xref: /freebsd/sys/dev/usb/input/atp.c (revision 895a7e604db4ddf2b5d58833a82c2b4956585d02)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2014 Rohit Grover
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * Some tables, structures, definitions and constant values for the
31  * touchpad protocol has been copied from Linux's
32  * "drivers/input/mouse/bcm5974.c" which has the following copyright
33  * holders under GPLv2. All device specific code in this driver has
34  * been written from scratch. The decoding algorithm is based on
35  * output from FreeBSD's usbdump.
36  *
37  * Copyright (C) 2008      Henrik Rydberg (rydberg@euromail.se)
38  * Copyright (C) 2008      Scott Shawcroft (scott.shawcroft@gmail.com)
39  * Copyright (C) 2001-2004 Greg Kroah-Hartman (greg@kroah.com)
40  * Copyright (C) 2005      Johannes Berg (johannes@sipsolutions.net)
41  * Copyright (C) 2005      Stelian Pop (stelian@popies.net)
42  * Copyright (C) 2005      Frank Arnold (frank@scirocco-5v-turbo.de)
43  * Copyright (C) 2005      Peter Osterlund (petero2@telia.com)
44  * Copyright (C) 2005      Michael Hanselmann (linux-kernel@hansmi.ch)
45  * Copyright (C) 2006      Nicolas Boichat (nicolas@boichat.ch)
46  */
47 
48 /*
49  * Author's note: 'atp' supports two distinct families of Apple trackpad
50  * products: the older Fountain/Geyser and the latest Wellspring trackpads.
51  * The first version made its appearance with FreeBSD 8 and worked only with
52  * the Fountain/Geyser hardware. A fork of this driver for Wellspring was
53  * contributed by Huang Wen Hui. This driver unifies the Wellspring effort
54  * and also improves upon the original work.
55  *
56  * I'm grateful to Stephan Scheunig, Angela Naegele, and Nokia IT-support
57  * for helping me with access to hardware. Thanks also go to Nokia for
58  * giving me an opportunity to do this work.
59  */
60 
61 #include <sys/cdefs.h>
62 __FBSDID("$FreeBSD$");
63 
64 #include <sys/stdint.h>
65 #include <sys/stddef.h>
66 #include <sys/param.h>
67 #include <sys/types.h>
68 #include <sys/systm.h>
69 #include <sys/kernel.h>
70 #include <sys/bus.h>
71 #include <sys/module.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/sysctl.h>
75 #include <sys/malloc.h>
76 #include <sys/conf.h>
77 #include <sys/fcntl.h>
78 #include <sys/file.h>
79 #include <sys/selinfo.h>
80 #include <sys/poll.h>
81 
82 #include <dev/usb/usb.h>
83 #include <dev/usb/usbdi.h>
84 #include <dev/usb/usbdi_util.h>
85 #include <dev/usb/usbhid.h>
86 
87 #include "usbdevs.h"
88 
89 #define USB_DEBUG_VAR atp_debug
90 #include <dev/usb/usb_debug.h>
91 
92 #include <sys/mouse.h>
93 
94 #define ATP_DRIVER_NAME "atp"
95 
96 /*
97  * Driver specific options: the following options may be set by
98  * `options' statements in the kernel configuration file.
99  */
100 
101 /* The divisor used to translate sensor reported positions to mickeys. */
102 #ifndef ATP_SCALE_FACTOR
103 #define ATP_SCALE_FACTOR                  16
104 #endif
105 
106 /* Threshold for small movement noise (in mickeys) */
107 #ifndef ATP_SMALL_MOVEMENT_THRESHOLD
108 #define ATP_SMALL_MOVEMENT_THRESHOLD      30
109 #endif
110 
111 /* Threshold of instantaneous deltas beyond which movement is considered fast.*/
112 #ifndef ATP_FAST_MOVEMENT_TRESHOLD
113 #define ATP_FAST_MOVEMENT_TRESHOLD        150
114 #endif
115 
116 /*
117  * This is the age in microseconds beyond which a touch is considered
118  * to be a slide; and therefore a tap event isn't registered.
119  */
120 #ifndef ATP_TOUCH_TIMEOUT
121 #define ATP_TOUCH_TIMEOUT                 125000
122 #endif
123 
124 #ifndef ATP_IDLENESS_THRESHOLD
125 #define	ATP_IDLENESS_THRESHOLD 10
126 #endif
127 
128 #ifndef FG_SENSOR_NOISE_THRESHOLD
129 #define FG_SENSOR_NOISE_THRESHOLD 2
130 #endif
131 
132 /*
133  * A double-tap followed by a single-finger slide is treated as a
134  * special gesture. The driver responds to this gesture by assuming a
135  * virtual button-press for the lifetime of the slide. The following
136  * threshold is the maximum time gap (in microseconds) between the two
137  * tap events preceding the slide for such a gesture.
138  */
139 #ifndef ATP_DOUBLE_TAP_N_DRAG_THRESHOLD
140 #define ATP_DOUBLE_TAP_N_DRAG_THRESHOLD   200000
141 #endif
142 
143 /*
144  * The wait duration in ticks after losing a touch contact before
145  * zombied strokes are reaped and turned into button events.
146  */
147 #define ATP_ZOMBIE_STROKE_REAP_INTERVAL   (hz / 20)	/* 50 ms */
148 
149 /* The multiplier used to translate sensor reported positions to mickeys. */
150 #define FG_SCALE_FACTOR                   380
151 
152 /*
153  * The movement threshold for a stroke; this is the maximum difference
154  * in position which will be resolved as a continuation of a stroke
155  * component.
156  */
157 #define FG_MAX_DELTA_MICKEYS             ((3 * (FG_SCALE_FACTOR)) >> 1)
158 
159 /* Distance-squared threshold for matching a finger with a known stroke */
160 #ifndef WSP_MAX_ALLOWED_MATCH_DISTANCE_SQ
161 #define WSP_MAX_ALLOWED_MATCH_DISTANCE_SQ 1000000
162 #endif
163 
164 /* Ignore pressure spans with cumulative press. below this value. */
165 #define FG_PSPAN_MIN_CUM_PRESSURE         10
166 
167 /* Maximum allowed width for pressure-spans.*/
168 #define FG_PSPAN_MAX_WIDTH                4
169 
170 /* end of driver specific options */
171 
172 /* Tunables */
173 static SYSCTL_NODE(_hw_usb, OID_AUTO, atp, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
174     "USB ATP");
175 
176 #ifdef USB_DEBUG
177 enum atp_log_level {
178 	ATP_LLEVEL_DISABLED = 0,
179 	ATP_LLEVEL_ERROR,
180 	ATP_LLEVEL_DEBUG,       /* for troubleshooting */
181 	ATP_LLEVEL_INFO,        /* for diagnostics */
182 };
183 static int atp_debug = ATP_LLEVEL_ERROR; /* the default is to only log errors */
184 SYSCTL_INT(_hw_usb_atp, OID_AUTO, debug, CTLFLAG_RWTUN,
185     &atp_debug, ATP_LLEVEL_ERROR, "ATP debug level");
186 #endif /* USB_DEBUG */
187 
188 static u_int atp_touch_timeout = ATP_TOUCH_TIMEOUT;
189 SYSCTL_UINT(_hw_usb_atp, OID_AUTO, touch_timeout, CTLFLAG_RWTUN,
190     &atp_touch_timeout, 125000, "age threshold in microseconds for a touch");
191 
192 static u_int atp_double_tap_threshold = ATP_DOUBLE_TAP_N_DRAG_THRESHOLD;
193 SYSCTL_UINT(_hw_usb_atp, OID_AUTO, double_tap_threshold, CTLFLAG_RWTUN,
194     &atp_double_tap_threshold, ATP_DOUBLE_TAP_N_DRAG_THRESHOLD,
195     "maximum time in microseconds to allow association between a double-tap and "
196     "drag gesture");
197 
198 static u_int atp_mickeys_scale_factor = ATP_SCALE_FACTOR;
199 static int atp_sysctl_scale_factor_handler(SYSCTL_HANDLER_ARGS);
200 SYSCTL_PROC(_hw_usb_atp, OID_AUTO, scale_factor,
201     CTLTYPE_UINT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE,
202     &atp_mickeys_scale_factor, sizeof(atp_mickeys_scale_factor),
203     atp_sysctl_scale_factor_handler, "IU",
204     "movement scale factor");
205 
206 static u_int atp_small_movement_threshold = ATP_SMALL_MOVEMENT_THRESHOLD;
207 SYSCTL_UINT(_hw_usb_atp, OID_AUTO, small_movement, CTLFLAG_RWTUN,
208     &atp_small_movement_threshold, ATP_SMALL_MOVEMENT_THRESHOLD,
209     "the small movement black-hole for filtering noise");
210 
211 static u_int atp_tap_minimum = 1;
212 SYSCTL_UINT(_hw_usb_atp, OID_AUTO, tap_minimum, CTLFLAG_RWTUN,
213     &atp_tap_minimum, 1, "Minimum number of taps before detection");
214 
215 /*
216  * Strokes which accumulate at least this amount of absolute movement
217  * from the aggregate of their components are considered as
218  * slides. Unit: mickeys.
219  */
220 static u_int atp_slide_min_movement = 2 * ATP_SMALL_MOVEMENT_THRESHOLD;
221 SYSCTL_UINT(_hw_usb_atp, OID_AUTO, slide_min_movement, CTLFLAG_RWTUN,
222     &atp_slide_min_movement, 2 * ATP_SMALL_MOVEMENT_THRESHOLD,
223     "strokes with at least this amt. of movement are considered slides");
224 
225 /*
226  * The minimum age of a stroke for it to be considered mature; this
227  * helps filter movements (noise) from immature strokes. Units: interrupts.
228  */
229 static u_int atp_stroke_maturity_threshold = 4;
230 SYSCTL_UINT(_hw_usb_atp, OID_AUTO, stroke_maturity_threshold, CTLFLAG_RWTUN,
231     &atp_stroke_maturity_threshold, 4,
232     "the minimum age of a stroke for it to be considered mature");
233 
234 typedef enum atp_trackpad_family {
235 	TRACKPAD_FAMILY_FOUNTAIN_GEYSER,
236 	TRACKPAD_FAMILY_WELLSPRING,
237 	TRACKPAD_FAMILY_MAX /* keep this at the tail end of the enumeration */
238 } trackpad_family_t;
239 
240 enum fountain_geyser_product {
241 	FOUNTAIN,
242 	GEYSER1,
243 	GEYSER1_17inch,
244 	GEYSER2,
245 	GEYSER3,
246 	GEYSER4,
247 	FOUNTAIN_GEYSER_PRODUCT_MAX /* keep this at the end */
248 };
249 
250 enum wellspring_product {
251 	WELLSPRING1,
252 	WELLSPRING2,
253 	WELLSPRING3,
254 	WELLSPRING4,
255 	WELLSPRING4A,
256 	WELLSPRING5,
257 	WELLSPRING6A,
258 	WELLSPRING6,
259 	WELLSPRING5A,
260 	WELLSPRING7,
261 	WELLSPRING7A,
262 	WELLSPRING8,
263 	WELLSPRING_PRODUCT_MAX /* keep this at the end of the enumeration */
264 };
265 
266 /* trackpad header types */
267 enum fountain_geyser_trackpad_type {
268 	FG_TRACKPAD_TYPE_GEYSER1,
269 	FG_TRACKPAD_TYPE_GEYSER2,
270 	FG_TRACKPAD_TYPE_GEYSER3,
271 	FG_TRACKPAD_TYPE_GEYSER4,
272 };
273 enum wellspring_trackpad_type {
274 	WSP_TRACKPAD_TYPE1,      /* plain trackpad */
275 	WSP_TRACKPAD_TYPE2,      /* button integrated in trackpad */
276 	WSP_TRACKPAD_TYPE3       /* additional header fields since June 2013 */
277 };
278 
279 /*
280  * Trackpad family and product and family are encoded together in the
281  * driver_info value associated with a trackpad product.
282  */
283 #define N_PROD_BITS 8  /* Number of bits used to encode product */
284 #define ENCODE_DRIVER_INFO(FAMILY, PROD)      \
285     (((FAMILY) << N_PROD_BITS) | (PROD))
286 #define DECODE_FAMILY_FROM_DRIVER_INFO(INFO)  ((INFO) >> N_PROD_BITS)
287 #define DECODE_PRODUCT_FROM_DRIVER_INFO(INFO) \
288     ((INFO) & ((1 << N_PROD_BITS) - 1))
289 
290 #define FG_DRIVER_INFO(PRODUCT)               \
291     ENCODE_DRIVER_INFO(TRACKPAD_FAMILY_FOUNTAIN_GEYSER, PRODUCT)
292 #define WELLSPRING_DRIVER_INFO(PRODUCT)       \
293     ENCODE_DRIVER_INFO(TRACKPAD_FAMILY_WELLSPRING, PRODUCT)
294 
295 /*
296  * The following structure captures the state of a pressure span along
297  * an axis. Each contact with the touchpad results in separate
298  * pressure spans along the two axes.
