad_family_t;
241 
242 enum fountain_geyser_product {
243 	FOUNTAIN,
244 	GEYSER1,
245 	GEYSER1_17inch,
246 	GEYSER2,
247 	GEYSER3,
248 	GEYSER4,
249 	FOUNTAIN_GEYSER_PRODUCT_MAX /* keep this at the end */
250 };
251 
252 enum wellspring_product {
253 	WELLSPRING1,
254 	WELLSPRING2,
255 	WELLSPRING3,
256 	WELLSPRING4,
257 	WELLSPRING4A,
258 	WELLSPRING5,
259 	WELLSPRING6A,
260 	WELLSPRING6,
261 	WELLSPRING5A,
262 	WELLSPRING7,
263 	WELLSPRING7A,
264 	WELLSPRING8,
265 	WELLSPRING_PRODUCT_MAX /* keep this at the end of the enumeration */
266 };
267 
268 /* trackpad header types */
269 enum fountain_geyser_trackpad_type {
270 	FG_TRACKPAD_TYPE_GEYSER1,
271 	FG_TRACKPAD_TYPE_GEYSER2,
272 	FG_TRACKPAD_TYPE_GEYSER3,
273 	FG_TRACKPAD_TYPE_GEYSER4,
274 };
275 enum wellspring_trackpad_type {
276 	WSP_TRACKPAD_TYPE1,      /* plain trackpad */
277 	WSP_TRACKPAD_TYPE2,      /* button integrated in trackpad */
278 	WSP_TRACKPAD_TYPE3       /* additional header fields since June 2013 */
279 };
280 
281 /*
282  * Trackpad family and product and family are encoded together in the
283  * driver_info value associated with a trackpad product.
284  */
285 #define N_PROD_BITS 8  /* Number of bits used to encode product */
286 #define ENCODE_DRIVER_INFO(FAMILY, PROD)      \
287     (((FAMILY) << N_PROD_BITS) | (PROD))
288 #define DECODE_FAMILY_FROM_DRIVER_INFO(INFO)  ((INFO) >> N_PROD_BITS)
289 #define DECODE_PRODUCT_FROM_DRIVER_INFO(INFO) \
290     ((INFO) & ((1 << N_PROD_BITS) - 1))
291 
292 #define FG_DRIVER_INFO(PRODUCT)               \
293     ENCODE_DRIVER_INFO(TRACKPAD_FAMILY_FOUNTAIN_GEYSER, PRODUCT)
294 #define WELLSPRING_DRIVER_INFO(PRODUCT)       \
295     ENCODE_DRIVER_INFO(TRACKPAD_FAMILY_WELLSPRING, PRODUCT)
296 
297 /*
298  * The following structure captures the state of a pressure span along
299  * an axis. Each contact with the touchpad results in separate
300  * pressure spans along the two axes.
301  */
302 typedef struct fg_pspan {
303 	u_int width;       /* in units of sensors */
304 	u_int cum;         /* cumulative compression (from all sensors) */
305 	u_int cog;         /* center of gravity */
306 	u_int loc;         /* location (scaled using the mickeys factor) */
307 	boolean_t matched; /* to track pspans as they match against strokes. */
308 } fg_pspan;
309 
310 #define FG_MAX_PSPANS_PER_AXIS 3
311 #define FG_MAX_STROKES         (2 * FG_MAX_PSPANS_PER_AXIS)
312 
313 #define WELLSPRING_INTERFACE_INDEX 1
314 
315 /* trackpad finger data offsets, le16-aligned */
316 #define WSP_TYPE1_FINGER_DATA_OFFSET  (13 * 2)
317 #define WSP_TYPE2_FINGER_DATA_OFFSET  (15 * 2)
318 #define WSP_TYPE3_FINGER_DATA_OFFSET  (19 * 2)
319 
320 /* trackpad button data offsets */
321 #define WSP_TYPE2_BUTTON_DATA_OFFSET   15
322 #define WSP_TYPE3_BUTTON_DATA_OFFSET   23
323 
324 /* list of device capability bits */
325 #define HAS_INTEGRATED_BUTTON   1
326 
327 /* trackpad finger structure - little endian */
328 struct wsp_finger_sensor_data {
329 	int16_t origin;       /* zero when switching track finger */
330 	int16_t abs_x;        /* absolute x coordinate */
331 	int16_t abs_y;        /* absolute y coordinate */
332 	int16_t rel_x;        /* relative x coordinate */
333 	int16_t rel_y;        /* relative y coordinate */
334 	int16_t tool_major;   /* tool area, major axis */
335 	int16_t tool_minor;   /* tool area, minor axis */
336 	int16_t orientation;  /* 16384 when point, else 15 bit angle */
337 	int16_t touch_major;  /* touch area, major axis */
338 	int16_t touch_minor;  /* touch area, minor axis */
339 	int16_t unused[3];    /* zeros */
340 	int16_t multi;        /* one finger: varies, more fingers: constant */
341 } __packed;
342 
343 typedef struct wsp_finger {
344 	/* to track fingers as they match against strokes. */
345 	boolean_t matched;
346 
347 	/* location (scaled using the mickeys factor) */
348 	int x;
349 	int y;
350 } wsp_finger_t;
351 
352 #define WSP_MAX_FINGERS               16
353 #define WSP_SIZEOF_FINGER_SENSOR_DATA sizeof(struct wsp_finger_sensor_data)
354 #define WSP_SIZEOF_ALL_FINGER_DATA    (WSP_MAX_FINGERS * \
355 				       WSP_SIZEOF_FINGER_SENSOR_DATA)
356 #define WSP_MAX_FINGER_ORIENTATION    16384
357 
358 #define ATP_SENSOR_DATA_BUF_MAX       1024
359 #if (ATP_SENSOR_DATA_BUF_MAX < ((WSP_MAX_FINGERS * 14 * 2) + \
360 				WSP_TYPE3_FINGER_DATA_OFFSET))
361 /* note: 14 * 2 in the above is based on sizeof(struct wsp_finger_sensor_data)*/
362 #error "ATP_SENSOR_DATA_BUF_MAX is too small"
363 #endif
364 
365 #define ATP_MAX_STROKES               MAX(WSP_MAX_FINGERS, FG_MAX_STROKES)
366 
367 #define FG_MAX_XSENSORS 26
368 #define FG_MAX_YSENSORS 16
369 
370 /* device-specific configuration */
371 struct fg_dev_params {
372 	u_int                              data_len;   /* for sensor data */
373 	u_int                              n_xsensors;
374 	u_int                              n_ysensors;
375 	enum fountain_geyser_trackpad_type prot;
376 };
377 struct wsp_dev_params {
378 	uint8_t  caps;               /* device capability bitmask */
379 	uint8_t  tp_type;            /* type of trackpad interface */
380 	uint8_t  finger_data_offset; /* offset to trackpad finger data */
381 };
382 
383 static const struct fg_dev_params fg_dev_params[FOUNTAIN_GEYSER_PRODUCT_MAX] = {
384 	[FOUNTAIN] = {
385 		.data_len   = 81,
386 		.n_xsensors = 16,
387 		.n_ysensors = 16,
388 		.prot       = FG_TRACKPAD_TYPE_GEYSER1
389 	},
390 	[GEYSER1] = {
391 		.data_len   = 81,
392 		.n_xsensors = 16,
393 		.n_ysensors = 16,
394 		.prot       = FG_TRACKPAD_TYPE_GEYSER1
395 	},
396 	[GEYSER1_17inch] = {
397 		.data_len   = 81,
398 		.n_xsensors = 26,
399 		.n_ysensors = 16,
400 		.prot       = FG_TRACKPAD_TYPE_GEYSER1
401 	},
402 	[GEYSER2] = {
403 		.data_len   = 64,
404 		.n_xsensors = 15,
405 		.n_ysensors = 9,
406 		.prot       = FG_TRACKPAD_TYPE_GEYSER2
407 	},
408 	[GEYSER3] = {
409 		.data_len   = 64,
410 		.n_xsensors = 20,
411 		.n_ysensors = 10,
412 		.prot       = FG_TRACKPAD_TYPE_GEYSER3
413 	},
414 	[GEYSER4] = {
415 		.data_len   = 64,
416 		.n_xsensors = 20,
417 		.n_ysensors = 10,
418 		.prot       = FG_TRACKPAD_TYPE_GEYSER4
419 	}
420 };
421 
422 static const STRUCT_USB_HOST_ID fg_devs[] = {
423 	/* PowerBooks Feb 2005, iBooks G4 */
424 	{ USB_VPI(USB_VENDOR_APPLE, 0x020e, FG_DRIVER_INFO(FOUNTAIN)) },
425 	{ USB_VPI(USB_VENDOR_APPLE, 0x020f, FG_DRIVER_INFO(FOUNTAIN)) },
426 	{ USB_VPI(USB_VENDOR_APPLE, 0x0210, FG_DRIVER_INFO(FOUNTAIN)) },
427 	{ USB_VPI(USB_VENDOR_APPLE, 0x030a, FG_DRIVER_INFO(FOUNTAIN)) },
428 	{ USB_VPI(USB_VENDOR_APPLE, 0x030b, FG_DRIVER_INFO(GEYSER1)) },
429 
430 	/* PowerBooks Oct 2005 */
431 	{ USB_VPI(USB_VENDOR_APPLE, 0x0214, FG_DRIVER_INFO(GEYSER2)) },
432 	{ USB_VPI(USB_VENDOR_APPLE, 0x0215, FG_DRIVER_INFO(GEYSER2)) },
433 	{ USB_VPI(USB_VENDOR_APPLE, 0x0216, FG_DRIVER_INFO(GEYSER2)) },
434 
435 	/* Core Duo MacBook & MacBook Pro */
436 	{ USB_VPI(USB_VENDOR_APPLE, 0x0217, FG_DRIVER_INFO(GEYSER3)) },
437 	{ USB_VPI(USB_VENDOR_APPLE, 0x0218, FG_DRIVER_INFO(GEYSER3)) },
438 	{ USB_VPI(USB_VENDOR_APPLE, 0x0219, FG_DRIVER_INFO(GEYSER3)) },
439 
440 	/* Core2 Duo MacBook & MacBook Pro */
441 	{ USB_VPI(USB_VENDOR_APPLE, 0x021a, FG_DRIVER_INFO(GEYSER4)) },
442 	{ USB_VPI(USB_VENDOR_APPLE, 0x021b, FG_DRIVER_INFO(GEYSER4)) },
443 	{ USB_VPI(USB_VENDOR_APPLE, 0x021c, FG_DRIVER_INFO(GEYSER4)) },
444 
445 	/* Core2 Duo MacBook3,1 */
446 	{ USB_VPI(USB_VENDOR_APPLE, 0x0229, FG_DRIVER_INFO(GEYSER4)) },
447 	{ USB_VPI(USB_VENDOR_APPLE, 0x022a, FG_DRIVER_INFO(GEYSER4)) },
448 	{ USB_VPI(USB_VENDOR_APPLE, 0x022b, FG_DRIVER_INFO(GEYSER4)) },
449 
450 	/* 17 inch PowerBook */
451 	{ USB_VPI(USB_VENDOR_APPLE, 0x020d, FG_DRIVER_INFO(GEYSER1_17inch)) },
452 };
453 
454 static const struct wsp_dev_params wsp_dev_params[WELLSPRING_PRODUCT_MAX] = {
455 	[WELLSPRING1] = {
456 		.caps       = 0,
457 		.tp_type    = WSP_TRACKPAD_TYPE1,
458 		.finger_data_offset  = WSP_TYPE1_FINGER_DATA_OFFSET,
459 	},
460 	[WELLSPRING2] = {
461 		.caps       = 0,
462 		.tp_type    = WSP_TRACKPAD_TYPE1,
463 		.finger_data_offset  = WSP_TYPE1_FINGER_DATA_OFFSET,
464 	},
465 	[WELLSPRING3] = {
466 		.caps       = HAS_INTEGRATED_BUTTON,
467 		.tp_type    = WSP_TRACKPAD_TYPE2,
468 		.finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
469 	},
470 	[WELLSPRING4] = {
471 		.caps       = HAS_INTEGRATED_BUTTON,
472 		.tp_type    = WSP_TRACKPAD_TYPE2,
473 		.finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
474 	},
475 	[WELLSPRING4A] = {
476 		.caps       = HAS_INTEGRATED_BUTTON,
477 		.tp_type    = WSP_TRACKPAD_TYPE2,
478 		.finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
479 	},
480 	[WELLSPRING5] = {
481 		.caps       = HAS_INTEGRATED_BUTTON,
482 		.tp_type    = WSP_TRACKPAD_TYPE2,
483 		.finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
484 	},
485 	[WELLSPRING6] = {
486 		.caps       = HAS_INTEGRATED_BUTTON,
487 		.tp_type    = WSP_TRACKPAD_TYPE2,
488 		.finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
489 	},
490 	[WELLSPRING5A] = {
491 		.caps       = HAS_INTEGRATED_BUTTON,
492 		.tp_type    = WSP_TRACKPAD_TYPE2,
493 		.finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
494 	},
495 	[WELLSPRING6A] = {
496 		.caps       = HAS_INTEGRATED_BUTTON,
497 		.tp_type    = WSP_TRACKPAD_TYPE2,
498 		.finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
499 	},
500 	[WELLSPRING7] = {
501 		.caps       = HAS_INTEGRATED_BUTTON,
502 		.tp_type    = WSP_TRACKPAD_TYPE2,
503 		.finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
504 	},
505 	[WELLSPRING7A] = {
