xref: /freebsd/sys/dev/usb/input/atp.c (revision cddbc3b40812213ff00041f79174cac0be360a2a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2014 Rohit Grover
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * Some tables, structures, definitions and constant values for the
31  * touchpad protocol has been copied from Linux's
32  * "drivers/input/mouse/bcm5974.c" which has the following copyright
33  * holders under GPLv2. All device specific code in this driver has
34  * been written from scratch. The decoding algorithm is based on
35  * output from FreeBSD's usbdump.
36  *
37  * Copyright (C) 2008      Henrik Rydberg (rydberg@euromail.se)
38  * Copyright (C) 2008      Scott Shawcroft (scott.shawcroft@gmail.com)
39  * Copyright (C) 2001-2004 Greg Kroah-Hartman (greg@kroah.com)
40  * Copyright (C) 2005      Johannes Berg (johannes@sipsolutions.net)
41  * Copyright (C) 2005      Stelian Pop (stelian@popies.net)
42  * Copyright (C) 2005      Frank Arnold (frank@scirocco-5v-turbo.de)
43  * Copyright (C) 2005      Peter Osterlund (petero2@telia.com)
44  * Copyright (C) 2005      Michael Hanselmann (linux-kernel@hansmi.ch)
45  * Copyright (C) 2006      Nicolas Boichat (nicolas@boichat.ch)
46  */
47 
48 /*
49  * Author's note: 'atp' supports two distinct families of Apple trackpad
50  * products: the older Fountain/Geyser and the latest Wellspring trackpads.
51  * The first version made its appearance with FreeBSD 8 and worked only with
52  * the Fountain/Geyser hardware. A fork of this driver for Wellspring was
53  * contributed by Huang Wen Hui. This driver unifies the Wellspring effort
54  * and also improves upon the original work.
55  *
56  * I'm grateful to Stephan Scheunig, Angela Naegele, and Nokia IT-support
57  * for helping me with access to hardware. Thanks also go to Nokia for
58  * giving me an opportunity to do this work.
59  */
60 
61 #include <sys/cdefs.h>
62 __FBSDID("$FreeBSD$");
63 
64 #include <sys/stdint.h>
65 #include <sys/stddef.h>
66 #include <sys/param.h>
67 #include <sys/types.h>
68 #include <sys/systm.h>
69 #include <sys/kernel.h>
70 #include <sys/bus.h>
71 #include <sys/module.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/sysctl.h>
75 #include <sys/malloc.h>
76 #include <sys/conf.h>
77 #include <sys/fcntl.h>
78 #include <sys/file.h>
79 #include <sys/selinfo.h>
80 #include <sys/poll.h>
81 
82 #include <dev/usb/usb.h>
83 #include <dev/usb/usbdi.h>
84 #include <dev/usb/usbdi_util.h>
85 #include <dev/usb/usbhid.h>
86 
87 #include "usbdevs.h"
88 
89 #define USB_DEBUG_VAR atp_debug
90 #include <dev/usb/usb_debug.h>
91 
92 #include <sys/mouse.h>
93 
94 #define ATP_DRIVER_NAME "atp"
95 
96 /*
97  * Driver specific options: the following options may be set by
98  * `options' statements in the kernel configuration file.
99  */
100 
101 /* The divisor used to translate sensor reported positions to mickeys. */
102 #ifndef ATP_SCALE_FACTOR
103 #define ATP_SCALE_FACTOR                  16
104 #endif
105 
106 /* Threshold for small movement noise (in mickeys) */
107 #ifndef ATP_SMALL_MOVEMENT_THRESHOLD
108 #define ATP_SMALL_MOVEMENT_THRESHOLD      30
109 #endif
110 
111 /* Threshold of instantaneous deltas beyond which movement is considered fast.*/
112 #ifndef ATP_FAST_MOVEMENT_TRESHOLD
113 #define ATP_FAST_MOVEMENT_TRESHOLD        150
114 #endif
115 
116 /*
117  * This is the age in microseconds beyond which a touch is considered
118  * to be a slide; and therefore a tap event isn't registered.
119  */
120 #ifndef ATP_TOUCH_TIMEOUT
121 #define ATP_TOUCH_TIMEOUT                 125000
122 #endif
123 
124 #ifndef ATP_IDLENESS_THRESHOLD
125 #define	ATP_IDLENESS_THRESHOLD 10
126 #endif
127 
128 #ifndef FG_SENSOR_NOISE_THRESHOLD
129 #define FG_SENSOR_NOISE_THRESHOLD 2
130 #endif
131 
132 /*
133  * A double-tap followed by a single-finger slide is treated as a
134  * special gesture. The driver responds to this gesture by assuming a
135  * virtual button-press for the lifetime of the slide. The following
136  * threshold is the maximum time gap (in microseconds) between the two
137  * tap events preceding the slide for such a gesture.
138  */
139 #ifndef ATP_DOUBLE_TAP_N_DRAG_THRESHOLD
140 #define ATP_DOUBLE_TAP_N_DRAG_THRESHOLD   200000
141 #endif
142 
143 /*
144  * The wait duration in ticks after losing a touch contact before
145  * zombied strokes are reaped and turned into button events.
146  */
147 #define ATP_ZOMBIE_STROKE_REAP_INTERVAL   (hz / 20)	/* 50 ms */
148 
149 /* The multiplier used to translate sensor reported positions to mickeys. */
150 #define FG_SCALE_FACTOR                   380
151 
152 /*
153  * The movement threshold for a stroke; this is the maximum difference
154  * in position which will be resolved as a continuation of a stroke
155  * component.
156  */
157 #define FG_MAX_DELTA_MICKEYS             ((3 * (FG_SCALE_FACTOR)) >> 1)
158 
159 /* Distance-squared threshold for matching a finger with a known stroke */
160 #ifndef WSP_MAX_ALLOWED_MATCH_DISTANCE_SQ
161 #define WSP_MAX_ALLOWED_MATCH_DISTANCE_SQ 1000000
162 #endif
163 
164 /* Ignore pressure spans with cumulative press. below this value. */
165 #define FG_PSPAN_MIN_CUM_PRESSURE         10
166 
167 /* Maximum allowed width for pressure-spans.*/
168 #define FG_PSPAN_MAX_WIDTH                4
169 
170 /* end of driver specific options */
171 
172 /* Tunables */
173 static SYSCTL_NODE(_hw_usb, OID_AUTO, atp, CTLFLAG_RW, 0, "USB ATP");
174 
175 #ifdef USB_DEBUG
176 enum atp_log_level {
177 	ATP_LLEVEL_DISABLED = 0,
178 	ATP_LLEVEL_ERROR,
179 	ATP_LLEVEL_DEBUG,       /* for troubleshooting */
180 	ATP_LLEVEL_INFO,        /* for diagnostics */
181 };
182 static int atp_debug = ATP_LLEVEL_ERROR; /* the default is to only log errors */
183 SYSCTL_INT(_hw_usb_atp, OID_AUTO, debug, CTLFLAG_RWTUN,
184     &atp_debug, ATP_LLEVEL_ERROR, "ATP debug level");
185 #endif /* USB_DEBUG */
186 
187 static u_int atp_touch_timeout = ATP_TOUCH_TIMEOUT;
188 SYSCTL_UINT(_hw_usb_atp, OID_AUTO, touch_timeout, CTLFLAG_RWTUN,
189     &atp_touch_timeout, 125000, "age threshold in microseconds for a touch");
190 
191 static u_int atp_double_tap_threshold = ATP_DOUBLE_TAP_N_DRAG_THRESHOLD;
192 SYSCTL_UINT(_hw_usb_atp, OID_AUTO, double_tap_threshold, CTLFLAG_RWTUN,
193     &atp_double_tap_threshold, ATP_DOUBLE_TAP_N_DRAG_THRESHOLD,
194     "maximum time in microseconds to allow association between a double-tap and "
195     "drag gesture");
196 
197 static u_int atp_mickeys_scale_factor = ATP_SCALE_FACTOR;
198 static int atp_sysctl_scale_factor_handler(SYSCTL_HANDLER_ARGS);
199 SYSCTL_PROC(_hw_usb_atp, OID_AUTO, scale_factor, CTLTYPE_UINT | CTLFLAG_RWTUN,
200     &atp_mickeys_scale_factor, sizeof(atp_mickeys_scale_factor),
201     atp_sysctl_scale_factor_handler, "IU", "movement scale factor");
202 
203 static u_int atp_small_movement_threshold = ATP_SMALL_MOVEMENT_THRESHOLD;
204 SYSCTL_UINT(_hw_usb_atp, OID_AUTO, small_movement, CTLFLAG_RWTUN,
205     &atp_small_movement_threshold, ATP_SMALL_MOVEMENT_THRESHOLD,
206     "the small movement black-hole for filtering noise");
207 
208 static u_int atp_tap_minimum = 1;
209 SYSCTL_UINT(_hw_usb_atp, OID_AUTO, tap_minimum, CTLFLAG_RWTUN,
210     &atp_tap_minimum, 1, "Minimum number of taps before detection");
211 
212 /*
213  * Strokes which accumulate at least this amount of absolute movement
214  * from the aggregate of their components are considered as
215  * slides. Unit: mickeys.
216  */
217 static u_int atp_slide_min_movement = 2 * ATP_SMALL_MOVEMENT_THRESHOLD;
218 SYSCTL_UINT(_hw_usb_atp, OID_AUTO, slide_min_movement, CTLFLAG_RWTUN,
219     &atp_slide_min_movement, 2 * ATP_SMALL_MOVEMENT_THRESHOLD,
220     "strokes with at least this amt. of movement are considered slides");
221 
222 /*
223  * The minimum age of a stroke for it to be considered mature; this
224  * helps filter movements (noise) from immature strokes. Units: interrupts.
225  */
226 static u_int atp_stroke_maturity_threshold = 4;
227 SYSCTL_UINT(_hw_usb_atp, OID_AUTO, stroke_maturity_threshold, CTLFLAG_RWTUN,
228     &atp_stroke_maturity_threshold, 4,
229     "the minimum age of a stroke for it to be considered mature");
230 
231 typedef enum atp_trackpad_family {
232 	TRACKPAD_FAMILY_FOUNTAIN_GEYSER,
233 	TRACKPAD_FAMILY_WELLSPRING,
234 	TRACKPAD_FAMILY_MAX /* keep this at the tail end of the enumeration */
235 } trackpad_family_t;
236 
237 enum fountain_geyser_product {
238 	FOUNTAIN,
239 	GEYSER1,
240 	GEYSER1_17inch,
241 	GEYSER2,
242 	GEYSER3,
243 	GEYSER4,
244 	FOUNTAIN_GEYSER_PRODUCT_MAX /* keep this at the end */
245 };
246 
247 enum wellspring_product {
248 	WELLSPRING1,
249 	WELLSPRING2,
250 	WELLSPRING3,
251 	WELLSPRING4,
252 	WELLSPRING4A,
253 	WELLSPRING5,
254 	WELLSPRING6A,
255 	WELLSPRING6,
256 	WELLSPRING5A,
257 	WELLSPRING7,
258 	WELLSPRING7A,
259 	WELLSPRING8,
260 	WELLSPRING_PRODUCT_MAX /* keep this at the end of the enumeration */
261 };
262 
263 /* trackpad header types */
264 enum fountain_geyser_trackpad_type {
265 	FG_TRACKPAD_TYPE_GEYSER1,
266 	FG_TRACKPAD_TYPE_GEYSER2,
267 	FG_TRACKPAD_TYPE_GEYSER3,
268 	FG_TRACKPAD_TYPE_GEYSER4,
269 };
270 enum wellspring_trackpad_type {
271 	WSP_TRACKPAD_TYPE1,      /* plain trackpad */
272 	WSP_TRACKPAD_TYPE2,      /* button integrated in trackpad */
273 	WSP_TRACKPAD_TYPE3       /* additional header fields since June 2013 */
274 };
275 
276 /*
277  * Trackpad family and product and family are encoded together in the
278  * driver_info value associated with a trackpad product.
279  */
280 #define N_PROD_BITS 8  /* Number of bits used to encode product */
281 #define ENCODE_DRIVER_INFO(FAMILY, PROD)      \
282     (((FAMILY) << N_PROD_BITS) | (PROD))
283 #define DECODE_FAMILY_FROM_DRIVER_INFO(INFO)  ((INFO) >> N_PROD_BITS)
284 #define DECODE_PRODUCT_FROM_DRIVER_INFO(INFO) \
285     ((INFO) & ((1 << N_PROD_BITS) - 1))
286 
287 #define FG_DRIVER_INFO(PRODUCT)               \
288     ENCODE_DRIVER_INFO(TRACKPAD_FAMILY_FOUNTAIN_GEYSER, PRODUCT)
289 #define WELLSPRING_DRIVER_INFO(PRODUCT)       \
290     ENCODE_DRIVER_INFO(TRACKPAD_FAMILY_WELLSPRING, PRODUCT)
291 
292 /*
293  * The following structure captures the state of a pressure span along
294  * an axis. Each contact with the touchpad results in separate
295  * pressure spans along the two axes.