299  */
300 typedef struct fg_pspan {
301 	u_int width;       /* in units of sensors */
302 	u_int cum;         /* cumulative compression (from all sensors) */
303 	u_int cog;         /* center of gravity */
304 	u_int loc;         /* location (scaled using the mickeys factor) */
305 	boolean_t matched; /* to track pspans as they match against strokes. */
306 } fg_pspan;
307 
308 #define FG_MAX_PSPANS_PER_AXIS 3
309 #define FG_MAX_STROKES         (2 * FG_MAX_PSPANS_PER_AXIS)
310 
311 #define WELLSPRING_INTERFACE_INDEX 1
312 
313 /* trackpad finger data offsets, le16-aligned */
314 #define WSP_TYPE1_FINGER_DATA_OFFSET  (13 * 2)
315 #define WSP_TYPE2_FINGER_DATA_OFFSET  (15 * 2)
316 #define WSP_TYPE3_FINGER_DATA_OFFSET  (19 * 2)
317 
318 /* trackpad button data offsets */
319 #define WSP_TYPE2_BUTTON_DATA_OFFSET   15
320 #define WSP_TYPE3_BUTTON_DATA_OFFSET   23
321 
322 /* list of device capability bits */
323 #define HAS_INTEGRATED_BUTTON   1
324 
325 /* trackpad finger structure - little endian */
326 struct wsp_finger_sensor_data {
327 	int16_t origin;       /* zero when switching track finger */
328 	int16_t abs_x;        /* absolute x coordinate */
329 	int16_t abs_y;        /* absolute y coordinate */
330 	int16_t rel_x;        /* relative x coordinate */
331 	int16_t rel_y;        /* relative y coordinate */
332 	int16_t tool_major;   /* tool area, major axis */
333 	int16_t tool_minor;   /* tool area, minor axis */
334 	int16_t orientation;  /* 16384 when point, else 15 bit angle */
335 	int16_t touch_major;  /* touch area, major axis */
336 	int16_t touch_minor;  /* touch area, minor axis */
337 	int16_t unused[3];    /* zeros */
338 	int16_t multi;        /* one finger: varies, more fingers: constant */
339 } __packed;
340 
341 typedef struct wsp_finger {
342 	/* to track fingers as they match against strokes. */
343 	boolean_t matched;
344 
345 	/* location (scaled using the mickeys factor) */
346 	int x;
347 	int y;
348 } wsp_finger_t;
349 
350 #define WSP_MAX_FINGERS               16
351 #define WSP_SIZEOF_FINGER_SENSOR_DATA sizeof(struct wsp_finger_sensor_data)
352 #define WSP_SIZEOF_ALL_FINGER_DATA    (WSP_MAX_FINGERS * \
353 				       WSP_SIZEOF_FINGER_SENSOR_DATA)
354 #define WSP_MAX_FINGER_ORIENTATION    16384
355 
356 #define ATP_SENSOR_DATA_BUF_MAX       1024
357 #if (ATP_SENSOR_DATA_BUF_MAX < ((WSP_MAX_FINGERS * 14 * 2) + \
358 				WSP_TYPE3_FINGER_DATA_OFFSET))
359 /* note: 14 * 2 in the above is based on sizeof(struct wsp_finger_sensor_data)*/
360 #error "ATP_SENSOR_DATA_BUF_MAX is too small"
361 #endif
362 
363 #define ATP_MAX_STROKES               MAX(WSP_MAX_FINGERS, FG_MAX_STROKES)
364 
365 #define FG_MAX_XSENSORS 26
366 #define FG_MAX_YSENSORS 16
367 
368 /* device-specific configuration */
369 struct fg_dev_params {
370 	u_int                              data_len;   /* for sensor data */
371 	u_int                              n_xsensors;
372 	u_int                              n_ysensors;
373 	enum fountain_geyser_trackpad_type prot;
374 };
375 struct wsp_dev_params {
376 	uint8_t  caps;               /* device capability bitmask */
377 	uint8_t  tp_type;            /* type of trackpad interface */
378 	uint8_t  finger_data_offset; /* offset to trackpad finger data */
379 };
380 
381 static const struct fg_dev_params fg_dev_params[FOUNTAIN_GEYSER_PRODUCT_MAX] = {
382 	[FOUNTAIN] = {
383 		.data_len   = 81,
384 		.n_xsensors = 16,
385 		.n_ysensors = 16,
386 		.prot       = FG_TRACKPAD_TYPE_GEYSER1
387 	},
388 	[GEYSER1] = {
389 		.data_len   = 81,
390 		.n_xsensors = 16,
391 		.n_ysensors = 16,
392 		.prot       = FG_TRACKPAD_TYPE_GEYSER1
393 	},
394 	[GEYSER1_17inch] = {
395 		.data_len   = 81,
396 		.n_xsensors = 26,
397 		.n_ysensors = 16,
398 		.prot       = FG_TRACKPAD_TYPE_GEYSER1
399 	},
400 	[GEYSER2] = {
401 		.data_len   = 64,
402 		.n_xsensors = 15,
403 		.n_ysensors = 9,
404 		.prot       = FG_TRACKPAD_TYPE_GEYSER2
405 	},
406 	[GEYSER3] = {
407 		.data_len   = 64,
408 		.n_xsensors = 20,
409 		.n_ysensors = 10,
410 		.prot       = FG_TRACKPAD_TYPE_GEYSER3
411 	},
412 	[GEYSER4] = {
413 		.data_len   = 64,
414 		.n_xsensors = 20,
415 		.n_ysensors = 10,
416 		.prot       = FG_TRACKPAD_TYPE_GEYSER4
417 	}
418 };
419 
420 static const STRUCT_USB_HOST_ID fg_devs[] = {
421 	/* PowerBooks Feb 2005, iBooks G4 */
422 	{ USB_VPI(USB_VENDOR_APPLE, 0x020e, FG_DRIVER_INFO(FOUNTAIN)) },
423 	{ USB_VPI(USB_VENDOR_APPLE, 0x020f, FG_DRIVER_INFO(FOUNTAIN)) },
424 	{ USB_VPI(USB_VENDOR_APPLE, 0x0210, FG_DRIVER_INFO(FOUNTAIN)) },
425 	{ USB_VPI(USB_VENDOR_APPLE, 0x030a, FG_DRIVER_INFO(FOUNTAIN)) },
426 	{ USB_VPI(USB_VENDOR_APPLE, 0x030b, FG_DRIVER_INFO(GEYSER1)) },
427 
428 	/* PowerBooks Oct 2005 */
429 	{ USB_VPI(USB_VENDOR_APPLE, 0x0214, FG_DRIVER_INFO(GEYSER2)) },
430 	{ USB_VPI(USB_VENDOR_APPLE, 0x0215, FG_DRIVER_INFO(GEYSER2)) },
431 	{ USB_VPI(USB_VENDOR_APPLE, 0x0216, FG_DRIVER_INFO(GEYSER2)) },
432 
433 	/* Core Duo MacBook & MacBook Pro */
434 	{ USB_VPI(USB_VENDOR_APPLE, 0x0217, FG_DRIVER_INFO(GEYSER3)) },
435 	{ USB_VPI(USB_VENDOR_APPLE, 0x0218, FG_DRIVER_INFO(GEYSER3)) },
436 	{ USB_VPI(USB_VENDOR_APPLE, 0x0219, FG_DRIVER_INFO(GEYSER3)) },
437 
438 	/* Core2 Duo MacBook & MacBook Pro */
439 	{ USB_VPI(USB_VENDOR_APPLE, 0x021a, FG_DRIVER_INFO(GEYSER4)) },
440 	{ USB_VPI(USB_VENDOR_APPLE, 0x021b, FG_DRIVER_INFO(GEYSER4)) },
441 	{ USB_VPI(USB_VENDOR_APPLE, 0x021c, FG_DRIVER_INFO(GEYSER4)) },
442 
443 	/* Core2 Duo MacBook3,1 */
444 	{ USB_VPI(USB_VENDOR_APPLE, 0x0229, FG_DRIVER_INFO(GEYSER4)) },
445 	{ USB_VPI(USB_VENDOR_APPLE, 0x022a, FG_DRIVER_INFO(GEYSER4)) },
446 	{ USB_VPI(USB_VENDOR_APPLE, 0x022b, FG_DRIVER_INFO(GEYSER4)) },
447 
448 	/* 17 inch PowerBook */
449 	{ USB_VPI(USB_VENDOR_APPLE, 0x020d, FG_DRIVER_INFO(GEYSER1_17inch)) },
450 };
451 
452 static const struct wsp_dev_params wsp_dev_params[WELLSPRING_PRODUCT_MAX] = {
453 	[WELLSPRING1] = {
454 		.caps       = 0,
455 		.tp_type    = WSP_TRACKPAD_TYPE1,
456 		.finger_data_offset  = WSP_TYPE1_FINGER_DATA_OFFSET,
457 	},
458 	[WELLSPRING2] = {
459 		.caps       = 0,
460 		.tp_type    = WSP_TRACKPAD_TYPE1,
461 		.finger_data_offset  = WSP_TYPE1_FINGER_DATA_OFFSET,
462 	},
463 	[WELLSPRING3] = {
464 		.caps       = HAS_INTEGRATED_BUTTON,
465 		.tp_type    = WSP_TRACKPAD_TYPE2,
466 		.finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
467 	},
468 	[WELLSPRING4] = {
469 		.caps       = HAS_INTEGRATED_BUTTON,
470 		.tp_type    = WSP_TRACKPAD_TYPE2,
471 		.finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
472 	},
473 	[WELLSPRING4A] = {
474 		.caps       = HAS_INTEGRATED_BUTTON,
475 		.tp_type    = WSP_TRACKPAD_TYPE2,
476 		.finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
477 	},
478 	[WELLSPRING5] = {
479 		.caps       = HAS_INTEGRATED_BUTTON,
480 		.tp_type    = WSP_TRACKPAD_TYPE2,
481 		.finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
482 	},
483 	[WELLSPRING6] = {
484 		.caps       = HAS_INTEGRATED_BUTTON,
485 		.tp_type    = WSP_TRACKPAD_TYPE2,
486 		.finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
487 	},
488 	[WELLSPRING5A] = {
489 		.caps       = HAS_INTEGRATED_BUTTON,
490 		.tp_type    = WSP_TRACKPAD_TYPE2,
491 		.finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
492 	},
493 	[WELLSPRING6A] = {
494 		.caps       = HAS_INTEGRATED_BUTTON,
495 		.tp_type    = WSP_TRACKPAD_TYPE2,
496 		.finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
497 	},
498 	[WELLSPRING7] = {
499 		.caps       = HAS_INTEGRATED_BUTTON,
500 		.tp_type    = WSP_TRACKPAD_TYPE2,
501 		.finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
502 	},
503 	[WELLSPRING7A] = {
504 		.caps       = HAS_INTEGRATED_BUTTON,
505 		.tp_type    = WSP_TRACKPAD_TYPE2,
506 		.finger_data_offset  = WSP_TYPE2_FINGER_DATA_OFFSET,
507 	},
508 	[WELLSPRING8] = {
509 		.caps       = HAS_INTEGRATED_BUTTON,
510 		.tp_type    = WSP_TRACKPAD_TYPE3,
511 		.finger_data_offset  = WSP_TYPE3_FINGER_DATA_OFFSET,
512 	},
513 };
514 #define ATP_DEV(v,p,i) { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, i) }
515 
516 /* TODO: STRUCT_USB_HOST_ID */
517 static const struct usb_device_id wsp_devs[] = {
518 	/* MacbookAir1.1 */
519 	ATP_DEV(APPLE, WELLSPRING_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING1)),
520 	ATP_DEV(APPLE, WELLSPRING_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING1)),
521 	ATP_DEV(APPLE, WELLSPRING_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING1)),
522 
523 	/* MacbookProPenryn, aka wellspring2 */
524 	ATP_DEV(APPLE, WELLSPRING2_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING2)),
525 	ATP_DEV(APPLE, WELLSPRING2_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING2)),
526 	ATP_DEV(APPLE, WELLSPRING2_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING2)),
527 
528 	/* Macbook5,1 (unibody), aka wellspring3 */
529 	ATP_DEV(APPLE, WELLSPRING3_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING3)),
530 	ATP_DEV(APPLE, WELLSPRING3_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING3)),
531 	ATP_DEV(APPLE, WELLSPRING3_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING3)),
532 
533 	/* MacbookAir3,2 (unibody), aka wellspring4 */
534 	ATP_DEV(APPLE, WELLSPRING4_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING4)),
535 	ATP_DEV(APPLE, WELLSPRING4_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING4)),
536 	ATP_DEV(APPLE, WELLSPRING4_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING4)),
537 
538 	/* MacbookAir3,1 (unibody), aka wellspring4 */
539 	ATP_DEV(APPLE, WELLSPRING4A_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING4A)),
540 	ATP_DEV(APPLE, WELLSPRING4A_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING4A)),
541 	ATP_DEV(APPLE, WELLSPRING4A_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING4A)),
542 
543 	/* Macbook8 (unibody, March 2011) */
544 	ATP_DEV(APPLE, WELLSPRING5_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING5)),
545 	ATP_DEV(APPLE, WELLSPRING5_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING5)),
546 	ATP_DEV(APPLE, WELLSPRING5_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING5)),
547 
548 	/* MacbookAir4,1 (unibody, July 2011) */
549 	ATP_DEV(APPLE, WELLSPRING6A_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING6A)),
550 	ATP_DEV(APPLE, WELLSPRING6A_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING6A)),
551 	ATP_DEV(APPLE, WELLSPRING6A_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING6A)),
552 
553 	/* MacbookAir4,2 (unibody, July 2011) */
554 	ATP_DEV(APPLE, WELLSPRING6_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING6)),
555 	ATP_DEV(APPLE, WELLSPRING6_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING6)),
556 	ATP_DEV(APPLE, WELLSPRING6_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING6)),
557 
558 	/* Macbook8,2 (unibody) */
559 	ATP_DEV(APPLE, WELLSPRING5A_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING5A)),
560 	ATP_DEV(APPLE, WELLSPRING5A_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING5A)),
561 	ATP_DEV(APPLE, WELLSPRING5A_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING5A)),
562 
563 	/* MacbookPro10,1 (unibody, June 2012) */
564 	/* MacbookPro11,? (unibody, June 2013) */
565 	ATP_DEV(APPLE, WELLSPRING7_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING7)),
566 	ATP_DEV(APPLE, WELLSPRING7_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING7)),
567 	ATP_DEV(APPLE, WELLSPRING7_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING7)),
568 
569 	/* MacbookPro10,2 (unibody, October 2012) */
570 	ATP_DEV(APPLE, WELLSPRING7A_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING7A)),
571 	ATP_DEV(APPLE, WELLSPRING7A_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING7A)),
572 	ATP_DEV(APPLE, WELLSPRING7A_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING7A)),
573 
574 	/* MacbookAir6,2 (unibody, June 2013) */
575 	ATP_DEV(APPLE, WELLSPRING8_ANSI, WELLSPRING_DRIVER_INFO(WELLSPRING8)),
576 	ATP_DEV(APPLE, WELLSPRING8_ISO,  WELLSPRING_DRIVER_INFO(WELLSPRING8)),
577 	ATP_DEV(APPLE, WELLSPRING8_JIS,  WELLSPRING_DRIVER_INFO(WELLSPRING8)),
578 };
579 
580 typedef enum atp_stroke_type {
581 	ATP_STROKE_TOUCH,
582 	ATP_STROKE_SLIDE,
583 } atp_stroke_type;
584 
585 typedef enum atp_axis {
586 	X = 0,
587 	Y = 1,
588 	NUM_AXES
589 } atp_axis;
590 
591 #define ATP_FIFO_BUF_SIZE        8 /* bytes */
592 #define ATP_FIFO_QUEUE_MAXLEN   50 /* units */
593 
594 enum {
595 	ATP_INTR_DT,
596 	ATP_RESET,
597 	ATP_N_TRANSFER,
598 };
599 
600 typedef struct fg_stroke_component {
601 	/* Fields encapsulating the pressure-span. */
602 	u_int loc;              /* location (scaled) */
603 	u_int cum_pressure;     /* cumulative compression */
604 	u_int max_cum_pressure; /* max cumulative compression */
605 	boolean_t matched; /*to track components as they match against pspans.*/
606 
607 	int   delta_mickeys;    /* change in location (un-smoothened movement)*/
608 } fg_stroke_component_t;
609 
610 /*
611  * The following structure captures a finger contact with the
612  * touchpad. A stroke comprises two p-span components and some state.
