xref: /freebsd/sys/dev/uart/uart_dev_ns8250.c (revision f1951fd745b894fe6586c298874af98544a5e272)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2003 Marcel Moolenaar
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include "opt_platform.h"
30 #include "opt_uart.h"
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bus.h>
38 #include <sys/conf.h>
39 #include <sys/kernel.h>
40 #include <sys/sysctl.h>
41 #include <machine/bus.h>
42 
43 #ifdef FDT
44 #include <dev/fdt/fdt_common.h>
45 #include <dev/ofw/ofw_bus.h>
46 #include <dev/ofw/ofw_bus_subr.h>
47 #endif
48 
49 #include <dev/uart/uart.h>
50 #include <dev/uart/uart_cpu.h>
51 #ifdef FDT
52 #include <dev/uart/uart_cpu_fdt.h>
53 #endif
54 #include <dev/uart/uart_bus.h>
55 #include <dev/uart/uart_dev_ns8250.h>
56 #include <dev/uart/uart_ppstypes.h>
57 
58 #include <dev/ic/ns16550.h>
59 
60 #include "uart_if.h"
61 
62 #define	DEFAULT_RCLK	1843200
63 
64 /*
65  * Set the default baudrate tolerance to 3.0%.
66  *
67  * Some embedded boards have odd reference clocks (eg 25MHz)
68  * and we need to handle higher variances in the target baud rate.
69  */
70 #ifndef	UART_DEV_TOLERANCE_PCT
71 #define	UART_DEV_TOLERANCE_PCT	30
72 #endif	/* UART_DEV_TOLERANCE_PCT */
73 
74 static int broken_txfifo = 0;
75 SYSCTL_INT(_hw, OID_AUTO, broken_txfifo, CTLFLAG_RWTUN,
76 	&broken_txfifo, 0, "UART FIFO has QEMU emulation bug");
77 
78 /*
79  * Clear pending interrupts. THRE is cleared by reading IIR. Data
80  * that may have been received gets lost here.
81  */
82 static void
83 ns8250_clrint(struct uart_bas *bas)
84 {
85 	uint8_t iir, lsr;
86 
87 	iir = uart_getreg(bas, REG_IIR);
88 	while ((iir & IIR_NOPEND) == 0) {
89 		iir &= IIR_IMASK;
90 		if (iir == IIR_RLS) {
91 			lsr = uart_getreg(bas, REG_LSR);
92 			if (lsr & (LSR_BI|LSR_FE|LSR_PE))
93 				(void)uart_getreg(bas, REG_DATA);
94 		} else if (iir == IIR_RXRDY || iir == IIR_RXTOUT)
95 			(void)uart_getreg(bas, REG_DATA);
96 		else if (iir == IIR_MLSC)
97 			(void)uart_getreg(bas, REG_MSR);
98 		uart_barrier(bas);
99 		iir = uart_getreg(bas, REG_IIR);
100 	}
101 }
102 
103 static int
104 ns8250_delay(struct uart_bas *bas)
105 {
106 	int divisor;
107 	u_char lcr;
108 
109 	lcr = uart_getreg(bas, REG_LCR);
110 	uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
111 	uart_barrier(bas);
112 	divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8);
113 	uart_barrier(bas);
114 	uart_setreg(bas, REG_LCR, lcr);
115 	uart_barrier(bas);
116 
117 	/* 1/10th the time to transmit 1 character (estimate). */
118 	if (divisor <= 134)
119 		return (16000000 * divisor / bas->rclk);
120 	return (16000 * divisor / (bas->rclk / 1000));
121 }
122 
123 static int
124 ns8250_divisor(int rclk, int baudrate)
125 {
126 	int actual_baud, divisor;
127 	int error;
128 
129 	if (baudrate == 0)
130 		return (0);
131 
132 	divisor = (rclk / (baudrate << 3) + 1) >> 1;
133 	if (divisor == 0 || divisor >= 65536)
134 		return (0);
135 	actual_baud = rclk / (divisor << 4);
136 
137 	/* 10 times error in percent: */
138 	error = ((actual_baud - baudrate) * 2000 / baudrate + 1) >> 1;
139 
140 	/* enforce maximum error tolerance: */
141 	if (error < -UART_DEV_TOLERANCE_PCT || error > UART_DEV_TOLERANCE_PCT)
142 		return (0);
143 
144 	return (divisor);
145 }
146 
147 static int
148 ns8250_drain(struct uart_bas *bas, int what)
149 {
150 	int delay, limit;
151 
152 	delay = ns8250_delay(bas);
153 
154 	if (what & UART_DRAIN_TRANSMITTER) {
155 		/*
156 		 * Pick an arbitrary high limit to avoid getting stuck in
157 		 * an infinite loop when the hardware is broken. Make the
158 		 * limit high enough to handle large FIFOs.