506 		.caps       = HAS_INTEGRATED_BUTTON,
507 		.tp_type    = WSP_TRACKPAD_TYPE2,
508 		.finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
509 	},
510 	[WELLSPRING8] = {
511 		.caps       = HAS_INTEGRATED_BUTTON,
512 		.tp_type    = WSP_TRACKPAD_TYPE3,
513 		.finger_data_offset  = WSP_TYPE3_FINGER_DATA_OFFSET,
514 	},
515 };
516 #define ATP_DEV(v,p,i) { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, i) }
517 
518 /* TODO: STRUCT_USB_HOST_ID */
519 static const struct usb_device_id wsp_devs[] = {
520 	/* MacbookAir1.1 */
521 	ATP_DEV(APPLE, WELLSPRING_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING1)),
522 	ATP_DEV(APPLE, WELLSPRING_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING1)),
523 	ATP_DEV(APPLE, WELLSPRING_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING1)),
524 
525 	/* MacbookProPenryn, aka wellspring2 */
526 	ATP_DEV(APPLE, WELLSPRING2_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING2)),
527 	ATP_DEV(APPLE, WELLSPRING2_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING2)),
528 	ATP_DEV(APPLE, WELLSPRING2_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING2)),
529 
530 	/* Macbook5,1 (unibody), aka wellspring3 */
531 	ATP_DEV(APPLE, WELLSPRING3_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING3)),
532 	ATP_DEV(APPLE, WELLSPRING3_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING3)),
533 	ATP_DEV(APPLE, WELLSPRING3_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING3)),
534 
535 	/* MacbookAir3,2 (unibody), aka wellspring4 */
536 	ATP_DEV(APPLE, WELLSPRING4_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING4)),
537 	ATP_DEV(APPLE, WELLSPRING4_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING4)),
538 	ATP_DEV(APPLE, WELLSPRING4_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING4)),
539 
540 	/* MacbookAir3,1 (unibody), aka wellspring4 */
541 	ATP_DEV(APPLE, WELLSPRING4A_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING4A)),
542 	ATP_DEV(APPLE, WELLSPRING4A_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING4A)),
543 	ATP_DEV(APPLE, WELLSPRING4A_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING4A)),
544 
545 	/* Macbook8 (unibody, March 2011) */
546 	ATP_DEV(APPLE, WELLSPRING5_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING5)),
547 	ATP_DEV(APPLE, WELLSPRING5_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING5)),
548 	ATP_DEV(APPLE, WELLSPRING5_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING5)),
549 
550 	/* MacbookAir4,1 (unibody, July 2011) */
551 	ATP_DEV(APPLE, WELLSPRING6A_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING6A)),
552 	ATP_DEV(APPLE, WELLSPRING6A_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING6A)),
553 	ATP_DEV(APPLE, WELLSPRING6A_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING6A)),
554 
555 	/* MacbookAir4,2 (unibody, July 2011) */
556 	ATP_DEV(APPLE, WELLSPRING6_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING6)),
557 	ATP_DEV(APPLE, WELLSPRING6_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING6)),
558 	ATP_DEV(APPLE, WELLSPRING6_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING6)),
559 
560 	/* Macbook8,2 (unibody) */
561 	ATP_DEV(APPLE, WELLSPRING5A_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING5A)),
562 	ATP_DEV(APPLE, WELLSPRING5A_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING5A)),
563 	ATP_DEV(APPLE, WELLSPRING5A_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING5A)),
564 
565 	/* MacbookPro10,1 (unibody, June 2012) */
566 	/* MacbookPro11,? (unibody, June 2013) */
567 	ATP_DEV(APPLE, WELLSPRING7_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING7)),
568 	ATP_DEV(APPLE, WELLSPRING7_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING7)),
569 	ATP_DEV(APPLE, WELLSPRING7_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING7)),
570 
571 	/* MacbookPro10,2 (unibody, October 2012) */
572 	ATP_DEV(APPLE, WELLSPRING7A_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING7A)),
573 	ATP_DEV(APPLE, WELLSPRING7A_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING7A)),
574 	ATP_DEV(APPLE, WELLSPRING7A_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING7A)),
575 
576 	/* MacbookAir6,2 (unibody, June 2013) */
577 	ATP_DEV(APPLE, WELLSPRING8_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING8)),
578 	ATP_DEV(APPLE, WELLSPRING8_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING8)),
579 	ATP_DEV(APPLE, WELLSPRING8_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING8)),
580 };
581 
582 typedef enum atp_stroke_type {
583 	ATP_STROKE_TOUCH,
584 	ATP_STROKE_SLIDE,
585 } atp_stroke_type;
586 
587 typedef enum atp_axis {
588 	X = 0,
589 	Y = 1,
590 	NUM_AXES
591 } atp_axis;
592 
593 #define ATP_FIFO_BUF_SIZE        8 /* bytes */
594 #define ATP_FIFO_QUEUE_MAXLEN   50 /* units */
595 
596 enum {
597 	ATP_INTR_DT,
598 	ATP_RESET,
599 	ATP_N_TRANSFER,
600 };
601 
602 typedef struct fg_stroke_component {
603 	/* Fields encapsulating the pressure-span. */
604 	u_int loc;              /* location (scaled) */
605 	u_int cum_pressure;     /* cumulative compression */
606 	u_int max_cum_pressure; /* max cumulative compression */
607 	boolean_t matched; /*to track components as they match against pspans.*/
608 
609 	int   delta_mickeys;    /* change in location (un-smoothened movement)*/
610 } fg_stroke_component_t;
611 
612 /*
613  * The following structure captures a finger contact with the
614  * touchpad. A stroke comprises two p-span components and some state.
615  */
616 typedef struct atp_stroke {
617 	TAILQ_ENTRY(atp_stroke) entry;
618 
619 	atp_stroke_type type;
620 	uint32_t        flags; /* the state of this stroke */
621 #define ATSF_ZOMBIE 0x1
622 	boolean_t       matched;          /* to track match against fingers.*/
623 
624 	struct timeval  ctime; /* create time; for coincident siblings. */
625 
626 	/*
627 	 * Unit: interrupts; we maintain this value in
628 	 * addition to 'ctime' in order to avoid the
629 	 * expensive call to microtime() at every
630 	 * interrupt.
631 	 */
632 	uint32_t age;
633 
634 	/* Location */
635 	int x;
636 	int y;
637 
638 	/* Fields containing information about movement. */
639 	int   instantaneous_dx; /* curr. change in X location (un-smoothened) */
640 	int   instantaneous_dy; /* curr. change in Y location (un-smoothened) */
641 	int   pending_dx;       /* cum. of pending short movements */
642 	int   pending_dy;       /* cum. of pending short movements */
643 	int   movement_dx;      /* interpreted smoothened movement */
644 	int   movement_dy;      /* interpreted smoothened movement */
645 	int   cum_movement_x;   /* cum. horizontal movement */
646 	int   cum_movement_y;   /* cum. vertical movement */
647 
648 	/*
649 	 * The following member is relevant only for fountain-geyser trackpads.
650 	 * For these, there is the need to track pressure-spans and cumulative
651 	 * pressures for stroke components.
652 	 */
653 	fg_stroke_component_t components[NUM_AXES];
654 } atp_stroke_t;
655 
656 struct atp_softc; /* forward declaration */
657 typedef void (*sensor_data_interpreter_t)(struct atp_softc *sc, u_int len);
658 
659 struct atp_softc {
660 	device_t            sc_dev;
661 	struct usb_device  *sc_usb_device;
662 	struct mtx          sc_mutex; /* for synchronization */
663 	struct usb_fifo_sc  sc_fifo;
664 
665 #define	MODE_LENGTH 8
666 	char                sc_mode_bytes[MODE_LENGTH]; /* device mode */
667 
668 	trackpad_family_t   sc_family;
669 	const void         *sc_params; /* device configuration */
670 	sensor_data_interpreter_t sensor_data_interpreter;
671 
672 	mousehw_t           sc_hw;
673 	mousemode_t         sc_mode;
674 	mousestatus_t       sc_status;
675 
676 	u_int               sc_state;
677 #define ATP_ENABLED          0x01
678 #define ATP_ZOMBIES_EXIST    0x02
679 #define ATP_DOUBLE_TAP_DRAG  0x04
680 #define ATP_VALID            0x08
681 
682 	struct usb_xfer    *sc_xfer[ATP_N_TRANSFER];
683 
684 	u_int               sc_pollrate;
685 	int                 sc_fflags;
686 
687 	atp_stroke_t        sc_strokes_data[ATP_MAX_STROKES];
688 	TAILQ_HEAD(,atp_stroke) sc_stroke_free;
689 	TAILQ_HEAD(,atp_stroke) sc_stroke_used;
690 	u_int               sc_n_strokes;
691 
692 	struct callout	    sc_callout;
693 
694 	/*
695 	 * button status. Set to non-zero if the mouse-button is physically
696 	 * pressed. This state variable is exposed through softc to allow
697 	 * reap_sibling_zombies to avoid registering taps while the trackpad
698 	 * button is pressed.
699          */
700 	uint8_t             sc_ibtn;
701 
702 	/*
703 	 * Time when touch zombies were last reaped; useful for detecting
704 	 * double-touch-n-drag.
705 	 */
706 	struct timeval      sc_touch_reap_time;
707 
708 	u_int	            sc_idlecount;
709 
710 	/* Regarding the data transferred from t-pad in USB INTR packets. */
711 	u_int   sc_expected_sensor_data_len;
712 	uint8_t sc_sensor_data[ATP_SENSOR_DATA_BUF_MAX] __aligned(4);
713 
714 	int      sc_cur_x[FG_MAX_XSENSORS];      /* current sensor readings */
715 	int      sc_cur_y[FG_MAX_YSENSORS];
716 	int      sc_base_x[FG_MAX_XSENSORS];     /* base sensor readings */
717 	int      sc_base_y[FG_MAX_YSENSORS];
718 	int      sc_pressure_x[FG_MAX_XSENSORS]; /* computed pressures */
719 	int      sc_pressure_y[FG_MAX_YSENSORS];
720 	fg_pspan sc_pspans_x[FG_MAX_PSPANS_PER_AXIS];
721 	fg_pspan sc_pspans_y[FG_MAX_PSPANS_PER_AXIS];
722 };
723 
724 /*
725  * The last byte of the fountain-geyser sensor data contains status bits; the
726  * following values define the meanings of these bits.