613  */
614 typedef struct atp_stroke {
615 	TAILQ_ENTRY(atp_stroke) entry;
616 
617 	atp_stroke_type type;
618 	uint32_t        flags; /* the state of this stroke */
619 #define ATSF_ZOMBIE 0x1
620 	boolean_t       matched;          /* to track match against fingers.*/
621 
622 	struct timeval  ctime; /* create time; for coincident siblings. */
623 
624 	/*
625 	 * Unit: interrupts; we maintain this value in
626 	 * addition to 'ctime' in order to avoid the
627 	 * expensive call to microtime() at every
628 	 * interrupt.
629 	 */
630 	uint32_t age;
631 
632 	/* Location */
633 	int x;
634 	int y;
635 
636 	/* Fields containing information about movement. */
637 	int   instantaneous_dx; /* curr. change in X location (un-smoothened) */
638 	int   instantaneous_dy; /* curr. change in Y location (un-smoothened) */
639 	int   pending_dx;       /* cum. of pending short movements */
640 	int   pending_dy;       /* cum. of pending short movements */
641 	int   movement_dx;      /* interpreted smoothened movement */
642 	int   movement_dy;      /* interpreted smoothened movement */
643 	int   cum_movement_x;   /* cum. horizontal movement */
644 	int   cum_movement_y;   /* cum. vertical movement */
645 
646 	/*
647 	 * The following member is relevant only for fountain-geyser trackpads.
648 	 * For these, there is the need to track pressure-spans and cumulative
649 	 * pressures for stroke components.
650 	 */
651 	fg_stroke_component_t components[NUM_AXES];
652 } atp_stroke_t;
653 
654 struct atp_softc; /* forward declaration */
655 typedef void (*sensor_data_interpreter_t)(struct atp_softc *sc, u_int len);
656 
657 struct atp_softc {
658 	device_t            sc_dev;
659 	struct usb_device  *sc_usb_device;
660 	struct mtx          sc_mutex; /* for synchronization */
661 	struct usb_fifo_sc  sc_fifo;
662 
663 #define	MODE_LENGTH 8
664 	char                sc_mode_bytes[MODE_LENGTH]; /* device mode */
665 
666 	trackpad_family_t   sc_family;
667 	const void         *sc_params; /* device configuration */
668 	sensor_data_interpreter_t sensor_data_interpreter;
669 
670 	mousehw_t           sc_hw;
671 	mousemode_t         sc_mode;
672 	mousestatus_t       sc_status;
673 
674 	u_int               sc_state;
675 #define ATP_ENABLED          0x01
676 #define ATP_ZOMBIES_EXIST    0x02
677 #define ATP_DOUBLE_TAP_DRAG  0x04
678 #define ATP_VALID            0x08
679 
680 	struct usb_xfer    *sc_xfer[ATP_N_TRANSFER];
681 
682 	u_int               sc_pollrate;
683 	int                 sc_fflags;
684 
685 	atp_stroke_t        sc_strokes_data[ATP_MAX_STROKES];
686 	TAILQ_HEAD(,atp_stroke) sc_stroke_free;
687 	TAILQ_HEAD(,atp_stroke) sc_stroke_used;
688 	u_int               sc_n_strokes;
689 
690 	struct callout	    sc_callout;
691 
692 	/*
693 	 * button status. Set to non-zero if the mouse-button is physically
694 	 * pressed. This state variable is exposed through softc to allow
695 	 * reap_sibling_zombies to avoid registering taps while the trackpad
696 	 * button is pressed.
697          */
698 	uint8_t             sc_ibtn;
699 
700 	/*
701 	 * Time when touch zombies were last reaped; useful for detecting
702 	 * double-touch-n-drag.
703 	 */
704 	struct timeval      sc_touch_reap_time;
705 
706 	u_int	            sc_idlecount;
707 
708 	/* Regarding the data transferred from t-pad in USB INTR packets. */
709 	u_int   sc_expected_sensor_data_len;
710 	uint8_t sc_sensor_data[ATP_SENSOR_DATA_BUF_MAX] __aligned(4);
711 
712 	int      sc_cur_x[FG_MAX_XSENSORS];      /* current sensor readings */
713 	int      sc_cur_y[FG_MAX_YSENSORS];
714 	int      sc_base_x[FG_MAX_XSENSORS];     /* base sensor readings */
715 	int      sc_base_y[FG_MAX_YSENSORS];
716 	int      sc_pressure_x[FG_MAX_XSENSORS]; /* computed pressures */
717 	int      sc_pressure_y[FG_MAX_YSENSORS];
718 	fg_pspan sc_pspans_x[FG_MAX_PSPANS_PER_AXIS];
719 	fg_pspan sc_pspans_y[FG_MAX_PSPANS_PER_AXIS];
720 };
721 
722 /*
723  * The last byte of the fountain-geyser sensor data contains status bits; the
724  * following values define the meanings of these bits.
725  * (only Geyser 3/4)
726  */
727 enum geyser34_status_bits {
728 	FG_STATUS_BUTTON      = (uint8_t)0x01, /* The button was pressed */
729 	FG_STATUS_BASE_UPDATE = (uint8_t)0x04, /* Data from an untouched pad.*/
730 };
731 
732 typedef enum interface_mode {
733 	RAW_SENSOR_MODE = (uint8_t)0x01,
734 	HID_MODE        = (uint8_t)0x08
735 } interface_mode;
736 
737 /*
738  * function prototypes
739  */
740 static usb_fifo_cmd_t   atp_start_read;
741 static usb_fifo_cmd_t   atp_stop_read;
742 static usb_fifo_open_t  atp_open;
743 static usb_fifo_close_t atp_close;
744 static usb_fifo_ioctl_t atp_ioctl;
745 
746 static struct usb_fifo_methods atp_fifo_methods = {
747 	.f_open       = &atp_open,
748 	.f_close      = &atp_close,
749 	.f_ioctl      = &atp_ioctl,
750 	.f_start_read = &atp_start_read,
751 	.f_stop_read  = &atp_stop_read,
752 	.basename[0]  = ATP_DRIVER_NAME,
753 };
754 
755 /* device initialization and shutdown */
756 static usb_error_t   atp_set_device_mode(struct atp_softc *, interface_mode);
757 static void	     atp_reset_callback(struct usb_xfer *, usb_error_t);
758 static int	     atp_enable(struct atp_softc *);
759 static void	     atp_disable(struct atp_softc *);
760 
761 /* sensor interpretation */
762 static void	     fg_interpret_sensor_data(struct atp_softc *, u_int);
763 static void	     fg_extract_sensor_data(const int8_t *, u_int, atp_axis,
764     int *, enum fountain_geyser_trackpad_type);
765 static void	     fg_get_pressures(int *, const int *, const int *, int);
766 static void	     fg_detect_pspans(int *, u_int, u_int, fg_pspan *, u_int *);
767 static void	     wsp_interpret_sensor_data(struct atp_softc *, u_int);
768 
769 /* movement detection */
770 static boolean_t     fg_match_stroke_component(fg_stroke_component_t *,
771     const fg_pspan *, atp_stroke_type);
772 static void	     fg_match_strokes_against_pspans(struct atp_softc *,
773     atp_axis, fg_pspan *, u_int, u_int);
774 static boolean_t     wsp_match_strokes_against_fingers(struct atp_softc *,
775     wsp_finger_t *, u_int);
776 static boolean_t     fg_update_strokes(struct atp_softc *, fg_pspan *, u_int,
777     fg_pspan *, u_int);
778 static boolean_t     wsp_update_strokes(struct atp_softc *,
779     wsp_finger_t [WSP_MAX_FINGERS], u_int);
780 static void fg_add_stroke(struct atp_softc *, const fg_pspan *, const fg_pspan *);
781 static void	     fg_add_new_strokes(struct atp_softc *, fg_pspan *,
782     u_int, fg_pspan *, u_int);
783 static void wsp_add_stroke(struct atp_softc *, const wsp_finger_t *);
784 static void	     atp_advance_stroke_state(struct atp_softc *,
785     atp_stroke_t *, boolean_t *);
786 static boolean_t atp_stroke_has_small_movement(const atp_stroke_t *);
787 static void	     atp_update_pending_mickeys(atp_stroke_t *);
788 static boolean_t     atp_compute_stroke_movement(atp_stroke_t *);
789 static void	     atp_terminate_stroke(struct atp_softc *, atp_stroke_t *);
790 
791 /* tap detection */
792 static boolean_t atp_is_horizontal_scroll(const atp_stroke_t *);
793 static boolean_t atp_is_vertical_scroll(const atp_stroke_t *);
794 static void	     atp_reap_sibling_zombies(void *);
795 static void	     atp_convert_to_slide(struct atp_softc *, atp_stroke_t *);
796 
797 /* updating fifo */
798 static void	     atp_reset_buf(struct atp_softc *);
799 static void	     atp_add_to_queue(struct atp_softc *, int, int, int, uint32_t);
800 
801 /* Device methods. */
802 static device_probe_t  atp_probe;
803 static device_attach_t atp_attach;
804 static device_detach_t atp_detach;
805 static usb_callback_t  atp_intr;
806 
807 static const struct usb_config atp_xfer_config[ATP_N_TRANSFER] = {
808 	[ATP_INTR_DT] = {
809 		.type      = UE_INTERRUPT,
810 		.endpoint  = UE_ADDR_ANY,
811 		.direction = UE_DIR_IN,
812 		.flags = {
813 			.pipe_bof = 1, /* block pipe on failure */
814 			.short_xfer_ok = 1,
815 		},
816 		.bufsize   = ATP_SENSOR_DATA_BUF_MAX,
817 		.callback  = &atp_intr,
818 	},
819 	[ATP_RESET] = {
820 		.type      = UE_CONTROL,
821 		.endpoint  = 0, /* Control pipe */
822 		.direction = UE_DIR_ANY,
823 		.bufsize   = sizeof(struct usb_device_request) + MODE_LENGTH,
824 		.callback  = &atp_reset_callback,
825 		.interval  = 0,  /* no pre-delay */
826 	},
827 };
828 
829 static atp_stroke_t *
830 atp_alloc_stroke(struct atp_softc *sc)
831 {
832 	atp_stroke_t *pstroke;
833 
834 	pstroke = TAILQ_FIRST(&sc->sc_stroke_free);
835 	if (pstroke == NULL)
836 		goto done;
837 
838 	TAILQ_REMOVE(&sc->sc_stroke_free, pstroke, entry);
839 	memset(pstroke, 0, sizeof(*pstroke));
840 	TAILQ_INSERT_TAIL(&sc->sc_stroke_used, pstroke, entry);
841 
842 	sc->sc_n_strokes++;
843 done:
844 	return (pstroke);
845 }
846 
847 static void
848 atp_free_stroke(struct atp_softc *sc, atp_stroke_t *pstroke)
849 {
850 	if (pstroke == NULL)
851 		return;
852 
853 	sc->sc_n_strokes--;
854 
855 	TAILQ_REMOVE(&sc->sc_stroke_used, pstroke, entry);
856 	TAILQ_INSERT_TAIL(&sc->sc_stroke_free, pstroke, entry);
857 }
858 
859 static void
860 atp_init_stroke_pool(struct atp_softc *sc)
861 {
862 	u_int x;
863 
864 	TAILQ_INIT(&sc->sc_stroke_free);
865 	TAILQ_INIT(&sc->sc_stroke_used);
866 
867 	sc->sc_n_strokes = 0;
868 
869 	memset(&sc->sc_strokes_data, 0, sizeof(sc->sc_strokes_data));
870 
871 	for (x = 0; x != ATP_MAX_STROKES; x++) {
872 		TAILQ_INSERT_TAIL(&sc->sc_stroke_free, &sc->sc_strokes_data[x],
873 		    entry);
874 	}
875 }
876 
877 static usb_error_t
878 atp_set_device_mode(struct atp_softc *sc, interface_mode newMode)
879 {
880 	uint8_t mode_value;
881 	usb_error_t err;
882 
883 	if ((newMode != RAW_SENSOR_MODE) && (newMode != HID_MODE))
884 		return (USB_ERR_INVAL);
885 
886 	if ((newMode == RAW_SENSOR_MODE) &&
887 	    (sc->sc_family == TRACKPAD_FAMILY_FOUNTAIN_GEYSER))
888 		mode_value = (uint8_t)0x04;
889 	else
890 		mode_value = newMode;
891 
892 	err = usbd_req_get_report(sc->sc_usb_device, NULL /* mutex */,
893 	    sc->sc_mode_bytes, sizeof(sc->sc_mode_bytes), 0 /* interface idx */,
894 	    0x03 /* type */, 0x00 /* id */);
895 	if (err != USB_ERR_NORMAL_COMPLETION) {
896 		DPRINTF("Failed to read device mode (%d)\n", err);
897 		return (err);
898 	}
899 
900 	if (sc->sc_mode_bytes[0] == mode_value)
901 		return (err);
902 
903 	/*
904 	 * XXX Need to wait at least 250ms for hardware to get
905 	 * ready. The device mode handling appears to be handled
906 	 * asynchronously and we should not issue these commands too
907 	 * quickly.