159 		 */
160 		limit = 10*1024;
161 		while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
162 			DELAY(delay);
163 		if (limit == 0) {
164 			/* printf("ns8250: transmitter appears stuck... "); */
165 			return (EIO);
166 		}
167 	}
168 
169 	if (what & UART_DRAIN_RECEIVER) {
170 		/*
171 		 * Pick an arbitrary high limit to avoid getting stuck in
172 		 * an infinite loop when the hardware is broken. Make the
173 		 * limit high enough to handle large FIFOs and integrated
174 		 * UARTs. The HP rx2600 for example has 3 UARTs on the
175 		 * management board that tend to get a lot of data send
176 		 * to it when the UART is first activated.
177 		 */
178 		limit=10*4096;
179 		while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) {
180 			(void)uart_getreg(bas, REG_DATA);
181 			uart_barrier(bas);
182 			DELAY(delay << 2);
183 		}
184 		if (limit == 0) {
185 			/* printf("ns8250: receiver appears broken... "); */
186 			return (EIO);
187 		}
188 	}
189 
190 	return (0);
191 }
192 
193 /*
194  * We can only flush UARTs with FIFOs. UARTs without FIFOs should be
195  * drained. WARNING: this function clobbers the FIFO setting!
196  */
197 static void
198 ns8250_flush(struct uart_bas *bas, int what)
199 {
200 	uint8_t fcr;
201 
202 	fcr = FCR_ENABLE;
203 #ifdef CPU_XBURST
204 	fcr |= FCR_UART_ON;
205 #endif
206 	if (what & UART_FLUSH_TRANSMITTER)
207 		fcr |= FCR_XMT_RST;
208 	if (what & UART_FLUSH_RECEIVER)
209 		fcr |= FCR_RCV_RST;
210 	uart_setreg(bas, REG_FCR, fcr);
211 	uart_barrier(bas);
212 }
213 
214 static int
215 ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
216     int parity)
217 {
218 	int divisor;
219 	uint8_t lcr;
220 
221 	lcr = 0;
222 	if (databits >= 8)
223 		lcr |= LCR_8BITS;
224 	else if (databits == 7)
225 		lcr |= LCR_7BITS;
226 	else if (databits == 6)
227 		lcr |= LCR_6BITS;
228 	else
229 		lcr |= LCR_5BITS;
230 	if (stopbits > 1)
231 		lcr |= LCR_STOPB;
232 	lcr |= parity << 3;
233 
234 	/* Set baudrate. */
235 	if (baudrate > 0) {
236 		divisor = ns8250_divisor(bas->rclk, baudrate);
237 		if (divisor == 0)
238 			return (EINVAL);
239 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
240 		uart_barrier(bas);
241 		uart_setreg(bas, REG_DLL, divisor & 0xff);
242 		uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff);
243 		uart_barrier(bas);
244 	}
245 
246 	/* Set LCR and clear DLAB. */
247 	uart_setreg(bas, REG_LCR, lcr);
248 	uart_barrier(bas);
249 	return (0);
250 }
251 
252 /*
253  * Low-level UART interface.