727  * (only Geyser 3/4)
728  */
729 enum geyser34_status_bits {
730 	FG_STATUS_BUTTON      = (uint8_t)0x01, /* The button was pressed */
731 	FG_STATUS_BASE_UPDATE = (uint8_t)0x04, /* Data from an untouched pad.*/
732 };
733 
734 typedef enum interface_mode {
735 	RAW_SENSOR_MODE = (uint8_t)0x01,
736 	HID_MODE        = (uint8_t)0x08
737 } interface_mode;
738 
739 /*
740  * function prototypes
741  */
742 static usb_fifo_cmd_t   atp_start_read;
743 static usb_fifo_cmd_t   atp_stop_read;
744 static usb_fifo_open_t  atp_open;
745 static usb_fifo_close_t atp_close;
746 static usb_fifo_ioctl_t atp_ioctl;
747 
748 static struct usb_fifo_methods atp_fifo_methods = {
749 	.f_open       = &atp_open,
750 	.f_close      = &atp_close,
751 	.f_ioctl      = &atp_ioctl,
752 	.f_start_read = &atp_start_read,
753 	.f_stop_read  = &atp_stop_read,
754 	.basename[0]  = ATP_DRIVER_NAME,
755 };
756 
757 /* device initialization and shutdown */
758 static usb_error_t   atp_set_device_mode(struct atp_softc *, interface_mode);
759 static void	     atp_reset_callback(struct usb_xfer *, usb_error_t);
760 static int	     atp_enable(struct atp_softc *);
761 static void	     atp_disable(struct atp_softc *);
762 
763 /* sensor interpretation */
764 static void	     fg_interpret_sensor_data(struct atp_softc *, u_int);
765 static void	     fg_extract_sensor_data(const int8_t *, u_int, atp_axis,
766     int *, enum fountain_geyser_trackpad_type);
767 static void	     fg_get_pressures(int *, const int *, const int *, int);
768 static void	     fg_detect_pspans(int *, u_int, u_int, fg_pspan *, u_int *);
769 static void	     wsp_interpret_sensor_data(struct atp_softc *, u_int);
770 
771 /* movement detection */
772 static boolean_t     fg_match_stroke_component(fg_stroke_component_t *,
773     const fg_pspan *, atp_stroke_type);
774 static void	     fg_match_strokes_against_pspans(struct atp_softc *,
775     atp_axis, fg_pspan *, u_int, u_int);
776 static boolean_t     wsp_match_strokes_against_fingers(struct atp_softc *,
777     wsp_finger_t *, u_int);
778 static boolean_t     fg_update_strokes(struct atp_softc *, fg_pspan *, u_int,
779     fg_pspan *, u_int);
780 static boolean_t     wsp_update_strokes(struct atp_softc *,
781     wsp_finger_t [WSP_MAX_FINGERS], u_int);
782 static void fg_add_stroke(struct atp_softc *, const fg_pspan *, const fg_pspan *);
783 static void	     fg_add_new_strokes(struct atp_softc *, fg_pspan *,
784     u_int, fg_pspan *, u_int);
785 static void wsp_add_stroke(struct atp_softc *, const wsp_finger_t *);
786 static void	     atp_advance_stroke_state(struct atp_softc *,
787     atp_stroke_t *, boolean_t *);
788 static boolean_t atp_stroke_has_small_movement(const atp_stroke_t *);
789 static void	     atp_update_pending_mickeys(atp_stroke_t *);
790 static boolean_t     atp_compute_stroke_movement(atp_stroke_t *);
791 static void	     atp_terminate_stroke(struct atp_softc *, atp_stroke_t *);
792 
793 /* tap detection */
794 static boolean_t atp_is_horizontal_scroll(const atp_stroke_t *);
795 static boolean_t atp_is_vertical_scroll(const atp_stroke_t *);
796 static void	     atp_reap_sibling_zombies(void *);
797 static void	     atp_convert_to_slide(struct atp_softc *, atp_stroke_t *);
798 
799 /* updating fifo */
800 static void	     atp_reset_buf(struct atp_softc *);
801 static void	     atp_add_to_queue(struct atp_softc *, int, int, int, uint32_t);
802 
803 /* Device methods. */
804 static device_probe_t  atp_probe;
805 static device_attach_t atp_attach;
806 static device_detach_t atp_detach;
807 static usb_callback_t  atp_intr;
808 
809 static const struct usb_config atp_xfer_config[ATP_N_TRANSFER] = {
810 	[ATP_INTR_DT] = {
811 		.type      = UE_INTERRUPT,
812 		.endpoint  = UE_ADDR_ANY,
813 		.direction = UE_DIR_IN,
814 		.flags = {
815 			.pipe_bof = 1, /* block pipe on failure */
816 			.short_xfer_ok = 1,
817 		},
818 		.bufsize   = ATP_SENSOR_DATA_BUF_MAX,
819 		.callback  = &atp_intr,
820 	},
821 	[ATP_RESET] = {
822 		.type      = UE_CONTROL,
823 		.endpoint  = 0, /* Control pipe */
824 		.direction = UE_DIR_ANY,
825 		.bufsize   = sizeof(struct usb_device_request) + MODE_LENGTH,
826 		.callback  = &atp_reset_callback,
827 		.interval  = 0,  /* no pre-delay */
828 	},
829 };
830 
831 static atp_stroke_t *
832 atp_alloc_stroke(struct atp_softc *sc)
833 {
834 	atp_stroke_t *pstroke;
835 
836 	pstroke = TAILQ_FIRST(&sc->sc_stroke_free);
837 	if (pstroke == NULL)
838 		goto done;
839 
840 	TAILQ_REMOVE(&sc->sc_stroke_free, pstroke, entry);
841 	memset(pstroke, 0, sizeof(*pstroke));
842 	TAILQ_INSERT_TAIL(&sc->sc_stroke_used, pstroke, entry);
843 
844 	sc->sc_n_strokes++;
845 done:
846 	return (pstroke);
847 }
848 
849 static void
850 atp_free_stroke(struct atp_softc *sc, atp_stroke_t *pstroke)
851 {
852 	if (pstroke == NULL)
853 		return;
854 
855 	sc->sc_n_strokes--;
856 
857 	TAILQ_REMOVE(&sc->sc_stroke_used, pstroke, entry);
858 	TAILQ_INSERT_TAIL(&sc->sc_stroke_free, pstroke, entry);
859 }
860 
861 static void
862 atp_init_stroke_pool(struct atp_softc *sc)
863 {
864 	u_int x;
865 
866 	TAILQ_INIT(&sc->sc_stroke_free);
867 	TAILQ_INIT(&sc->sc_stroke_used);
868 
869 	sc->sc_n_strokes = 0;
870 
871 	memset(&sc->sc_strokes_data, 0, sizeof(sc->sc_strokes_data));
872 
873 	for (x = 0; x != ATP_MAX_STROKES; x++) {
874 		TAILQ_INSERT_TAIL(&sc->sc_stroke_free, &sc->sc_strokes_data[x],
875 		    entry);
876 	}
877 }
878 
879 static usb_error_t
880 atp_set_device_mode(struct atp_softc *sc, interface_mode newMode)
881 {
882 	uint8_t mode_value;
883 	usb_error_t err;
884 
885 	if ((newMode != RAW_SENSOR_MODE) && (newMode != HID_MODE))
886 		return (USB_ERR_INVAL);
887 
888 	if ((newMode == RAW_SENSOR_MODE) &&
889 	    (sc->sc_family == TRACKPAD_FAMILY_FOUNTAIN_GEYSER))
890 		mode_value = (uint8_t)0x04;
891 	else
892 		mode_value = newMode;
893 
894 	err = usbd_req_get_report(sc->sc_usb_device, NULL /* mutex */,
895 	    sc->sc_mode_bytes, sizeof(sc->sc_mode_bytes), 0 /* interface idx */,
896 	    0x03 /* type */, 0x00 /* id */);
897 	if (err != USB_ERR_NORMAL_COMPLETION) {
898 		DPRINTF("Failed to read device mode (%d)\n", err);
899 		return (err);
900 	}
901 
902 	if (sc->sc_mode_bytes[0] == mode_value)
903 		return (err);
904 
905 	/*
906 	 * XXX Need to wait at least 250ms for hardware to get
907 	 * ready. The device mode handling appears to be handled
908 	 * asynchronously and we should not issue these commands too
909 	 * quickly.
910 	 */
911 	pause("WHW", hz / 4);
912 
913 	sc->sc_mode_bytes[0] = mode_value;
914 	return (usbd_req_set_report(sc->sc_usb_device, NULL /* mutex */,
915 	    sc->sc_mode_bytes, sizeof(sc->sc_mode_bytes), 0 /* interface idx */,
916 	    0x03 /* type */, 0x00 /* id */));
917 }
918 
919 static void
920 atp_reset_callback(struct usb_xfer *xfer, usb_error_t error)
921 {
922 	usb_device_request_t   req;
923 	struct usb_page_cache *pc;
924 	struct atp_softc      *sc = usbd_xfer_softc(xfer);
925 
926 	uint8_t mode_value;
927 	if (sc->sc_family == TRACKPAD_FAMILY_FOUNTAIN_GEYSER)
928 		mode_value = 0x04;
929 	else
930 		mode_value = RAW_SENSOR_MODE;
931 
932 	switch (USB_GET_STATE(xfer)) {
933 	case USB_ST_SETUP:
934 		sc->sc_mode_bytes[0] = mode_value;
935 		req.bmRequestType = UT_WRITE_CLASS_INTERFACE;
936 		req.bRequest = UR_SET_REPORT;
937 		USETW2(req.wValue,
938 		    (uint8_t)0x03 /* type */, (uint8_t)0x00 /* id */);
939 		USETW(req.wIndex, 0);
940 		USETW(req.wLength, MODE_LENGTH);
941 
942 		pc = usbd_xfer_get_frame(xfer, 0);
943 		usbd_copy_in(pc, 0, &req, sizeof(req));
944 		pc = usbd_xfer_get_frame(xfer, 1);
945 		usbd_copy_in(pc, 0, sc->sc_mode_bytes, MODE_LENGTH);
946 
947 		usbd_xfer_set_frame_len(xfer, 0, sizeof(req));
948 		usbd_xfer_set_frame_len(xfer, 1, MODE_LENGTH);
949 		usbd_xfer_set_frames(xfer, 2);
950 		usbd_transfer_submit(xfer);
951 		break;
952 
953 	case USB_ST_TRANSFERRED:
954 	default:
955 		break;
956 	}
957 }
958 
959 static int
960 atp_enable(struct atp_softc *sc)
961 {
962 	if (sc->sc_state & ATP_ENABLED)
963 		return (0);
964 
965 	/* reset status */
966 	memset(&sc->sc_status, 0, sizeof(sc->sc_status));
967 
968 	atp_init_stroke_pool(sc);
969 
970 	sc->sc_state |= ATP_ENABLED;
971 
972 	DPRINTFN(ATP_LLEVEL_INFO, "enabled atp\n");
973 	return (0);
974 }
975 
976 static void
977 atp_disable(struct atp_softc *sc)
978 {
979 	sc->sc_state &= ~(ATP_ENABLED | ATP_VALID);
980 	DPRINTFN(ATP_LLEVEL_INFO, "disabled atp\n");
981 }
982 
983 static void
984 fg_interpret_sensor_data(struct atp_softc *sc, u_int data_len)
985 {
986 	u_int n_xpspans = 0;
987 	u_int n_ypspans = 0;
988 	uint8_t status_bits;
989 
990 	const struct fg_dev_params *params =
991 	    (const struct fg_dev_params *)sc->sc_params;
992 
993 	fg_extract_sensor_data(sc->sc_sensor_data, params->n_xsensors, X,
994 	    sc->sc_cur_x, params->prot);
995 	fg_extract_sensor_data(sc->sc_sensor_data, params->n_ysensors, Y,
996 	    sc->sc_cur_y, params->prot);
997 
998 	/*
999 	 * If this is the initial update (from an untouched
1000 	 * pad), we should set the base values for the sensor
1001 	 * data; deltas with respect to these base values can
1002 	 * be used as pressure readings subsequently.
1003 	 */
1004 	status_bits = sc->sc_sensor_data[params->data_len - 1];
1005 	if (((params->prot == FG_TRACKPAD_TYPE_GEYSER3) ||
1006 	     (params->prot == FG_TRACKPAD_TYPE_GEYSER4))  &&
1007 	    ((sc->sc_state & ATP_VALID) == 0)) {
1008 		if (status_bits & FG_STATUS_BASE_UPDATE) {
1009 			memcpy(sc->sc_base_x, sc->sc_cur_x,
1010 			    params->n_xsensors * sizeof(*sc->sc_base_x));
1011 			memcpy(sc->sc_base_y, sc->sc_cur_y,
1012 			    params->n_ysensors * sizeof(*sc->sc_base_y));
1013 			sc->sc_state |= ATP_VALID;
1014 			return;
1015 		}
1016 	}
1017 
1018 	/* Get pressure readings and detect p-spans for both axes. */
1019 	fg_get_pressures(sc->sc_pressure_x, sc->sc_cur_x, sc->sc_base_x,
1020 	    params->n_xsensors);
1021 	fg_detect_pspans(sc->sc_pressure_x, params->n_xsensors,
1022 	    FG_MAX_PSPANS_PER_AXIS, sc->sc_pspans_x, &n_xpspans);
1023 	fg_get_pressures(sc->sc_pressure_y, sc->sc_cur_y, sc->sc_base_y,
1024 	    params->n_ysensors);
1025 	fg_detect_pspans(sc->sc_pressure_y, params->n_ysensors,
1026 	    FG_MAX_PSPANS_PER_AXIS, sc->sc_pspans_y, &n_ypspans);
1027 
1028 	/* Update strokes with new pspans to detect movements. */
1029 	if (fg_update_strokes(sc, sc->sc_pspans_x, n_xpspans, sc->sc_pspans_y, n_ypspans))
1030 		sc->sc_status.flags |= MOUSE_POSCHANGED;
1031 
1032 	sc->sc_ibtn = (status_bits & FG_STATUS_BUTTON) ? MOUSE_BUTTON1DOWN : 0;
1033 	sc->sc_status.button = sc->sc_ibtn;
1034 
1035 	/*
1036 	 * The Fountain/Geyser device continues to trigger interrupts
1037 	 * at a fast rate even after touchpad activity has
1038 	 * stopped. Upon detecting that the device has remained idle
1039 	 * beyond a threshold, we reinitialize it to silence the
1040 	 * interrupts.
1041 	 */
1042 	if ((sc->sc_status.flags  == 0) && (sc->sc_n_strokes == 0)) {
1043 		sc->sc_idlecount++;
1044 		if (sc->sc_idlecount >= ATP_IDLENESS_THRESHOLD) {
1045 			/*
1046 			 * Use the last frame before we go idle for
1047 			 * calibration on pads which do not send
1048 			 * calibration frames.
1049 			 */
1050 			const struct fg_dev_params *params =
1051 			    (const struct fg_dev_params *)sc->sc_params;
1052 
1053 			DPRINTFN(ATP_LLEVEL_INFO, "idle\n");
1054 
1055 			if (params->prot < FG_TRACKPAD_TYPE_GEYSER3) {
1056 				memcpy(sc->sc_base_x, sc->sc_cur_x,
1057 				    params->n_xsensors * sizeof(*(sc->sc_base_x)));
1058 				memcpy(sc->sc_base_y, sc->sc_cur_y,
1059 				    params->n_ysensors * sizeof(*(sc->sc_base_y)));
1060 			}
1061 
1062 			sc->sc_idlecount = 0;
1063 			usbd_transfer_start(sc->sc_xfer[ATP_RESET]);
1064 		}
1065 	} else {
1066 		sc->sc_idlecount = 0;
1067 	}
1068 }
1069 
1070 /*
1071  * Interpret the data from the X and Y pressure sensors. This function
1072  * is called separately for the X and Y sensor arrays. The data in the
1073  * USB packet is laid out in the following manner:
1074  *
1075  * sensor_data:
1076  *            --,--,Y1,Y2,--,Y3,Y4,--,Y5,...,Y10, ... X1,X2,--,X3,X4
1077  *  indices:   0  1  2  3  4  5  6  7  8 ...  15  ... 20 21 22 23 24
1078  *
1079  * '--' (in the above) indicates that the value is unimportant.
1080  *
1081  * Information about the above layout was obtained from the
1082  * implementation of the AppleTouch driver in Linux.
1083  *
1084  * parameters:
1085  *   sensor_data
1086  *       raw sensor data from the USB packet.