908 	 */
909 	pause("WHW", hz / 4);
910 
911 	sc->sc_mode_bytes[0] = mode_value;
912 	return (usbd_req_set_report(sc->sc_usb_device, NULL /* mutex */,
913 	    sc->sc_mode_bytes, sizeof(sc->sc_mode_bytes), 0 /* interface idx */,
914 	    0x03 /* type */, 0x00 /* id */));
915 }
916 
917 static void
918 atp_reset_callback(struct usb_xfer *xfer, usb_error_t error)
919 {
920 	usb_device_request_t   req;
921 	struct usb_page_cache *pc;
922 	struct atp_softc      *sc = usbd_xfer_softc(xfer);
923 
924 	uint8_t mode_value;
925 	if (sc->sc_family == TRACKPAD_FAMILY_FOUNTAIN_GEYSER)
926 		mode_value = 0x04;
927 	else
928 		mode_value = RAW_SENSOR_MODE;
929 
930 	switch (USB_GET_STATE(xfer)) {
931 	case USB_ST_SETUP:
932 		sc->sc_mode_bytes[0] = mode_value;
933 		req.bmRequestType = UT_WRITE_CLASS_INTERFACE;
934 		req.bRequest = UR_SET_REPORT;
935 		USETW2(req.wValue,
936 		    (uint8_t)0x03 /* type */, (uint8_t)0x00 /* id */);
937 		USETW(req.wIndex, 0);
938 		USETW(req.wLength, MODE_LENGTH);
939 
940 		pc = usbd_xfer_get_frame(xfer, 0);
941 		usbd_copy_in(pc, 0, &req, sizeof(req));
942 		pc = usbd_xfer_get_frame(xfer, 1);
943 		usbd_copy_in(pc, 0, sc->sc_mode_bytes, MODE_LENGTH);
944 
945 		usbd_xfer_set_frame_len(xfer, 0, sizeof(req));
946 		usbd_xfer_set_frame_len(xfer, 1, MODE_LENGTH);
947 		usbd_xfer_set_frames(xfer, 2);
948 		usbd_transfer_submit(xfer);
949 		break;
950 
951 	case USB_ST_TRANSFERRED:
952 	default:
953 		break;
954 	}
955 }
956 
957 static int
958 atp_enable(struct atp_softc *sc)
959 {
960 	if (sc->sc_state & ATP_ENABLED)
961 		return (0);
962 
963 	/* reset status */
964 	memset(&sc->sc_status, 0, sizeof(sc->sc_status));
965 
966 	atp_init_stroke_pool(sc);
967 
968 	sc->sc_state |= ATP_ENABLED;
969 
970 	DPRINTFN(ATP_LLEVEL_INFO, "enabled atp\n");
971 	return (0);
972 }
973 
974 static void
975 atp_disable(struct atp_softc *sc)
976 {
977 	sc->sc_state &= ~(ATP_ENABLED | ATP_VALID);
978 	DPRINTFN(ATP_LLEVEL_INFO, "disabled atp\n");
979 }
980 
981 static void
982 fg_interpret_sensor_data(struct atp_softc *sc, u_int data_len)
983 {
984 	u_int n_xpspans = 0;
985 	u_int n_ypspans = 0;
986 	uint8_t status_bits;
987 
988 	const struct fg_dev_params *params =
989 	    (const struct fg_dev_params *)sc->sc_params;
990 
991 	fg_extract_sensor_data(sc->sc_sensor_data, params->n_xsensors, X,
992 	    sc->sc_cur_x, params->prot);
993 	fg_extract_sensor_data(sc->sc_sensor_data, params->n_ysensors, Y,
994 	    sc->sc_cur_y, params->prot);
995 
996 	/*
997 	 * If this is the initial update (from an untouched
998 	 * pad), we should set the base values for the sensor
999 	 * data; deltas with respect to these base values can
1000 	 * be used as pressure readings subsequently.
1001 	 */
1002 	status_bits = sc->sc_sensor_data[params->data_len - 1];
1003 	if (((params->prot == FG_TRACKPAD_TYPE_GEYSER3) ||
1004 	     (params->prot == FG_TRACKPAD_TYPE_GEYSER4))  &&
1005 	    ((sc->sc_state & ATP_VALID) == 0)) {
1006 		if (status_bits & FG_STATUS_BASE_UPDATE) {
1007 			memcpy(sc->sc_base_x, sc->sc_cur_x,
1008 			    params->n_xsensors * sizeof(*sc->sc_base_x));
1009 			memcpy(sc->sc_base_y, sc->sc_cur_y,
1010 			    params->n_ysensors * sizeof(*sc->sc_base_y));
1011 			sc->sc_state |= ATP_VALID;
1012 			return;
1013 		}
1014 	}
1015 
1016 	/* Get pressure readings and detect p-spans for both axes. */
1017 	fg_get_pressures(sc->sc_pressure_x, sc->sc_cur_x, sc->sc_base_x,
1018 	    params->n_xsensors);
1019 	fg_detect_pspans(sc->sc_pressure_x, params->n_xsensors,
1020 	    FG_MAX_PSPANS_PER_AXIS, sc->sc_pspans_x, &n_xpspans);
1021 	fg_get_pressures(sc->sc_pressure_y, sc->sc_cur_y, sc->sc_base_y,
1022 	    params->n_ysensors);
1023 	fg_detect_pspans(sc->sc_pressure_y, params->n_ysensors,
1024 	    FG_MAX_PSPANS_PER_AXIS, sc->sc_pspans_y, &n_ypspans);
1025 
1026 	/* Update strokes with new pspans to detect movements. */
1027 	if (fg_update_strokes(sc, sc->sc_pspans_x, n_xpspans, sc->sc_pspans_y, n_ypspans))
1028 		sc->sc_status.flags |= MOUSE_POSCHANGED;
1029 
1030 	sc->sc_ibtn = (status_bits & FG_STATUS_BUTTON) ? MOUSE_BUTTON1DOWN : 0;
1031 	sc->sc_status.button = sc->sc_ibtn;
1032 
1033 	/*
1034 	 * The Fountain/Geyser device continues to trigger interrupts
1035 	 * at a fast rate even after touchpad activity has
1036 	 * stopped. Upon detecting that the device has remained idle
1037 	 * beyond a threshold, we reinitialize it to silence the
1038 	 * interrupts.
1039 	 */
1040 	if ((sc->sc_status.flags  == 0) && (sc->sc_n_strokes == 0)) {
1041 		sc->sc_idlecount++;
1042 		if (sc->sc_idlecount >= ATP_IDLENESS_THRESHOLD) {
1043 			/*
1044 			 * Use the last frame before we go idle for
1045 			 * calibration on pads which do not send
1046 			 * calibration frames.
1047 			 */
1048 			const struct fg_dev_params *params =
1049 			    (const struct fg_dev_params *)sc->sc_params;
1050 
1051 			DPRINTFN(ATP_LLEVEL_INFO, "idle\n");
1052 
1053 			if (params->prot < FG_TRACKPAD_TYPE_GEYSER3) {
1054 				memcpy(sc->sc_base_x, sc->sc_cur_x,
1055 				    params->n_xsensors * sizeof(*(sc->sc_base_x)));
1056 				memcpy(sc->sc_base_y, sc->sc_cur_y,
1057 				    params->n_ysensors * sizeof(*(sc->sc_base_y)));
1058 			}
1059 
1060 			sc->sc_idlecount = 0;
1061 			usbd_transfer_start(sc->sc_xfer[ATP_RESET]);
1062 		}
1063 	} else {
1064 		sc->sc_idlecount = 0;
1065 	}
1066 }
1067 
1068 /*
1069  * Interpret the data from the X and Y pressure sensors. This function
1070  * is called separately for the X and Y sensor arrays. The data in the
1071  * USB packet is laid out in the following manner:
1072  *
1073  * sensor_data:
1074  *            --,--,Y1,Y2,--,Y3,Y4,--,Y5,...,Y10, ... X1,X2,--,X3,X4
1075  *  indices:   0  1  2  3  4  5  6  7  8 ...  15  ... 20 21 22 23 24
1076  *
1077  * '--' (in the above) indicates that the value is unimportant.
1078  *
1079  * Information about the above layout was obtained from the
1080  * implementation of the AppleTouch driver in Linux.
1081  *
1082  * parameters:
1083  *   sensor_data
1084  *       raw sensor data from the USB packet.
1085  *   num
1086  *       The number of elements in the array 'arr'.
1087  *   axis
1088  *       Axis of data to fetch
1089  *   arr
1090  *       The array to be initialized with the readings.
1091  *   prot
1092  *       The protocol to use to interpret the data
1093  */
1094 static void
1095 fg_extract_sensor_data(const int8_t *sensor_data, u_int num, atp_axis axis,
1096     int	*arr, enum fountain_geyser_trackpad_type prot)
1097 {
1098 	u_int i;
1099 	u_int di;   /* index into sensor data */
1100 
1101 	switch (prot) {
1102 	case FG_TRACKPAD_TYPE_GEYSER1:
1103 		/*
1104 		 * For Geyser 1, the sensors are laid out in pairs
1105 		 * every 5 bytes.
1106 		 */
1107 		for (i = 0, di = (axis == Y) ? 1 : 2; i < 8; di += 5, i++) {
1108 			arr[i] = sensor_data[di];
1109 			arr[i+8] = sensor_data[di+2];
1110 			if ((axis == X) && (num > 16))
1111 				arr[i+16] = sensor_data[di+40];
1112 		}
1113 
1114 		break;
1115 	case FG_TRACKPAD_TYPE_GEYSER2:
1116 		for (i = 0, di = (axis == Y) ? 1 : 19; i < num; /* empty */ ) {
1117 			arr[i++] = sensor_data[di++];
1118 			arr[i++] = sensor_data[di++];
1119 			di++;
1120 		}
1121 		break;
1122 	case FG_TRACKPAD_TYPE_GEYSER3:
1123 	case FG_TRACKPAD_TYPE_GEYSER4:
1124 		for (i = 0, di = (axis == Y) ? 2 : 20; i < num; /* empty */ ) {
1125 			arr[i++] = sensor_data[di++];
1126 			arr[i++] = sensor_data[di++];
1127 			di++;
1128 		}
1129 		break;
1130 	default:
1131 		break;
1132 	}
1133 }
1134 
1135 static void
1136 fg_get_pressures(int *p, const int *cur, const int *base, int n)
1137 {
1138 	int i;
1139 
1140 	for (i = 0; i < n; i++) {
1141 		p[i] = cur[i] - base[i];
1142 		if (p[i] > 127)
1143 			p[i] -= 256;
1144 		if (p[i] < -127)
1145 			p[i] += 256;
1146 		if (p[i] < 0)
1147 			p[i] = 0;
1148 
1149 		/*
1150 		 * Shave off pressures below the noise-pressure
1151 		 * threshold; this will reduce the contribution from
1152 		 * lower pressure readings.
1153 		 */
1154 		if ((u_int)p[i] <= FG_SENSOR_NOISE_THRESHOLD)
1155 			p[i] = 0; /* filter away noise */
1156 		else
1157 			p[i] -= FG_SENSOR_NOISE_THRESHOLD;
1158 	}
1159 }
1160 
1161 static void
1162 fg_detect_pspans(int *p, u_int num_sensors,
1163     u_int      max_spans, /* max # of pspans permitted */
1164     fg_pspan  *spans,     /* finger spans */
1165     u_int     *nspans_p)  /* num spans detected */
1166 {
1167 	u_int i;
1168 	int   maxp;             /* max pressure seen within a span */
1169 	u_int num_spans = 0;
1170 
1171 	enum fg_pspan_state {
1172 		ATP_PSPAN_INACTIVE,
1173 		ATP_PSPAN_INCREASING,
1174 		ATP_PSPAN_DECREASING,
1175 	} state; /* state of the pressure span */
1176 
1177 	/*
1178 	 * The following is a simple state machine to track
1179 	 * the phase of the pressure span.
1180 	 */
1181 	memset(spans, 0, max_spans * sizeof(fg_pspan));
1182 	maxp = 0;
1183 	state = ATP_PSPAN_INACTIVE;
1184 	for (i = 0; i < num_sensors; i++) {
1185 		if (num_spans >= max_spans)
1186 			break;
1187 
1188 		if (p[i] == 0) {
1189 			if (state == ATP_PSPAN_INACTIVE) {
1190 				/*
1191 				 * There is no pressure information for this
1192 				 * sensor, and we aren't tracking a finger.
1193 				 */
1194 				continue;
1195 			} else {
1196 				state = ATP_PSPAN_INACTIVE;
1197 				maxp = 0;
1198 				num_spans++;
1199 			}
1200 		} else {
1201 			switch (state) {
1202 			case ATP_PSPAN_INACTIVE:
1203 				state = ATP_PSPAN_INCREASING;
1204 				maxp  = p[i];
1205 				break;
1206 
1207 			case ATP_PSPAN_INCREASING:
1208 				if (p[i] > maxp)
1209 					maxp = p[i];
1210 				else if (p[i] <= (maxp >> 1))
1211 					state = ATP_PSPAN_DECREASING;
1212 				break;
1213 
1214 			case ATP_PSPAN_DECREASING:
1215 				if (p[i] > p[i - 1]) {
1216 					/*
1217 					 * This is the beginning of
1218 					 * another span; change state
1219 					 * to give the appearance that
1220 					 * we're starting from an
1221 					 * inactive span, and then
1222 					 * re-process this reading in
1223 					 * the next iteration.
1224 					 */
1225 					num_spans++;
1226 					state = ATP_PSPAN_INACTIVE;
1227 					maxp  = 0;
1228 					i--;
1229 					continue;
1230 				}
1231 				break;
1232 			}
1233 
1234 			/* Update the finger span with this reading. */
1235 			spans[num_spans].width++;
1236 			spans[num_spans].cum += p[i];
1237 			spans[num_spans].cog += p[i] * (i + 1);
1238 		}
1239 	}
1240 	if (state != ATP_PSPAN_INACTIVE)
1241 		num_spans++;    /* close the last finger span */
1242 
1243 	/* post-process the spans */
1244 	for (i = 0; i < num_spans; i++) {
1245 		/* filter away unwanted pressure spans */
1246 		if ((spans[i].cum < FG_PSPAN_MIN_CUM_PRESSURE) ||
1247 		    (spans[i].width > FG_PSPAN_MAX_WIDTH)) {
1248 			if ((i + 1) < num_spans) {
1249 				memcpy(&spans[i], &spans[i + 1],
1250 				    (num_spans - i - 1) * sizeof(fg_pspan));
1251 				i--;
1252 			}
1253 			num_spans--;
1254 			continue;
1255 		}
1256 
1257 		/* compute this span's representative location */
1258 		spans[i].loc = spans[i].cog * FG_SCALE_FACTOR /
1259 			spans[i].cum;
1260 
1261 		spans[i].matched = false; /* not yet matched against a stroke */
1262 	}
1263 
1264 	*nspans_p = num_spans;
1265 }
1266 
1267 static void
1268 wsp_interpret_sensor_data(struct atp_softc *sc, u_int data_len)
1269 {
1270 	const struct wsp_dev_params *params = sc->sc_params;
1271 	wsp_finger_t fingers[WSP_MAX_FINGERS];
1272 	struct wsp_finger_sensor_data *source_fingerp;
1273 	u_int n_source_fingers;
1274 	u_int n_fingers;
1275 	u_int i;
1276 
1277 	/* validate sensor data length */
1278 	if ((data_len < params->finger_data_offset) ||
1279 	    ((data_len - params->finger_data_offset) %
1280 	     WSP_SIZEOF_FINGER_SENSOR_DATA) != 0)
1281 		return;
1282 
1283 	/* compute number of source fingers */
1284 	n_source_fingers = (data_len - params->finger_data_offset) /
1285 	    WSP_SIZEOF_FINGER_SENSOR_DATA;
1286 
1287 	if (n_source_fingers > WSP_MAX_FINGERS)
1288 		n_source_fingers = WSP_MAX_FINGERS;
1289 
1290 	/* iterate over the source data collecting useful fingers */
1291 	n_fingers = 0;
1292 	source_fingerp = (struct wsp_finger_sensor_data *)(sc->sc_sensor_data +
1293 	     params->finger_data_offset);
1294 
1295 	for (i = 0; i < n_source_fingers; i++, source_fingerp++) {
1296 		/* swap endianness, if any */
1297 		if (le16toh(0x1234) != 0x1234) {
1298 			source_fingerp->origin      = le16toh((uint16_t)source_fingerp->origin);
1299 			source_fingerp->abs_x       = le16toh((uint16_t)source_fingerp->abs_x);
1300 			source_fingerp->abs_y       = le16toh((uint16_t)source_fingerp->abs_y);
1301 			source_fingerp->rel_x       = le16toh((uint16_t)source_fingerp->rel_x);
1302 			source_fingerp->rel_y       = le16toh((uint16_t)source_fingerp->rel_y);
1303 			source_fingerp->tool_major  = le16toh((uint16_t)source_fingerp->tool_major);
1304 			source_fingerp->tool_minor  = le16toh((uint16_t)source_fingerp->tool_minor);
1305 			source_fingerp->orientation = le16toh((uint16_t)source_fingerp->orientation);
1306 			source_fingerp->touch_major = le16toh((uint16_t)source_fingerp->touch_major);
1307 			source_fingerp->touch_minor = le16toh((uint16_t)source_fingerp->touch_minor);
1308 			source_fingerp->multi       = le16toh((uint16_t)source_fingerp->multi);
1309 		}
1310 
1311 		/* check for minium threshold */
1312 		if (source_fingerp->touch_major == 0)
1313 			continue;
1314 
1315 		fingers[n_fingers].matched = false;
1316 		fingers[n_fingers].x       = source_fingerp->abs_x;
1317 		fingers[n_fingers].y       = -source_fingerp->abs_y;
1318 
1319 		n_fingers++;
1320 	}
1321 
1322 	if ((sc->sc_n_strokes == 0) && (n_fingers == 0))
1323 		return;
1324 
1325 	if (wsp_update_strokes(sc, fingers, n_fingers))
1326 		sc->sc_status.flags |= MOUSE_POSCHANGED;
1327 
1328 	switch(params->tp_type) {
1329 	case WSP_TRACKPAD_TYPE2:
1330 		sc->sc_ibtn = sc->sc_sensor_data[WSP_TYPE2_BUTTON_DATA_OFFSET];
1331 		break;
1332 	case WSP_TRACKPAD_TYPE3:
1333 		sc->sc_ibtn = sc->sc_sensor_data[WSP_TYPE3_BUTTON_DATA_OFFSET];
1334 		break;
1335 	default:
1336 		break;
1337 	}
1338 	sc->sc_status.button = sc->sc_ibtn ? MOUSE_BUTTON1DOWN : 0;
1339 }
1340 
1341 /*
1342  * Match a pressure-span against a stroke-component. If there is a
1343  * match, update the component's state and return true.