296  */
297 typedef struct fg_pspan {
298 	u_int width;       /* in units of sensors */
299 	u_int cum;         /* cumulative compression (from all sensors) */
300 	u_int cog;         /* center of gravity */
301 	u_int loc;         /* location (scaled using the mickeys factor) */
302 	boolean_t matched; /* to track pspans as they match against strokes. */
303 } fg_pspan;
304 
305 #define FG_MAX_PSPANS_PER_AXIS 3
306 #define FG_MAX_STROKES         (2 * FG_MAX_PSPANS_PER_AXIS)
307 
308 #define WELLSPRING_INTERFACE_INDEX 1
309 
310 /* trackpad finger data offsets, le16-aligned */
311 #define WSP_TYPE1_FINGER_DATA_OFFSET  (13 * 2)
312 #define WSP_TYPE2_FINGER_DATA_OFFSET  (15 * 2)
313 #define WSP_TYPE3_FINGER_DATA_OFFSET  (19 * 2)
314 
315 /* trackpad button data offsets */
316 #define WSP_TYPE2_BUTTON_DATA_OFFSET   15
317 #define WSP_TYPE3_BUTTON_DATA_OFFSET   23
318 
319 /* list of device capability bits */
320 #define HAS_INTEGRATED_BUTTON   1
321 
322 /* trackpad finger structure - little endian */
323 struct wsp_finger_sensor_data {
324 	int16_t origin;       /* zero when switching track finger */
325 	int16_t abs_x;        /* absolute x coordinate */
326 	int16_t abs_y;        /* absolute y coordinate */
327 	int16_t rel_x;        /* relative x coordinate */
328 	int16_t rel_y;        /* relative y coordinate */
329 	int16_t tool_major;   /* tool area, major axis */
330 	int16_t tool_minor;   /* tool area, minor axis */
331 	int16_t orientation;  /* 16384 when point, else 15 bit angle */
332 	int16_t touch_major;  /* touch area, major axis */
333 	int16_t touch_minor;  /* touch area, minor axis */
334 	int16_t unused[3];    /* zeros */
335 	int16_t multi;        /* one finger: varies, more fingers: constant */
336 } __packed;
337 
338 typedef struct wsp_finger {
339 	/* to track fingers as they match against strokes. */
340 	boolean_t matched;
341 
342 	/* location (scaled using the mickeys factor) */
343 	int x;
344 	int y;
345 } wsp_finger_t;
346 
347 #define WSP_MAX_FINGERS               16
348 #define WSP_SIZEOF_FINGER_SENSOR_DATA sizeof(struct wsp_finger_sensor_data)
349 #define WSP_SIZEOF_ALL_FINGER_DATA    (WSP_MAX_FINGERS * \
350 				       WSP_SIZEOF_FINGER_SENSOR_DATA)
351 #define WSP_MAX_FINGER_ORIENTATION    16384
352 
353 #define ATP_SENSOR_DATA_BUF_MAX       1024
354 #if (ATP_SENSOR_DATA_BUF_MAX < ((WSP_MAX_FINGERS * 14 * 2) + \
355 				WSP_TYPE3_FINGER_DATA_OFFSET))
356 /* note: 14 * 2 in the above is based on sizeof(struct wsp_finger_sensor_data)*/
357 #error "ATP_SENSOR_DATA_BUF_MAX is too small"
358 #endif
359 
360 #define ATP_MAX_STROKES               MAX(WSP_MAX_FINGERS, FG_MAX_STROKES)
361 
362 #define FG_MAX_XSENSORS 26
363 #define FG_MAX_YSENSORS 16
364 
365 /* device-specific configuration */
366 struct fg_dev_params {
367 	u_int                              data_len;   /* for sensor data */
368 	u_int                              n_xsensors;
369 	u_int                              n_ysensors;
370 	enum fountain_geyser_trackpad_type prot;
371 };
372 struct wsp_dev_params {
373 	uint8_t  caps;               /* device capability bitmask */
374 	uint8_t  tp_type;            /* type of trackpad interface */
375 	uint8_t  finger_data_offset; /* offset to trackpad finger data */
376 };
377 
378 static const struct fg_dev_params fg_dev_params[FOUNTAIN_GEYSER_PRODUCT_MAX] = {
379 	[FOUNTAIN] = {
380 		.data_len   = 81,
381 		.n_xsensors = 16,
382 		.n_ysensors = 16,
383 		.prot       = FG_TRACKPAD_TYPE_GEYSER1
384 	},
385 	[GEYSER1] = {
386 		.data_len   = 81,
387 		.n_xsensors = 16,
388 		.n_ysensors = 16,
389 		.prot       = FG_TRACKPAD_TYPE_GEYSER1
390 	},
391 	[GEYSER1_17inch] = {
392 		.data_len   = 81,
393 		.n_xsensors = 26,
394 		.n_ysensors = 16,
395 		.prot       = FG_TRACKPAD_TYPE_GEYSER1
396 	},
397 	[GEYSER2] = {
398 		.data_len   = 64,
399 		.n_xsensors = 15,
400 		.n_ysensors = 9,
401 		.prot       = FG_TRACKPAD_TYPE_GEYSER2
402 	},
403 	[GEYSER3] = {
404 		.data_len   = 64,
405 		.n_xsensors = 20,
406 		.n_ysensors = 10,
407 		.prot       = FG_TRACKPAD_TYPE_GEYSER3
408 	},
409 	[GEYSER4] = {
410 		.data_len   = 64,
411 		.n_xsensors = 20,
412 		.n_ysensors = 10,
413 		.prot       = FG_TRACKPAD_TYPE_GEYSER4
414 	}
415 };
416 
417 static const STRUCT_USB_HOST_ID fg_devs[] = {
418 	/* PowerBooks Feb 2005, iBooks G4 */
419 	{ USB_VPI(USB_VENDOR_APPLE, 0x020e, FG_DRIVER_INFO(FOUNTAIN)) },
420 	{ USB_VPI(USB_VENDOR_APPLE, 0x020f, FG_DRIVER_INFO(FOUNTAIN)) },
421 	{ USB_VPI(USB_VENDOR_APPLE, 0x0210, FG_DRIVER_INFO(FOUNTAIN)) },
422 	{ USB_VPI(USB_VENDOR_APPLE, 0x030a, FG_DRIVER_INFO(FOUNTAIN)) },
423 	{ USB_VPI(USB_VENDOR_APPLE, 0x030b, FG_DRIVER_INFO(GEYSER1)) },
424 
425 	/* PowerBooks Oct 2005 */
426 	{ USB_VPI(USB_VENDOR_APPLE, 0x0214, FG_DRIVER_INFO(GEYSER2)) },
427 	{ USB_VPI(USB_VENDOR_APPLE, 0x0215, FG_DRIVER_INFO(GEYSER2)) },
428 	{ USB_VPI(USB_VENDOR_APPLE, 0x0216, FG_DRIVER_INFO(GEYSER2)) },
429 
430 	/* Core Duo MacBook & MacBook Pro */
431 	{ USB_VPI(USB_VENDOR_APPLE, 0x0217, FG_DRIVER_INFO(GEYSER3)) },
432 	{ USB_VPI(USB_VENDOR_APPLE, 0x0218, FG_DRIVER_INFO(GEYSER3)) },
433 	{ USB_VPI(USB_VENDOR_APPLE, 0x0219, FG_DRIVER_INFO(GEYSER3)) },
434 
435 	/* Core2 Duo MacBook & MacBook Pro */
436 	{ USB_VPI(USB_VENDOR_APPLE, 0x021a, FG_DRIVER_INFO(GEYSER4)) },
437 	{ USB_VPI(USB_VENDOR_APPLE, 0x021b, FG_DRIVER_INFO(GEYSER4)) },
438 	{ USB_VPI(USB_VENDOR_APPLE, 0x021c, FG_DRIVER_INFO(GEYSER4)) },
439 
440 	/* Core2 Duo MacBook3,1 */
441 	{ USB_VPI(USB_VENDOR_APPLE, 0x0229, FG_DRIVER_INFO(GEYSER4)) },
442 	{ USB_VPI(USB_VENDOR_APPLE, 0x022a, FG_DRIVER_INFO(GEYSER4)) },
443 	{ USB_VPI(USB_VENDOR_APPLE, 0x022b, FG_DRIVER_INFO(GEYSER4)) },
444 
445 	/* 17 inch PowerBook */
446 	{ USB_VPI(USB_VENDOR_APPLE, 0x020d, FG_DRIVER_INFO(GEYSER1_17inch)) },
447 };
448 
449 static const struct wsp_dev_params wsp_dev_params[WELLSPRING_PRODUCT_MAX] = {
450 	[WELLSPRING1] = {
451 		.caps       = 0,
452 		.tp_type    = WSP_TRACKPAD_TYPE1,
453 		.finger_data_offset  = WSP_TYPE1_FINGER_DATA_OFFSET,
454 	},
455 	[WELLSPRING2] = {
456 		.caps       = 0,
457 		.tp_type    = WSP_TRACKPAD_TYPE1,
458 		.finger_data_offset  = WSP_TYPE1_FINGER_DATA_OFFSET,
459 	},
460 	[WELLSPRING3] = {
461 		.caps       = HAS_INTEGRATED_BUTTON,
462 		.tp_type    = WSP_TRACKPAD_TYPE2,
463 		.finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
464 	},
465 	[WELLSPRING4] = {
466 		.caps       = HAS_INTEGRATED_BUTTON,
467 		.tp_type    = WSP_TRACKPAD_TYPE2,
468 		.finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
469 	},
470 	[WELLSPRING4A] = {
471 		.caps       = HAS_INTEGRATED_BUTTON,
472 		.tp_type    = WSP_TRACKPAD_TYPE2,
473 		.finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
474 	},
475 	[WELLSPRING5] = {
476 		.caps       = HAS_INTEGRATED_BUTTON,
477 		.tp_type    = WSP_TRACKPAD_TYPE2,
478 		.finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
479 	},
480 	[WELLSPRING6] = {
481 		.caps       = HAS_INTEGRATED_BUTTON,
482 		.tp_type    = WSP_TRACKPAD_TYPE2,
483 		.finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
484 	},
485 	[WELLSPRING5A] = {
486 		.caps       = HAS_INTEGRATED_BUTTON,
487 		.tp_type    = WSP_TRACKPAD_TYPE2,
488 		.finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
489 	},
490 	[WELLSPRING6A] = {
491 		.caps       = HAS_INTEGRATED_BUTTON,
492 		.tp_type    = WSP_TRACKPAD_TYPE2,
493 		.finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
494 	},
495 	[WELLSPRING7] = {
496 		.caps       = HAS_INTEGRATED_BUTTON,
497 		.tp_type    = WSP_TRACKPAD_TYPE2,
498 		.finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
499 	},
500 	[WELLSPRING7A] = {
501 		.caps       = HAS_INTEGRATED_BUTTON,
502 		.tp_type    = WSP_TRACKPAD_TYPE2,
503 		.finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
504 	},
505 	[WELLSPRING8] = {
506 		.caps       = HAS_INTEGRATED_BUTTON,
507 		.tp_type    = WSP_TRACKPAD_TYPE3,
508 		.finger_data_offset  = WSP_TYPE3_FINGER_DATA_OFFSET,
509 	},
510 };
511 
512 #define ATP_DEV(v,p,i) { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, i) }
513 
514 /* TODO: STRUCT_USB_HOST_ID */
515 static const struct usb_device_id wsp_devs[] = {
516 	/* MacbookAir1.1 */
517 	ATP_DEV(APPLE, WELLSPRING_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING1)),
518 	ATP_DEV(APPLE, WELLSPRING_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING1)),
519 	ATP_DEV(APPLE, WELLSPRING_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING1)),
520 
521 	/* MacbookProPenryn, aka wellspring2 */
522 	ATP_DEV(APPLE, WELLSPRING2_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING2)),
523 	ATP_DEV(APPLE, WELLSPRING2_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING2)),
524 	ATP_DEV(APPLE, WELLSPRING2_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING2)),
525 
526 	/* Macbook5,1 (unibody), aka wellspring3 */
527 	ATP_DEV(APPLE, WELLSPRING3_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING3)),
528 	ATP_DEV(APPLE, WELLSPRING3_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING3)),
529 	ATP_DEV(APPLE, WELLSPRING3_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING3)),
530 
531 	/* MacbookAir3,2 (unibody), aka wellspring4 */
532 	ATP_DEV(APPLE, WELLSPRING4_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING4)),
533 	ATP_DEV(APPLE, WELLSPRING4_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING4)),
534 	ATP_DEV(APPLE, WELLSPRING4_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING4)),
535 
536 	/* MacbookAir3,1 (unibody), aka wellspring4 */
537 	ATP_DEV(APPLE, WELLSPRING4A_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING4A)),
538 	ATP_DEV(APPLE, WELLSPRING4A_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING4A)),
539 	ATP_DEV(APPLE, WELLSPRING4A_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING4A)),
540 
541 	/* Macbook8 (unibody, March 2011) */
542 	ATP_DEV(APPLE, WELLSPRING5_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING5)),
543 	ATP_DEV(APPLE, WELLSPRING5_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING5)),
544 	ATP_DEV(APPLE, WELLSPRING5_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING5)),
545 
546 	/* MacbookAir4,1 (unibody, July 2011) */
547 	ATP_DEV(APPLE, WELLSPRING6A_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING6A)),
548 	ATP_DEV(APPLE, WELLSPRING6A_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING6A)),
549 	ATP_DEV(APPLE, WELLSPRING6A_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING6A)),
550 
551 	/* MacbookAir4,2 (unibody, July 2011) */
552 	ATP_DEV(APPLE, WELLSPRING6_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING6)),
553 	ATP_DEV(APPLE, WELLSPRING6_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING6)),
554 	ATP_DEV(APPLE, WELLSPRING6_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING6)),
555 
556 	/* Macbook8,2 (unibody) */
557 	ATP_DEV(APPLE, WELLSPRING5A_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING5A)),
558 	ATP_DEV(APPLE, WELLSPRING5A_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING5A)),
559 	ATP_DEV(APPLE, WELLSPRING5A_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING5A)),
560 
561 	/* MacbookPro10,1 (unibody, June 2012) */
562 	/* MacbookPro11,? (unibody, June 2013) */
563 	ATP_DEV(APPLE, WELLSPRING7_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING7)),
564 	ATP_DEV(APPLE, WELLSPRING7_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING7)),
565 	ATP_DEV(APPLE, WELLSPRING7_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING7)),
566 
567 	/* MacbookPro10,2 (unibody, October 2012) */
568 	ATP_DEV(APPLE, WELLSPRING7A_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING7A)),
569 	ATP_DEV(APPLE, WELLSPRING7A_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING7A)),
570 	ATP_DEV(APPLE, WELLSPRING7A_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING7A)),
571 
572 	/* MacbookAir6,2 (unibody, June 2013) */
573 	ATP_DEV(APPLE, WELLSPRING8_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING8)),
574 	ATP_DEV(APPLE, WELLSPRING8_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING8)),
575 	ATP_DEV(APPLE, WELLSPRING8_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING8)),
576 };
577 
578 typedef enum atp_stroke_type {
579 	ATP_STROKE_TOUCH,
580 	ATP_STROKE_SLIDE,
581 } atp_stroke_type;
582 
583 typedef enum atp_axis {
584 	X = 0,
585 	Y = 1,
586 	NUM_AXES
587 } atp_axis;
588 
589 #define ATP_FIFO_BUF_SIZE        8 /* bytes */
590 #define ATP_FIFO_QUEUE_MAXLEN   50 /* units */
591 
592 enum {
593 	ATP_INTR_DT,
594 	ATP_RESET,
595 	ATP_N_TRANSFER,
596 };
597 
598 typedef struct fg_stroke_component {
599 	/* Fields encapsulating the pressure-span. */
600 	u_int loc;              /* location (scaled) */
601 	u_int cum_pressure;     /* cumulative compression */
602 	u_int max_cum_pressure; /* max cumulative compression */
603 	boolean_t matched; /*to track components as they match against pspans.*/
604 
605 	int   delta_mickeys;    /* change in location (un-smoothened movement)*/
606 } fg_stroke_component_t;
607 
608 /*
609  * The following structure captures a finger contact with the
610  * touchpad. A stroke comprises two p-span components and some state.