1087  *   num
1088  *       The number of elements in the array 'arr'.
1089  *   axis
1090  *       Axis of data to fetch
1091  *   arr
1092  *       The array to be initialized with the readings.
1093  *   prot
1094  *       The protocol to use to interpret the data
1095  */
1096 static void
1097 fg_extract_sensor_data(const int8_t *sensor_data, u_int num, atp_axis axis,
1098     int	*arr, enum fountain_geyser_trackpad_type prot)
1099 {
1100 	u_int i;
1101 	u_int di;   /* index into sensor data */
1102 
1103 	switch (prot) {
1104 	case FG_TRACKPAD_TYPE_GEYSER1:
1105 		/*
1106 		 * For Geyser 1, the sensors are laid out in pairs
1107 		 * every 5 bytes.
1108 		 */
1109 		for (i = 0, di = (axis == Y) ? 1 : 2; i < 8; di += 5, i++) {
1110 			arr[i] = sensor_data[di];
1111 			arr[i+8] = sensor_data[di+2];
1112 			if ((axis == X) && (num > 16))
1113 				arr[i+16] = sensor_data[di+40];
1114 		}
1115 
1116 		break;
1117 	case FG_TRACKPAD_TYPE_GEYSER2:
1118 		for (i = 0, di = (axis == Y) ? 1 : 19; i < num; /* empty */ ) {
1119 			arr[i++] = sensor_data[di++];
1120 			arr[i++] = sensor_data[di++];
1121 			di++;
1122 		}
1123 		break;
1124 	case FG_TRACKPAD_TYPE_GEYSER3:
1125 	case FG_TRACKPAD_TYPE_GEYSER4:
1126 		for (i = 0, di = (axis == Y) ? 2 : 20; i < num; /* empty */ ) {
1127 			arr[i++] = sensor_data[di++];
1128 			arr[i++] = sensor_data[di++];
1129 			di++;
1130 		}
1131 		break;
1132 	default:
1133 		break;
1134 	}
1135 }
1136 
1137 static void
1138 fg_get_pressures(int *p, const int *cur, const int *base, int n)
1139 {
1140 	int i;
1141 
1142 	for (i = 0; i < n; i++) {
1143 		p[i] = cur[i] - base[i];
1144 		if (p[i] > 127)
1145 			p[i] -= 256;
1146 		if (p[i] < -127)
1147 			p[i] += 256;
1148 		if (p[i] < 0)
1149 			p[i] = 0;
1150 
1151 		/*
1152 		 * Shave off pressures below the noise-pressure
1153 		 * threshold; this will reduce the contribution from
1154 		 * lower pressure readings.
1155 		 */
1156 		if ((u_int)p[i] <= FG_SENSOR_NOISE_THRESHOLD)
1157 			p[i] = 0; /* filter away noise */
1158 		else
1159 			p[i] -= FG_SENSOR_NOISE_THRESHOLD;
1160 	}
1161 }
1162 
1163 static void
1164 fg_detect_pspans(int *p, u_int num_sensors,
1165     u_int      max_spans, /* max # of pspans permitted */
1166     fg_pspan  *spans,     /* finger spans */
1167     u_int     *nspans_p)  /* num spans detected */
1168 {
1169 	u_int i;
1170 	int   maxp;             /* max pressure seen within a span */
1171 	u_int num_spans = 0;
1172 
1173 	enum fg_pspan_state {
1174 		ATP_PSPAN_INACTIVE,
1175 		ATP_PSPAN_INCREASING,
1176 		ATP_PSPAN_DECREASING,
1177 	} state; /* state of the pressure span */
1178 
1179 	/*
1180 	 * The following is a simple state machine to track
1181 	 * the phase of the pressure span.
1182 	 */
1183 	memset(spans, 0, max_spans * sizeof(fg_pspan));
1184 	maxp = 0;
1185 	state = ATP_PSPAN_INACTIVE;
1186 	for (i = 0; i < num_sensors; i++) {
1187 		if (num_spans >= max_spans)
1188 			break;
1189 
1190 		if (p[i] == 0) {
1191 			if (state == ATP_PSPAN_INACTIVE) {
1192 				/*
1193 				 * There is no pressure information for this
1194 				 * sensor, and we aren't tracking a finger.
1195 				 */
1196 				continue;
1197 			} else {
1198 				state = ATP_PSPAN_INACTIVE;
1199 				maxp = 0;
1200 				num_spans++;
1201 			}
1202 		} else {
1203 			switch (state) {
1204 			case ATP_PSPAN_INACTIVE:
1205 				state = ATP_PSPAN_INCREASING;
1206 				maxp  = p[i];
1207 				break;
1208 
1209 			case ATP_PSPAN_INCREASING:
1210 				if (p[i] > maxp)
1211 					maxp = p[i];
1212 				else if (p[i] <= (maxp >> 1))
1213 					state = ATP_PSPAN_DECREASING;
1214 				break;
1215 
1216 			case ATP_PSPAN_DECREASING:
1217 				if (p[i] > p[i - 1]) {
1218 					/*
1219 					 * This is the beginning of
1220 					 * another span; change state
1221 					 * to give the appearance that
1222 					 * we're starting from an
1223 					 * inactive span, and then
1224 					 * re-process this reading in
1225 					 * the next iteration.
1226 					 */
1227 					num_spans++;
1228 					state = ATP_PSPAN_INACTIVE;
1229 					maxp  = 0;
1230 					i--;
1231 					continue;
1232 				}
1233 				break;
1234 			}
1235 
1236 			/* Update the finger span with this reading. */
1237 			spans[num_spans].width++;
1238 			spans[num_spans].cum += p[i];
1239 			spans[num_spans].cog += p[i] * (i + 1);
1240 		}
1241 	}
1242 	if (state != ATP_PSPAN_INACTIVE)
1243 		num_spans++;    /* close the last finger span */
1244 
1245 	/* post-process the spans */
1246 	for (i = 0; i < num_spans; i++) {
1247 		/* filter away unwanted pressure spans */
1248 		if ((spans[i].cum < FG_PSPAN_MIN_CUM_PRESSURE) ||
1249 		    (spans[i].width > FG_PSPAN_MAX_WIDTH)) {
1250 			if ((i + 1) < num_spans) {
1251 				memcpy(&spans[i], &spans[i + 1],
1252 				    (num_spans - i - 1) * sizeof(fg_pspan));
1253 				i--;
1254 			}
1255 			num_spans--;
1256 			continue;
1257 		}
1258 
1259 		/* compute this span's representative location */
1260 		spans[i].loc = spans[i].cog * FG_SCALE_FACTOR /
1261 			spans[i].cum;
1262 
1263 		spans[i].matched = false; /* not yet matched against a stroke */
1264 	}
1265 
1266 	*nspans_p = num_spans;
1267 }
1268 
1269 static void
1270 wsp_interpret_sensor_data(struct atp_softc *sc, u_int data_len)
1271 {
1272 	const struct wsp_dev_params *params = sc->sc_params;
1273 	wsp_finger_t fingers[WSP_MAX_FINGERS];
1274 	struct wsp_finger_sensor_data *source_fingerp;
1275 	u_int n_source_fingers;
1276 	u_int n_fingers;
1277 	u_int i;
1278 
1279 	/* validate sensor data length */
1280 	if ((data_len < params->finger_data_offset) ||
1281 	    ((data_len - params->finger_data_offset) %
1282 	     WSP_SIZEOF_FINGER_SENSOR_DATA) != 0)
1283 		return;
1284 
1285 	/* compute number of source fingers */
1286 	n_source_fingers = (data_len - params->finger_data_offset) /
1287 	    WSP_SIZEOF_FINGER_SENSOR_DATA;
1288 
1289 	if (n_source_fingers > WSP_MAX_FINGERS)
1290 		n_source_fingers = WSP_MAX_FINGERS;
1291 
1292 	/* iterate over the source data collecting useful fingers */
1293 	n_fingers = 0;
1294 	source_fingerp = (struct wsp_finger_sensor_data *)(sc->sc_sensor_data +
1295 	     params->finger_data_offset);
1296 
1297 	for (i = 0; i < n_source_fingers; i++, source_fingerp++) {
1298 		/* swap endianness, if any */
1299 		if (le16toh(0x1234) != 0x1234) {
1300 			source_fingerp->origin      = le16toh((uint16_t)source_fingerp->origin);
1301 			source_fingerp->abs_x       = le16toh((uint16_t)source_fingerp->abs_x);
1302 			source_fingerp->abs_y       = le16toh((uint16_t)source_fingerp->abs_y);
1303 			source_fingerp->rel_x       = le16toh((uint16_t)source_fingerp->rel_x);
1304 			source_fingerp->rel_y       = le16toh((uint16_t)source_fingerp->rel_y);
1305 			source_fingerp->tool_major  = le16toh((uint16_t)source_fingerp->tool_major);
1306 			source_fingerp->tool_minor  = le16toh((uint16_t)source_fingerp->tool_minor);
1307 			source_fingerp->orientation = le16toh((uint16_t)source_fingerp->orientation);
1308 			source_fingerp->touch_major = le16toh((uint16_t)source_fingerp->touch_major);
1309 			source_fingerp->touch_minor = le16toh((uint16_t)source_fingerp->touch_minor);
1310 			source_fingerp->multi       = le16toh((uint16_t)source_fingerp->multi);
1311 		}
1312 
1313 		/* check for minium threshold */
1314 		if (source_fingerp->touch_major == 0)
1315 			continue;
1316 
1317 		fingers[n_fingers].matched = false;
1318 		fingers[n_fingers].x       = source_fingerp->abs_x;
1319 		fingers[n_fingers].y       = -source_fingerp->abs_y;
1320 
1321 		n_fingers++;
1322 	}
1323 
1324 	if ((sc->sc_n_strokes == 0) && (n_fingers == 0))
1325 		return;
1326 
1327 	if (wsp_update_strokes(sc, fingers, n_fingers))
1328 		sc->sc_status.flags |= MOUSE_POSCHANGED;
1329 
1330 	switch(params->tp_type) {
1331 	case WSP_TRACKPAD_TYPE2:
1332 		sc->sc_ibtn = sc->sc_sensor_data[WSP_TYPE2_BUTTON_DATA_OFFSET];
1333 		break;
1334 	case WSP_TRACKPAD_TYPE3:
1335 		sc->sc_ibtn = sc->sc_sensor_data[WSP_TYPE3_BUTTON_DATA_OFFSET];
1336 		break;
1337 	default:
1338 		break;
1339 	}
1340 	sc->sc_status.button = sc->sc_ibtn ? MOUSE_BUTTON1DOWN : 0;
1341 }
1342 
1343 /*
1344  * Match a pressure-span against a stroke-component. If there is a
1345  * match, update the component's state and return true.
1346  */
1347 static boolean_t
1348 fg_match_stroke_component(fg_stroke_component_t *component,
1349     const fg_pspan *pspan, atp_stroke_type stroke_type)
1350 {
1351 	int   delta_mickeys;
1352 	u_int min_pressure;
1353 
1354 	delta_mickeys = pspan->loc - component->loc;
1355 
1356 	if (abs(delta_mickeys) > (int)FG_MAX_DELTA_MICKEYS)
1357 		return (false); /* the finger span is too far out; no match */
1358 
1359 	component->loc = pspan->loc;
1360 
1361 	/*
1362 	 * A sudden and significant increase in a pspan's cumulative
1363 	 * pressure indicates the incidence of a new finger
1364 	 * contact. This usually revises the pspan's
1365 	 * centre-of-gravity, and hence the location of any/all
1366 	 * matching stroke component(s). But such a change should
1367 	 * *not* be interpreted as a movement.
1368 	 */
1369 	if (pspan->cum > ((3 * component->cum_pressure) >> 1))
1370 		delta_mickeys = 0;
1371 
1372 	component->cum_pressure = pspan->cum;
1373 	if (pspan->cum > component->max_cum_pressure)
1374 		component->max_cum_pressure = pspan->cum;
1375 
1376 	/*
1377 	 * Disregard the component's movement if its cumulative
1378 	 * pressure drops below a fraction of the maximum; this
1379 	 * fraction is determined based on the stroke's type.