1344  */
1345 static boolean_t
1346 fg_match_stroke_component(fg_stroke_component_t *component,
1347     const fg_pspan *pspan, atp_stroke_type stroke_type)
1348 {
1349 	int   delta_mickeys;
1350 	u_int min_pressure;
1351 
1352 	delta_mickeys = pspan->loc - component->loc;
1353 
1354 	if (abs(delta_mickeys) > (int)FG_MAX_DELTA_MICKEYS)
1355 		return (false); /* the finger span is too far out; no match */
1356 
1357 	component->loc = pspan->loc;
1358 
1359 	/*
1360 	 * A sudden and significant increase in a pspan's cumulative
1361 	 * pressure indicates the incidence of a new finger
1362 	 * contact. This usually revises the pspan's
1363 	 * centre-of-gravity, and hence the location of any/all
1364 	 * matching stroke component(s). But such a change should
1365 	 * *not* be interpreted as a movement.
1366 	 */
1367 	if (pspan->cum > ((3 * component->cum_pressure) >> 1))
1368 		delta_mickeys = 0;
1369 
1370 	component->cum_pressure = pspan->cum;
1371 	if (pspan->cum > component->max_cum_pressure)
1372 		component->max_cum_pressure = pspan->cum;
1373 
1374 	/*
1375 	 * Disregard the component's movement if its cumulative
1376 	 * pressure drops below a fraction of the maximum; this
1377 	 * fraction is determined based on the stroke's type.
1378 	 */
1379 	if (stroke_type == ATP_STROKE_TOUCH)
1380 		min_pressure = (3 * component->max_cum_pressure) >> 2;
1381 	else
1382 		min_pressure = component->max_cum_pressure >> 2;
1383 	if (component->cum_pressure < min_pressure)
1384 		delta_mickeys = 0;
1385 
1386 	component->delta_mickeys = delta_mickeys;
1387 	return (true);
1388 }
1389 
1390 static void
1391 fg_match_strokes_against_pspans(struct atp_softc *sc, atp_axis axis,
1392     fg_pspan *pspans, u_int n_pspans, u_int repeat_count)
1393 {
1394 	atp_stroke_t *strokep;
1395 	u_int repeat_index = 0;
1396 	u_int i;
1397 
1398 	/* Determine the index of the multi-span. */
1399 	if (repeat_count) {
1400 		for (i = 0; i < n_pspans; i++) {
1401 			if (pspans[i].cum > pspans[repeat_index].cum)
1402 				repeat_index = i;
1403 		}
1404 	}
1405 
1406 	TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry) {
1407 		if (strokep->components[axis].matched)
1408 			continue; /* skip matched components */
1409 
1410 		for (i = 0; i < n_pspans; i++) {
1411 			if (pspans[i].matched)
1412 				continue; /* skip matched pspans */
1413 
1414 			if (fg_match_stroke_component(
1415 			    &strokep->components[axis], &pspans[i],
1416 			    strokep->type)) {
1417 				/* There is a match. */
1418 				strokep->components[axis].matched = true;
1419 
1420 				/* Take care to repeat at the multi-span. */
1421 				if ((repeat_count > 0) && (i == repeat_index))
1422 					repeat_count--;
1423 				else
1424 					pspans[i].matched = true;
1425 
1426 				break; /* skip to the next strokep */
1427 			}
1428 		} /* loop over pspans */
1429 	} /* loop over strokes */
1430 }
1431 
1432 static boolean_t
1433 wsp_match_strokes_against_fingers(struct atp_softc *sc,
1434     wsp_finger_t *fingers, u_int n_fingers)
1435 {
1436 	boolean_t movement = false;
1437 	atp_stroke_t *strokep;
1438 	u_int i;
1439 
1440 	/* reset the matched status for all strokes */
1441 	TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry)
1442 		strokep->matched = false;
1443 
1444 	for (i = 0; i != n_fingers; i++) {
1445 		u_int least_distance_sq = WSP_MAX_ALLOWED_MATCH_DISTANCE_SQ;
1446 		atp_stroke_t *strokep_best = NULL;
1447 
1448 		TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry) {
1449 			int instantaneous_dx;
1450 			int instantaneous_dy;
1451 			u_int d_squared;
1452 
1453 			if (strokep->matched)
1454 				continue;
1455 
1456 			instantaneous_dx = fingers[i].x - strokep->x;
1457 			instantaneous_dy = fingers[i].y - strokep->y;
1458 
1459 			/* skip strokes which are far away */
1460 			d_squared =
1461 			    (instantaneous_dx * instantaneous_dx) +
1462 			    (instantaneous_dy * instantaneous_dy);
1463 
1464 			if (d_squared < least_distance_sq) {
1465 				least_distance_sq = d_squared;
1466 				strokep_best = strokep;
1467 			}
1468 		}
1469 
1470 		strokep = strokep_best;
1471 
1472 		if (strokep != NULL) {
1473 			fingers[i].matched = true;
1474 
1475 			strokep->matched          = true;
1476 			strokep->instantaneous_dx = fingers[i].x - strokep->x;
1477 			strokep->instantaneous_dy = fingers[i].y - strokep->y;
1478 			strokep->x                = fingers[i].x;
1479 			strokep->y                = fingers[i].y;
1480 
1481 			atp_advance_stroke_state(sc, strokep, &movement);
1482 		}
1483 	}
1484 	return (movement);
1485 }
1486 
1487 /*
1488  * Update strokes by matching against current pressure-spans.
1489  * Return true if any movement is detected.
1490  */
1491 static boolean_t
1492 fg_update_strokes(struct atp_softc *sc, fg_pspan *pspans_x,
1493     u_int n_xpspans, fg_pspan *pspans_y, u_int n_ypspans)
1494 {
1495 	atp_stroke_t *strokep;
1496 	atp_stroke_t *strokep_next;
1497 	boolean_t movement = false;
1498 	u_int repeat_count = 0;
1499 	u_int i;
1500 	u_int j;
1501 
1502 	/* Reset X and Y components of all strokes as unmatched. */
1503 	TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry) {
1504 		strokep->components[X].matched = false;
1505 		strokep->components[Y].matched = false;
1506 	}
1507 
1508 	/*
1509 	 * Usually, the X and Y pspans come in pairs (the common case
1510 	 * being a single pair). It is possible, however, that
1511 	 * multiple contacts resolve to a single pspan along an
1512 	 * axis, as illustrated in the following:
1513 	 *
1514 	 *   F = finger-contact
1515 	 *
1516 	 *                pspan  pspan
1517 	 *        +-----------------------+
1518 	 *        |         .      .      |
1519 	 *        |         .      .      |
1520 	 *        |         .      .      |
1521 	 *        |         .      .      |
1522 	 *  pspan |.........F......F      |
1523 	 *        |                       |
1524 	 *        |                       |
1525 	 *        |                       |
1526 	 *        +-----------------------+
1527 	 *
1528 	 *
1529 	 * The above case can be detected by a difference in the
1530 	 * number of X and Y pspans. When this happens, X and Y pspans
1531 	 * aren't easy to pair or match against strokes.
1532 	 *
1533 	 * When X and Y pspans differ in number, the axis with the
1534 	 * smaller number of pspans is regarded as having a repeating
1535 	 * pspan (or a multi-pspan)--in the above illustration, the
1536 	 * Y-axis has a repeating pspan. Our approach is to try to
1537 	 * match the multi-pspan repeatedly against strokes. The
1538 	 * difference between the number of X and Y pspans gives us a
1539 	 * crude repeat_count for matching multi-pspans--i.e. the
1540 	 * multi-pspan along the Y axis (above) has a repeat_count of 1.
1541 	 */
1542 	repeat_count = abs(n_xpspans - n_ypspans);
1543 
1544 	fg_match_strokes_against_pspans(sc, X, pspans_x, n_xpspans,
1545 	    (((repeat_count != 0) && ((n_xpspans < n_ypspans))) ?
1546 		repeat_count : 0));
1547 	fg_match_strokes_against_pspans(sc, Y, pspans_y, n_ypspans,
1548 	    (((repeat_count != 0) && (n_ypspans < n_xpspans)) ?
1549 		repeat_count : 0));
1550 
1551 	/* Update the state of strokes based on the above pspan matches. */
1552 	TAILQ_FOREACH_SAFE(strokep, &sc->sc_stroke_used, entry, strokep_next) {
1553 		if (strokep->components[X].matched &&
1554 		    strokep->components[Y].matched) {
1555 			strokep->matched = true;
1556 			strokep->instantaneous_dx =
1557 			    strokep->components[X].delta_mickeys;
1558 			strokep->instantaneous_dy =
1559 			    strokep->components[Y].delta_mickeys;
1560 			atp_advance_stroke_state(sc, strokep, &movement);
1561 		} else {
1562 			/*
1563 			 * At least one component of this stroke
1564 			 * didn't match against current pspans;
1565 			 * terminate it.
1566 			 */
1567 			atp_terminate_stroke(sc, strokep);
1568 		}
1569 	}
1570 
1571 	/* Add new strokes for pairs of unmatched pspans */
1572 	for (i = 0; i < n_xpspans; i++) {
1573 		if (pspans_x[i].matched == false) break;
1574 	}
1575 	for (j = 0; j < n_ypspans; j++) {
1576 		if (pspans_y[j].matched == false) break;
1577 	}
1578 	if ((i < n_xpspans) && (j < n_ypspans)) {
1579 #ifdef USB_DEBUG
1580 		if (atp_debug >= ATP_LLEVEL_INFO) {
1581 			printf("unmatched pspans:");
1582 			for (; i < n_xpspans; i++) {
1583 				if (pspans_x[i].matched)
1584 					continue;
1585 				printf(" X:[loc:%u,cum:%u]",
1586 				    pspans_x[i].loc, pspans_x[i].cum);
1587 			}
1588 			for (; j < n_ypspans; j++) {
1589 				if (pspans_y[j].matched)
1590 					continue;
1591 				printf(" Y:[loc:%u,cum:%u]",
1592 				    pspans_y[j].loc, pspans_y[j].cum);
1593 			}
1594 			printf("\n");
1595 		}
1596 #endif /* USB_DEBUG */
1597 		if ((n_xpspans == 1) && (n_ypspans == 1))
1598 			/* The common case of a single pair of new pspans. */
1599 			fg_add_stroke(sc, &pspans_x[0], &pspans_y[0]);
1600 		else
1601 			fg_add_new_strokes(sc, pspans_x, n_xpspans,
1602 			    pspans_y, n_ypspans);
1603 	}
1604 
1605 #ifdef USB_DEBUG
1606 	if (atp_debug >= ATP_LLEVEL_INFO) {
1607 		TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry) {
1608 			printf(" %s%clc:%u,dm:%d,cum:%d,max:%d,%c"
1609 			    ",%clc:%u,dm:%d,cum:%d,max:%d,%c",
1610 			    (strokep->flags & ATSF_ZOMBIE) ? "zomb:" : "",
1611 			    (strokep->type == ATP_STROKE_TOUCH) ? '[' : '<',
1612 			    strokep->components[X].loc,
1613 			    strokep->components[X].delta_mickeys,
1614 			    strokep->components[X].cum_pressure,
1615 			    strokep->components[X].max_cum_pressure,
1616 			    (strokep->type == ATP_STROKE_TOUCH) ? ']' : '>',
1617 			    (strokep->type == ATP_STROKE_TOUCH) ? '[' : '<',
1618 			    strokep->components[Y].loc,
1619 			    strokep->components[Y].delta_mickeys,
1620 			    strokep->components[Y].cum_pressure,
1621 			    strokep->components[Y].max_cum_pressure,
1622 			    (strokep->type == ATP_STROKE_TOUCH) ? ']' : '>');
1623 		}
1624 		if (TAILQ_FIRST(&sc->sc_stroke_used) != NULL)
1625 			printf("\n");
1626 	}
1627 #endif /* USB_DEBUG */
1628 	return (movement);
1629 }
1630 
1631 /*
1632  * Update strokes by matching against current pressure-spans.
1633  * Return true if any movement is detected.