611  */
612 typedef struct atp_stroke {
613 	TAILQ_ENTRY(atp_stroke) entry;
614 
615 	atp_stroke_type type;
616 	uint32_t        flags; /* the state of this stroke */
617 #define ATSF_ZOMBIE 0x1
618 	boolean_t       matched;          /* to track match against fingers.*/
619 
620 	struct timeval  ctime; /* create time; for coincident siblings. */
621 
622 	/*
623 	 * Unit: interrupts; we maintain this value in
624 	 * addition to 'ctime' in order to avoid the
625 	 * expensive call to microtime() at every
626 	 * interrupt.
627 	 */
628 	uint32_t age;
629 
630 	/* Location */
631 	int x;
632 	int y;
633 
634 	/* Fields containing information about movement. */
635 	int   instantaneous_dx; /* curr. change in X location (un-smoothened) */
636 	int   instantaneous_dy; /* curr. change in Y location (un-smoothened) */
637 	int   pending_dx;       /* cum. of pending short movements */
638 	int   pending_dy;       /* cum. of pending short movements */
639 	int   movement_dx;      /* interpreted smoothened movement */
640 	int   movement_dy;      /* interpreted smoothened movement */
641 	int   cum_movement_x;   /* cum. horizontal movement */
642 	int   cum_movement_y;   /* cum. vertical movement */
643 
644 	/*
645 	 * The following member is relevant only for fountain-geyser trackpads.
646 	 * For these, there is the need to track pressure-spans and cumulative
647 	 * pressures for stroke components.
648 	 */
649 	fg_stroke_component_t components[NUM_AXES];
650 } atp_stroke_t;
651 
652 struct atp_softc; /* forward declaration */
653 typedef void (*sensor_data_interpreter_t)(struct atp_softc *sc, u_int len);
654 
655 struct atp_softc {
656 	device_t            sc_dev;
657 	struct usb_device  *sc_usb_device;
658 	struct mtx          sc_mutex; /* for synchronization */
659 	struct usb_fifo_sc  sc_fifo;
660 
661 #define	MODE_LENGTH 8
662 	char                sc_mode_bytes[MODE_LENGTH]; /* device mode */
663 
664 	trackpad_family_t   sc_family;
665 	const void         *sc_params; /* device configuration */
666 	sensor_data_interpreter_t sensor_data_interpreter;
667 
668 	mousehw_t           sc_hw;
669 	mousemode_t         sc_mode;
670 	mousestatus_t       sc_status;
671 
672 	u_int               sc_state;
673 #define ATP_ENABLED          0x01
674 #define ATP_ZOMBIES_EXIST    0x02
675 #define ATP_DOUBLE_TAP_DRAG  0x04
676 #define ATP_VALID            0x08
677 
678 	struct usb_xfer    *sc_xfer[ATP_N_TRANSFER];
679 
680 	u_int               sc_pollrate;
681 	int                 sc_fflags;
682 
683 	atp_stroke_t        sc_strokes_data[ATP_MAX_STROKES];
684 	TAILQ_HEAD(,atp_stroke) sc_stroke_free;
685 	TAILQ_HEAD(,atp_stroke) sc_stroke_used;
686 	u_int               sc_n_strokes;
687 
688 	struct callout	    sc_callout;
689 
690 	/*
691 	 * button status. Set to non-zero if the mouse-button is physically
692 	 * pressed. This state variable is exposed through softc to allow
693 	 * reap_sibling_zombies to avoid registering taps while the trackpad
694 	 * button is pressed.
695          */
696 	uint8_t             sc_ibtn;
697 
698 	/*
699 	 * Time when touch zombies were last reaped; useful for detecting
700 	 * double-touch-n-drag.
701 	 */
702 	struct timeval      sc_touch_reap_time;
703 
704 	u_int	            sc_idlecount;
705 
706 	/* Regarding the data transferred from t-pad in USB INTR packets. */
707 	u_int   sc_expected_sensor_data_len;
708 	uint8_t sc_sensor_data[ATP_SENSOR_DATA_BUF_MAX] __aligned(4);
709 
710 	int      sc_cur_x[FG_MAX_XSENSORS];      /* current sensor readings */
711 	int      sc_cur_y[FG_MAX_YSENSORS];
712 	int      sc_base_x[FG_MAX_XSENSORS];     /* base sensor readings */
713 	int      sc_base_y[FG_MAX_YSENSORS];
714 	int      sc_pressure_x[FG_MAX_XSENSORS]; /* computed pressures */
715 	int      sc_pressure_y[FG_MAX_YSENSORS];
716 	fg_pspan sc_pspans_x[FG_MAX_PSPANS_PER_AXIS];
717 	fg_pspan sc_pspans_y[FG_MAX_PSPANS_PER_AXIS];
718 };
719 
720 /*
721  * The last byte of the fountain-geyser sensor data contains status bits; the
722  * following values define the meanings of these bits.
723  * (only Geyser 3/4)
724  */
725 enum geyser34_status_bits {
726 	FG_STATUS_BUTTON      = (uint8_t)0x01, /* The button was pressed */
727 	FG_STATUS_BASE_UPDATE = (uint8_t)0x04, /* Data from an untouched pad.*/
728 };
729 
730 typedef enum interface_mode {
731 	RAW_SENSOR_MODE = (uint8_t)0x01,
732 	HID_MODE        = (uint8_t)0x08
733 } interface_mode;
734 
735 
736 /*
737  * function prototypes
738  */
739 static usb_fifo_cmd_t   atp_start_read;
740 static usb_fifo_cmd_t   atp_stop_read;
741 static usb_fifo_open_t  atp_open;
742 static usb_fifo_close_t atp_close;
743 static usb_fifo_ioctl_t atp_ioctl;
744 
745 static struct usb_fifo_methods atp_fifo_methods = {
746 	.f_open       = &atp_open,
747 	.f_close      = &atp_close,
748 	.f_ioctl      = &atp_ioctl,
749 	.f_start_read = &atp_start_read,
750 	.f_stop_read  = &atp_stop_read,
751 	.basename[0]  = ATP_DRIVER_NAME,
752 };
753 
754 /* device initialization and shutdown */
755 static usb_error_t   atp_set_device_mode(struct atp_softc *, interface_mode);
756 static void	     atp_reset_callback(struct usb_xfer *, usb_error_t);
757 static int	     atp_enable(struct atp_softc *);
758 static void	     atp_disable(struct atp_softc *);
759 
760 /* sensor interpretation */
761 static void	     fg_interpret_sensor_data(struct atp_softc *, u_int);
762 static void	     fg_extract_sensor_data(const int8_t *, u_int, atp_axis,
763     int *, enum fountain_geyser_trackpad_type);
764 static void	     fg_get_pressures(int *, const int *, const int *, int);
765 static void	     fg_detect_pspans(int *, u_int, u_int, fg_pspan *, u_int *);
766 static void	     wsp_interpret_sensor_data(struct atp_softc *, u_int);
767 
768 /* movement detection */
769 static boolean_t     fg_match_stroke_component(fg_stroke_component_t *,
770     const fg_pspan *, atp_stroke_type);
771 static void	     fg_match_strokes_against_pspans(struct atp_softc *,
772     atp_axis, fg_pspan *, u_int, u_int);
773 static boolean_t     wsp_match_strokes_against_fingers(struct atp_softc *,
774     wsp_finger_t *, u_int);
775 static boolean_t     fg_update_strokes(struct atp_softc *, fg_pspan *, u_int,
776     fg_pspan *, u_int);
777 static boolean_t     wsp_update_strokes(struct atp_softc *,
778     wsp_finger_t [WSP_MAX_FINGERS], u_int);
779 static void fg_add_stroke(struct atp_softc *, const fg_pspan *, const fg_pspan *);
780 static void	     fg_add_new_strokes(struct atp_softc *, fg_pspan *,
781     u_int, fg_pspan *, u_int);
782 static void wsp_add_stroke(struct atp_softc *, const wsp_finger_t *);
783 static void	     atp_advance_stroke_state(struct atp_softc *,
784     atp_stroke_t *, boolean_t *);
785 static boolean_t atp_stroke_has_small_movement(const atp_stroke_t *);
786 static void	     atp_update_pending_mickeys(atp_stroke_t *);
787 static boolean_t     atp_compute_stroke_movement(atp_stroke_t *);
788 static void	     atp_terminate_stroke(struct atp_softc *, atp_stroke_t *);
789 
790 /* tap detection */
791 static boolean_t atp_is_horizontal_scroll(const atp_stroke_t *);
792 static boolean_t atp_is_vertical_scroll(const atp_stroke_t *);
793 static void	     atp_reap_sibling_zombies(void *);
794 static void	     atp_convert_to_slide(struct atp_softc *, atp_stroke_t *);
795 
796 /* updating fifo */
797 static void	     atp_reset_buf(struct atp_softc *);
798 static void	     atp_add_to_queue(struct atp_softc *, int, int, int, uint32_t);
799 
800 /* Device methods. */
801 static device_probe_t  atp_probe;
802 static device_attach_t atp_attach;
803 static device_detach_t atp_detach;
804 static usb_callback_t  atp_intr;
805 
806 static const struct usb_config atp_xfer_config[ATP_N_TRANSFER] = {
807 	[ATP_INTR_DT] = {
808 		.type      = UE_INTERRUPT,
809 		.endpoint  = UE_ADDR_ANY,
810 		.direction = UE_DIR_IN,
811 		.flags = {
812 			.pipe_bof = 1, /* block pipe on failure */
813 			.short_xfer_ok = 1,
814 		},
815 		.bufsize   = ATP_SENSOR_DATA_BUF_MAX,
816 		.callback  = &atp_intr,
817 	},
818 	[ATP_RESET] = {
819 		.type      = UE_CONTROL,
820 		.endpoint  = 0, /* Control pipe */
821 		.direction = UE_DIR_ANY,
822 		.bufsize   = sizeof(struct usb_device_request) + MODE_LENGTH,
823 		.callback  = &atp_reset_callback,
824 		.interval  = 0,  /* no pre-delay */
825 	},
826 };
827 
828 static atp_stroke_t *
829 atp_alloc_stroke(struct atp_softc *sc)
830 {
831 	atp_stroke_t *pstroke;
832 
833 	pstroke = TAILQ_FIRST(&sc->sc_stroke_free);
834 	if (pstroke == NULL)
835 		goto done;
836 
837 	TAILQ_REMOVE(&sc->sc_stroke_free, pstroke, entry);
838 	memset(pstroke, 0, sizeof(*pstroke));
839 	TAILQ_INSERT_TAIL(&sc->sc_stroke_used, pstroke, entry);
840 
841 	sc->sc_n_strokes++;
842 done:
843 	return (pstroke);
844 }
845 
846 static void
847 atp_free_stroke(struct atp_softc *sc, atp_stroke_t *pstroke)
848 {
849 	if (pstroke == NULL)
850 		return;
851 
852 	sc->sc_n_strokes--;
853 
854 	TAILQ_REMOVE(&sc->sc_stroke_used, pstroke, entry);
855 	TAILQ_INSERT_TAIL(&sc->sc_stroke_free, pstroke, entry);
856 }
857 
858 static void
859 atp_init_stroke_pool(struct atp_softc *sc)
860 {
861 	u_int x;
862 
863 	TAILQ_INIT(&sc->sc_stroke_free);
864 	TAILQ_INIT(&sc->sc_stroke_used);
865 
866 	sc->sc_n_strokes = 0;
867 
868 	memset(&sc->sc_strokes_data, 0, sizeof(sc->sc_strokes_data));
869 
870 	for (x = 0; x != ATP_MAX_STROKES; x++) {
871 		TAILQ_INSERT_TAIL(&sc->sc_stroke_free, &sc->sc_strokes_data[x],
872 		    entry);
873 	}
874 }
875 
876 static usb_error_t
877 atp_set_device_mode(struct atp_softc *sc, interface_mode newMode)
878 {
879 	uint8_t mode_value;
880 	usb_error_t err;
881 
882 	if ((newMode != RAW_SENSOR_MODE) && (newMode != HID_MODE))
883 		return (USB_ERR_INVAL);
884 
885 	if ((newMode == RAW_SENSOR_MODE) &&
886 	    (sc->sc_family == TRACKPAD_FAMILY_FOUNTAIN_GEYSER))
887 		mode_value = (uint8_t)0x04;
888 	else
889 		mode_value = newMode;
890 
891 	err = usbd_req_get_report(sc->sc_usb_device, NULL /* mutex */,
892 	    sc->sc_mode_bytes, sizeof(sc->sc_mode_bytes), 0 /* interface idx */,
893 	    0x03 /* type */, 0x00 /* id */);
894 	if (err != USB_ERR_NORMAL_COMPLETION) {
895 		DPRINTF("Failed to read device mode (%d)\n", err);
896 		return (err);
897 	}
898 
899 	if (sc->sc_mode_bytes[0] == mode_value)
900 		return (err);
901 
902 	/*
903 	 * XXX Need to wait at least 250ms for hardware to get
904 	 * ready. The device mode handling appears to be handled
905 	 * asynchronously and we should not issue these commands too
906 	 * quickly.