1380 	 */
1381 	if (stroke_type == ATP_STROKE_TOUCH)
1382 		min_pressure = (3 * component->max_cum_pressure) >> 2;
1383 	else
1384 		min_pressure = component->max_cum_pressure >> 2;
1385 	if (component->cum_pressure < min_pressure)
1386 		delta_mickeys = 0;
1387 
1388 	component->delta_mickeys = delta_mickeys;
1389 	return (true);
1390 }
1391 
1392 static void
1393 fg_match_strokes_against_pspans(struct atp_softc *sc, atp_axis axis,
1394     fg_pspan *pspans, u_int n_pspans, u_int repeat_count)
1395 {
1396 	atp_stroke_t *strokep;
1397 	u_int repeat_index = 0;
1398 	u_int i;
1399 
1400 	/* Determine the index of the multi-span. */
1401 	if (repeat_count) {
1402 		for (i = 0; i < n_pspans; i++) {
1403 			if (pspans[i].cum > pspans[repeat_index].cum)
1404 				repeat_index = i;
1405 		}
1406 	}
1407 
1408 	TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry) {
1409 		if (strokep->components[axis].matched)
1410 			continue; /* skip matched components */
1411 
1412 		for (i = 0; i < n_pspans; i++) {
1413 			if (pspans[i].matched)
1414 				continue; /* skip matched pspans */
1415 
1416 			if (fg_match_stroke_component(
1417 			    &strokep->components[axis], &pspans[i],
1418 			    strokep->type)) {
1419 				/* There is a match. */
1420 				strokep->components[axis].matched = true;
1421 
1422 				/* Take care to repeat at the multi-span. */
1423 				if ((repeat_count > 0) && (i == repeat_index))
1424 					repeat_count--;
1425 				else
1426 					pspans[i].matched = true;
1427 
1428 				break; /* skip to the next strokep */
1429 			}
1430 		} /* loop over pspans */
1431 	} /* loop over strokes */
1432 }
1433 
1434 static boolean_t
1435 wsp_match_strokes_against_fingers(struct atp_softc *sc,
1436     wsp_finger_t *fingers, u_int n_fingers)
1437 {
1438 	boolean_t movement = false;
1439 	atp_stroke_t *strokep;
1440 	u_int i;
1441 
1442 	/* reset the matched status for all strokes */
1443 	TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry)
1444 		strokep->matched = false;
1445 
1446 	for (i = 0; i != n_fingers; i++) {
1447 		u_int least_distance_sq = WSP_MAX_ALLOWED_MATCH_DISTANCE_SQ;
1448 		atp_stroke_t *strokep_best = NULL;
1449 
1450 		TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry) {
1451 			int instantaneous_dx;
1452 			int instantaneous_dy;
1453 			u_int d_squared;
1454 
1455 			if (strokep->matched)
1456 				continue;
1457 
1458 			instantaneous_dx = fingers[i].x - strokep->x;
1459 			instantaneous_dy = fingers[i].y - strokep->y;
1460 
1461 			/* skip strokes which are far away */
1462 			d_squared =
1463 			    (instantaneous_dx * instantaneous_dx) +
1464 			    (instantaneous_dy * instantaneous_dy);
1465 
1466 			if (d_squared < least_distance_sq) {
1467 				least_distance_sq = d_squared;
1468 				strokep_best = strokep;
1469 			}
1470 		}
1471 
1472 		strokep = strokep_best;
1473 
1474 		if (strokep != NULL) {
1475 			fingers[i].matched = true;
1476 
1477 			strokep->matched          = true;
1478 			strokep->instantaneous_dx = fingers[i].x - strokep->x;
1479 			strokep->instantaneous_dy = fingers[i].y - strokep->y;
1480 			strokep->x                = fingers[i].x;
1481 			strokep->y                = fingers[i].y;
1482 
1483 			atp_advance_stroke_state(sc, strokep, &movement);
1484 		}
1485 	}
1486 	return (movement);
1487 }
1488 
1489 /*
1490  * Update strokes by matching against current pressure-spans.
1491  * Return true if any movement is detected.
1492  */
1493 static boolean_t
1494 fg_update_strokes(struct atp_softc *sc, fg_pspan *pspans_x,
1495     u_int n_xpspans, fg_pspan *pspans_y, u_int n_ypspans)
1496 {
1497 	atp_stroke_t *strokep;
1498 	atp_stroke_t *strokep_next;
1499 	boolean_t movement = false;
1500 	u_int repeat_count = 0;
1501 	u_int i;
1502 	u_int j;
1503 
1504 	/* Reset X and Y components of all strokes as unmatched. */
1505 	TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry) {
1506 		strokep->components[X].matched = false;
1507 		strokep->components[Y].matched = false;
1508 	}
1509 
1510 	/*
1511 	 * Usually, the X and Y pspans come in pairs (the common case
1512 	 * being a single pair). It is possible, however, that
1513 	 * multiple contacts resolve to a single pspan along an
1514 	 * axis, as illustrated in the following:
1515 	 *
1516 	 *   F = finger-contact
1517 	 *
1518 	 *                pspan  pspan
1519 	 *        +-----------------------+
1520 	 *        |         .      .      |
1521 	 *        |         .      .      |
1522 	 *        |         .      .      |
1523 	 *        |         .      .      |
1524 	 *  pspan |.........F......F      |
1525 	 *        |                       |
1526 	 *        |                       |
1527 	 *        |                       |
1528 	 *        +-----------------------+
1529 	 *
1530 	 *
1531 	 * The above case can be detected by a difference in the
1532 	 * number of X and Y pspans. When this happens, X and Y pspans
1533 	 * aren't easy to pair or match against strokes.
1534 	 *
1535 	 * When X and Y pspans differ in number, the axis with the
1536 	 * smaller number of pspans is regarded as having a repeating
1537 	 * pspan (or a multi-pspan)--in the above illustration, the
1538 	 * Y-axis has a repeating pspan. Our approach is to try to
1539 	 * match the multi-pspan repeatedly against strokes. The
1540 	 * difference between the number of X and Y pspans gives us a
1541 	 * crude repeat_count for matching multi-pspans--i.e. the
1542 	 * multi-pspan along the Y axis (above) has a repeat_count of 1.
1543 	 */
1544 	repeat_count = abs(n_xpspans - n_ypspans);
1545 
1546 	fg_match_strokes_against_pspans(sc, X, pspans_x, n_xpspans,
1547 	    (((repeat_count != 0) && ((n_xpspans < n_ypspans))) ?
1548 		repeat_count : 0));
1549 	fg_match_strokes_against_pspans(sc, Y, pspans_y, n_ypspans,
1550 	    (((repeat_count != 0) && (n_ypspans < n_xpspans)) ?
1551 		repeat_count : 0));
1552 
1553 	/* Update the state of strokes based on the above pspan matches. */
1554 	TAILQ_FOREACH_SAFE(strokep, &sc->sc_stroke_used, entry, strokep_next) {
1555 		if (strokep->components[X].matched &&
1556 		    strokep->components[Y].matched) {
1557 			strokep->matched = true;
1558 			strokep->instantaneous_dx =
1559 			    strokep->components[X].delta_mickeys;
1560 			strokep->instantaneous_dy =
1561 			    strokep->components[Y].delta_mickeys;
1562 			atp_advance_stroke_state(sc, strokep, &movement);
1563 		} else {
1564 			/*
1565 			 * At least one component of this stroke
1566 			 * didn't match against current pspans;
1567 			 * terminate it.
1568 			 */
1569 			atp_terminate_stroke(sc, strokep);
1570 		}
1571 	}
1572 
1573 	/* Add new strokes for pairs of unmatched pspans */
1574 	for (i = 0; i < n_xpspans; i++) {
1575 		if (pspans_x[i].matched == false) break;
1576 	}
1577 	for (j = 0; j < n_ypspans; j++) {
1578 		if (pspans_y[j].matched == false) break;
1579 	}
1580 	if ((i < n_xpspans) && (j < n_ypspans)) {
1581 #ifdef USB_DEBUG
1582 		if (atp_debug >= ATP_LLEVEL_INFO) {
1583 			printf("unmatched pspans:");
1584 			for (; i < n_xpspans; i++) {
1585 				if (pspans_x[i].matched)
1586 					continue;
1587 				printf(" X:[loc:%u,cum:%u]",
1588 				    pspans_x[i].loc, pspans_x[i].cum);
1589 			}
1590 			for (; j < n_ypspans; j++) {
1591 				if (pspans_y[j].matched)
1592 					continue;
1593 				printf(" Y:[loc:%u,cum:%u]",
1594 				    pspans_y[j].loc, pspans_y[j].cum);
1595 			}
1596 			printf("\n");
1597 		}
1598 #endif /* USB_DEBUG */
1599 		if ((n_xpspans == 1) && (n_ypspans == 1))
1600 			/* The common case of a single pair of new pspans. */
1601 			fg_add_stroke(sc, &pspans_x[0], &pspans_y[0]);
1602 		else
1603 			fg_add_new_strokes(sc, pspans_x, n_xpspans,
1604 			    pspans_y, n_ypspans);
1605 	}
1606 
1607 #ifdef USB_DEBUG
1608 	if (atp_debug >= ATP_LLEVEL_INFO) {
1609 		TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry) {
1610 			printf(" %s%clc:%u,dm:%d,cum:%d,max:%d,%c"
1611 			    ",%clc:%u,dm:%d,cum:%d,max:%d,%c",
1612 			    (strokep->flags & ATSF_ZOMBIE) ? "zomb:" : "",
1613 			    (strokep->type == ATP_STROKE_TOUCH) ? '[' : '<',
1614 			    strokep->components[X].loc,
1615 			    strokep->components[X].delta_mickeys,
1616 			    strokep->components[X].cum_pressure,
1617 			    strokep->components[X].max_cum_pressure,
1618 			    (strokep->type == ATP_STROKE_TOUCH) ? ']' : '>',
1619 			    (strokep->type == ATP_STROKE_TOUCH) ? '[' : '<',
1620 			    strokep->components[Y].loc,
1621 			    strokep->components[Y].delta_mickeys,
1622 			    strokep->components[Y].cum_pressure,
1623 			    strokep->components[Y].max_cum_pressure,
1624 			    (strokep->type == ATP_STROKE_TOUCH) ? ']' : '>');
1625 		}
1626 		if (TAILQ_FIRST(&sc->sc_stroke_used) != NULL)
1627 			printf("\n");
1628 	}
1629 #endif /* USB_DEBUG */
1630 	return (movement);
1631 }
1632 
1633 /*
1634  * Update strokes by matching against current pressure-spans.
1635  * Return true if any movement is detected.
1636  */
1637 static boolean_t
1638 wsp_update_strokes(struct atp_softc *sc, wsp_finger_t *fingers, u_int n_fingers)
1639 {
1640 	boolean_t movement = false;
1641 	atp_stroke_t *strokep_next;
1642 	atp_stroke_t *strokep;
1643 	u_int i;
1644 
1645 	if (sc->sc_n_strokes > 0) {
1646 		movement = wsp_match_strokes_against_fingers(
1647 		    sc, fingers, n_fingers);
1648 
1649 		/* handle zombie strokes */
1650 		TAILQ_FOREACH_SAFE(strokep, &sc->sc_stroke_used, entry, strokep_next) {
1651 			if (strokep->matched)
1652 				continue;
1653 			atp_terminate_stroke(sc, strokep);
1654 		}
1655 	}
1656 
1657 	/* initialize unmatched fingers as strokes */
1658 	for (i = 0; i != n_fingers; i++) {
1659 		if (fingers[i].matched)
1660 			continue;
1661 
1662 		wsp_add_stroke(sc, fingers + i);
1663 	}
1664 	return (movement);
1665 }
1666 
1667 /* Initialize a stroke using a pressure-span. */
1668 static void
1669 fg_add_stroke(struct atp_softc *sc, const fg_pspan *pspan_x,
1670     const fg_pspan *pspan_y)
1671 {
1672 	atp_stroke_t *strokep;
1673 
1674 	strokep = atp_alloc_stroke(sc);
1675 	if (strokep == NULL)
1676 		return;
1677 
1678 	/*
1679 	 * Strokes begin as potential touches. If a stroke survives
1680 	 * longer than a threshold, or if it records significant
1681 	 * cumulative movement, then it is considered a 'slide'.
1682 	 */
1683 	strokep->type    = ATP_STROKE_TOUCH;
1684 	strokep->matched = false;
1685 	microtime(&strokep->ctime);
1686 	strokep->age     = 1;		/* number of interrupts */
1687 	strokep->x       = pspan_x->loc;
1688 	strokep->y       = pspan_y->loc;
1689 
1690 	strokep->components[X].loc              = pspan_x->loc;
1691 	strokep->components[X].cum_pressure     = pspan_x->cum;
1692 	strokep->components[X].max_cum_pressure = pspan_x->cum;
1693 	strokep->components[X].matched          = true;
1694 
1695 	strokep->components[Y].loc              = pspan_y->loc;
1696 	strokep->components[Y].cum_pressure     = pspan_y->cum;
1697 	strokep->components[Y].max_cum_pressure = pspan_y->cum;
1698 	strokep->components[Y].matched          = true;
1699 
1700 	if (sc->sc_n_strokes > 1) {
1701 		/* Reset double-tap-n-drag if we have more than one strokes. */
1702 		sc->sc_state &= ~ATP_DOUBLE_TAP_DRAG;
1703 	}
1704 
1705 	DPRINTFN(ATP_LLEVEL_INFO, "[%u,%u], time: %u,%ld\n",
1706 	    strokep->components[X].loc,
1707 	    strokep->components[Y].loc,
1708 	    (u_int)strokep->ctime.tv_sec,
1709 	    (unsigned long int)strokep->ctime.tv_usec);
1710 }
1711 
1712 static void
1713 fg_add_new_strokes(struct atp_softc *sc, fg_pspan *pspans_x,
1714     u_int n_xpspans, fg_pspan *pspans_y, u_int n_ypspans)
1715 {
1716 	fg_pspan spans[2][FG_MAX_PSPANS_PER_AXIS];
1717 	u_int nspans[2];
1718 	u_int i;
1719 	u_int j;
1720 
1721 	/* Copy unmatched pspans into the local arrays. */
1722 	for (i = 0, nspans[X] = 0; i < n_xpspans; i++) {
1723 		if (pspans_x[i].matched == false) {
1724 			spans[X][nspans[X]] = pspans_x[i];
1725 			nspans[X]++;
1726 		}
1727 	}
1728 	for (j = 0, nspans[Y] = 0; j < n_ypspans; j++) {
1729 		if (pspans_y[j].matched == false) {
1730 			spans[Y][nspans[Y]] = pspans_y[j];
1731 			nspans[Y]++;
1732 		}
1733 	}
1734 
1735 	if (nspans[X] == nspans[Y]) {
1736 		/* Create new strokes from pairs of unmatched pspans */
1737 		for (i = 0, j = 0; (i < nspans[X]) && (j < nspans[Y]); i++, j++)
1738 			fg_add_stroke(sc, &spans[X][i], &spans[Y][j]);
1739 	} else {
1740 		u_int    cum = 0;
1741 		atp_axis repeat_axis;      /* axis with multi-pspans */
1742 		u_int    repeat_count;     /* repeat count for the multi-pspan*/
1743 		u_int    repeat_index = 0; /* index of the multi-span */
1744 
1745 		repeat_axis  = (nspans[X] > nspans[Y]) ? Y : X;
1746 		repeat_count = abs(nspans[X] - nspans[Y]);
1747 		for (i = 0; i < nspans[repeat_axis]; i++) {
1748 			if (spans[repeat_axis][i].cum > cum) {
1749 				repeat_index = i;
1750 				cum = spans[repeat_axis][i].cum;
1751 			}
1752 		}
1753 
1754 		/* Create new strokes from pairs of unmatched pspans */
1755 		i = 0, j = 0;
1756 		for (; (i < nspans[X]) && (j < nspans[Y]); i++, j++) {
1757 			fg_add_stroke(sc, &spans[X][i], &spans[Y][j]);
1758 
1759 			/* Take care to repeat at the multi-pspan. */
1760 			if (repeat_count > 0) {
1761 				if ((repeat_axis == X) &&
1762 				    (repeat_index == i)) {
1763 					i--; /* counter loop increment */
1764 					repeat_count--;
1765 				} else if ((repeat_axis == Y) &&
1766 				    (repeat_index == j)) {
1767 					j--; /* counter loop increment */
1768 					repeat_count--;
1769 				}
1770 			}
1771 		}
1772 	}
1773 }
1774 
1775 /* Initialize a stroke from an unmatched finger. */
1776 static void
1777 wsp_add_stroke(struct atp_softc *sc, const wsp_finger_t *fingerp)
1778 {
1779 	atp_stroke_t *strokep;
1780 
1781 	strokep = atp_alloc_stroke(sc);
1782 	if (strokep == NULL)
1783 		return;
1784 
1785 	/*
1786 	 * Strokes begin as potential touches. If a stroke survives
1787 	 * longer than a threshold, or if it records significant
1788 	 * cumulative movement, then it is considered a 'slide'.