1634  */
1635 static boolean_t
1636 wsp_update_strokes(struct atp_softc *sc, wsp_finger_t *fingers, u_int n_fingers)
1637 {
1638 	boolean_t movement = false;
1639 	atp_stroke_t *strokep_next;
1640 	atp_stroke_t *strokep;
1641 	u_int i;
1642 
1643 	if (sc->sc_n_strokes > 0) {
1644 		movement = wsp_match_strokes_against_fingers(
1645 		    sc, fingers, n_fingers);
1646 
1647 		/* handle zombie strokes */
1648 		TAILQ_FOREACH_SAFE(strokep, &sc->sc_stroke_used, entry, strokep_next) {
1649 			if (strokep->matched)
1650 				continue;
1651 			atp_terminate_stroke(sc, strokep);
1652 		}
1653 	}
1654 
1655 	/* initialize unmatched fingers as strokes */
1656 	for (i = 0; i != n_fingers; i++) {
1657 		if (fingers[i].matched)
1658 			continue;
1659 
1660 		wsp_add_stroke(sc, fingers + i);
1661 	}
1662 	return (movement);
1663 }
1664 
1665 /* Initialize a stroke using a pressure-span. */
1666 static void
1667 fg_add_stroke(struct atp_softc *sc, const fg_pspan *pspan_x,
1668     const fg_pspan *pspan_y)
1669 {
1670 	atp_stroke_t *strokep;
1671 
1672 	strokep = atp_alloc_stroke(sc);
1673 	if (strokep == NULL)
1674 		return;
1675 
1676 	/*
1677 	 * Strokes begin as potential touches. If a stroke survives
1678 	 * longer than a threshold, or if it records significant
1679 	 * cumulative movement, then it is considered a 'slide'.
1680 	 */
1681 	strokep->type    = ATP_STROKE_TOUCH;
1682 	strokep->matched = false;
1683 	microtime(&strokep->ctime);
1684 	strokep->age     = 1;		/* number of interrupts */
1685 	strokep->x       = pspan_x->loc;
1686 	strokep->y       = pspan_y->loc;
1687 
1688 	strokep->components[X].loc              = pspan_x->loc;
1689 	strokep->components[X].cum_pressure     = pspan_x->cum;
1690 	strokep->components[X].max_cum_pressure = pspan_x->cum;
1691 	strokep->components[X].matched          = true;
1692 
1693 	strokep->components[Y].loc              = pspan_y->loc;
1694 	strokep->components[Y].cum_pressure     = pspan_y->cum;
1695 	strokep->components[Y].max_cum_pressure = pspan_y->cum;
1696 	strokep->components[Y].matched          = true;
1697 
1698 	if (sc->sc_n_strokes > 1) {
1699 		/* Reset double-tap-n-drag if we have more than one strokes. */
1700 		sc->sc_state &= ~ATP_DOUBLE_TAP_DRAG;
1701 	}
1702 
1703 	DPRINTFN(ATP_LLEVEL_INFO, "[%u,%u], time: %u,%ld\n",
1704 	    strokep->components[X].loc,
1705 	    strokep->components[Y].loc,
1706 	    (u_int)strokep->ctime.tv_sec,
1707 	    (unsigned long int)strokep->ctime.tv_usec);
1708 }
1709 
1710 static void
1711 fg_add_new_strokes(struct atp_softc *sc, fg_pspan *pspans_x,
1712     u_int n_xpspans, fg_pspan *pspans_y, u_int n_ypspans)
1713 {
1714 	fg_pspan spans[2][FG_MAX_PSPANS_PER_AXIS];
1715 	u_int nspans[2];
1716 	u_int i;
1717 	u_int j;
1718 
1719 	/* Copy unmatched pspans into the local arrays. */
1720 	for (i = 0, nspans[X] = 0; i < n_xpspans; i++) {
1721 		if (pspans_x[i].matched == false) {
1722 			spans[X][nspans[X]] = pspans_x[i];
1723 			nspans[X]++;
1724 		}
1725 	}
1726 	for (j = 0, nspans[Y] = 0; j < n_ypspans; j++) {
1727 		if (pspans_y[j].matched == false) {
1728 			spans[Y][nspans[Y]] = pspans_y[j];
1729 			nspans[Y]++;
1730 		}
1731 	}
1732 
1733 	if (nspans[X] == nspans[Y]) {
1734 		/* Create new strokes from pairs of unmatched pspans */
1735 		for (i = 0, j = 0; (i < nspans[X]) && (j < nspans[Y]); i++, j++)
1736 			fg_add_stroke(sc, &spans[X][i], &spans[Y][j]);
1737 	} else {
1738 		u_int    cum = 0;
1739 		atp_axis repeat_axis;      /* axis with multi-pspans */
1740 		u_int    repeat_count;     /* repeat count for the multi-pspan*/
1741 		u_int    repeat_index = 0; /* index of the multi-span */
1742 
1743 		repeat_axis  = (nspans[X] > nspans[Y]) ? Y : X;
1744 		repeat_count = abs(nspans[X] - nspans[Y]);
1745 		for (i = 0; i < nspans[repeat_axis]; i++) {
1746 			if (spans[repeat_axis][i].cum > cum) {
1747 				repeat_index = i;
1748 				cum = spans[repeat_axis][i].cum;
1749 			}
1750 		}
1751 
1752 		/* Create new strokes from pairs of unmatched pspans */
1753 		i = 0, j = 0;
1754 		for (; (i < nspans[X]) && (j < nspans[Y]); i++, j++) {
1755 			fg_add_stroke(sc, &spans[X][i], &spans[Y][j]);
1756 
1757 			/* Take care to repeat at the multi-pspan. */
1758 			if (repeat_count > 0) {
1759 				if ((repeat_axis == X) &&
1760 				    (repeat_index == i)) {
1761 					i--; /* counter loop increment */
1762 					repeat_count--;
1763 				} else if ((repeat_axis == Y) &&
1764 				    (repeat_index == j)) {
1765 					j--; /* counter loop increment */
1766 					repeat_count--;
1767 				}
1768 			}
1769 		}
1770 	}
1771 }
1772 
1773 /* Initialize a stroke from an unmatched finger. */
1774 static void
1775 wsp_add_stroke(struct atp_softc *sc, const wsp_finger_t *fingerp)
1776 {
1777 	atp_stroke_t *strokep;
1778 
1779 	strokep = atp_alloc_stroke(sc);
1780 	if (strokep == NULL)
1781 		return;
1782 
1783 	/*
1784 	 * Strokes begin as potential touches. If a stroke survives
1785 	 * longer than a threshold, or if it records significant
1786 	 * cumulative movement, then it is considered a 'slide'.
1787 	 */
1788 	strokep->type    = ATP_STROKE_TOUCH;
1789 	strokep->matched = true;
1790 	microtime(&strokep->ctime);
1791 	strokep->age = 1;	/* number of interrupts */
1792 	strokep->x = fingerp->x;
1793 	strokep->y = fingerp->y;
1794 
1795 	/* Reset double-tap-n-drag if we have more than one strokes. */
1796 	if (sc->sc_n_strokes > 1)
1797 		sc->sc_state &= ~ATP_DOUBLE_TAP_DRAG;
1798 
1799 	DPRINTFN(ATP_LLEVEL_INFO, "[%d,%d]\n", strokep->x, strokep->y);
1800 }
1801 
1802 static void
1803 atp_advance_stroke_state(struct atp_softc *sc, atp_stroke_t *strokep,
1804     boolean_t *movementp)
1805 {
1806 	/* Revitalize stroke if it had previously been marked as a zombie. */
1807 	if (strokep->flags & ATSF_ZOMBIE)
1808 		strokep->flags &= ~ATSF_ZOMBIE;
1809 
1810 	strokep->age++;
1811 	if (strokep->age <= atp_stroke_maturity_threshold) {
1812 		/* Avoid noise from immature strokes. */
1813 		strokep->instantaneous_dx = 0;
1814 		strokep->instantaneous_dy = 0;
1815 	}
1816 
1817 	if (atp_compute_stroke_movement(strokep))
1818 		*movementp = true;
1819 
1820 	if (strokep->type != ATP_STROKE_TOUCH)
1821 		return;
1822 
1823 	/* Convert touch strokes to slides upon detecting movement or age. */
1824 	if ((abs(strokep->cum_movement_x) > atp_slide_min_movement) ||
1825 	    (abs(strokep->cum_movement_y) > atp_slide_min_movement))
1826 		atp_convert_to_slide(sc, strokep);
1827 	else {
1828 		/* Compute the stroke's age. */
1829 		struct timeval tdiff;
1830 		getmicrotime(&tdiff);
1831 		if (timevalcmp(&tdiff, &strokep->ctime, >)) {
1832 			timevalsub(&tdiff, &strokep->ctime);
1833 
1834 			if ((tdiff.tv_sec > (atp_touch_timeout / 1000000)) ||
1835 			    ((tdiff.tv_sec == (atp_touch_timeout / 1000000)) &&
1836 			     (tdiff.tv_usec >= (atp_touch_timeout % 1000000))))
1837 				atp_convert_to_slide(sc, strokep);
1838 		}
1839 	}
1840 }
1841 
1842 static boolean_t
1843 atp_stroke_has_small_movement(const atp_stroke_t *strokep)
1844 {
1845 	return (((u_int)abs(strokep->instantaneous_dx) <=
1846 		 atp_small_movement_threshold) &&
1847 		((u_int)abs(strokep->instantaneous_dy) <=
1848 		 atp_small_movement_threshold));
1849 }
1850 
1851 /*
1852  * Accumulate instantaneous changes into the stroke's 'pending' bucket; if
1853  * the aggregate exceeds the small_movement_threshold, then retain
1854  * instantaneous changes for later.
1855  */
1856 static void
1857 atp_update_pending_mickeys(atp_stroke_t *strokep)
1858 {
1859 	/* accumulate instantaneous movement */
1860 	strokep->pending_dx += strokep->instantaneous_dx;
1861 	strokep->pending_dy += strokep->instantaneous_dy;
1862 
1863 #define UPDATE_INSTANTANEOUS_AND_PENDING(I, P)                          \
1864 	if (abs((P)) <= atp_small_movement_threshold)                   \
1865 		(I) = 0; /* clobber small movement */                   \
1866 	else {                                                          \
1867 		if ((I) > 0) {                                          \
1868 			/*                                              \
1869 			 * Round up instantaneous movement to the nearest \
1870 			 * ceiling. This helps preserve small mickey    \
1871 			 * movements from being lost in following scaling \
1872 			 * operation.                                   \
1873 			 */                                             \
1874 			(I) = (((I) + (atp_mickeys_scale_factor - 1)) / \
1875 			       atp_mickeys_scale_factor) *              \
1876 			      atp_mickeys_scale_factor;                 \
1877 									\
1878 			/*                                              \
1879 			 * Deduct the rounded mickeys from pending mickeys. \
1880 			 * Note: we multiply by 2 to offset the previous \
1881 			 * accumulation of instantaneous movement into  \
1882 			 * pending.                                     \
1883 			 */                                             \
1884 			(P) -= ((I) << 1);                              \
1885 									\
1886 			/* truncate pending to 0 if it becomes negative. */ \
1887 			(P) = imax((P), 0);                             \
1888 		} else {                                                \
1889 			/*                                              \
1890 			 * Round down instantaneous movement to the nearest \
1891 			 * ceiling. This helps preserve small mickey    \
1892 			 * movements from being lost in following scaling \
1893 			 * operation.                                   \
1894 			 */                                             \
1895 			(I) = (((I) - (atp_mickeys_scale_factor - 1)) / \
1896 			       atp_mickeys_scale_factor) *              \
1897 			      atp_mickeys_scale_factor;                 \
1898 									\
1899 			/*                                              \
1900 			 * Deduct the rounded mickeys from pending mickeys. \
1901 			 * Note: we multiply by 2 to offset the previous \
1902 			 * accumulation of instantaneous movement into  \
1903 			 * pending.                                     \
1904 			 */                                             \
1905 			(P) -= ((I) << 1);                              \
1906 									\
1907 			/* truncate pending to 0 if it becomes positive. */ \
1908 			(P) = imin((P), 0);                             \
1909 		}                                                       \
1910 	}
1911 
1912 	UPDATE_INSTANTANEOUS_AND_PENDING(strokep->instantaneous_dx,
1913 	    strokep->pending_dx);
1914 	UPDATE_INSTANTANEOUS_AND_PENDING(strokep->instantaneous_dy,
1915 	    strokep->pending_dy);
1916 }
1917 
1918 /*
1919  * Compute a smoothened value for the stroke's movement from
1920  * instantaneous changes in the X and Y components.
1921  */
1922 static boolean_t
1923 atp_compute_stroke_movement(atp_stroke_t *strokep)
1924 {
1925 	/*
1926 	 * Short movements are added first to the 'pending' bucket,
1927 	 * and then acted upon only when their aggregate exceeds a
1928 	 * threshold. This has the effect of filtering away movement
1929 	 * noise.
1930 	 */
1931 	if (atp_stroke_has_small_movement(strokep))
1932 		atp_update_pending_mickeys(strokep);
1933 	else {                /* large movement */
1934 		/* clear away any pending mickeys if there are large movements*/
1935 		strokep->pending_dx = 0;
1936 		strokep->pending_dy = 0;
1937 	}
1938 
1939 	/* scale movement */
1940 	strokep->movement_dx = (strokep->instantaneous_dx) /
1941 	    (int)atp_mickeys_scale_factor;
1942 	strokep->movement_dy = (strokep->instantaneous_dy) /
1943 	    (int)atp_mickeys_scale_factor;
1944 
1945 	if ((abs(strokep->instantaneous_dx) >= ATP_FAST_MOVEMENT_TRESHOLD) ||
1946 	    (abs(strokep->instantaneous_dy) >= ATP_FAST_MOVEMENT_TRESHOLD)) {
1947 		strokep->movement_dx <<= 1;
1948 		strokep->movement_dy <<= 1;
1949 	}
1950 
1951 	strokep->cum_movement_x += strokep->movement_dx;
1952 	strokep->cum_movement_y += strokep->movement_dy;
1953 
1954 	return ((strokep->movement_dx != 0) || (strokep->movement_dy != 0));
1955 }
1956 
1957 /*
1958  * Terminate a stroke. Aside from immature strokes, a slide or touch is
1959  * retained as a zombies so as to reap all their termination siblings
1960  * together; this helps establish the number of fingers involved at the
1961  * end of a multi-touch gesture.
1962  */
1963 static void
1964 atp_terminate_stroke(struct atp_softc *sc, atp_stroke_t *strokep)
1965 {
1966 	if (strokep->flags & ATSF_ZOMBIE)
1967 		return;
1968 
1969 	/* Drop immature strokes rightaway. */
1970 	if (strokep->age <= atp_stroke_maturity_threshold) {
1971 		atp_free_stroke(sc, strokep);
1972 		return;
1973 	}
1974 
1975 	strokep->flags |= ATSF_ZOMBIE;
1976 	sc->sc_state |= ATP_ZOMBIES_EXIST;
1977 
1978 	callout_reset(&sc->sc_callout, ATP_ZOMBIE_STROKE_REAP_INTERVAL,
1979 	    atp_reap_sibling_zombies, sc);
1980 
1981 	/*
1982 	 * Reset the double-click-n-drag at the termination of any
1983 	 * slide stroke.