907 	 */
908 	pause("WHW", hz / 4);
909 
910 	sc->sc_mode_bytes[0] = mode_value;
911 	return (usbd_req_set_report(sc->sc_usb_device, NULL /* mutex */,
912 	    sc->sc_mode_bytes, sizeof(sc->sc_mode_bytes), 0 /* interface idx */,
913 	    0x03 /* type */, 0x00 /* id */));
914 }
915 
916 static void
917 atp_reset_callback(struct usb_xfer *xfer, usb_error_t error)
918 {
919 	usb_device_request_t   req;
920 	struct usb_page_cache *pc;
921 	struct atp_softc      *sc = usbd_xfer_softc(xfer);
922 
923 	uint8_t mode_value;
924 	if (sc->sc_family == TRACKPAD_FAMILY_FOUNTAIN_GEYSER)
925 		mode_value = 0x04;
926 	else
927 		mode_value = RAW_SENSOR_MODE;
928 
929 	switch (USB_GET_STATE(xfer)) {
930 	case USB_ST_SETUP:
931 		sc->sc_mode_bytes[0] = mode_value;
932 		req.bmRequestType = UT_WRITE_CLASS_INTERFACE;
933 		req.bRequest = UR_SET_REPORT;
934 		USETW2(req.wValue,
935 		    (uint8_t)0x03 /* type */, (uint8_t)0x00 /* id */);
936 		USETW(req.wIndex, 0);
937 		USETW(req.wLength, MODE_LENGTH);
938 
939 		pc = usbd_xfer_get_frame(xfer, 0);
940 		usbd_copy_in(pc, 0, &req, sizeof(req));
941 		pc = usbd_xfer_get_frame(xfer, 1);
942 		usbd_copy_in(pc, 0, sc->sc_mode_bytes, MODE_LENGTH);
943 
944 		usbd_xfer_set_frame_len(xfer, 0, sizeof(req));
945 		usbd_xfer_set_frame_len(xfer, 1, MODE_LENGTH);
946 		usbd_xfer_set_frames(xfer, 2);
947 		usbd_transfer_submit(xfer);
948 		break;
949 
950 	case USB_ST_TRANSFERRED:
951 	default:
952 		break;
953 	}
954 }
955 
956 static int
957 atp_enable(struct atp_softc *sc)
958 {
959 	if (sc->sc_state & ATP_ENABLED)
960 		return (0);
961 
962 	/* reset status */
963 	memset(&sc->sc_status, 0, sizeof(sc->sc_status));
964 
965 	atp_init_stroke_pool(sc);
966 
967 	sc->sc_state |= ATP_ENABLED;
968 
969 	DPRINTFN(ATP_LLEVEL_INFO, "enabled atp\n");
970 	return (0);
971 }
972 
973 static void
974 atp_disable(struct atp_softc *sc)
975 {
976 	sc->sc_state &= ~(ATP_ENABLED | ATP_VALID);
977 	DPRINTFN(ATP_LLEVEL_INFO, "disabled atp\n");
978 }
979 
980 static void
981 fg_interpret_sensor_data(struct atp_softc *sc, u_int data_len)
982 {
983 	u_int n_xpspans = 0;
984 	u_int n_ypspans = 0;
985 	uint8_t status_bits;
986 
987 	const struct fg_dev_params *params =
988 	    (const struct fg_dev_params *)sc->sc_params;
989 
990 	fg_extract_sensor_data(sc->sc_sensor_data, params->n_xsensors, X,
991 	    sc->sc_cur_x, params->prot);
992 	fg_extract_sensor_data(sc->sc_sensor_data, params->n_ysensors, Y,
993 	    sc->sc_cur_y, params->prot);
994 
995 	/*
996 	 * If this is the initial update (from an untouched
997 	 * pad), we should set the base values for the sensor
998 	 * data; deltas with respect to these base values can
999 	 * be used as pressure readings subsequently.
1000 	 */
1001 	status_bits = sc->sc_sensor_data[params->data_len - 1];
1002 	if (((params->prot == FG_TRACKPAD_TYPE_GEYSER3) ||
1003 	     (params->prot == FG_TRACKPAD_TYPE_GEYSER4))  &&
1004 	    ((sc->sc_state & ATP_VALID) == 0)) {
1005 		if (status_bits & FG_STATUS_BASE_UPDATE) {
1006 			memcpy(sc->sc_base_x, sc->sc_cur_x,
1007 			    params->n_xsensors * sizeof(*sc->sc_base_x));
1008 			memcpy(sc->sc_base_y, sc->sc_cur_y,
1009 			    params->n_ysensors * sizeof(*sc->sc_base_y));
1010 			sc->sc_state |= ATP_VALID;
1011 			return;
1012 		}
1013 	}
1014 
1015 	/* Get pressure readings and detect p-spans for both axes. */
1016 	fg_get_pressures(sc->sc_pressure_x, sc->sc_cur_x, sc->sc_base_x,
1017 	    params->n_xsensors);
1018 	fg_detect_pspans(sc->sc_pressure_x, params->n_xsensors,
1019 	    FG_MAX_PSPANS_PER_AXIS, sc->sc_pspans_x, &n_xpspans);
1020 	fg_get_pressures(sc->sc_pressure_y, sc->sc_cur_y, sc->sc_base_y,
1021 	    params->n_ysensors);
1022 	fg_detect_pspans(sc->sc_pressure_y, params->n_ysensors,
1023 	    FG_MAX_PSPANS_PER_AXIS, sc->sc_pspans_y, &n_ypspans);
1024 
1025 	/* Update strokes with new pspans to detect movements. */
1026 	if (fg_update_strokes(sc, sc->sc_pspans_x, n_xpspans, sc->sc_pspans_y, n_ypspans))
1027 		sc->sc_status.flags |= MOUSE_POSCHANGED;
1028 
1029 	sc->sc_ibtn = (status_bits & FG_STATUS_BUTTON) ? MOUSE_BUTTON1DOWN : 0;
1030 	sc->sc_status.button = sc->sc_ibtn;
1031 
1032 	/*
1033 	 * The Fountain/Geyser device continues to trigger interrupts
1034 	 * at a fast rate even after touchpad activity has
1035 	 * stopped. Upon detecting that the device has remained idle
1036 	 * beyond a threshold, we reinitialize it to silence the
1037 	 * interrupts.
1038 	 */
1039 	if ((sc->sc_status.flags  == 0) && (sc->sc_n_strokes == 0)) {
1040 		sc->sc_idlecount++;
1041 		if (sc->sc_idlecount >= ATP_IDLENESS_THRESHOLD) {
1042 			/*
1043 			 * Use the last frame before we go idle for
1044 			 * calibration on pads which do not send
1045 			 * calibration frames.
1046 			 */
1047 			const struct fg_dev_params *params =
1048 			    (const struct fg_dev_params *)sc->sc_params;
1049 
1050 			DPRINTFN(ATP_LLEVEL_INFO, "idle\n");
1051 
1052 			if (params->prot < FG_TRACKPAD_TYPE_GEYSER3) {
1053 				memcpy(sc->sc_base_x, sc->sc_cur_x,
1054 				    params->n_xsensors * sizeof(*(sc->sc_base_x)));
1055 				memcpy(sc->sc_base_y, sc->sc_cur_y,
1056 				    params->n_ysensors * sizeof(*(sc->sc_base_y)));
1057 			}
1058 
1059 			sc->sc_idlecount = 0;
1060 			usbd_transfer_start(sc->sc_xfer[ATP_RESET]);
1061 		}
1062 	} else {
1063 		sc->sc_idlecount = 0;
1064 	}
1065 }
1066 
1067 /*
1068  * Interpret the data from the X and Y pressure sensors. This function
1069  * is called separately for the X and Y sensor arrays. The data in the
1070  * USB packet is laid out in the following manner:
1071  *
1072  * sensor_data:
1073  *            --,--,Y1,Y2,--,Y3,Y4,--,Y5,...,Y10, ... X1,X2,--,X3,X4
1074  *  indices:   0  1  2  3  4  5  6  7  8 ...  15  ... 20 21 22 23 24
1075  *
1076  * '--' (in the above) indicates that the value is unimportant.
1077  *
1078  * Information about the above layout was obtained from the
1079  * implementation of the AppleTouch driver in Linux.
1080  *
1081  * parameters:
1082  *   sensor_data
1083  *       raw sensor data from the USB packet.
1084  *   num
1085  *       The number of elements in the array 'arr'.
1086  *   axis
1087  *       Axis of data to fetch
1088  *   arr
1089  *       The array to be initialized with the readings.
1090  *   prot
1091  *       The protocol to use to interpret the data
1092  */
1093 static void
1094 fg_extract_sensor_data(const int8_t *sensor_data, u_int num, atp_axis axis,
1095     int	*arr, enum fountain_geyser_trackpad_type prot)
1096 {
1097 	u_int i;
1098 	u_int di;   /* index into sensor data */
1099 
1100 	switch (prot) {
1101 	case FG_TRACKPAD_TYPE_GEYSER1:
1102 		/*
1103 		 * For Geyser 1, the sensors are laid out in pairs
1104 		 * every 5 bytes.
1105 		 */
1106 		for (i = 0, di = (axis == Y) ? 1 : 2; i < 8; di += 5, i++) {
1107 			arr[i] = sensor_data[di];
1108 			arr[i+8] = sensor_data[di+2];
1109 			if ((axis == X) && (num > 16))
1110 				arr[i+16] = sensor_data[di+40];
1111 		}
1112 
1113 		break;
1114 	case FG_TRACKPAD_TYPE_GEYSER2:
1115 		for (i = 0, di = (axis == Y) ? 1 : 19; i < num; /* empty */ ) {
1116 			arr[i++] = sensor_data[di++];
1117 			arr[i++] = sensor_data[di++];
1118 			di++;
1119 		}
1120 		break;
1121 	case FG_TRACKPAD_TYPE_GEYSER3:
1122 	case FG_TRACKPAD_TYPE_GEYSER4:
1123 		for (i = 0, di = (axis == Y) ? 2 : 20; i < num; /* empty */ ) {
1124 			arr[i++] = sensor_data[di++];
1125 			arr[i++] = sensor_data[di++];
1126 			di++;
1127 		}
1128 		break;
1129 	default:
1130 		break;
1131 	}
1132 }
1133 
1134 static void
1135 fg_get_pressures(int *p, const int *cur, const int *base, int n)
1136 {
1137 	int i;
1138 
1139 	for (i = 0; i < n; i++) {
1140 		p[i] = cur[i] - base[i];
1141 		if (p[i] > 127)
1142 			p[i] -= 256;
1143 		if (p[i] < -127)
1144 			p[i] += 256;
1145 		if (p[i] < 0)
1146 			p[i] = 0;
1147 
1148 		/*
1149 		 * Shave off pressures below the noise-pressure
1150 		 * threshold; this will reduce the contribution from
1151 		 * lower pressure readings.
1152 		 */
1153 		if ((u_int)p[i] <= FG_SENSOR_NOISE_THRESHOLD)
1154 			p[i] = 0; /* filter away noise */
1155 		else
1156 			p[i] -= FG_SENSOR_NOISE_THRESHOLD;
1157 	}
1158 }
1159 
1160 static void
1161 fg_detect_pspans(int *p, u_int num_sensors,
1162     u_int      max_spans, /* max # of pspans permitted */
1163     fg_pspan  *spans,     /* finger spans */
1164     u_int     *nspans_p)  /* num spans detected */
1165 {
1166 	u_int i;
1167 	int   maxp;             /* max pressure seen within a span */
1168 	u_int num_spans = 0;
1169 
1170 	enum fg_pspan_state {
1171 		ATP_PSPAN_INACTIVE,
1172 		ATP_PSPAN_INCREASING,
1173 		ATP_PSPAN_DECREASING,
1174 	} state; /* state of the pressure span */
1175 
1176 	/*
1177 	 * The following is a simple state machine to track
1178 	 * the phase of the pressure span.
1179 	 */
1180 	memset(spans, 0, max_spans * sizeof(fg_pspan));
1181 	maxp = 0;
1182 	state = ATP_PSPAN_INACTIVE;
1183 	for (i = 0; i < num_sensors; i++) {
1184 		if (num_spans >= max_spans)
1185 			break;
1186 
1187 		if (p[i] == 0) {
1188 			if (state == ATP_PSPAN_INACTIVE) {
1189 				/*
1190 				 * There is no pressure information for this
1191 				 * sensor, and we aren't tracking a finger.
1192 				 */
1193 				continue;
1194 			} else {
1195 				state = ATP_PSPAN_INACTIVE;
1196 				maxp = 0;
1197 				num_spans++;
1198 			}
1199 		} else {
1200 			switch (state) {
1201 			case ATP_PSPAN_INACTIVE:
1202 				state = ATP_PSPAN_INCREASING;
1203 				maxp  = p[i];
1204 				break;
1205 
1206 			case ATP_PSPAN_INCREASING:
1207 				if (p[i] > maxp)
1208 					maxp = p[i];
1209 				else if (p[i] <= (maxp >> 1))
1210 					state = ATP_PSPAN_DECREASING;
1211 				break;
1212 
1213 			case ATP_PSPAN_DECREASING:
1214 				if (p[i] > p[i - 1]) {
1215 					/*
1216 					 * This is the beginning of
1217 					 * another span; change state
1218 					 * to give the appearance that
1219 					 * we're starting from an
1220 					 * inactive span, and then
1221 					 * re-process this reading in
1222 					 * the next iteration.
1223 					 */
1224 					num_spans++;
1225 					state = ATP_PSPAN_INACTIVE;
1226 					maxp  = 0;
1227 					i--;
1228 					continue;
1229 				}
1230 				break;
1231 			}
1232 
1233 			/* Update the finger span with this reading. */
1234 			spans[num_spans].width++;
1235 			spans[num_spans].cum += p[i];
1236 			spans[num_spans].cog += p[i] * (i + 1);
1237 		}
1238 	}
1239 	if (state != ATP_PSPAN_INACTIVE)
1240 		num_spans++;    /* close the last finger span */
1241 
1242 	/* post-process the spans */
1243 	for (i = 0; i < num_spans; i++) {
1244 		/* filter away unwanted pressure spans */
1245 		if ((spans[i].cum < FG_PSPAN_MIN_CUM_PRESSURE) ||
1246 		    (spans[i].width > FG_PSPAN_MAX_WIDTH)) {
1247 			if ((i + 1) < num_spans) {
1248 				memcpy(&spans[i], &spans[i + 1],
1249 				    (num_spans - i - 1) * sizeof(fg_pspan));
1250 				i--;
1251 			}
1252 			num_spans--;
1253 			continue;
1254 		}
1255 
1256 		/* compute this span's representative location */
1257 		spans[i].loc = spans[i].cog * FG_SCALE_FACTOR /
1258 			spans[i].cum;
1259 
1260 		spans[i].matched = false; /* not yet matched against a stroke */
1261 	}
1262 
1263 	*nspans_p = num_spans;
1264 }
1265 
1266 static void
1267 wsp_interpret_sensor_data(struct atp_softc *sc, u_int data_len)
1268 {
1269 	const struct wsp_dev_params *params = sc->sc_params;
1270 	wsp_finger_t fingers[WSP_MAX_FINGERS];
1271 	struct wsp_finger_sensor_data *source_fingerp;
1272 	u_int n_source_fingers;
1273 	u_int n_fingers;
1274 	u_int i;
1275 
1276 	/* validate sensor data length */
1277 	if ((data_len < params->finger_data_offset) ||
1278 	    ((data_len - params->finger_data_offset) %
1279 	     WSP_SIZEOF_FINGER_SENSOR_DATA) != 0)
1280 		return;
1281 
1282 	/* compute number of source fingers */
1283 	n_source_fingers = (data_len - params->finger_data_offset) /
1284 	    WSP_SIZEOF_FINGER_SENSOR_DATA;
1285 
1286 	if (n_source_fingers > WSP_MAX_FINGERS)
1287 		n_source_fingers = WSP_MAX_FINGERS;
1288 
1289 	/* iterate over the source data collecting useful fingers */
1290 	n_fingers = 0;
1291 	source_fingerp = (struct wsp_finger_sensor_data *)(sc->sc_sensor_data +
1292 	     params->finger_data_offset);
1293 
1294 	for (i = 0; i < n_source_fingers; i++, source_fingerp++) {
1295 		/* swap endianness, if any */
1296 		if (le16toh(0x1234) != 0x1234) {
1297 			source_fingerp->origin      = le16toh((uint16_t)source_fingerp->origin);
1298 			source_fingerp->abs_x       = le16toh((uint16_t)source_fingerp->abs_x);
1299 			source_fingerp->abs_y       = le16toh((uint16_t)source_fingerp->abs_y);
1300 			source_fingerp->rel_x       = le16toh((uint16_t)source_fingerp->rel_x);
1301 			source_fingerp->rel_y       = le16toh((uint16_t)source_fingerp->rel_y);
1302 			source_fingerp->tool_major  = le16toh((uint16_t)source_fingerp->tool_major);
1303 			source_fingerp->tool_minor  = le16toh((uint16_t)source_fingerp->tool_minor);
1304 			source_fingerp->orientation = le16toh((uint16_t)source_fingerp->orientation);
1305 			source_fingerp->touch_major = le16toh((uint16_t)source_fingerp->touch_major);
1306 			source_fingerp->touch_minor = le16toh((uint16_t)source_fingerp->touch_minor);
1307 			source_fingerp->multi       = le16toh((uint16_t)source_fingerp->multi);
1308 		}
1309 
1310 		/* check for minium threshold */
1311 		if (source_fingerp->touch_major == 0)
1312 			continue;
1313 
1314 		fingers[n_fingers].matched = false;
1315 		fingers[n_fingers].x       = source_fingerp->abs_x;
1316 		fingers[n_fingers].y       = -source_fingerp->abs_y;
1317 
1318 		n_fingers++;
1319 	}
1320 
1321 	if ((sc->sc_n_strokes == 0) && (n_fingers == 0))
1322 		return;
1323 
1324 	if (wsp_update_strokes(sc, fingers, n_fingers))
1325 		sc->sc_status.flags |= MOUSE_POSCHANGED;
1326 
1327 	switch(params->tp_type) {
1328 	case WSP_TRACKPAD_TYPE2:
1329 		sc->sc_ibtn = sc->sc_sensor_data[WSP_TYPE2_BUTTON_DATA_OFFSET];
1330 		break;
1331 	case WSP_TRACKPAD_TYPE3:
1332 		sc->sc_ibtn = sc->sc_sensor_data[WSP_TYPE3_BUTTON_DATA_OFFSET];
1333 		break;
1334 	default:
1335 		break;
1336 	}
1337 	sc->sc_status.button = sc->sc_ibtn ? MOUSE_BUTTON1DOWN : 0;
1338 }
1339 
1340 /*
1341  * Match a pressure-span against a stroke-component. If there is a
1342  * match, update the component's state and return true.