1789 	 */
1790 	strokep->type    = ATP_STROKE_TOUCH;
1791 	strokep->matched = true;
1792 	microtime(&strokep->ctime);
1793 	strokep->age = 1;	/* number of interrupts */
1794 	strokep->x = fingerp->x;
1795 	strokep->y = fingerp->y;
1796 
1797 	/* Reset double-tap-n-drag if we have more than one strokes. */
1798 	if (sc->sc_n_strokes > 1)
1799 		sc->sc_state &= ~ATP_DOUBLE_TAP_DRAG;
1800 
1801 	DPRINTFN(ATP_LLEVEL_INFO, "[%d,%d]\n", strokep->x, strokep->y);
1802 }
1803 
1804 static void
1805 atp_advance_stroke_state(struct atp_softc *sc, atp_stroke_t *strokep,
1806     boolean_t *movementp)
1807 {
1808 	/* Revitalize stroke if it had previously been marked as a zombie. */
1809 	if (strokep->flags & ATSF_ZOMBIE)
1810 		strokep->flags &= ~ATSF_ZOMBIE;
1811 
1812 	strokep->age++;
1813 	if (strokep->age <= atp_stroke_maturity_threshold) {
1814 		/* Avoid noise from immature strokes. */
1815 		strokep->instantaneous_dx = 0;
1816 		strokep->instantaneous_dy = 0;
1817 	}
1818 
1819 	if (atp_compute_stroke_movement(strokep))
1820 		*movementp = true;
1821 
1822 	if (strokep->type != ATP_STROKE_TOUCH)
1823 		return;
1824 
1825 	/* Convert touch strokes to slides upon detecting movement or age. */
1826 	if ((abs(strokep->cum_movement_x) > atp_slide_min_movement) ||
1827 	    (abs(strokep->cum_movement_y) > atp_slide_min_movement))
1828 		atp_convert_to_slide(sc, strokep);
1829 	else {
1830 		/* Compute the stroke's age. */
1831 		struct timeval tdiff;
1832 		getmicrotime(&tdiff);
1833 		if (timevalcmp(&tdiff, &strokep->ctime, >)) {
1834 			timevalsub(&tdiff, &strokep->ctime);
1835 
1836 			if ((tdiff.tv_sec > (atp_touch_timeout / 1000000)) ||
1837 			    ((tdiff.tv_sec == (atp_touch_timeout / 1000000)) &&
1838 			     (tdiff.tv_usec >= (atp_touch_timeout % 1000000))))
1839 				atp_convert_to_slide(sc, strokep);
1840 		}
1841 	}
1842 }
1843 
1844 static boolean_t
1845 atp_stroke_has_small_movement(const atp_stroke_t *strokep)
1846 {
1847 	return (((u_int)abs(strokep->instantaneous_dx) <=
1848 		 atp_small_movement_threshold) &&
1849 		((u_int)abs(strokep->instantaneous_dy) <=
1850 		 atp_small_movement_threshold));
1851 }
1852 
1853 /*
1854  * Accumulate instantaneous changes into the stroke's 'pending' bucket; if
1855  * the aggregate exceeds the small_movement_threshold, then retain
1856  * instantaneous changes for later.
1857  */
1858 static void
1859 atp_update_pending_mickeys(atp_stroke_t *strokep)
1860 {
1861 	/* accumulate instantaneous movement */
1862 	strokep->pending_dx += strokep->instantaneous_dx;
1863 	strokep->pending_dy += strokep->instantaneous_dy;
1864 
1865 #define UPDATE_INSTANTANEOUS_AND_PENDING(I, P)                          \
1866 	if (abs((P)) <= atp_small_movement_threshold)                   \
1867 		(I) = 0; /* clobber small movement */                   \
1868 	else {                                                          \
1869 		if ((I) > 0) {                                          \
1870 			/*                                              \
1871 			 * Round up instantaneous movement to the nearest \
1872 			 * ceiling. This helps preserve small mickey    \
1873 			 * movements from being lost in following scaling \
1874 			 * operation.                                   \
1875 			 */                                             \
1876 			(I) = (((I) + (atp_mickeys_scale_factor - 1)) / \
1877 			       atp_mickeys_scale_factor) *              \
1878 			      atp_mickeys_scale_factor;                 \
1879 									\
1880 			/*                                              \
1881 			 * Deduct the rounded mickeys from pending mickeys. \
1882 			 * Note: we multiply by 2 to offset the previous \
1883 			 * accumulation of instantaneous movement into  \
1884 			 * pending.                                     \
1885 			 */                                             \
1886 			(P) -= ((I) << 1);                              \
1887 									\
1888 			/* truncate pending to 0 if it becomes negative. */ \
1889 			(P) = imax((P), 0);                             \
1890 		} else {                                                \
1891 			/*                                              \
1892 			 * Round down instantaneous movement to the nearest \
1893 			 * ceiling. This helps preserve small mickey    \
1894 			 * movements from being lost in following scaling \
1895 			 * operation.                                   \
1896 			 */                                             \
1897 			(I) = (((I) - (atp_mickeys_scale_factor - 1)) / \
1898 			       atp_mickeys_scale_factor) *              \
1899 			      atp_mickeys_scale_factor;                 \
1900 									\
1901 			/*                                              \
1902 			 * Deduct the rounded mickeys from pending mickeys. \
1903 			 * Note: we multiply by 2 to offset the previous \
1904 			 * accumulation of instantaneous movement into  \
1905 			 * pending.                                     \
1906 			 */                                             \
1907 			(P) -= ((I) << 1);                              \
1908 									\
1909 			/* truncate pending to 0 if it becomes positive. */ \
1910 			(P) = imin((P), 0);                             \
1911 		}                                                       \
1912 	}
1913 
1914 	UPDATE_INSTANTANEOUS_AND_PENDING(strokep->instantaneous_dx,
1915 	    strokep->pending_dx);
1916 	UPDATE_INSTANTANEOUS_AND_PENDING(strokep->instantaneous_dy,
1917 	    strokep->pending_dy);
1918 }
1919 
1920 /*
1921  * Compute a smoothened value for the stroke's movement from
1922  * instantaneous changes in the X and Y components.
1923  */
1924 static boolean_t
1925 atp_compute_stroke_movement(atp_stroke_t *strokep)
1926 {
1927 	/*
1928 	 * Short movements are added first to the 'pending' bucket,
1929 	 * and then acted upon only when their aggregate exceeds a
1930 	 * threshold. This has the effect of filtering away movement
1931 	 * noise.
1932 	 */
1933 	if (atp_stroke_has_small_movement(strokep))
1934 		atp_update_pending_mickeys(strokep);
1935 	else {                /* large movement */
1936 		/* clear away any pending mickeys if there are large movements*/
1937 		strokep->pending_dx = 0;
1938 		strokep->pending_dy = 0;
1939 	}
1940 
1941 	/* scale movement */
1942 	strokep->movement_dx = (strokep->instantaneous_dx) /
1943 	    (int)atp_mickeys_scale_factor;
1944 	strokep->movement_dy = (strokep->instantaneous_dy) /
1945 	    (int)atp_mickeys_scale_factor;
1946 
1947 	if ((abs(strokep->instantaneous_dx) >= ATP_FAST_MOVEMENT_TRESHOLD) ||
1948 	    (abs(strokep->instantaneous_dy) >= ATP_FAST_MOVEMENT_TRESHOLD)) {
1949 		strokep->movement_dx <<= 1;
1950 		strokep->movement_dy <<= 1;
1951 	}
1952 
1953 	strokep->cum_movement_x += strokep->movement_dx;
1954 	strokep->cum_movement_y += strokep->movement_dy;
1955 
1956 	return ((strokep->movement_dx != 0) || (strokep->movement_dy != 0));
1957 }
1958 
1959 /*
1960  * Terminate a stroke. Aside from immature strokes, a slide or touch is
1961  * retained as a zombies so as to reap all their termination siblings
1962  * together; this helps establish the number of fingers involved at the
1963  * end of a multi-touch gesture.
1964  */
1965 static void
1966 atp_terminate_stroke(struct atp_softc *sc, atp_stroke_t *strokep)
1967 {
1968 	if (strokep->flags & ATSF_ZOMBIE)
1969 		return;
1970 
1971 	/* Drop immature strokes rightaway. */
1972 	if (strokep->age <= atp_stroke_maturity_threshold) {
1973 		atp_free_stroke(sc, strokep);
1974 		return;
1975 	}
1976 
1977 	strokep->flags |= ATSF_ZOMBIE;
1978 	sc->sc_state |= ATP_ZOMBIES_EXIST;
1979 
1980 	callout_reset(&sc->sc_callout, ATP_ZOMBIE_STROKE_REAP_INTERVAL,
1981 	    atp_reap_sibling_zombies, sc);
1982 
1983 	/*
1984 	 * Reset the double-click-n-drag at the termination of any
1985 	 * slide stroke.