1984 	 */
1985 	if (strokep->type == ATP_STROKE_SLIDE)
1986 		sc->sc_state &= ~ATP_DOUBLE_TAP_DRAG;
1987 }
1988 
1989 static boolean_t
1990 atp_is_horizontal_scroll(const atp_stroke_t *strokep)
1991 {
1992 	if (abs(strokep->cum_movement_x) < atp_slide_min_movement)
1993 		return (false);
1994 	if (strokep->cum_movement_y == 0)
1995 		return (true);
1996 	return (abs(strokep->cum_movement_x / strokep->cum_movement_y) >= 4);
1997 }
1998 
1999 static boolean_t
2000 atp_is_vertical_scroll(const atp_stroke_t *strokep)
2001 {
2002 	if (abs(strokep->cum_movement_y) < atp_slide_min_movement)
2003 		return (false);
2004 	if (strokep->cum_movement_x == 0)
2005 		return (true);
2006 	return (abs(strokep->cum_movement_y / strokep->cum_movement_x) >= 4);
2007 }
2008 
2009 static void
2010 atp_reap_sibling_zombies(void *arg)
2011 {
2012 	struct atp_softc *sc = (struct atp_softc *)arg;
2013 	u_int8_t n_touches_reaped = 0;
2014 	u_int8_t n_slides_reaped = 0;
2015 	u_int8_t n_horizontal_scrolls = 0;
2016 	u_int8_t n_vertical_scrolls = 0;
2017 	int horizontal_scroll = 0;
2018 	int vertical_scroll = 0;
2019 	atp_stroke_t *strokep;
2020 	atp_stroke_t *strokep_next;
2021 
2022 	DPRINTFN(ATP_LLEVEL_INFO, "\n");
2023 
2024 	TAILQ_FOREACH_SAFE(strokep, &sc->sc_stroke_used, entry, strokep_next) {
2025 		if ((strokep->flags & ATSF_ZOMBIE) == 0)
2026 			continue;
2027 
2028 		if (strokep->type == ATP_STROKE_TOUCH) {
2029 			n_touches_reaped++;
2030 		} else {
2031 			n_slides_reaped++;
2032 
2033 			if (atp_is_horizontal_scroll(strokep)) {
2034 				n_horizontal_scrolls++;
2035 				horizontal_scroll += strokep->cum_movement_x;
2036 			} else if (atp_is_vertical_scroll(strokep)) {
2037 				n_vertical_scrolls++;
2038 				vertical_scroll +=  strokep->cum_movement_y;
2039 			}
2040 		}
2041 
2042 		atp_free_stroke(sc, strokep);
2043 	}
2044 
2045 	DPRINTFN(ATP_LLEVEL_INFO, "reaped %u zombies\n",
2046 	    n_touches_reaped + n_slides_reaped);
2047 	sc->sc_state &= ~ATP_ZOMBIES_EXIST;
2048 
2049 	/* No further processing necessary if physical button is depressed. */
2050 	if (sc->sc_ibtn != 0)
2051 		return;
2052 
2053 	if ((n_touches_reaped == 0) && (n_slides_reaped == 0))
2054 		return;
2055 
2056 	/* Add a pair of virtual button events (button-down and button-up) if
2057 	 * the physical button isn't pressed. */
2058 	if (n_touches_reaped != 0) {
2059 		if (n_touches_reaped < atp_tap_minimum)
2060 			return;
2061 
2062 		switch (n_touches_reaped) {
2063 		case 1:
2064 			atp_add_to_queue(sc, 0, 0, 0, MOUSE_BUTTON1DOWN);
2065 			microtime(&sc->sc_touch_reap_time); /* remember this time */
2066 			break;
2067 		case 2:
2068 			atp_add_to_queue(sc, 0, 0, 0, MOUSE_BUTTON3DOWN);
2069 			break;
2070 		case 3:
2071 			atp_add_to_queue(sc, 0, 0, 0, MOUSE_BUTTON2DOWN);
2072 			break;
2073 		default:
2074 			/* we handle taps of only up to 3 fingers */
2075 			return;
2076 		}
2077 		atp_add_to_queue(sc, 0, 0, 0, 0); /* button release */
2078 
2079 	} else if ((n_slides_reaped == 2) && (n_horizontal_scrolls == 2)) {
2080 		if (horizontal_scroll < 0)
2081 			atp_add_to_queue(sc, 0, 0, 0, MOUSE_BUTTON4DOWN);
2082 		else
2083 			atp_add_to_queue(sc, 0, 0, 0, MOUSE_BUTTON5DOWN);
2084 		atp_add_to_queue(sc, 0, 0, 0, 0); /* button release */
2085 	}
2086 }
2087 
2088 /* Switch a given touch stroke to being a slide. */
2089 static void
2090 atp_convert_to_slide(struct atp_softc *sc, atp_stroke_t *strokep)
2091 {
2092 	strokep->type = ATP_STROKE_SLIDE;
2093 
2094 	/* Are we at the beginning of a double-click-n-drag? */
2095 	if ((sc->sc_n_strokes == 1) &&
2096 	    ((sc->sc_state & ATP_ZOMBIES_EXIST) == 0) &&
2097 	    timevalcmp(&strokep->ctime, &sc->sc_touch_reap_time, >)) {
2098 		struct timeval delta;
2099 		struct timeval window = {
2100 			atp_double_tap_threshold / 1000000,
2101 			atp_double_tap_threshold % 1000000
2102 		};
2103 
2104 		delta = strokep->ctime;
2105 		timevalsub(&delta, &sc->sc_touch_reap_time);
2106 		if (timevalcmp(&delta, &window, <=))
2107 			sc->sc_state |= ATP_DOUBLE_TAP_DRAG;
2108 	}
2109 }
2110 
2111 static void
2112 atp_reset_buf(struct atp_softc *sc)
2113 {
2114 	/* reset read queue */
2115 	usb_fifo_reset(sc->sc_fifo.fp[USB_FIFO_RX]);
2116 }
2117 
2118 static void
2119 atp_add_to_queue(struct atp_softc *sc, int dx, int dy, int dz,
2120     uint32_t buttons_in)
2121 {
2122 	uint32_t buttons_out;
2123 	uint8_t  buf[8];
2124 
2125 	dx = imin(dx,  254); dx = imax(dx, -256);
2126 	dy = imin(dy,  254); dy = imax(dy, -256);
2127 	dz = imin(dz,  126); dz = imax(dz, -128);
2128 
2129 	buttons_out = MOUSE_MSC_BUTTONS;
2130 	if (buttons_in & MOUSE_BUTTON1DOWN)
2131 		buttons_out &= ~MOUSE_MSC_BUTTON1UP;
2132 	else if (buttons_in & MOUSE_BUTTON2DOWN)
2133 		buttons_out &= ~MOUSE_MSC_BUTTON2UP;
2134 	else if (buttons_in & MOUSE_BUTTON3DOWN)
2135 		buttons_out &= ~MOUSE_MSC_BUTTON3UP;
2136 
2137 	DPRINTFN(ATP_LLEVEL_INFO, "dx=%d, dy=%d, buttons=%x\n",
2138 	    dx, dy, buttons_out);
2139 
2140 	/* Encode the mouse data in standard format; refer to mouse(4) */
2141 	buf[0] = sc->sc_mode.syncmask[1];
2142 	buf[0] |= buttons_out;
2143 	buf[1] = dx >> 1;
2144 	buf[2] = dy >> 1;
2145 	buf[3] = dx - (dx >> 1);
2146 	buf[4] = dy - (dy >> 1);
2147 	/* Encode extra bytes for level 1 */
2148 	if (sc->sc_mode.level == 1) {
2149 		buf[5] = dz >> 1;
2150 		buf[6] = dz - (dz >> 1);
2151 		buf[7] = (((~buttons_in) >> 3) & MOUSE_SYS_EXTBUTTONS);
2152 	}
2153 
2154 	usb_fifo_put_data_linear(sc->sc_fifo.fp[USB_FIFO_RX], buf,
2155 	    sc->sc_mode.packetsize, 1);
2156 }
2157 
2158 static int
2159 atp_probe(device_t self)
2160 {
2161 	struct usb_attach_arg *uaa = device_get_ivars(self);
2162 
2163 	if (uaa->usb_mode != USB_MODE_HOST)
2164 		return (ENXIO);
2165 
2166 	if (uaa->info.bInterfaceClass != UICLASS_HID)
2167 		return (ENXIO);
2168 	/*
2169 	 * Note: for some reason, the check
2170 	 * (uaa->info.bInterfaceProtocol == UIPROTO_MOUSE) doesn't hold true
2171 	 * for wellspring trackpads, so we've removed it from the common path.
2172 	 */
2173 
2174 	if ((usbd_lookup_id_by_uaa(fg_devs, sizeof(fg_devs), uaa)) == 0)
2175 		return ((uaa->info.bInterfaceProtocol == UIPROTO_MOUSE) ?
2176 			0 : ENXIO);
2177 
2178 	if ((usbd_lookup_id_by_uaa(wsp_devs, sizeof(wsp_devs), uaa)) == 0)
2179 		if (uaa->info.bIfaceIndex == WELLSPRING_INTERFACE_INDEX)
2180 			return (0);
2181 
2182 	return (ENXIO);
2183 }
2184 
2185 static int
2186 atp_attach(device_t dev)
2187 {
2188 	struct atp_softc      *sc  = device_get_softc(dev);
2189 	struct usb_attach_arg *uaa = device_get_ivars(dev);
2190 	usb_error_t            err;
2191 	void *descriptor_ptr = NULL;
2192 	uint16_t descriptor_len;
2193 	unsigned long di;
2194 
2195 	DPRINTFN(ATP_LLEVEL_INFO, "sc=%p\n", sc);
2196 
2197 	sc->sc_dev        = dev;
2198 	sc->sc_usb_device = uaa->device;
2199 
2200 	/* Get HID descriptor */
2201 	if (usbd_req_get_hid_desc(uaa->device, NULL, &descriptor_ptr,
2202 	    &descriptor_len, M_TEMP, uaa->info.bIfaceIndex) !=
2203 	    USB_ERR_NORMAL_COMPLETION)
2204 		return (ENXIO);
2205 
2206 	/* Get HID report descriptor length */
2207 	sc->sc_expected_sensor_data_len = hid_report_size(descriptor_ptr,
2208 	    descriptor_len, hid_input, NULL);
2209 	free(descriptor_ptr, M_TEMP);
2210 
2211 	if ((sc->sc_expected_sensor_data_len <= 0) ||
2212 	    (sc->sc_expected_sensor_data_len > ATP_SENSOR_DATA_BUF_MAX)) {
2213 		DPRINTF("atp_attach: datalength invalid or too large: %d\n",
2214 			sc->sc_expected_sensor_data_len);
2215 		return (ENXIO);
2216 	}
2217 
2218 	di = USB_GET_DRIVER_INFO(uaa);
2219 	sc->sc_family = DECODE_FAMILY_FROM_DRIVER_INFO(di);
2220 
2221 	/*
2222 	 * By default the touchpad behaves like an HID device, sending
2223 	 * packets with reportID = 2. Such reports contain only
2224 	 * limited information--they encode movement deltas and button
2225 	 * events,--but do not include data from the pressure
2226 	 * sensors. The device input mode can be switched from HID
2227 	 * reports to raw sensor data using vendor-specific USB
2228 	 * control commands.