1343  */
1344 static boolean_t
1345 fg_match_stroke_component(fg_stroke_component_t *component,
1346     const fg_pspan *pspan, atp_stroke_type stroke_type)
1347 {
1348 	int   delta_mickeys;
1349 	u_int min_pressure;
1350 
1351 	delta_mickeys = pspan->loc - component->loc;
1352 
1353 	if (abs(delta_mickeys) > (int)FG_MAX_DELTA_MICKEYS)
1354 		return (false); /* the finger span is too far out; no match */
1355 
1356 	component->loc = pspan->loc;
1357 
1358 	/*
1359 	 * A sudden and significant increase in a pspan's cumulative
1360 	 * pressure indicates the incidence of a new finger
1361 	 * contact. This usually revises the pspan's
1362 	 * centre-of-gravity, and hence the location of any/all
1363 	 * matching stroke component(s). But such a change should
1364 	 * *not* be interpreted as a movement.
1365 	 */
1366 	if (pspan->cum > ((3 * component->cum_pressure) >> 1))
1367 		delta_mickeys = 0;
1368 
1369 	component->cum_pressure = pspan->cum;
1370 	if (pspan->cum > component->max_cum_pressure)
1371 		component->max_cum_pressure = pspan->cum;
1372 
1373 	/*
1374 	 * Disregard the component's movement if its cumulative
1375 	 * pressure drops below a fraction of the maximum; this
1376 	 * fraction is determined based on the stroke's type.
1377 	 */
1378 	if (stroke_type == ATP_STROKE_TOUCH)
1379 		min_pressure = (3 * component->max_cum_pressure) >> 2;
1380 	else
1381 		min_pressure = component->max_cum_pressure >> 2;
1382 	if (component->cum_pressure < min_pressure)
1383 		delta_mickeys = 0;
1384 
1385 	component->delta_mickeys = delta_mickeys;
1386 	return (true);
1387 }
1388 
1389 static void
1390 fg_match_strokes_against_pspans(struct atp_softc *sc, atp_axis axis,
1391     fg_pspan *pspans, u_int n_pspans, u_int repeat_count)
1392 {
1393 	atp_stroke_t *strokep;
1394 	u_int repeat_index = 0;
1395 	u_int i;
1396 
1397 	/* Determine the index of the multi-span. */
1398 	if (repeat_count) {
1399 		for (i = 0; i < n_pspans; i++) {
1400 			if (pspans[i].cum > pspans[repeat_index].cum)
1401 				repeat_index = i;
1402 		}
1403 	}
1404 
1405 	TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry) {
1406 		if (strokep->components[axis].matched)
1407 			continue; /* skip matched components */
1408 
1409 		for (i = 0; i < n_pspans; i++) {
1410 			if (pspans[i].matched)
1411 				continue; /* skip matched pspans */
1412 
1413 			if (fg_match_stroke_component(
1414 			    &strokep->components[axis], &pspans[i],
1415 			    strokep->type)) {
1416 
1417 				/* There is a match. */
1418 				strokep->components[axis].matched = true;
1419 
1420 				/* Take care to repeat at the multi-span. */
1421 				if ((repeat_count > 0) && (i == repeat_index))
1422 					repeat_count--;
1423 				else
1424 					pspans[i].matched = true;
1425 
1426 				break; /* skip to the next strokep */
1427 			}
1428 		} /* loop over pspans */
1429 	} /* loop over strokes */
1430 }
1431 
1432 static boolean_t
1433 wsp_match_strokes_against_fingers(struct atp_softc *sc,
1434     wsp_finger_t *fingers, u_int n_fingers)
1435 {
1436 	boolean_t movement = false;
1437 	atp_stroke_t *strokep;
1438 	u_int i;
1439 
1440 	/* reset the matched status for all strokes */
1441 	TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry)
1442 		strokep->matched = false;
1443 
1444 	for (i = 0; i != n_fingers; i++) {
1445 		u_int least_distance_sq = WSP_MAX_ALLOWED_MATCH_DISTANCE_SQ;
1446 		atp_stroke_t *strokep_best = NULL;
1447 
1448 		TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry) {
1449 			int instantaneous_dx;
1450 			int instantaneous_dy;
1451 			u_int d_squared;
1452 
1453 			if (strokep->matched)
1454 				continue;
1455 
1456 			instantaneous_dx = fingers[i].x - strokep->x;
1457 			instantaneous_dy = fingers[i].y - strokep->y;
1458 
1459 			/* skip strokes which are far away */
1460 			d_squared =
1461 			    (instantaneous_dx * instantaneous_dx) +
1462 			    (instantaneous_dy * instantaneous_dy);
1463 
1464 			if (d_squared < least_distance_sq) {
1465 				least_distance_sq = d_squared;
1466 				strokep_best = strokep;
1467 			}
1468 		}
1469 
1470 		strokep = strokep_best;
1471 
1472 		if (strokep != NULL) {
1473 			fingers[i].matched = true;
1474 
1475 			strokep->matched          = true;
1476 			strokep->instantaneous_dx = fingers[i].x - strokep->x;
1477 			strokep->instantaneous_dy = fingers[i].y - strokep->y;
1478 			strokep->x                = fingers[i].x;
1479 			strokep->y                = fingers[i].y;
1480 
1481 			atp_advance_stroke_state(sc, strokep, &movement);
1482 		}
1483 	}
1484 	return (movement);
1485 }
1486 
1487 /*
1488  * Update strokes by matching against current pressure-spans.
1489  * Return true if any movement is detected.
1490  */
1491 static boolean_t
1492 fg_update_strokes(struct atp_softc *sc, fg_pspan *pspans_x,
1493     u_int n_xpspans, fg_pspan *pspans_y, u_int n_ypspans)
1494 {
1495 	atp_stroke_t *strokep;
1496 	atp_stroke_t *strokep_next;
1497 	boolean_t movement = false;
1498 	u_int repeat_count = 0;
1499 	u_int i;
1500 	u_int j;
1501 
1502 	/* Reset X and Y components of all strokes as unmatched. */
1503 	TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry) {
1504 		strokep->components[X].matched = false;
1505 		strokep->components[Y].matched = false;
1506 	}
1507 
1508 	/*
1509 	 * Usually, the X and Y pspans come in pairs (the common case
1510 	 * being a single pair). It is possible, however, that
1511 	 * multiple contacts resolve to a single pspan along an
1512 	 * axis, as illustrated in the following:
1513 	 *
1514 	 *   F = finger-contact
1515 	 *
1516 	 *                pspan  pspan
1517 	 *        +-----------------------+
1518 	 *        |         .      .      |
1519 	 *        |         .      .      |
1520 	 *        |         .      .      |
1521 	 *        |         .      .      |
1522 	 *  pspan |.........F......F      |
1523 	 *        |                       |
1524 	 *        |                       |
1525 	 *        |                       |
1526 	 *        +-----------------------+
1527 	 *
1528 	 *
1529 	 * The above case can be detected by a difference in the
1530 	 * number of X and Y pspans. When this happens, X and Y pspans
1531 	 * aren't easy to pair or match against strokes.
1532 	 *
1533 	 * When X and Y pspans differ in number, the axis with the
1534 	 * smaller number of pspans is regarded as having a repeating
1535 	 * pspan (or a multi-pspan)--in the above illustration, the
1536 	 * Y-axis has a repeating pspan. Our approach is to try to
1537 	 * match the multi-pspan repeatedly against strokes. The
1538 	 * difference between the number of X and Y pspans gives us a
1539 	 * crude repeat_count for matching multi-pspans--i.e. the
1540 	 * multi-pspan along the Y axis (above) has a repeat_count of 1.
1541 	 */
1542 	repeat_count = abs(n_xpspans - n_ypspans);
1543 
1544 	fg_match_strokes_against_pspans(sc, X, pspans_x, n_xpspans,
1545 	    (((repeat_count != 0) && ((n_xpspans < n_ypspans))) ?
1546 		repeat_count : 0));
1547 	fg_match_strokes_against_pspans(sc, Y, pspans_y, n_ypspans,
1548 	    (((repeat_count != 0) && (n_ypspans < n_xpspans)) ?
1549 		repeat_count : 0));
1550 
1551 	/* Update the state of strokes based on the above pspan matches. */
1552 	TAILQ_FOREACH_SAFE(strokep, &sc->sc_stroke_used, entry, strokep_next) {
1553 
1554 		if (strokep->components[X].matched &&
1555 		    strokep->components[Y].matched) {
1556 			strokep->matched = true;
1557 			strokep->instantaneous_dx =
1558 			    strokep->components[X].delta_mickeys;
1559 			strokep->instantaneous_dy =
1560 			    strokep->components[Y].delta_mickeys;
1561 			atp_advance_stroke_state(sc, strokep, &movement);
1562 		} else {
1563 			/*
1564 			 * At least one component of this stroke
1565 			 * didn't match against current pspans;
1566 			 * terminate it.
1567 			 */
1568 			atp_terminate_stroke(sc, strokep);
1569 		}
1570 	}
1571 
1572 	/* Add new strokes for pairs of unmatched pspans */
1573 	for (i = 0; i < n_xpspans; i++) {
1574 		if (pspans_x[i].matched == false) break;
1575 	}
1576 	for (j = 0; j < n_ypspans; j++) {
1577 		if (pspans_y[j].matched == false) break;
1578 	}
1579 	if ((i < n_xpspans) && (j < n_ypspans)) {
1580 #ifdef USB_DEBUG
1581 		if (atp_debug >= ATP_LLEVEL_INFO) {
1582 			printf("unmatched pspans:");
1583 			for (; i < n_xpspans; i++) {
1584 				if (pspans_x[i].matched)
1585 					continue;
1586 				printf(" X:[loc:%u,cum:%u]",
1587 				    pspans_x[i].loc, pspans_x[i].cum);
1588 			}
1589 			for (; j < n_ypspans; j++) {
1590 				if (pspans_y[j].matched)
1591 					continue;
1592 				printf(" Y:[loc:%u,cum:%u]",
1593 				    pspans_y[j].loc, pspans_y[j].cum);
1594 			}
1595 			printf("\n");
1596 		}
1597 #endif /* USB_DEBUG */
1598 		if ((n_xpspans == 1) && (n_ypspans == 1))
1599 			/* The common case of a single pair of new pspans. */
1600 			fg_add_stroke(sc, &pspans_x[0], &pspans_y[0]);
1601 		else
1602 			fg_add_new_strokes(sc, pspans_x, n_xpspans,
1603 			    pspans_y, n_ypspans);
1604 	}
1605 
1606 #ifdef USB_DEBUG
1607 	if (atp_debug >= ATP_LLEVEL_INFO) {
1608 		TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry) {
1609 			printf(" %s%clc:%u,dm:%d,cum:%d,max:%d,%c"
1610 			    ",%clc:%u,dm:%d,cum:%d,max:%d,%c",
1611 			    (strokep->flags & ATSF_ZOMBIE) ? "zomb:" : "",
1612 			    (strokep->type == ATP_STROKE_TOUCH) ? '[' : '<',
1613 			    strokep->components[X].loc,
1614 			    strokep->components[X].delta_mickeys,
1615 			    strokep->components[X].cum_pressure,
1616 			    strokep->components[X].max_cum_pressure,
1617 			    (strokep->type == ATP_STROKE_TOUCH) ? ']' : '>',
1618 			    (strokep->type == ATP_STROKE_TOUCH) ? '[' : '<',
1619 			    strokep->components[Y].loc,
1620 			    strokep->components[Y].delta_mickeys,
1621 			    strokep->components[Y].cum_pressure,
1622 			    strokep->components[Y].max_cum_pressure,
1623 			    (strokep->type == ATP_STROKE_TOUCH) ? ']' : '>');
1624 		}
1625 		if (TAILQ_FIRST(&sc->sc_stroke_used) != NULL)
1626 			printf("\n");
1627 	}
1628 #endif /* USB_DEBUG */
1629 	return (movement);
1630 }
1631 
1632 /*
1633  * Update strokes by matching against current pressure-spans.
1634  * Return true if any movement is detected.