1986 	 */
1987 	if (strokep->type == ATP_STROKE_SLIDE)
1988 		sc->sc_state &= ~ATP_DOUBLE_TAP_DRAG;
1989 }
1990 
1991 static boolean_t
1992 atp_is_horizontal_scroll(const atp_stroke_t *strokep)
1993 {
1994 	if (abs(strokep->cum_movement_x) < atp_slide_min_movement)
1995 		return (false);
1996 	if (strokep->cum_movement_y == 0)
1997 		return (true);
1998 	return (abs(strokep->cum_movement_x / strokep->cum_movement_y) >= 4);
1999 }
2000 
2001 static boolean_t
2002 atp_is_vertical_scroll(const atp_stroke_t *strokep)
2003 {
2004 	if (abs(strokep->cum_movement_y) < atp_slide_min_movement)
2005 		return (false);
2006 	if (strokep->cum_movement_x == 0)
2007 		return (true);
2008 	return (abs(strokep->cum_movement_y / strokep->cum_movement_x) >= 4);
2009 }
2010 
2011 static void
2012 atp_reap_sibling_zombies(void *arg)
2013 {
2014 	struct atp_softc *sc = (struct atp_softc *)arg;
2015 	u_int8_t n_touches_reaped = 0;
2016 	u_int8_t n_slides_reaped = 0;
2017 	u_int8_t n_horizontal_scrolls = 0;
2018 	u_int8_t n_vertical_scrolls = 0;
2019 	int horizontal_scroll = 0;
2020 	int vertical_scroll = 0;
2021 	atp_stroke_t *strokep;
2022 	atp_stroke_t *strokep_next;
2023 
2024 	DPRINTFN(ATP_LLEVEL_INFO, "\n");
2025 
2026 	TAILQ_FOREACH_SAFE(strokep, &sc->sc_stroke_used, entry, strokep_next) {
2027 		if ((strokep->flags & ATSF_ZOMBIE) == 0)
2028 			continue;
2029 
2030 		if (strokep->type == ATP_STROKE_TOUCH) {
2031 			n_touches_reaped++;
2032 		} else {
2033 			n_slides_reaped++;
2034 
2035 			if (atp_is_horizontal_scroll(strokep)) {
2036 				n_horizontal_scrolls++;
2037 				horizontal_scroll += strokep->cum_movement_x;
2038 			} else if (atp_is_vertical_scroll(strokep)) {
2039 				n_vertical_scrolls++;
2040 				vertical_scroll +=  strokep->cum_movement_y;
2041 			}
2042 		}
2043 
2044 		atp_free_stroke(sc, strokep);
2045 	}
2046 
2047 	DPRINTFN(ATP_LLEVEL_INFO, "reaped %u zombies\n",
2048 	    n_touches_reaped + n_slides_reaped);
2049 	sc->sc_state &= ~ATP_ZOMBIES_EXIST;
2050 
2051 	/* No further processing necessary if physical button is depressed. */
2052 	if (sc->sc_ibtn != 0)
2053 		return;
2054 
2055 	if ((n_touches_reaped == 0) && (n_slides_reaped == 0))
2056 		return;
2057 
2058 	/* Add a pair of virtual button events (button-down and button-up) if
2059 	 * the physical button isn't pressed. */
2060 	if (n_touches_reaped != 0) {
2061 		if (n_touches_reaped < atp_tap_minimum)
2062 			return;
2063 
2064 		switch (n_touches_reaped) {
2065 		case 1:
2066 			atp_add_to_queue(sc, 0, 0, 0, MOUSE_BUTTON1DOWN);
2067 			microtime(&sc->sc_touch_reap_time); /* remember this time */
2068 			break;
2069 		case 2:
2070 			atp_add_to_queue(sc, 0, 0, 0, MOUSE_BUTTON3DOWN);
2071 			break;
2072 		case 3:
2073 			atp_add_to_queue(sc, 0, 0, 0, MOUSE_BUTTON2DOWN);
2074 			break;
2075 		default:
2076 			/* we handle taps of only up to 3 fingers */
2077 			return;
2078 		}
2079 		atp_add_to_queue(sc, 0, 0, 0, 0); /* button release */
2080 
2081 	} else if ((n_slides_reaped == 2) && (n_horizontal_scrolls == 2)) {
2082 		if (horizontal_scroll < 0)
2083 			atp_add_to_queue(sc, 0, 0, 0, MOUSE_BUTTON4DOWN);
2084 		else
2085 			atp_add_to_queue(sc, 0, 0, 0, MOUSE_BUTTON5DOWN);
2086 		atp_add_to_queue(sc, 0, 0, 0, 0); /* button release */
2087 	}
2088 }
2089 
2090 /* Switch a given touch stroke to being a slide. */
2091 static void
2092 atp_convert_to_slide(struct atp_softc *sc, atp_stroke_t *strokep)
2093 {
2094 	strokep->type = ATP_STROKE_SLIDE;
2095 
2096 	/* Are we at the beginning of a double-click-n-drag? */
2097 	if ((sc->sc_n_strokes == 1) &&
2098 	    ((sc->sc_state & ATP_ZOMBIES_EXIST) == 0) &&
2099 	    timevalcmp(&strokep->ctime, &sc->sc_touch_reap_time, >)) {
2100 		struct timeval delta;
2101 		struct timeval window = {
2102 			atp_double_tap_threshold / 1000000,
2103 			atp_double_tap_threshold % 1000000
2104 		};
2105 
2106 		delta = strokep->ctime;
2107 		timevalsub(&delta, &sc->sc_touch_reap_time);
2108 		if (timevalcmp(&delta, &window, <=))
2109 			sc->sc_state |= ATP_DOUBLE_TAP_DRAG;
2110 	}
2111 }
2112 
2113 static void
2114 atp_reset_buf(struct atp_softc *sc)
2115 {
2116 	/* reset read queue */
2117 	usb_fifo_reset(sc->sc_fifo.fp[USB_FIFO_RX]);
2118 }
2119 
2120 static void
2121 atp_add_to_queue(struct atp_softc *sc, int dx, int dy, int dz,
2122     uint32_t buttons_in)
2123 {
2124 	uint32_t buttons_out;
2125 	uint8_t  buf[8];
2126 
2127 	dx = imin(dx,  254); dx = imax(dx, -256);
2128 	dy = imin(dy,  254); dy = imax(dy, -256);
2129 	dz = imin(dz,  126); dz = imax(dz, -128);
2130 
2131 	buttons_out = MOUSE_MSC_BUTTONS;
2132 	if (buttons_in & MOUSE_BUTTON1DOWN)
2133 		buttons_out &= ~MOUSE_MSC_BUTTON1UP;
2134 	else if (buttons_in & MOUSE_BUTTON2DOWN)
2135 		buttons_out &= ~MOUSE_MSC_BUTTON2UP;
2136 	else if (buttons_in & MOUSE_BUTTON3DOWN)
2137 		buttons_out &= ~MOUSE_MSC_BUTTON3UP;
2138 
2139 	DPRINTFN(ATP_LLEVEL_INFO, "dx=%d, dy=%d, buttons=%x\n",
2140 	    dx, dy, buttons_out);
2141 
2142 	/* Encode the mouse data in standard format; refer to mouse(4) */
2143 	buf[0] = sc->sc_mode.syncmask[1];
2144 	buf[0] |= buttons_out;
2145 	buf[1] = dx >> 1;
2146 	buf[2] = dy >> 1;
2147 	buf[3] = dx - (dx >> 1);
2148 	buf[4] = dy - (dy >> 1);
2149 	/* Encode extra bytes for level 1 */
2150 	if (sc->sc_mode.level == 1) {
2151 		buf[5] = dz >> 1;
2152 		buf[6] = dz - (dz >> 1);
2153 		buf[7] = (((~buttons_in) >> 3) & MOUSE_SYS_EXTBUTTONS);
2154 	}
2155 
2156 	usb_fifo_put_data_linear(sc->sc_fifo.fp[USB_FIFO_RX], buf,
2157 	    sc->sc_mode.packetsize, 1);
2158 }
2159 
2160 static int
2161 atp_probe(device_t self)
2162 {
2163 	struct usb_attach_arg *uaa = device_get_ivars(self);
2164 
2165 	if (uaa->usb_mode != USB_MODE_HOST)
2166 		return (ENXIO);
2167 
2168 	if (uaa->info.bInterfaceClass != UICLASS_HID)
2169 		return (ENXIO);
2170 	/*
2171 	 * Note: for some reason, the check
2172 	 * (uaa->info.bInterfaceProtocol == UIPROTO_MOUSE) doesn't hold true
2173 	 * for wellspring trackpads, so we've removed it from the common path.
2174 	 */
2175 
2176 	if ((usbd_lookup_id_by_uaa(fg_devs, sizeof(fg_devs), uaa)) == 0)
2177 		return ((uaa->info.bInterfaceProtocol == UIPROTO_MOUSE) ?
2178 			BUS_PROBE_DEFAULT : ENXIO);
2179 
2180 	if ((usbd_lookup_id_by_uaa(wsp_devs, sizeof(wsp_devs), uaa)) == 0)
2181 		if (uaa->info.bIfaceIndex == WELLSPRING_INTERFACE_INDEX)
2182 			return (BUS_PROBE_DEFAULT);
2183 
2184 	return (ENXIO);
2185 }
2186 
2187 static int
2188 atp_attach(device_t dev)
2189 {
2190 	struct atp_softc      *sc  = device_get_softc(dev);
2191 	struct usb_attach_arg *uaa = device_get_ivars(dev);
2192 	usb_error_t            err;
2193 	void *descriptor_ptr = NULL;
2194 	uint16_t descriptor_len;
2195 	unsigned long di;
2196 
2197 	DPRINTFN(ATP_LLEVEL_INFO, "sc=%p\n", sc);
2198 
2199 	sc->sc_dev        = dev;
2200 	sc->sc_usb_device = uaa->device;
2201 
2202 	/* Get HID descriptor */
2203 	if (usbd_req_get_hid_desc(uaa->device, NULL, &descriptor_ptr,
2204 	    &descriptor_len, M_TEMP, uaa->info.bIfaceIndex) !=
2205 	    USB_ERR_NORMAL_COMPLETION)
2206 		return (ENXIO);
2207 
2208 	/* Get HID report descriptor length */
2209 	sc->sc_expected_sensor_data_len = hid_report_size_max(descriptor_ptr,
2210 	    descriptor_len, hid_input, NULL);
2211 	free(descriptor_ptr, M_TEMP);
2212 
2213 	if ((sc->sc_expected_sensor_data_len <= 0) ||
2214 	    (sc->sc_expected_sensor_data_len > ATP_SENSOR_DATA_BUF_MAX)) {
2215 		DPRINTF("atp_attach: datalength invalid or too large: %d\n",
2216 			sc->sc_expected_sensor_data_len);
2217 		return (ENXIO);
2218 	}
2219 
2220 	di = USB_GET_DRIVER_INFO(uaa);
2221 	sc->sc_family = DECODE_FAMILY_FROM_DRIVER_INFO(di);
2222 
2223 	/*
2224 	 * By default the touchpad behaves like an HID device, sending
2225 	 * packets with reportID = 2. Such reports contain only
2226 	 * limited information--they encode movement deltas and button
2227 	 * events,--but do not include data from the pressure
2228 	 * sensors. The device input mode can be switched from HID
2229 	 * reports to raw sensor data using vendor-specific USB
2230 	 * control commands.
2231 	 * FOUNTAIN devices will give an error when trying to switch
2232 	 * input mode, so we skip this command
2233 	 */
2234 	if ((sc->sc_family == TRACKPAD_FAMILY_FOUNTAIN_GEYSER) &&
2235 		(DECODE_PRODUCT_FROM_DRIVER_INFO(di) == FOUNTAIN))
2236 		DPRINTF("device mode switch skipped: Fountain device\n");
2237 	else if ((err = atp_set_device_mode(sc, RAW_SENSOR_MODE)) != 0) {
2238 		DPRINTF("failed to set mode to 'RAW_SENSOR' (%d)\n", err);
2239 		return (ENXIO);
2240 	}
2241 
2242 	mtx_init(&sc->sc_mutex, "atpmtx", NULL, MTX_DEF | MTX_RECURSE);
2243 
2244 	switch(sc->sc_family) {
2245 	case TRACKPAD_FAMILY_FOUNTAIN_GEYSER:
2246 		sc->sc_params =
2247 		    &fg_dev_params[DECODE_PRODUCT_FROM_DRIVER_INFO(di)];
2248 		sc->sensor_data_interpreter = fg_interpret_sensor_data;
2249 		break;
2250 	case TRACKPAD_FAMILY_WELLSPRING:
2251 		sc->sc_params =
2252 		    &wsp_dev_params[DECODE_PRODUCT_FROM_DRIVER_INFO(di)];
2253 		sc->sensor_data_interpreter = wsp_interpret_sensor_data;
2254 		break;
2255 	default:
2256 		goto detach;
2257 	}
2258 
2259 	err = usbd_transfer_setup(uaa->device,
2260 	    &uaa->info.bIfaceIndex, sc->sc_xfer, atp_xfer_config,
2261 	    ATP_N_TRANSFER, sc, &sc->sc_mutex);
2262 	if (err) {
2263 		DPRINTF("error=%s\n", usbd_errstr(err));
2264 		goto detach;
2265 	}
2266 
2267 	if (usb_fifo_attach(sc->sc_usb_device, sc, &sc->sc_mutex,
2268 	    &atp_fifo_methods, &sc->sc_fifo,
2269 	    device_get_unit(dev), -1, uaa->info.bIfaceIndex,
2270 	    UID_ROOT, GID_OPERATOR, 0644)) {
2271 		goto detach;
2272 	}
2273 
2274 	device_set_usb_desc(dev);
2275 
2276 	sc->sc_hw.buttons       = 3;
2277 	sc->sc_hw.iftype        = MOUSE_IF_USB;
2278 	sc->sc_hw.type          = MOUSE_PAD;
2279 	sc->sc_hw.model         = MOUSE_MODEL_GENERIC;
2280 	sc->sc_hw.hwid          = 0;
2281 	sc->sc_mode.protocol    = MOUSE_PROTO_MSC;
2282 	sc->sc_mode.rate        = -1;
2283 	sc->sc_mode.resolution  = MOUSE_RES_UNKNOWN;
2284 	sc->sc_mode.packetsize  = MOUSE_MSC_PACKETSIZE;
2285 	sc->sc_mode.syncmask[0] = MOUSE_MSC_SYNCMASK;
2286 	sc->sc_mode.syncmask[1] = MOUSE_MSC_SYNC;
2287 	sc->sc_mode.accelfactor = 0;
2288 	sc->sc_mode.level       = 0;
2289 
2290 	sc->sc_state            = 0;
2291 	sc->sc_ibtn             = 0;
2292 
2293 	callout_init_mtx(&sc->sc_callout, &sc->sc_mutex, 0);
2294 
2295 	return (0);
2296 
2297 detach:
2298 	atp_detach(dev);
2299 	return (ENOMEM);
2300 }
2301 
2302 static int
2303 atp_detach(device_t dev)
2304 {
2305 	struct atp_softc *sc;
2306 
2307 	sc = device_get_softc(dev);
2308 	atp_set_device_mode(sc, HID_MODE);
2309 
2310 	mtx_lock(&sc->sc_mutex);
2311 	callout_drain(&sc->sc_callout);
2312 	if (sc->sc_state & ATP_ENABLED)
2313 		atp_disable(sc);
2314 	mtx_unlock(&sc->sc_mutex);
2315 
2316 	usb_fifo_detach(&sc->sc_fifo);
2317 
2318 	usbd_transfer_unsetup(sc->sc_xfer, ATP_N_TRANSFER);
2319 
2320 	mtx_destroy(&sc->sc_mutex);
2321 
2322 	return (0);
2323 }
2324 
2325 static void
2326 atp_intr(struct usb_xfer *xfer, usb_error_t error)
2327 {
2328 	struct atp_softc      *sc = usbd_xfer_softc(xfer);
2329 	struct usb_page_cache *pc;
2330 	int len;
2331 
2332 	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
2333 
2334 	switch (USB_GET_STATE(xfer)) {
2335 	case USB_ST_TRANSFERRED:
2336 		pc = usbd_xfer_get_frame(xfer, 0);
2337 		usbd_copy_out(pc, 0, sc->sc_sensor_data, len);
2338 		if (len < sc->sc_expected_sensor_data_len) {
2339 			/* make sure we don't process old data */
2340 			memset(sc->sc_sensor_data + len, 0,
2341 			    sc->sc_expected_sensor_data_len - len);
2342 		}
2343 
2344 		sc->sc_status.flags &= ~(MOUSE_STDBUTTONSCHANGED |
2345 		    MOUSE_POSCHANGED);
2346 		sc->sc_status.obutton = sc->sc_status.button;
2347 
2348 		(sc->sensor_data_interpreter)(sc, len);
2349 
2350 		if (sc->sc_status.button != 0) {
2351 			/* Reset DOUBLE_TAP_N_DRAG if the button is pressed. */
2352 			sc->sc_state &= ~ATP_DOUBLE_TAP_DRAG;
2353 		} else if (sc->sc_state & ATP_DOUBLE_TAP_DRAG) {
2354 			/* Assume a button-press with DOUBLE_TAP_N_DRAG. */
2355 			sc->sc_status.button = MOUSE_BUTTON1DOWN;
2356 		}
2357 
2358 		sc->sc_status.flags |=
2359 		    sc->sc_status.button ^ sc->sc_status.obutton;
2360 		if (sc->sc_status.flags & MOUSE_STDBUTTONSCHANGED) {
2361 		    DPRINTFN(ATP_LLEVEL_INFO, "button %s\n",
2362 			((sc->sc_status.button & MOUSE_BUTTON1DOWN) ?