254  */
255 static int ns8250_probe(struct uart_bas *bas);
256 static void ns8250_init(struct uart_bas *bas, int, int, int, int);
257 static void ns8250_term(struct uart_bas *bas);
258 static void ns8250_putc(struct uart_bas *bas, int);
259 static int ns8250_rxready(struct uart_bas *bas);
260 static int ns8250_getc(struct uart_bas *bas, struct mtx *);
261 
262 struct uart_ops uart_ns8250_ops = {
263 	.probe = ns8250_probe,
264 	.init = ns8250_init,
265 	.term = ns8250_term,
266 	.putc = ns8250_putc,
267 	.rxready = ns8250_rxready,
268 	.getc = ns8250_getc,
269 };
270 
271 static int
272 ns8250_probe(struct uart_bas *bas)
273 {
274 	u_char val;
275 
276 #ifdef CPU_XBURST
277 	uart_setreg(bas, REG_FCR, FCR_UART_ON);
278 #endif
279 
280 	/* Check known 0 bits that don't depend on DLAB. */
281 	val = uart_getreg(bas, REG_IIR);
282 	if (val & 0x30)
283 		return (ENXIO);
284 	/*
285 	 * Bit 6 of the MCR (= 0x40) appears to be 1 for the Sun1699
286 	 * chip, but otherwise doesn't seem to have a function. In
287 	 * other words, uart(4) works regardless. Ignore that bit so
288 	 * the probe succeeds.
289 	 */
290 	val = uart_getreg(bas, REG_MCR);
291 	if (val & 0xa0)
292 		return (ENXIO);
293 
294 	return (0);
295 }
296 
297 static void
298 ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
299     int parity)
300 {
301 	u_char ier, val;
302 
303 	if (bas->rclk == 0)
304 		bas->rclk = DEFAULT_RCLK;
305 	ns8250_param(bas, baudrate, databits, stopbits, parity);
306 
307 	/* Disable all interrupt sources. */
308 	/*
309 	 * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA
310 	 * UARTs split the receive time-out interrupt bit out separately as
311 	 * 0x10.  This gets handled by ier_mask and ier_rxbits below.
312 	 */
313 	ier = uart_getreg(bas, REG_IER) & 0xe0;
314 	uart_setreg(bas, REG_IER, ier);
315 	uart_barrier(bas);
316 
317 	/* Disable the FIFO (if present). */
318 	val = 0;
319 #ifdef CPU_XBURST
320 	val |= FCR_UART_ON;
321 #endif
322 	uart_setreg(bas, REG_FCR, val);
323 	uart_barrier(bas);
324 
325 	/* Set RTS & DTR. */
326 	uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR);
327 	uart_barrier(bas);
328 
329 	ns8250_clrint(bas);
330 }
331 
332 static void
333 ns8250_term(struct uart_bas *bas)
334 {
335 
336 	/* Clear RTS & DTR. */
337 	uart_setreg(bas, REG_MCR, MCR_IE);
338 	uart_barrier(bas);
339 }
340 
341 static void
342 ns8250_putc(struct uart_bas *bas, int c)
343 {
344 	int limit;
345 
346 	limit = 250000;
347 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit)
348 		DELAY(4);
349 	uart_setreg(bas, REG_DATA, c);
350 	uart_barrier(bas);
351 }
352 
353 static int
354 ns8250_rxready(struct uart_bas *bas)
355 {
356 
357 	return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0);
358 }
359 
360 static int
361 ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx)
362 {
363 	int c;
364 
365 	uart_lock(hwmtx);
366 
367 	while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) {
368 		uart_unlock(hwmtx);
369 		DELAY(4);
370 		uart_lock(hwmtx);
371 	}
372 
373 	c = uart_getreg(bas, REG_DATA);
374 
375 	uart_unlock(hwmtx);
376 
377 	return (c);
378 }
379 
380 static kobj_method_t ns8250_methods[] = {
381 	KOBJMETHOD(uart_attach,		ns8250_bus_attach),
382 	KOBJMETHOD(uart_detach,		ns8250_bus_detach),
383 	KOBJMETHOD(uart_flush,		ns8250_bus_flush),
384 	KOBJMETHOD(uart_getsig,		ns8250_bus_getsig),