1635  */
1636 static boolean_t
1637 wsp_update_strokes(struct atp_softc *sc, wsp_finger_t *fingers, u_int n_fingers)
1638 {
1639 	boolean_t movement = false;
1640 	atp_stroke_t *strokep_next;
1641 	atp_stroke_t *strokep;
1642 	u_int i;
1643 
1644 	if (sc->sc_n_strokes > 0) {
1645 		movement = wsp_match_strokes_against_fingers(
1646 		    sc, fingers, n_fingers);
1647 
1648 		/* handle zombie strokes */
1649 		TAILQ_FOREACH_SAFE(strokep, &sc->sc_stroke_used, entry, strokep_next) {
1650 			if (strokep->matched)
1651 				continue;
1652 			atp_terminate_stroke(sc, strokep);
1653 		}
1654 	}
1655 
1656 	/* initialize unmatched fingers as strokes */
1657 	for (i = 0; i != n_fingers; i++) {
1658 		if (fingers[i].matched)
1659 			continue;
1660 
1661 		wsp_add_stroke(sc, fingers + i);
1662 	}
1663 	return (movement);
1664 }
1665 
1666 /* Initialize a stroke using a pressure-span. */
1667 static void
1668 fg_add_stroke(struct atp_softc *sc, const fg_pspan *pspan_x,
1669     const fg_pspan *pspan_y)
1670 {
1671 	atp_stroke_t *strokep;
1672 
1673 	strokep = atp_alloc_stroke(sc);
1674 	if (strokep == NULL)
1675 		return;
1676 
1677 	/*
1678 	 * Strokes begin as potential touches. If a stroke survives
1679 	 * longer than a threshold, or if it records significant
1680 	 * cumulative movement, then it is considered a 'slide'.
1681 	 */
1682 	strokep->type    = ATP_STROKE_TOUCH;
1683 	strokep->matched = false;
1684 	microtime(&strokep->ctime);
1685 	strokep->age     = 1;		/* number of interrupts */
1686 	strokep->x       = pspan_x->loc;
1687 	strokep->y       = pspan_y->loc;
1688 
1689 	strokep->components[X].loc              = pspan_x->loc;
1690 	strokep->components[X].cum_pressure     = pspan_x->cum;
1691 	strokep->components[X].max_cum_pressure = pspan_x->cum;
1692 	strokep->components[X].matched          = true;
1693 
1694 	strokep->components[Y].loc              = pspan_y->loc;
1695 	strokep->components[Y].cum_pressure     = pspan_y->cum;
1696 	strokep->components[Y].max_cum_pressure = pspan_y->cum;
1697 	strokep->components[Y].matched          = true;
1698 
1699 	if (sc->sc_n_strokes > 1) {
1700 		/* Reset double-tap-n-drag if we have more than one strokes. */
1701 		sc->sc_state &= ~ATP_DOUBLE_TAP_DRAG;
1702 	}
1703 
1704 	DPRINTFN(ATP_LLEVEL_INFO, "[%u,%u], time: %u,%ld\n",
1705 	    strokep->components[X].loc,
1706 	    strokep->components[Y].loc,
1707 	    (u_int)strokep->ctime.tv_sec,
1708 	    (unsigned long int)strokep->ctime.tv_usec);
1709 }
1710 
1711 static void
1712 fg_add_new_strokes(struct atp_softc *sc, fg_pspan *pspans_x,
1713     u_int n_xpspans, fg_pspan *pspans_y, u_int n_ypspans)
1714 {
1715 	fg_pspan spans[2][FG_MAX_PSPANS_PER_AXIS];
1716 	u_int nspans[2];
1717 	u_int i;
1718 	u_int j;
1719 
1720 	/* Copy unmatched pspans into the local arrays. */
1721 	for (i = 0, nspans[X] = 0; i < n_xpspans; i++) {
1722 		if (pspans_x[i].matched == false) {
1723 			spans[X][nspans[X]] = pspans_x[i];
1724 			nspans[X]++;
1725 		}
1726 	}
1727 	for (j = 0, nspans[Y] = 0; j < n_ypspans; j++) {
1728 		if (pspans_y[j].matched == false) {
1729 			spans[Y][nspans[Y]] = pspans_y[j];
1730 			nspans[Y]++;
1731 		}
1732 	}
1733 
1734 	if (nspans[X] == nspans[Y]) {
1735 		/* Create new strokes from pairs of unmatched pspans */
1736 		for (i = 0, j = 0; (i < nspans[X]) && (j < nspans[Y]); i++, j++)
1737 			fg_add_stroke(sc, &spans[X][i], &spans[Y][j]);
1738 	} else {
1739 		u_int    cum = 0;
1740 		atp_axis repeat_axis;      /* axis with multi-pspans */
1741 		u_int    repeat_count;     /* repeat count for the multi-pspan*/
1742 		u_int    repeat_index = 0; /* index of the multi-span */
1743 
1744 		repeat_axis  = (nspans[X] > nspans[Y]) ? Y : X;
1745 		repeat_count = abs(nspans[X] - nspans[Y]);
1746 		for (i = 0; i < nspans[repeat_axis]; i++) {
1747 			if (spans[repeat_axis][i].cum > cum) {
1748 				repeat_index = i;
1749 				cum = spans[repeat_axis][i].cum;
1750 			}
1751 		}
1752 
1753 		/* Create new strokes from pairs of unmatched pspans */
1754 		i = 0, j = 0;
1755 		for (; (i < nspans[X]) && (j < nspans[Y]); i++, j++) {
1756 			fg_add_stroke(sc, &spans[X][i], &spans[Y][j]);
1757 
1758 			/* Take care to repeat at the multi-pspan. */
1759 			if (repeat_count > 0) {
1760 				if ((repeat_axis == X) &&
1761 				    (repeat_index == i)) {
1762 					i--; /* counter loop increment */
1763 					repeat_count--;
1764 				} else if ((repeat_axis == Y) &&
1765 				    (repeat_index == j)) {
1766 					j--; /* counter loop increment */
1767 					repeat_count--;
1768 				}
1769 			}
1770 		}
1771 	}
1772 }
1773 
1774 /* Initialize a stroke from an unmatched finger. */
1775 static void
1776 wsp_add_stroke(struct atp_softc *sc, const wsp_finger_t *fingerp)
1777 {
1778 	atp_stroke_t *strokep;
1779 
1780 	strokep = atp_alloc_stroke(sc);
1781 	if (strokep == NULL)
1782 		return;
1783 
1784 	/*
1785 	 * Strokes begin as potential touches. If a stroke survives
1786 	 * longer than a threshold, or if it records significant
1787 	 * cumulative movement, then it is considered a 'slide'.
1788 	 */
1789 	strokep->type    = ATP_STROKE_TOUCH;
1790 	strokep->matched = true;
1791 	microtime(&strokep->ctime);
1792 	strokep->age = 1;	/* number of interrupts */
1793 	strokep->x = fingerp->x;
1794 	strokep->y = fingerp->y;
1795 
1796 	/* Reset double-tap-n-drag if we have more than one strokes. */
1797 	if (sc->sc_n_strokes > 1)
1798 		sc->sc_state &= ~ATP_DOUBLE_TAP_DRAG;
1799 
1800 	DPRINTFN(ATP_LLEVEL_INFO, "[%d,%d]\n", strokep->x, strokep->y);
1801 }
1802 
1803 static void
1804 atp_advance_stroke_state(struct atp_softc *sc, atp_stroke_t *strokep,
1805     boolean_t *movementp)
1806 {
1807 	/* Revitalize stroke if it had previously been marked as a zombie. */
1808 	if (strokep->flags & ATSF_ZOMBIE)
1809 		strokep->flags &= ~ATSF_ZOMBIE;
1810 
1811 	strokep->age++;
1812 	if (strokep->age <= atp_stroke_maturity_threshold) {
1813 		/* Avoid noise from immature strokes. */
1814 		strokep->instantaneous_dx = 0;
1815 		strokep->instantaneous_dy = 0;
1816 	}
1817 
1818 	if (atp_compute_stroke_movement(strokep))
1819 		*movementp = true;
1820 
1821 	if (strokep->type != ATP_STROKE_TOUCH)
1822 		return;
1823 
1824 	/* Convert touch strokes to slides upon detecting movement or age. */
1825 	if ((abs(strokep->cum_movement_x) > atp_slide_min_movement) ||
1826 	    (abs(strokep->cum_movement_y) > atp_slide_min_movement))
1827 		atp_convert_to_slide(sc, strokep);
1828 	else {
1829 		/* Compute the stroke's age. */
1830 		struct timeval tdiff;
1831 		getmicrotime(&tdiff);
1832 		if (timevalcmp(&tdiff, &strokep->ctime, >)) {
1833 			timevalsub(&tdiff, &strokep->ctime);
1834 
1835 			if ((tdiff.tv_sec > (atp_touch_timeout / 1000000)) ||
1836 			    ((tdiff.tv_sec == (atp_touch_timeout / 1000000)) &&
1837 			     (tdiff.tv_usec >= (atp_touch_timeout % 1000000))))
1838 				atp_convert_to_slide(sc, strokep);
1839 		}
1840 	}
1841 }
1842 
1843 static boolean_t
1844 atp_stroke_has_small_movement(const atp_stroke_t *strokep)
1845 {
1846 	return (((u_int)abs(strokep->instantaneous_dx) <=
1847 		 atp_small_movement_threshold) &&
1848 		((u_int)abs(strokep->instantaneous_dy) <=
1849 		 atp_small_movement_threshold));
1850 }
1851 
1852 /*
1853  * Accumulate instantaneous changes into the stroke's 'pending' bucket; if
1854  * the aggregate exceeds the small_movement_threshold, then retain
1855  * instantaneous changes for later.
1856  */
1857 static void
1858 atp_update_pending_mickeys(atp_stroke_t *strokep)
1859 {
1860 	/* accumulate instantaneous movement */
1861 	strokep->pending_dx += strokep->instantaneous_dx;
1862 	strokep->pending_dy += strokep->instantaneous_dy;
1863 
1864 #define UPDATE_INSTANTANEOUS_AND_PENDING(I, P)                          \
1865 	if (abs((P)) <= atp_small_movement_threshold)                   \
1866 		(I) = 0; /* clobber small movement */                   \
1867 	else {                                                          \
1868 		if ((I) > 0) {                                          \
1869 			/*                                              \
1870 			 * Round up instantaneous movement to the nearest \
1871 			 * ceiling. This helps preserve small mickey    \
1872 			 * movements from being lost in following scaling \
1873 			 * operation.                                   \
1874 			 */                                             \
1875 			(I) = (((I) + (atp_mickeys_scale_factor - 1)) / \
1876 			       atp_mickeys_scale_factor) *              \
1877 			      atp_mickeys_scale_factor;                 \
1878 									\
1879 			/*                                              \
1880 			 * Deduct the rounded mickeys from pending mickeys. \
1881 			 * Note: we multiply by 2 to offset the previous \
1882 			 * accumulation of instantaneous movement into  \
1883 			 * pending.                                     \
1884 			 */                                             \
1885 			(P) -= ((I) << 1);                              \
1886 									\
1887 			/* truncate pending to 0 if it becomes negative. */ \
1888 			(P) = imax((P), 0);                             \
1889 		} else {                                                \
1890 			/*                                              \
1891 			 * Round down instantaneous movement to the nearest \
1892 			 * ceiling. This helps preserve small mickey    \
1893 			 * movements from being lost in following scaling \
1894 			 * operation.                                   \
1895 			 */                                             \
1896 			(I) = (((I) - (atp_mickeys_scale_factor - 1)) / \
1897 			       atp_mickeys_scale_factor) *              \
1898 			      atp_mickeys_scale_factor;                 \
1899 									\
1900 			/*                                              \
1901 			 * Deduct the rounded mickeys from pending mickeys. \
1902 			 * Note: we multiply by 2 to offset the previous \
1903 			 * accumulation of instantaneous movement into  \
1904 			 * pending.                                     \
1905 			 */                                             \
1906 			(P) -= ((I) << 1);                              \
1907 									\
1908 			/* truncate pending to 0 if it becomes positive. */ \
1909 			(P) = imin((P), 0);                             \
1910 		}                                                       \
1911 	}
1912 
1913 	UPDATE_INSTANTANEOUS_AND_PENDING(strokep->instantaneous_dx,
1914 	    strokep->pending_dx);
1915 	UPDATE_INSTANTANEOUS_AND_PENDING(strokep->instantaneous_dy,
1916 	    strokep->pending_dy);
1917 }
1918 
1919 /*
1920  * Compute a smoothened value for the stroke's movement from
1921  * instantaneous changes in the X and Y components.
1922  */
1923 static boolean_t
1924 atp_compute_stroke_movement(atp_stroke_t *strokep)
1925 {
1926 	/*
1927 	 * Short movements are added first to the 'pending' bucket,
1928 	 * and then acted upon only when their aggregate exceeds a
1929 	 * threshold. This has the effect of filtering away movement
1930 	 * noise.
1931 	 */
1932 	if (atp_stroke_has_small_movement(strokep))
1933 		atp_update_pending_mickeys(strokep);
1934 	else {                /* large movement */
1935 		/* clear away any pending mickeys if there are large movements*/
1936 		strokep->pending_dx = 0;
1937 		strokep->pending_dy = 0;
1938 	}
1939 
1940 	/* scale movement */
1941 	strokep->movement_dx = (strokep->instantaneous_dx) /
1942 	    (int)atp_mickeys_scale_factor;
1943 	strokep->movement_dy = (strokep->instantaneous_dy) /
1944 	    (int)atp_mickeys_scale_factor;
1945 
1946 	if ((abs(strokep->instantaneous_dx) >= ATP_FAST_MOVEMENT_TRESHOLD) ||
1947 	    (abs(strokep->instantaneous_dy) >= ATP_FAST_MOVEMENT_TRESHOLD)) {
1948 		strokep->movement_dx <<= 1;
1949 		strokep->movement_dy <<= 1;
1950 	}
1951 
1952 	strokep->cum_movement_x += strokep->movement_dx;
1953 	strokep->cum_movement_y += strokep->movement_dy;
1954 
1955 	return ((strokep->movement_dx != 0) || (strokep->movement_dy != 0));
1956 }
1957 
1958 /*
1959  * Terminate a stroke. Aside from immature strokes, a slide or touch is
1960  * retained as a zombies so as to reap all their termination siblings
1961  * together; this helps establish the number of fingers involved at the
1962  * end of a multi-touch gesture.