2229 	 * FOUNTAIN devices will give an error when trying to switch
2230 	 * input mode, so we skip this command
2231 	 */
2232 	if ((sc->sc_family == TRACKPAD_FAMILY_FOUNTAIN_GEYSER) &&
2233 		(DECODE_PRODUCT_FROM_DRIVER_INFO(di) == FOUNTAIN))
2234 		DPRINTF("device mode switch skipped: Fountain device\n");
2235 	else if ((err = atp_set_device_mode(sc, RAW_SENSOR_MODE)) != 0) {
2236 		DPRINTF("failed to set mode to 'RAW_SENSOR' (%d)\n", err);
2237 		return (ENXIO);
2238 	}
2239 
2240 	mtx_init(&sc->sc_mutex, "atpmtx", NULL, MTX_DEF | MTX_RECURSE);
2241 
2242 	switch(sc->sc_family) {
2243 	case TRACKPAD_FAMILY_FOUNTAIN_GEYSER:
2244 		sc->sc_params =
2245 		    &fg_dev_params[DECODE_PRODUCT_FROM_DRIVER_INFO(di)];
2246 		sc->sensor_data_interpreter = fg_interpret_sensor_data;
2247 		break;
2248 	case TRACKPAD_FAMILY_WELLSPRING:
2249 		sc->sc_params =
2250 		    &wsp_dev_params[DECODE_PRODUCT_FROM_DRIVER_INFO(di)];
2251 		sc->sensor_data_interpreter = wsp_interpret_sensor_data;
2252 		break;
2253 	default:
2254 		goto detach;
2255 	}
2256 
2257 	err = usbd_transfer_setup(uaa->device,
2258 	    &uaa->info.bIfaceIndex, sc->sc_xfer, atp_xfer_config,
2259 	    ATP_N_TRANSFER, sc, &sc->sc_mutex);
2260 	if (err) {
2261 		DPRINTF("error=%s\n", usbd_errstr(err));
2262 		goto detach;
2263 	}
2264 
2265 	if (usb_fifo_attach(sc->sc_usb_device, sc, &sc->sc_mutex,
2266 	    &atp_fifo_methods, &sc->sc_fifo,
2267 	    device_get_unit(dev), -1, uaa->info.bIfaceIndex,
2268 	    UID_ROOT, GID_OPERATOR, 0644)) {
2269 		goto detach;
2270 	}
2271 
2272 	device_set_usb_desc(dev);
2273 
2274 	sc->sc_hw.buttons       = 3;
2275 	sc->sc_hw.iftype        = MOUSE_IF_USB;
2276 	sc->sc_hw.type          = MOUSE_PAD;
2277 	sc->sc_hw.model         = MOUSE_MODEL_GENERIC;
2278 	sc->sc_hw.hwid          = 0;
2279 	sc->sc_mode.protocol    = MOUSE_PROTO_MSC;
2280 	sc->sc_mode.rate        = -1;
2281 	sc->sc_mode.resolution  = MOUSE_RES_UNKNOWN;
2282 	sc->sc_mode.packetsize  = MOUSE_MSC_PACKETSIZE;
2283 	sc->sc_mode.syncmask[0] = MOUSE_MSC_SYNCMASK;
2284 	sc->sc_mode.syncmask[1] = MOUSE_MSC_SYNC;
2285 	sc->sc_mode.accelfactor = 0;
2286 	sc->sc_mode.level       = 0;
2287 
2288 	sc->sc_state            = 0;
2289 	sc->sc_ibtn             = 0;
2290 
2291 	callout_init_mtx(&sc->sc_callout, &sc->sc_mutex, 0);
2292 
2293 	return (0);
2294 
2295 detach:
2296 	atp_detach(dev);
2297 	return (ENOMEM);
2298 }
2299 
2300 static int
2301 atp_detach(device_t dev)
2302 {
2303 	struct atp_softc *sc;
2304 
2305 	sc = device_get_softc(dev);
2306 	atp_set_device_mode(sc, HID_MODE);
2307 
2308 	mtx_lock(&sc->sc_mutex);
2309 	callout_drain(&sc->sc_callout);
2310 	if (sc->sc_state & ATP_ENABLED)
2311 		atp_disable(sc);
2312 	mtx_unlock(&sc->sc_mutex);
2313 
2314 	usb_fifo_detach(&sc->sc_fifo);
2315 
2316 	usbd_transfer_unsetup(sc->sc_xfer, ATP_N_TRANSFER);
2317 
2318 	mtx_destroy(&sc->sc_mutex);
2319 
2320 	return (0);
2321 }
2322 
2323 static void
2324 atp_intr(struct usb_xfer *xfer, usb_error_t error)
2325 {
2326 	struct atp_softc      *sc = usbd_xfer_softc(xfer);
2327 	struct usb_page_cache *pc;
2328 	int len;
2329 
2330 	usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
2331 
2332 	switch (USB_GET_STATE(xfer)) {
2333 	case USB_ST_TRANSFERRED:
2334 		pc = usbd_xfer_get_frame(xfer, 0);
2335 		usbd_copy_out(pc, 0, sc->sc_sensor_data, len);
2336 		if (len < sc->sc_expected_sensor_data_len) {
2337 			/* make sure we don't process old data */
2338 			memset(sc->sc_sensor_data + len, 0,
2339 			    sc->sc_expected_sensor_data_len - len);
2340 		}
2341 
2342 		sc->sc_status.flags &= ~(MOUSE_STDBUTTONSCHANGED |
2343 		    MOUSE_POSCHANGED);
2344 		sc->sc_status.obutton = sc->sc_status.button;
2345 
2346 		(sc->sensor_data_interpreter)(sc, len);
2347 
2348 		if (sc->sc_status.button != 0) {
2349 			/* Reset DOUBLE_TAP_N_DRAG if the button is pressed. */
2350 			sc->sc_state &= ~ATP_DOUBLE_TAP_DRAG;
2351 		} else if (sc->sc_state & ATP_DOUBLE_TAP_DRAG) {
2352 			/* Assume a button-press with DOUBLE_TAP_N_DRAG. */
2353 			sc->sc_status.button = MOUSE_BUTTON1DOWN;
2354 		}
2355 
2356 		sc->sc_status.flags |=
2357 		    sc->sc_status.button ^ sc->sc_status.obutton;
2358 		if (sc->sc_status.flags & MOUSE_STDBUTTONSCHANGED) {
2359 		    DPRINTFN(ATP_LLEVEL_INFO, "button %s\n",
2360 			((sc->sc_status.button & MOUSE_BUTTON1DOWN) ?
2361 			"pressed" : "released"));
2362 		}
2363 
2364 		if (sc->sc_status.flags & (MOUSE_POSCHANGED |
2365 		    MOUSE_STDBUTTONSCHANGED)) {
2366 			atp_stroke_t *strokep;
2367 			u_int8_t n_movements = 0;
2368 			int dx = 0;
2369 			int dy = 0;
2370 			int dz = 0;
2371 
2372 			TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry) {
2373 				if (strokep->flags & ATSF_ZOMBIE)
2374 					continue;
2375 
2376 				dx += strokep->movement_dx;
2377 				dy += strokep->movement_dy;
2378 				if (strokep->movement_dx ||
2379 				    strokep->movement_dy)
2380 					n_movements++;
2381 			}
2382 
2383 			/* average movement if multiple strokes record motion.*/
2384 			if (n_movements > 1) {
2385 				dx /= (int)n_movements;
2386 				dy /= (int)n_movements;
2387 			}
2388 
2389 			/* detect multi-finger vertical scrolls */
2390 			if (n_movements >= 2) {
2391 				boolean_t all_vertical_scrolls = true;
2392 				TAILQ_FOREACH(strokep, &sc->sc_stroke_used, entry) {
2393 					if (strokep->flags & ATSF_ZOMBIE)
2394 						continue;
2395 
2396 					if (!atp_is_vertical_scroll(strokep))
2397 						all_vertical_scrolls = false;
2398 				}
2399 				if (all_vertical_scrolls) {
2400 					dz = dy;
2401 					dy = dx = 0;
2402 				}
2403 			}
2404 
2405 			sc->sc_status.dx += dx;
2406 			sc->sc_status.dy += dy;
2407 			sc->sc_status.dz += dz;
2408 			atp_add_to_queue(sc, dx, -dy, -dz, sc->sc_status.button);
2409 		}
2410 
2411 	case USB_ST_SETUP:
2412 	tr_setup:
2413 		/* check if we can put more data into the FIFO */
2414 		if (usb_fifo_put_bytes_max(sc->sc_fifo.fp[USB_FIFO_RX]) != 0) {
2415 			usbd_xfer_set_frame_len(xfer, 0,
2416 			    sc->sc_expected_sensor_data_len);
2417 			usbd_transfer_submit(xfer);
2418 		}
2419 		break;
2420 
2421 	default:                        /* Error */
2422 		if (error != USB_ERR_CANCELLED) {
2423 			/* try clear stall first */
2424 			usbd_xfer_set_stall(xfer);
2425 			goto tr_setup;
2426 		}
2427 		break;
2428 	}
2429 }
2430 
2431 static void
2432 atp_start_read(struct usb_fifo *fifo)
2433 {
2434 	struct atp_softc *sc = usb_fifo_softc(fifo);
2435 	int rate;
2436 
2437 	/* Check if we should override the default polling interval */
2438 	rate = sc->sc_pollrate;
2439 	/* Range check rate */
2440 	if (rate > 1000)
2441 		rate = 1000;
2442 	/* Check for set rate */
2443 	if ((rate > 0) && (sc->sc_xfer[ATP_INTR_DT] != NULL)) {
2444 		/* Stop current transfer, if any */
2445 		usbd_transfer_stop(sc->sc_xfer[ATP_INTR_DT]);
2446 		/* Set new interval */
2447 		usbd_xfer_set_interval(sc->sc_xfer[ATP_INTR_DT], 1000 / rate);
2448 		/* Only set pollrate once */
2449 		sc->sc_pollrate = 0;
2450 	}
2451 
2452 	usbd_transfer_start(sc->sc_xfer[ATP_INTR_DT]);
2453 }
2454 
2455 static void
2456 atp_stop_read(struct usb_fifo *fifo)
2457 {
2458 	struct atp_softc *sc = usb_fifo_softc(fifo);
2459 	usbd_transfer_stop(sc->sc_xfer[ATP_INTR_DT]);
2460 }
2461 
2462 static int
2463 atp_open(struct usb_fifo *fifo, int fflags)
2464 {
2465 	struct atp_softc *sc = usb_fifo_softc(fifo);
2466 
2467 	/* check for duplicate open, should not happen */
2468 	if (sc->sc_fflags & fflags)
2469 		return (EBUSY);
2470 
2471 	/* check for first open */
2472 	if (sc->sc_fflags == 0) {
2473 		int rc;
2474 		if ((rc = atp_enable(sc)) != 0)
2475 			return (rc);
2476 	}
2477 
2478 	if (fflags & FREAD) {
2479 		if (usb_fifo_alloc_buffer(fifo,
2480 		    ATP_FIFO_BUF_SIZE, ATP_FIFO_QUEUE_MAXLEN)) {
2481 			return (ENOMEM);
2482 		}
2483 	}
2484 
2485 	sc->sc_fflags |= (fflags & (FREAD | FWRITE));
2486 	return (0);
2487 }
2488 
2489 static void
2490 atp_close(struct usb_fifo *fifo, int fflags)
2491 {
2492 	struct atp_softc *sc = usb_fifo_softc(fifo);
2493 	if (fflags & FREAD)
2494 		usb_fifo_free_buffer(fifo);
2495 
2496 	sc->sc_fflags &= ~(fflags & (FREAD | FWRITE));
2497 	if (sc->sc_fflags == 0) {
2498 		atp_disable(sc);
2499 	}
2500 }
2501 
2502 static int
2503 atp_ioctl(struct usb_fifo *fifo, u_long cmd, void *addr, int fflags)
2504 {
2505 	struct atp_softc *sc = usb_fifo_softc(fifo);
2506 	mousemode_t mode;
2507 	int error = 0;
2508 
2509 	mtx_lock(&sc->sc_mutex);
2510 
2511 	switch(cmd) {
2512 	case MOUSE_GETHWINFO:
2513 		*(mousehw_t *)addr = sc->sc_hw;
2514 		break;
2515 	case MOUSE_GETMODE:
2516 		*(mousemode_t *)addr = sc->sc_mode;
2517 		break;
2518 	case MOUSE_SETMODE:
2519 		mode = *(mousemode_t *)addr;
2520 
2521 		if (mode.level == -1)
2522 			/* Don't change the current setting */
2523 			;
2524 		else if ((mode.level < 0) || (mode.level > 1)) {
2525 			error = EINVAL;
2526 			break;
2527 		}
2528 		sc->sc_mode.level = mode.level;
2529 		sc->sc_pollrate   = mode.rate;
2530 		sc->sc_hw.buttons = 3;
2531 
2532 		if (sc->sc_mode.level == 0) {
2533 			sc->sc_mode.protocol    = MOUSE_PROTO_MSC;
2534 			sc->sc_mode.packetsize  = MOUSE_MSC_PACKETSIZE;
2535 			sc->sc_mode.syncmask[0] = MOUSE_MSC_SYNCMASK;
2536 			sc->sc_mode.syncmask[1] = MOUSE_MSC_SYNC;
2537 		} else if (sc->sc_mode.level == 1) {
2538 			sc->sc_mode.protocol    = MOUSE_PROTO_SYSMOUSE;
2539 			sc->sc_mode.packetsize  = MOUSE_SYS_PACKETSIZE;
2540 			sc->sc_mode.syncmask[0] = MOUSE_SYS_SYNCMASK;
2541 			sc->sc_mode.syncmask[1] = MOUSE_SYS_SYNC;
2542 		}
2543 		atp_reset_buf(sc);
2544 		break;
2545 	case MOUSE_GETLEVEL:
2546 		*(int *)addr = sc->sc_mode.level;
2547 		break;
2548 	case MOUSE_SETLEVEL:
2549 		if ((*(int *)addr < 0) || (*(int *)addr > 1)) {
2550 			error = EINVAL;
2551 			break;
2552 		}
2553 		sc->sc_mode.level = *(int *)addr;
2554 		sc->sc_hw.buttons = 3;
2555 
2556 		if (sc->sc_mode.level == 0) {
2557 			sc->sc_mode.protocol    = MOUSE_PROTO_MSC;
2558 			sc->sc_mode.packetsize  = MOUSE_MSC_PACKETSIZE;
2559 			sc->sc_mode.syncmask[0] = MOUSE_MSC_SYNCMASK;
2560 			sc->sc_mode.syncmask[1] = MOUSE_MSC_SYNC;
2561 		} else if (sc->sc_mode.level == 1) {
2562 			sc->sc_mode.protocol    = MOUSE_PROTO_SYSMOUSE;
2563 			sc->sc_mode.packetsize  = MOUSE_SYS_PACKETSIZE;
2564 			sc->sc_mode.syncmask[0] = MOUSE_SYS_SYNCMASK;
2565 			sc->sc_mode.syncmask[1] = MOUSE_SYS_SYNC;
2566 		}
2567 		atp_reset_buf(sc);
2568 		break;
2569 	case MOUSE_GETSTATUS: {
2570 		mousestatus_t *status = (mousestatus_t *)addr;
2571 
2572 		*status = sc->sc_status;
2573 		sc->sc_status.obutton = sc->sc_status.button;
2574 		sc->sc_status.button  = 0;
2575 		sc->sc_status.dx      = 0;
2576 		sc->sc_status.dy      = 0;
2577 		sc->sc_status.dz      = 0;
2578 
2579 		if (status->dx || status->dy || status->dz)
2580 			status->flags |= MOUSE_POSCHANGED;
2581 		if (status->button != status->obutton)
2582 			status->flags |= MOUSE_BUTTONSCHANGED;
2583 		break;
2584 	}
2585 
2586 	default:
2587 		error = ENOTTY;
2588 		break;
2589 	}
2590 
2591 	mtx_unlock(&sc->sc_mutex);
2592 	return (error);
2593 }
2594 
2595 static int
2596 atp_sysctl_scale_factor_handler(SYSCTL_HANDLER_ARGS)
2597 {
2598 	int error;
2599 	u_int tmp;
2600 
2601 	tmp = atp_mickeys_scale_factor;
2602 	error = sysctl_handle_int(oidp, &tmp, 0, req);
2603 	if (error != 0 || req->newptr == NULL)
2604 		return (error);
2605 
2606 	if (tmp == atp_mickeys_scale_factor)
2607 		return (0);     /* no change */
2608 	if ((tmp == 0) || (tmp > (10 * ATP_SCALE_FACTOR)))
2609 		return (EINVAL);
2610 
2611 	atp_mickeys_scale_factor = tmp;
2612 	DPRINTFN(ATP_LLEVEL_INFO, "%s: resetting mickeys_scale_factor to %u\n",
2613 	    ATP_DRIVER_NAME, tmp);
2614 
2615 	return (0);
2616 }
2617 
2618 static devclass_t atp_devclass;
2619 
2620 static device_method_t atp_methods[] = {
2621 	DEVMETHOD(device_probe,  atp_probe),
2622 	DEVMETHOD(device_attach, atp_attach),
2623 	DEVMETHOD(device_detach, atp_detach),
2624 
2625 	DEVMETHOD_END
2626 };
2627 
2628 static driver_t atp_driver = {
2629 	.name    = ATP_DRIVER_NAME,
2630 	.methods = atp_methods,
2631 	.size    = sizeof(struct atp_softc)
2632 };
2633 
2634 DRIVER_MODULE(atp, uhub, atp_driver, atp_devclass, NULL, 0);
2635 MODULE_DEPEND(atp, usb, 1, 1, 1);
2636 MODULE_VERSION(atp, 1);
2637 USB_PNP_HOST_INFO(fg_devs);
2638 USB_PNP_HOST_INFO(wsp_devs);
2639