385 	KOBJMETHOD(uart_ioctl,		ns8250_bus_ioctl),
386 	KOBJMETHOD(uart_ipend,		ns8250_bus_ipend),
387 	KOBJMETHOD(uart_param,		ns8250_bus_param),
388 	KOBJMETHOD(uart_probe,		ns8250_bus_probe),
389 	KOBJMETHOD(uart_receive,	ns8250_bus_receive),
390 	KOBJMETHOD(uart_setsig,		ns8250_bus_setsig),
391 	KOBJMETHOD(uart_transmit,	ns8250_bus_transmit),
392 	KOBJMETHOD(uart_grab,		ns8250_bus_grab),
393 	KOBJMETHOD(uart_ungrab,		ns8250_bus_ungrab),
394 	{ 0, 0 }
395 };
396 
397 struct uart_class uart_ns8250_class = {
398 	"ns8250",
399 	ns8250_methods,
400 	sizeof(struct ns8250_softc),
401 	.uc_ops = &uart_ns8250_ops,
402 	.uc_range = 8,
403 	.uc_rclk = DEFAULT_RCLK,
404 	.uc_rshift = 0
405 };
406 
407 #ifdef FDT
408 static struct ofw_compat_data compat_data[] = {
409 	{"ns16550",		(uintptr_t)&uart_ns8250_class},
410 	{"ns16550a",		(uintptr_t)&uart_ns8250_class},
411 	{NULL,			(uintptr_t)NULL},
412 };
413 UART_FDT_CLASS_AND_DEVICE(compat_data);
414 #endif
415 
416 /* Use token-pasting to form SER_ and MSR_ named constants. */
417 #define	SER(sig)	SER_##sig
418 #define	SERD(sig)	SER_D##sig
419 #define	MSR(sig)	MSR_##sig
420 #define	MSRD(sig)	MSR_D##sig
421 
422 /*
423  * Detect signal changes using software delta detection.  The previous state of
424  * the signals is in 'var' the new hardware state is in 'msr', and 'sig' is the
425  * short name (DCD, CTS, etc) of the signal bit being processed; 'var' gets the
426  * new state of both the signal and the delta bits.
427  */
428 #define SIGCHGSW(var, msr, sig)					\
429 	if ((msr) & MSR(sig)) {					\
430 		if ((var & SER(sig)) == 0)			\
431 			var |= SERD(sig) | SER(sig);		\
432 	} else {						\
433 		if ((var & SER(sig)) != 0)			\
434 			var = SERD(sig) | (var & ~SER(sig));	\
435 	}
436 
437 /*
438  * Detect signal changes using the hardware msr delta bits.  This is currently
439  * used only when PPS timing information is being captured using the "narrow
440  * pulse" option.  With a narrow PPS pulse the signal may not still be asserted
441  * by time the interrupt handler is invoked.  The hardware will latch the fact
442  * that it changed in the delta bits.
443  */
444 #define SIGCHGHW(var, msr, sig)					\
445 	if ((msr) & MSRD(sig)) {				\
446 		if (((msr) & MSR(sig)) != 0)			\
447 			var |= SERD(sig) | SER(sig);		\
448 		else						\
449 			var = SERD(sig) | (var & ~SER(sig));	\
450 	}
451 
452 int
453 ns8250_bus_attach(struct uart_softc *sc)
454 {
455 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
456 	struct uart_bas *bas;
457 	unsigned int ivar;
458 #ifdef FDT
459 	phandle_t node;
460 	pcell_t cell;
461 #endif
462 
463 #ifdef FDT
464 	/* Check whether uart has a broken txfifo. */
465 	node = ofw_bus_get_node(sc->sc_dev);
466 	if ((OF_getencprop(node, "broken-txfifo", &cell, sizeof(cell))) > 0)
467 		broken_txfifo =  cell ? 1 : 0;
468 #endif
469 
470 	bas = &sc->sc_bas;
471 
472 	ns8250->busy_detect = bas->busy_detect;
473 	ns8250->mcr = uart_getreg(bas, REG_MCR);
474 	ns8250->fcr = FCR_ENABLE;
475 #ifdef CPU_XBURST
476 	ns8250->fcr |= FCR_UART_ON;
477 #endif
478 	if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags",
479 	    &ivar)) {
480 		if (UART_FLAGS_FCR_RX_LOW(ivar))
481 			ns8250->fcr |= FCR_RX_LOW;
482 		else if (UART_FLAGS_FCR_RX_MEDL(ivar))
483 			ns8250->fcr |= FCR_RX_MEDL;
484 		else if (UART_FLAGS_FCR_RX_HIGH(ivar))