1963  */
1964 static void
1965 atp_terminate_stroke(struct atp_softc *sc, atp_stroke_t *strokep)
1966 {
1967 	if (strokep->flags & ATSF_ZOMBIE)
1968 		return;
1969 
1970 	/* Drop immature strokes rightaway. */
1971 	if (strokep->age <= atp_stroke_maturity_threshold) {
1972 		atp_free_stroke(sc, strokep);
1973 		return;
1974 	}
1975 
1976 	strokep->flags |= ATSF_ZOMBIE;
1977 	sc->sc_state |= ATP_ZOMBIES_EXIST;
1978 
1979 	callout_reset(&sc->sc_callout, ATP_ZOMBIE_STROKE_REAP_INTERVAL,
1980 	    atp_reap_sibling_zombies, sc);
1981 
1982 	/*
1983 	 * Reset the double-click-n-drag at the termination of any
1984 	 * slide stroke.
1985 	 */
1986 	if (strokep->type == ATP_STROKE_SLIDE)
1987 		sc->sc_state &= ~ATP_DOUBLE_TAP_DRAG;
1988 }
1989 
1990 static boolean_t
1991 atp_is_horizontal_scroll(const atp_stroke_t *strokep)
1992 {
1993 	if (abs(strokep->cum_movement_x) < atp_slide_min_movement)
1994 		return (false);
1995 	if (strokep->cum_movement_y == 0)
1996 		return (true);
1997 	return (abs(strokep->cum_movement_x / strokep->cum_movement_y) >= 4);
1998 }
1999 
2000 static boolean_t
2001 atp_is_vertical_scroll(const atp_stroke_t *strokep)
2002 {
2003 	if (abs(strokep->cum_movement_y) < atp_slide_min_movement)
2004 		return (false);
2005 	if (strokep->cum_movement_x == 0)
2006 		return (true);
2007 	return (abs(strokep->cum_movement_y / strokep->cum_movement_x) >= 4);
2008 }
2009 
2010 static void
2011 atp_reap_sibling_zombies(void *arg)
2012 {
2013 	struct atp_softc *sc = (struct atp_softc *)arg;
2014 	u_int8_t n_touches_reaped = 0;
2015 	u_int8_t n_slides_reaped = 0;
2016 	u_int8_t n_horizontal_scrolls = 0;
2017 	u_int8_t n_vertical_scrolls = 0;
2018 	int horizontal_scroll = 0;
2019 	int vertical_scroll = 0;
2020 	atp_stroke_t *strokep;
2021 	atp_stroke_t *strokep_next;
2022 
2023 	DPRINTFN(ATP_LLEVEL_INFO, "\n");
2024 
2025 	TAILQ_FOREACH_SAFE(strokep, &sc->sc_stroke_used, entry, strokep_next) {
2026 		if ((strokep->flags & ATSF_ZOMBIE) == 0)
2027 			continue;
2028 
2029 		if (strokep->type == ATP_STROKE_TOUCH) {
2030 			n_touches_reaped++;
2031 		} else {
2032 			n_slides_reaped++;
2033 
2034 			if (atp_is_horizontal_scroll(strokep)) {
2035 				n_horizontal_scrolls++;
2036 				horizontal_scroll += strokep->cum_movement_x;
2037 			} else if (atp_is_vertical_scroll(strokep)) {
2038 				n_vertical_scrolls++;
2039 				vertical_scroll +=  strokep->cum_movement_y;
2040 			}
2041 		}
2042 
2043 		atp_free_stroke(sc, strokep);
2044 	}
2045 
2046 	DPRINTFN(ATP_LLEVEL_INFO, "reaped %u zombies\n",
2047 	    n_touches_reaped + n_slides_reaped);
2048 	sc->sc_state &= ~ATP_ZOMBIES_EXIST;
2049 
2050 	/* No further processing necessary if physical button is depressed. */
2051 	if (sc->sc_ibtn != 0)
2052 		return;
2053 
2054 	if ((n_touches_reaped == 0) && (n_slides_reaped == 0))
2055 		return;
2056 
2057 	/* Add a pair of virtual button events (button-down and button-up) if
2058 	 * the physical button isn't pressed. */
2059 	if (n_touches_reaped != 0) {
2060 		if (n_touches_reaped < atp_tap_minimum)
2061 			return;
2062 
2063 		switch (n_touches_reaped) {
2064 		case 1:
2065 			atp_add_to_queue(sc, 0, 0, 0, MOUSE_BUTTON1DOWN);
2066 			microtime(&sc->sc_touch_reap_time); /* remember this time */
2067 			break;
2068 		case 2:
2069 			atp_add_to_queue(sc, 0, 0, 0, MOUSE_BUTTON3DOWN);
2070 			break;
2071 		case 3:
2072 			atp_add_to_queue(sc, 0, 0, 0, MOUSE_BUTTON2DOWN);
2073 			break;
2074 		default:
2075 			/* we handle taps of only up to 3 fingers */
2076 			return;
2077 		}
2078 		atp_add_to_queue(sc, 0, 0, 0, 0); /* button release */
2079 
2080 	} else if ((n_slides_reaped == 2) && (n_horizontal_scrolls == 2)) {
2081 		if (horizontal_scroll < 0)
2082 			atp_add_to_queue(sc, 0, 0, 0, MOUSE_BUTTON4DOWN);
2083 		else
2084 			atp_add_to_queue(sc, 0, 0, 0, MOUSE_BUTTON5DOWN);
2085 		atp_add_to_queue(sc, 0, 0, 0, 0); /* button release */
2086 	}
2087 }
2088 
2089 /* Switch a given touch stroke to being a slide. */
2090 static void
2091 atp_convert_to_slide(struct atp_softc *sc, atp_stroke_t *strokep)
2092 {
2093 	strokep->type = ATP_STROKE_SLIDE;
2094 
2095 	/* Are we at the beginning of a double-click-n-drag? */
2096 	if ((sc->sc_n_strokes == 1) &&
2097 	    ((sc->sc_state & ATP_ZOMBIES_EXIST) == 0) &&
2098 	    timevalcmp(&strokep->ctime, &sc->sc_touch_reap_time, >)) {
2099 		struct timeval delta;
2100 		struct timeval window = {
2101 			atp_double_tap_threshold / 1000000,
2102 			atp_double_tap_threshold % 1000000
2103 		};
2104 
2105 		delta = strokep->ctime;
2106 		timevalsub(&delta, &sc->sc_touch_reap_time);
2107 		if (timevalcmp(&delta, &window, <=))
2108 			sc->sc_state |= ATP_DOUBLE_TAP_DRAG;
2109 	}
2110 }
2111 
2112 static void
2113 atp_reset_buf(struct atp_softc *sc)
2114 {
2115 	/* reset read queue */
2116 	usb_fifo_reset(sc->sc_fifo.fp[USB_FIFO_RX]);
2117 }
2118 
2119 static void
2120 atp_add_to_queue(struct atp_softc *sc, int dx, int dy, int dz,
2121     uint32_t buttons_in)
2122 {
2123 	uint32_t buttons_out;
2124 	uint8_t  buf[8];
2125 
2126 	dx = imin(dx,  254); dx = imax(dx, -256);
2127 	dy = imin(dy,  254); dy = imax(dy, -256);
2128 	dz = imin(dz,  126); dz = imax(dz, -128);
2129 
2130 	buttons_out = MOUSE_MSC_BUTTONS;
2131 	if (buttons_in & MOUSE_BUTTON1DOWN)
2132 		buttons_out &= ~MOUSE_MSC_BUTTON1UP;
2133 	else if (buttons_in & MOUSE_BUTTON2DOWN)
2134 		buttons_out &= ~MOUSE_MSC_BUTTON2UP;
2135 	else if (buttons_in & MOUSE_BUTTON3DOWN)
2136 		buttons_out &= ~MOUSE_MSC_BUTTON3UP;
2137 
2138 	DPRINTFN(ATP_LLEVEL_INFO, "dx=%d, dy=%d, buttons=%x\n",
2139 	    dx, dy, buttons_out);
2140 
2141 	/* Encode the mouse data in standard format; refer to mouse(4) */
2142 	buf[0] = sc->sc_mode.syncmask[1];
2143 	buf[0] |= buttons_out;
2144 	buf[1] = dx >> 1;
2145 	buf[2] = dy >> 1;
2146 	buf[3] = dx - (dx >> 1);
2147 	buf[4] = dy - (dy >> 1);
2148 	/* Encode extra bytes for level 1 */
2149 	if (sc->sc_mode.level == 1) {
2150 		buf[5] = dz >> 1;
2151 		buf[6] = dz - (dz >> 1);
2152 		buf[7] = (((~buttons_in) >> 3) & MOUSE_SYS_EXTBUTTONS);
2153 	}
2154 
2155 	usb_fifo_put_data_linear(sc->sc_fifo.fp[USB_FIFO_RX], buf,
2156 	    sc->sc_mode.packetsize, 1);
2157 }
2158 
2159 static int
2160 atp_probe(device_t self)
2161 {
2162 	struct usb_attach_arg *uaa = device_get_ivars(self);
2163 
2164 	if (uaa->usb_mode != USB_MODE_HOST)
2165 		return (ENXIO);
2166 
2167 	if (uaa->info.bInterfaceClass != UICLASS_HID)
2168 		return (ENXIO);
2169 	/*
2170 	 * Note: for some reason, the check
2171 	 * (uaa->info.bInterfaceProtocol == UIPROTO_MOUSE) doesn't hold true
2172 	 * for wellspring trackpads, so we've removed it from the common path.
2173 	 */
2174 
2175 	if ((usbd_lookup_id_by_uaa(fg_devs, sizeof(fg_devs), uaa)) == 0)
2176 		return ((uaa->info.bInterfaceProtocol == UIPROTO_MOUSE) ?
2177 			0 : ENXIO);
2178 
2179 	if ((usbd_lookup_id_by_uaa(wsp_devs, sizeof(wsp_devs), uaa)) == 0)
2180 		if (uaa->info.bIfaceIndex == WELLSPRING_INTERFACE_INDEX)
2181 			return (0);
2182 
2183 	return (ENXIO);
2184 }
2185 
2186 static int
2187 atp_attach(device_t dev)
2188 {
2189 	struct atp_softc      *sc  = device_get_softc(dev);
2190 	struct usb_attach_arg *uaa = device_get_ivars(dev);
2191 	usb_error_t            err;
2192 	void *descriptor_ptr = NULL;
2193 	uint16_t descriptor_len;
2194 	unsigned long di;
2195 
2196 	DPRINTFN(ATP_LLEVEL_INFO, "sc=%p\n", sc);
2197 
2198 	sc->sc_dev        = dev;
2199 	sc->sc_usb_device = uaa->device;
2200 
2201 	/* Get HID descriptor */
2202 	if (usbd_req_get_hid_desc(uaa->device, NULL, &descriptor_ptr,
2203 	    &descriptor_len, M_TEMP, uaa->info.bIfaceIndex) !=
2204 	    USB_ERR_NORMAL_COMPLETION)
2205 		return (ENXIO);
2206 
2207 	/* Get HID report descriptor length */
2208 	sc->sc_expected_sensor_data_len = hid_report_size(descriptor_ptr,
2209 	    descriptor_len, hid_input, NULL);
2210 	free(descriptor_ptr, M_TEMP);
2211 
2212 	if ((sc->sc_expected_sensor_data_len <= 0) ||
2213 	    (sc->sc_expected_sensor_data_len > ATP_SENSOR_DATA_BUF_MAX)) {
2214 		DPRINTF("atp_attach: datalength invalid or too large: %d\n",
2215 			sc->sc_expected_sensor_data_len);
2216 		return (ENXIO);
2217 	}
2218 
2219 	/*
2220 	 * By default the touchpad behaves like an HID device, sending
2221 	 * packets with reportID = 2. Such reports contain only
2222 	 * limited information--they encode movement deltas and button
2223 	 * events,--but do not include data from the pressure
2224 	 * sensors. The device input mode can be switched from HID
2225 	 * reports to raw sensor data using vendor-specific USB
2226 	 * control commands.