2363 			"pressed" : "released"));
2364 		}
2365 
2366 		if (sc->sc_status.flags & (MOUSE_POSCHANGED |
2367 		    MOUSE_STDBUTTONSCHANGED)) {
2368 			atp_stroke_t *strokep;
2369 			u_int8_t n_movements = 0;
2370 			int dx = 0;
2371 			int dy = 0;
2372 			int dz = 0;
2373 
2374 			TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry) {
2375 				if (strokep->flags & ATSF_ZOMBIE)
2376 					continue;
2377 
2378 				dx += strokep->movement_dx;
2379 				dy += strokep->movement_dy;
2380 				if (strokep->movement_dx ||
2381 				    strokep->movement_dy)
2382 					n_movements++;
2383 			}
2384 
2385 			/* average movement if multiple strokes record motion.*/
2386 			if (n_movements > 1) {
2387 				dx /= (int)n_movements;
2388 				dy /= (int)n_movements;
2389 			}
2390 
2391 			/* detect multi-finger vertical scrolls */
2392 			if (n_movements >= 2) {
2393 				boolean_t all_vertical_scrolls = true;
2394 				TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry) {
2395 					if (strokep->flags & ATSF_ZOMBIE)
2396 						continue;
2397 
2398 					if (!atp_is_vertical_scroll(strokep))
2399 						all_vertical_scrolls = false;
2400 				}
2401 				if (all_vertical_scrolls) {
2402 					dz = dy;
2403 					dy = dx = 0;
2404 				}
2405 			}
2406 
2407 			sc->sc_status.dx += dx;
2408 			sc->sc_status.dy += dy;
2409 			sc->sc_status.dz += dz;
2410 			atp_add_to_queue(sc, dx, -dy, -dz, sc->sc_status.button);
2411 		}
2412 
2413 	case USB_ST_SETUP:
2414 	tr_setup:
2415 		/* check if we can put more data into the FIFO */
2416 		if (usb_fifo_put_bytes_max(sc->sc_fifo.fp[USB_FIFO_RX]) != 0) {
2417 			usbd_xfer_set_frame_len(xfer, 0,
2418 			    sc->sc_expected_sensor_data_len);
2419 			usbd_transfer_submit(xfer);
2420 		}
2421 		break;
2422 
2423 	default:                        /* Error */
2424 		if (error != USB_ERR_CANCELLED) {
2425 			/* try clear stall first */
2426 			usbd_xfer_set_stall(xfer);
2427 			goto tr_setup;
2428 		}
2429 		break;
2430 	}
2431 }
2432 
2433 static void
2434 atp_start_read(struct usb_fifo *fifo)
2435 {
2436 	struct atp_softc *sc = usb_fifo_softc(fifo);
2437 	int rate;
2438 
2439 	/* Check if we should override the default polling interval */
2440 	rate = sc->sc_pollrate;
2441 	/* Range check rate */
2442 	if (rate > 1000)
2443 		rate = 1000;
2444 	/* Check for set rate */
2445 	if ((rate > 0) && (sc->sc_xfer[ATP_INTR_DT] != NULL)) {
2446 		/* Stop current transfer, if any */
2447 		usbd_transfer_stop(sc->sc_xfer[ATP_INTR_DT]);
2448 		/* Set new interval */
2449 		usbd_xfer_set_interval(sc->sc_xfer[ATP_INTR_DT], 1000 / rate);
2450 		/* Only set pollrate once */
2451 		sc->sc_pollrate = 0;
2452 	}
2453 
2454 	usbd_transfer_start(sc->sc_xfer[ATP_INTR_DT]);
2455 }
2456 
2457 static void
2458 atp_stop_read(struct usb_fifo *fifo)
2459 {
2460 	struct atp_softc *sc = usb_fifo_softc(fifo);
2461 	usbd_transfer_stop(sc->sc_xfer[ATP_INTR_DT]);
2462 }
2463 
2464 static int
2465 atp_open(struct usb_fifo *fifo, int fflags)
2466 {
2467 	struct atp_softc *sc = usb_fifo_softc(fifo);
2468 
2469 	/* check for duplicate open, should not happen */
2470 	if (sc->sc_fflags & fflags)
2471 		return (EBUSY);
2472 
2473 	/* check for first open */
2474 	if (sc->sc_fflags == 0) {
2475 		int rc;
2476 		if ((rc = atp_enable(sc)) != 0)
2477 			return (rc);
2478 	}
2479 
2480 	if (fflags & FREAD) {
2481 		if (usb_fifo_alloc_buffer(fifo,
2482 		    ATP_FIFO_BUF_SIZE, ATP_FIFO_QUEUE_MAXLEN)) {
2483 			return (ENOMEM);
2484 		}
2485 	}
2486 
2487 	sc->sc_fflags |= (fflags & (FREAD | FWRITE));
2488 	return (0);
2489 }
2490 
2491 static void
2492 atp_close(struct usb_fifo *fifo, int fflags)
2493 {
2494 	struct atp_softc *sc = usb_fifo_softc(fifo);
2495 	if (fflags & FREAD)
2496 		usb_fifo_free_buffer(fifo);
2497 
2498 	sc->sc_fflags &= ~(fflags & (FREAD | FWRITE));
2499 	if (sc->sc_fflags == 0) {
2500 		atp_disable(sc);
2501 	}
2502 }
2503 
2504 static int
2505 atp_ioctl(struct usb_fifo *fifo, u_long cmd, void *addr, int fflags)
2506 {
2507 	struct atp_softc *sc = usb_fifo_softc(fifo);
2508 	mousemode_t mode;
2509 	int error = 0;
2510 
2511 	mtx_lock(&sc->sc_mutex);
2512 
2513 	switch(cmd) {
2514 	case MOUSE_GETHWINFO:
2515 		*(mousehw_t *)addr = sc->sc_hw;
2516 		break;
2517 	case MOUSE_GETMODE:
2518 		*(mousemode_t *)addr = sc->sc_mode;
2519 		break;
2520 	case MOUSE_SETMODE:
2521 		mode = *(mousemode_t *)addr;
2522 
2523 		if (mode.level == -1)
2524 			/* Don't change the current setting */
2525 			;
2526 		else if ((mode.level < 0) || (mode.level > 1)) {
2527 			error = EINVAL;
2528 			break;
2529 		}
2530 		sc->sc_mode.level = mode.level;
2531 		sc->sc_pollrate   = mode.rate;
2532 		sc->sc_hw.buttons = 3;
2533 
2534 		if (sc->sc_mode.level == 0) {
2535 			sc->sc_mode.protocol    = MOUSE_PROTO_MSC;
2536 			sc->sc_mode.packetsize  = MOUSE_MSC_PACKETSIZE;
2537 			sc->sc_mode.syncmask[0] = MOUSE_MSC_SYNCMASK;
2538 			sc->sc_mode.syncmask[1] = MOUSE_MSC_SYNC;
2539 		} else if (sc->sc_mode.level == 1) {
2540 			sc->sc_mode.protocol    = MOUSE_PROTO_SYSMOUSE;
2541 			sc->sc_mode.packetsize  = MOUSE_SYS_PACKETSIZE;
2542 			sc->sc_mode.syncmask[0] = MOUSE_SYS_SYNCMASK;
2543 			sc->sc_mode.syncmask[1] = MOUSE_SYS_SYNC;
2544 		}
2545 		atp_reset_buf(sc);
2546 		break;
2547 	case MOUSE_GETLEVEL:
2548 		*(int *)addr = sc->sc_mode.level;
2549 		break;
2550 	case MOUSE_SETLEVEL:
2551 		if ((*(int *)addr < 0) || (*(int *)addr > 1)) {
2552 			error = EINVAL;
2553 			break;
2554 		}
2555 		sc->sc_mode.level = *(int *)addr;
2556 		sc->sc_hw.buttons = 3;
2557 
2558 		if (sc->sc_mode.level == 0) {
2559 			sc->sc_mode.protocol    = MOUSE_PROTO_MSC;
2560 			sc->sc_mode.packetsize  = MOUSE_MSC_PACKETSIZE;
2561 			sc->sc_mode.syncmask[0] = MOUSE_MSC_SYNCMASK;
2562 			sc->sc_mode.syncmask[1] = MOUSE_MSC_SYNC;
2563 		} else if (sc->sc_mode.level == 1) {
2564 			sc->sc_mode.protocol    = MOUSE_PROTO_SYSMOUSE;
2565 			sc->sc_mode.packetsize  = MOUSE_SYS_PACKETSIZE;
2566 			sc->sc_mode.syncmask[0] = MOUSE_SYS_SYNCMASK;
2567 			sc->sc_mode.syncmask[1] = MOUSE_SYS_SYNC;
2568 		}
2569 		atp_reset_buf(sc);
2570 		break;
2571 	case MOUSE_GETSTATUS: {
2572 		mousestatus_t *status = (mousestatus_t *)addr;
2573 
2574 		*status = sc->sc_status;
2575 		sc->sc_status.obutton = sc->sc_status.button;
2576 		sc->sc_status.button  = 0;
2577 		sc->sc_status.dx      = 0;
2578 		sc->sc_status.dy      = 0;
2579 		sc->sc_status.dz      = 0;
2580 
2581 		if (status->dx || status->dy || status->dz)
2582 			status->flags |= MOUSE_POSCHANGED;
2583 		if (status->button != status->obutton)
2584 			status->flags |= MOUSE_BUTTONSCHANGED;
2585 		break;
2586 	}
2587 
2588 	default:
2589 		error = ENOTTY;
2590 		break;
2591 	}
2592 
2593 	mtx_unlock(&sc->sc_mutex);
2594 	return (error);
2595 }
2596 
2597 static int
2598 atp_sysctl_scale_factor_handler(SYSCTL_HANDLER_ARGS)
2599 {
2600 	int error;
2601 	u_int tmp;
2602 
2603 	tmp = atp_mickeys_scale_factor;
2604 	error = sysctl_handle_int(oidp, &tmp, 0, req);
2605 	if (error != 0 || req->newptr == NULL)
2606 		return (error);
2607 
2608 	if (tmp == atp_mickeys_scale_factor)
2609 		return (0);     /* no change */
2610 	if ((tmp == 0) || (tmp > (10 * ATP_SCALE_FACTOR)))
2611 		return (EINVAL);
2612 
2613 	atp_mickeys_scale_factor = tmp;
2614 	DPRINTFN(ATP_LLEVEL_INFO, "%s: resetting mickeys_scale_factor to %u\n",
2615 	    ATP_DRIVER_NAME, tmp);
2616 
2617 	return (0);
2618 }
2619 
2620 static devclass_t atp_devclass;
2621 
2622 static device_method_t atp_methods[] = {
2623 	DEVMETHOD(device_probe,  atp_probe),
2624 	DEVMETHOD(device_attach, atp_attach),
2625 	DEVMETHOD(device_detach, atp_detach),
2626 
2627 	DEVMETHOD_END
2628 };
2629 
2630 static driver_t atp_driver = {
2631 	.name    = ATP_DRIVER_NAME,
2632 	.methods = atp_methods,
2633 	.size    = sizeof(struct atp_softc)
2634 };
2635 
2636 DRIVER_MODULE(atp, uhub, atp_driver, atp_devclass, NULL, 0);
2637 MODULE_DEPEND(atp, usb, 1, 1, 1);
2638 MODULE_DEPEND(atp, hid, 1, 1, 1);
2639 MODULE_VERSION(atp, 1);
2640 USB_PNP_HOST_INFO(fg_devs);
2641 USB_PNP_HOST_INFO(wsp_devs);
2642