485 			ns8250->fcr |= FCR_RX_HIGH;
486 		else
487 			ns8250->fcr |= FCR_RX_MEDH;
488 	} else
489 		ns8250->fcr |= FCR_RX_MEDH;
490 
491 	/* Get IER mask */
492 	ivar = 0xf0;
493 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask",
494 	    &ivar);
495 	ns8250->ier_mask = (uint8_t)(ivar & 0xff);
496 
497 	/* Get IER RX interrupt bits */
498 	ivar = IER_EMSC | IER_ERLS | IER_ERXRDY;
499 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits",
500 	    &ivar);
501 	ns8250->ier_rxbits = (uint8_t)(ivar & 0xff);
502 
503 	uart_setreg(bas, REG_FCR, ns8250->fcr);
504 	uart_barrier(bas);
505 	ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
506 
507 	if (ns8250->mcr & MCR_DTR)
508 		sc->sc_hwsig |= SER_DTR;
509 	if (ns8250->mcr & MCR_RTS)
510 		sc->sc_hwsig |= SER_RTS;
511 	ns8250_bus_getsig(sc);
512 
513 	ns8250_clrint(bas);
514 	ns8250->ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
515 	ns8250->ier |= ns8250->ier_rxbits;
516 	uart_setreg(bas, REG_IER, ns8250->ier);
517 	uart_barrier(bas);
518 
519 	/*
520 	 * Timing of the H/W access was changed with r253161 of uart_core.c
521 	 * It has been observed that an ITE IT8513E would signal a break
522 	 * condition with pretty much every character it received, unless
523 	 * it had enough time to settle between ns8250_bus_attach() and
524 	 * ns8250_bus_ipend() -- which it accidentally had before r253161.
525 	 * It's not understood why the UART chip behaves this way and it
526 	 * could very well be that the DELAY make the H/W work in the same
527 	 * accidental manner as before. More analysis is warranted, but
528 	 * at least now we fixed a known regression.
529 	 */
530 	DELAY(200);
531 	return (0);
532 }
533 
534 int
535 ns8250_bus_detach(struct uart_softc *sc)
536 {
537 	struct ns8250_softc *ns8250;
538 	struct uart_bas *bas;
539 	u_char ier;
540 
541 	ns8250 = (struct ns8250_softc *)sc;
542 	bas = &sc->sc_bas;
543 	ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
544 	uart_setreg(bas, REG_IER, ier);
545 	uart_barrier(bas);
546 	ns8250_clrint(bas);
547 	return (0);
548 }
549 
550 int
551 ns8250_bus_flush(struct uart_softc *sc, int what)
552 {
553 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
554 	struct uart_bas *bas;
555 	int error;
556 
557 	bas = &sc->sc_bas;
558 	uart_lock(sc->sc_hwmtx);
559 	if (sc->sc_rxfifosz > 1) {
560 		ns8250_flush(bas, what);
561 		uart_setreg(bas, REG_FCR, ns8250->fcr);
562 		uart_barrier(bas);
563 		error = 0;
564 	} else
565 		error = ns8250_drain(bas, what);
566 	uart_unlock(sc->sc_hwmtx);
567 	return (error);
568 }
569 
570 int
571 ns8250_bus_getsig(struct uart_softc *sc)
572 {
573 	uint32_t old, sig;
574 	uint8_t msr;
575 
576 	/*
577 	 * The delta bits are reputed to be broken on some hardware, so use
578 	 * software delta detection by default.  Use the hardware delta bits
579 	 * when capturing PPS pulses which are too narrow for software detection
580 	 * to see the edges.  Hardware delta for RI doesn't work like the
581 	 * others, so always use software for it.  Other threads may be changing
582 	 * other (non-MSR) bits in sc_hwsig, so loop until it can successfully
583 	 * update without other changes happening.  Note that the SIGCHGxx()
584 	 * macros carefully preserve the delta bits when we have to loop several
585 	 * times and a signal transitions between iterations.