2227 	 */
2228 	if ((err = atp_set_device_mode(sc, RAW_SENSOR_MODE)) != 0) {
2229 		DPRINTF("failed to set mode to 'RAW_SENSOR' (%d)\n", err);
2230 		return (ENXIO);
2231 	}
2232 
2233 	mtx_init(&sc->sc_mutex, "atpmtx", NULL, MTX_DEF | MTX_RECURSE);
2234 
2235 	di = USB_GET_DRIVER_INFO(uaa);
2236 
2237 	sc->sc_family = DECODE_FAMILY_FROM_DRIVER_INFO(di);
2238 
2239 	switch(sc->sc_family) {
2240 	case TRACKPAD_FAMILY_FOUNTAIN_GEYSER:
2241 		sc->sc_params =
2242 		    &fg_dev_params[DECODE_PRODUCT_FROM_DRIVER_INFO(di)];
2243 		sc->sensor_data_interpreter = fg_interpret_sensor_data;
2244 		break;
2245 	case TRACKPAD_FAMILY_WELLSPRING:
2246 		sc->sc_params =
2247 		    &wsp_dev_params[DECODE_PRODUCT_FROM_DRIVER_INFO(di)];
2248 		sc->sensor_data_interpreter = wsp_interpret_sensor_data;
2249 		break;
2250 	default:
2251 		goto detach;
2252 	}
2253 
2254 	err = usbd_transfer_setup(uaa->device,
2255 	    &uaa->info.bIfaceIndex, sc->sc_xfer, atp_xfer_config,
2256 	    ATP_N_TRANSFER, sc, &sc->sc_mutex);
2257 	if (err) {
2258 		DPRINTF("error=%s\n", usbd_errstr(err));
2259 		goto detach;
2260 	}
2261 
2262 	if (usb_fifo_attach(sc->sc_usb_device, sc, &sc->sc_mutex,
2263 	    &atp_fifo_methods, &sc->sc_fifo,
2264 	    device_get_unit(dev), -1, uaa->info.bIfaceIndex,
2265 	    UID_ROOT, GID_OPERATOR, 0644)) {
2266 		goto detach;
2267 	}
2268 
2269 	device_set_usb_desc(dev);
2270 
2271 	sc->sc_hw.buttons       = 3;
2272 	sc->sc_hw.iftype        = MOUSE_IF_USB;
2273 	sc->sc_hw.type          = MOUSE_PAD;
2274 	sc->sc_hw.model         = MOUSE_MODEL_GENERIC;
2275 	sc->sc_hw.hwid          = 0;
2276 	sc->sc_mode.protocol    = MOUSE_PROTO_MSC;
2277 	sc->sc_mode.rate        = -1;
2278 	sc->sc_mode.resolution  = MOUSE_RES_UNKNOWN;
2279 	sc->sc_mode.packetsize  = MOUSE_MSC_PACKETSIZE;
2280 	sc->sc_mode.syncmask[0] = MOUSE_MSC_SYNCMASK;
2281 	sc->sc_mode.syncmask[1] = MOUSE_MSC_SYNC;
2282 	sc->sc_mode.accelfactor = 0;
2283 	sc->sc_mode.level       = 0;
2284 
2285 	sc->sc_state            = 0;
2286 	sc->sc_ibtn             = 0;
2287 
2288 	callout_init_mtx(&sc->sc_callout, &sc->sc_mutex, 0);
2289 
2290 	return (0);
2291 
2292 detach:
2293 	atp_detach(dev);
2294 	return (ENOMEM);
2295 }
2296 
2297 static int
2298 atp_detach(device_t dev)
2299 {
2300 	struct atp_softc *sc;
2301 
2302 	sc = device_get_softc(dev);
2303 	atp_set_device_mode(sc, HID_MODE);
2304 
2305 	mtx_lock(&sc->sc_mutex);
2306 	callout_drain(&sc->sc_callout);
2307 	if (sc->sc_state & ATP_ENABLED)
2308 		atp_disable(sc);
2309 	mtx_unlock(&sc->sc_mutex);
2310 
2311 	usb_fifo_detach(&sc->sc_fifo);
2312 
2313 	usbd_transfer_unsetup(sc->sc_xfer, ATP_N_TRANSFER);
2314 
2315 	mtx_destroy(&sc->sc_mutex);
2316 
2317 	return (0);
2318 }
2319 
2320 static void
2321 atp_intr(struct usb_xfer *xfer, usb_error_t error)
2322 {
2323 	struct atp_softc      *sc = usbd_xfer_softc(xfer);
2324 	struct usb_page_cache *pc;
2325 	int len;
2326 
2327 	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
2328 
2329 	switch (USB_GET_STATE(xfer)) {
2330 	case USB_ST_TRANSFERRED:
2331 		pc = usbd_xfer_get_frame(xfer, 0);
2332 		usbd_copy_out(pc, 0, sc->sc_sensor_data, len);
2333 		if (len < sc->sc_expected_sensor_data_len) {
2334 			/* make sure we don't process old data */
2335 			memset(sc->sc_sensor_data + len, 0,
2336 			    sc->sc_expected_sensor_data_len - len);
2337 		}
2338 
2339 		sc->sc_status.flags &= ~(MOUSE_STDBUTTONSCHANGED |
2340 		    MOUSE_POSCHANGED);
2341 		sc->sc_status.obutton = sc->sc_status.button;
2342 
2343 		(sc->sensor_data_interpreter)(sc, len);
2344 
2345 		if (sc->sc_status.button != 0) {
2346 			/* Reset DOUBLE_TAP_N_DRAG if the button is pressed. */
2347 			sc->sc_state &= ~ATP_DOUBLE_TAP_DRAG;
2348 		} else if (sc->sc_state & ATP_DOUBLE_TAP_DRAG) {
2349 			/* Assume a button-press with DOUBLE_TAP_N_DRAG. */
2350 			sc->sc_status.button = MOUSE_BUTTON1DOWN;
2351 		}
2352 
2353 		sc->sc_status.flags |=
2354 		    sc->sc_status.button ^ sc->sc_status.obutton;
2355 		if (sc->sc_status.flags & MOUSE_STDBUTTONSCHANGED) {
2356 		    DPRINTFN(ATP_LLEVEL_INFO, "button %s\n",
2357 			((sc->sc_status.button & MOUSE_BUTTON1DOWN) ?
2358 			"pressed" : "released"));
2359 		}
2360 
2361 		if (sc->sc_status.flags & (MOUSE_POSCHANGED |
2362 		    MOUSE_STDBUTTONSCHANGED)) {
2363 
2364 			atp_stroke_t *strokep;
2365 			u_int8_t n_movements = 0;
2366 			int dx = 0;
2367 			int dy = 0;
2368 			int dz = 0;
2369 
2370 			TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry) {
2371 				if (strokep->flags & ATSF_ZOMBIE)
2372 					continue;
2373 
2374 				dx += strokep->movement_dx;
2375 				dy += strokep->movement_dy;
2376 				if (strokep->movement_dx ||
2377 				    strokep->movement_dy)
2378 					n_movements++;
2379 			}
2380 
2381 			/* average movement if multiple strokes record motion.*/
2382 			if (n_movements > 1) {
2383 				dx /= (int)n_movements;
2384 				dy /= (int)n_movements;
2385 			}
2386 
2387 			/* detect multi-finger vertical scrolls */
2388 			if (n_movements >= 2) {
2389 				boolean_t all_vertical_scrolls = true;
2390 				TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry) {
2391 					if (strokep->flags & ATSF_ZOMBIE)
2392 						continue;
2393 
2394 					if (!atp_is_vertical_scroll(strokep))
2395 						all_vertical_scrolls = false;
2396 				}
2397 				if (all_vertical_scrolls) {
2398 					dz = dy;
2399 					dy = dx = 0;
2400 				}
2401 			}
2402 
2403 			sc->sc_status.dx += dx;
2404 			sc->sc_status.dy += dy;
2405 			sc->sc_status.dz += dz;
2406 			atp_add_to_queue(sc, dx, -dy, -dz, sc->sc_status.button);
2407 		}
2408 
2409 	case USB_ST_SETUP:
2410 	tr_setup:
2411 		/* check if we can put more data into the FIFO */
2412 		if (usb_fifo_put_bytes_max(sc->sc_fifo.fp[USB_FIFO_RX]) != 0) {
2413 			usbd_xfer_set_frame_len(xfer, 0,
2414 			    sc->sc_expected_sensor_data_len);
2415 			usbd_transfer_submit(xfer);
2416 		}
2417 		break;
2418 
2419 	default:                        /* Error */
2420 		if (error != USB_ERR_CANCELLED) {
2421 			/* try clear stall first */
2422 			usbd_xfer_set_stall(xfer);
2423 			goto tr_setup;
2424 		}
2425 		break;
2426 	}
2427 }
2428 
2429 static void
2430 atp_start_read(struct usb_fifo *fifo)
2431 {
2432 	struct atp_softc *sc = usb_fifo_softc(fifo);
2433 	int rate;
2434 
2435 	/* Check if we should override the default polling interval */
2436 	rate = sc->sc_pollrate;
2437 	/* Range check rate */
2438 	if (rate > 1000)
2439 		rate = 1000;
2440 	/* Check for set rate */
2441 	if ((rate > 0) && (sc->sc_xfer[ATP_INTR_DT] != NULL)) {
2442 		/* Stop current transfer, if any */
2443 		usbd_transfer_stop(sc->sc_xfer[ATP_INTR_DT]);
2444 		/* Set new interval */
2445 		usbd_xfer_set_interval(sc->sc_xfer[ATP_INTR_DT], 1000 / rate);
2446 		/* Only set pollrate once */
2447 		sc->sc_pollrate = 0;
2448 	}
2449 
2450 	usbd_transfer_start(sc->sc_xfer[ATP_INTR_DT]);
2451 }
2452 
2453 static void
2454 atp_stop_read(struct usb_fifo *fifo)
2455 {
2456 	struct atp_softc *sc = usb_fifo_softc(fifo);
2457 	usbd_transfer_stop(sc->sc_xfer[ATP_INTR_DT]);
2458 }
2459 
2460 static int
2461 atp_open(struct usb_fifo *fifo, int fflags)
2462 {
2463 	struct atp_softc *sc = usb_fifo_softc(fifo);
2464 
2465 	/* check for duplicate open, should not happen */
2466 	if (sc->sc_fflags & fflags)
2467 		return (EBUSY);
2468 
2469 	/* check for first open */
2470 	if (sc->sc_fflags == 0) {
2471 		int rc;
2472 		if ((rc = atp_enable(sc)) != 0)
2473 			return (rc);
2474 	}
2475 
2476 	if (fflags & FREAD) {
2477 		if (usb_fifo_alloc_buffer(fifo,
2478 		    ATP_FIFO_BUF_SIZE, ATP_FIFO_QUEUE_MAXLEN)) {
2479 			return (ENOMEM);
2480 		}
2481 	}
2482 
2483 	sc->sc_fflags |= (fflags & (FREAD | FWRITE));
2484 	return (0);
2485 }
2486 
2487 static void
2488 atp_close(struct usb_fifo *fifo, int fflags)
2489 {
2490 	struct atp_softc *sc = usb_fifo_softc(fifo);
2491 	if (fflags & FREAD)
2492 		usb_fifo_free_buffer(fifo);
2493 
2494 	sc->sc_fflags &= ~(fflags & (FREAD | FWRITE));
2495 	if (sc->sc_fflags == 0) {
2496 		atp_disable(sc);
2497 	}
2498 }
2499 
2500 static int
2501 atp_ioctl(struct usb_fifo *fifo, u_long cmd, void *addr, int fflags)
2502 {
2503 	struct atp_softc *sc = usb_fifo_softc(fifo);
2504 	mousemode_t mode;
2505 	int error = 0;
2506 
2507 	mtx_lock(&sc->sc_mutex);
2508 
2509 	switch(cmd) {
2510 	case MOUSE_GETHWINFO:
2511 		*(mousehw_t *)addr = sc->sc_hw;
2512 		break;
2513 	case MOUSE_GETMODE:
2514 		*(mousemode_t *)addr = sc->sc_mode;
2515 		break;
2516 	case MOUSE_SETMODE:
2517 		mode = *(mousemode_t *)addr;
2518 
2519 		if (mode.level == -1)
2520 			/* Don't change the current setting */
2521 			;
2522 		else if ((mode.level < 0) || (mode.level > 1)) {
2523 			error = EINVAL;
2524 			break;
2525 		}
2526 		sc->sc_mode.level = mode.level;
2527 		sc->sc_pollrate   = mode.rate;
2528 		sc->sc_hw.buttons = 3;
2529 
2530 		if (sc->sc_mode.level == 0) {
2531 			sc->sc_mode.protocol    = MOUSE_PROTO_MSC;
2532 			sc->sc_mode.packetsize  = MOUSE_MSC_PACKETSIZE;
2533 			sc->sc_mode.syncmask[0] = MOUSE_MSC_SYNCMASK;
2534 			sc->sc_mode.syncmask[1] = MOUSE_MSC_SYNC;
2535 		} else if (sc->sc_mode.level == 1) {
2536 			sc->sc_mode.protocol    = MOUSE_PROTO_SYSMOUSE;
2537 			sc->sc_mode.packetsize  = MOUSE_SYS_PACKETSIZE;
2538 			sc->sc_mode.syncmask[0] = MOUSE_SYS_SYNCMASK;
2539 			sc->sc_mode.syncmask[1] = MOUSE_SYS_SYNC;
2540 		}
2541 		atp_reset_buf(sc);
2542 		break;
2543 	case MOUSE_GETLEVEL:
2544 		*(int *)addr = sc->sc_mode.level;
2545 		break;
2546 	case MOUSE_SETLEVEL:
2547 		if ((*(int *)addr < 0) || (*(int *)addr > 1)) {
2548 			error = EINVAL;
2549 			break;
2550 		}
2551 		sc->sc_mode.level = *(int *)addr;
2552 		sc->sc_hw.buttons = 3;
2553 
2554 		if (sc->sc_mode.level == 0) {
2555 			sc->sc_mode.protocol    = MOUSE_PROTO_MSC;
2556 			sc->sc_mode.packetsize  = MOUSE_MSC_PACKETSIZE;
2557 			sc->sc_mode.syncmask[0] = MOUSE_MSC_SYNCMASK;
2558 			sc->sc_mode.syncmask[1] = MOUSE_MSC_SYNC;
2559 		} else if (sc->sc_mode.level == 1) {
2560 			sc->sc_mode.protocol    = MOUSE_PROTO_SYSMOUSE;
2561 			sc->sc_mode.packetsize  = MOUSE_SYS_PACKETSIZE;
2562 			sc->sc_mode.syncmask[0] = MOUSE_SYS_SYNCMASK;
2563 			sc->sc_mode.syncmask[1] = MOUSE_SYS_SYNC;
2564 		}
2565 		atp_reset_buf(sc);
2566 		break;
2567 	case MOUSE_GETSTATUS: {
2568 		mousestatus_t *status = (mousestatus_t *)addr;
2569 
2570 		*status = sc->sc_status;
2571 		sc->sc_status.obutton = sc->sc_status.button;
2572 		sc->sc_status.button  = 0;
2573 		sc->sc_status.dx      = 0;
2574 		sc->sc_status.dy      = 0;
2575 		sc->sc_status.dz      = 0;
2576 
2577 		if (status->dx || status->dy || status->dz)
2578 			status->flags |= MOUSE_POSCHANGED;
2579 		if (status->button != status->obutton)
2580 			status->flags |= MOUSE_BUTTONSCHANGED;
2581 		break;
2582 	}
2583 
2584 	default:
2585 		error = ENOTTY;
2586 		break;
2587 	}
2588 
2589 	mtx_unlock(&sc->sc_mutex);
2590 	return (error);
2591 }
2592 
2593 static int
2594 atp_sysctl_scale_factor_handler(SYSCTL_HANDLER_ARGS)
2595 {
2596 	int error;
2597 	u_int tmp;
2598 
2599 	tmp = atp_mickeys_scale_factor;
2600 	error = sysctl_handle_int(oidp, &tmp, 0, req);
2601 	if (error != 0 || req->newptr == NULL)
2602 		return (error);
2603 
2604 	if (tmp == atp_mickeys_scale_factor)
2605 		return (0);     /* no change */
2606 	if ((tmp == 0) || (tmp > (10 * ATP_SCALE_FACTOR)))
2607 		return (EINVAL);
2608 
2609 	atp_mickeys_scale_factor = tmp;
2610 	DPRINTFN(ATP_LLEVEL_INFO, "%s: resetting mickeys_scale_factor to %u\n",
2611 	    ATP_DRIVER_NAME, tmp);
2612 
2613 	return (0);
2614 }
2615 
2616 static devclass_t atp_devclass;
2617 
2618 static device_method_t atp_methods[] = {
2619 	DEVMETHOD(device_probe,  atp_probe),
2620 	DEVMETHOD(device_attach, atp_attach),
2621 	DEVMETHOD(device_detach, atp_detach),
2622 
2623 	DEVMETHOD_END
2624 };
2625 
2626 static driver_t atp_driver = {
2627 	.name    = ATP_DRIVER_NAME,
2628 	.methods = atp_methods,
2629 	.size    = sizeof(struct atp_softc)
2630 };
2631 
2632 DRIVER_MODULE(atp, uhub, atp_driver, atp_devclass, NULL, 0);
2633 MODULE_DEPEND(atp, usb, 1, 1, 1);
2634 MODULE_VERSION(atp, 1);
2635 USB_PNP_HOST_INFO(fg_devs);
2636 USB_PNP_HOST_INFO(wsp_devs);
2637