586 	 */
587 	do {
588 		old = sc->sc_hwsig;
589 		sig = old;
590 		uart_lock(sc->sc_hwmtx);
591 		msr = uart_getreg(&sc->sc_bas, REG_MSR);
592 		uart_unlock(sc->sc_hwmtx);
593 		if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE) {
594 			SIGCHGHW(sig, msr, DSR);
595 			SIGCHGHW(sig, msr, CTS);
596 			SIGCHGHW(sig, msr, DCD);
597 		} else {
598 			SIGCHGSW(sig, msr, DSR);
599 			SIGCHGSW(sig, msr, CTS);
600 			SIGCHGSW(sig, msr, DCD);
601 		}
602 		SIGCHGSW(sig, msr, RI);
603 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, sig & ~SER_MASK_DELTA));
604 	return (sig);
605 }
606 
607 int
608 ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
609 {
610 	struct uart_bas *bas;
611 	int baudrate, divisor, error;
612 	uint8_t efr, lcr;
613 
614 	bas = &sc->sc_bas;
615 	error = 0;
616 	uart_lock(sc->sc_hwmtx);
617 	switch (request) {
618 	case UART_IOCTL_BREAK:
619 		lcr = uart_getreg(bas, REG_LCR);
620 		if (data)
621 			lcr |= LCR_SBREAK;
622 		else
623 			lcr &= ~LCR_SBREAK;
624 		uart_setreg(bas, REG_LCR, lcr);
625 		uart_barrier(bas);
626 		break;
627 	case UART_IOCTL_IFLOW:
628 		lcr = uart_getreg(bas, REG_LCR);
629 		uart_barrier(bas);
630 		uart_setreg(bas, REG_LCR, 0xbf);
631 		uart_barrier(bas);
632 		efr = uart_getreg(bas, REG_EFR);
633 		if (data)
634 			efr |= EFR_RTS;
635 		else
636 			efr &= ~EFR_RTS;
637 		uart_setreg(bas, REG_EFR, efr);
638 		uart_barrier(bas);
639 		uart_setreg(bas, REG_LCR, lcr);
640 		uart_barrier(bas);
641 		break;
642 	case UART_IOCTL_OFLOW:
643 		lcr = uart_getreg(bas, REG_LCR);
644 		uart_barrier(bas);
645 		uart_setreg(bas, REG_LCR, 0xbf);
646 		uart_barrier(bas);
647 		efr = uart_getreg(bas, REG_EFR);
648 		if (data)
649 			efr |= EFR_CTS;
650 		else
651 			efr &= ~EFR_CTS;
652 		uart_setreg(bas, REG_EFR, efr);
653 		uart_barrier(bas);
654 		uart_setreg(bas, REG_LCR, lcr);
655 		uart_barrier(bas);
656 		break;
657 	case UART_IOCTL_BAUD:
658 		lcr = uart_getreg(bas, REG_LCR);
659 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
660 		uart_barrier(bas);
661 		divisor = uart_getreg(bas, REG_DLL) |
662 		    (uart_getreg(bas, REG_DLH) << 8);
663 		uart_barrier(bas);
664 		uart_setreg(bas, REG_LCR, lcr);
665 		uart_barrier(bas);
666 		baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0;
667 		if (baudrate > 0)
668 			*(int*)data = baudrate;
669 		else
670 			error = ENXIO;
671 		break;
672 	default:
673 		error = EINVAL;
674 		break;
675 	}
676 	uart_unlock(sc->sc_hwmtx);
677 	return (error);
678 }
679 
680 int
681 ns8250_bus_ipend(struct uart_softc *sc)
682 {
683 	struct uart_bas *bas;
684 	struct ns8250_softc *ns8250;
685 	int ipend;
686 	uint8_t iir, lsr;
687 
688 	ns8250 = (struct ns8250_softc *)sc;
689 	bas = &sc->sc_bas;
690 	uart_lock(sc->sc_hwmtx);
691 	iir = uart_getreg(bas, REG_IIR);
692 
693 	if (ns8250->busy_detect && (iir & IIR_BUSY) == IIR_BUSY) {
694 		(void)uart_getreg(bas, DW_REG_USR);
695 		uart_unlock(sc->sc_hwmtx);
696 		return (0);
697 	}
698 	if (iir & IIR_NOPEND) {
699 		uart_unlock(sc->sc_hwmtx);
700 		return (0);
701 	}
702 	ipend = 0;
703 	if (iir & IIR_RXRDY) {
704 		lsr = uart_getreg(bas, REG_LSR);
705 		if (lsr & LSR_OE)
706 			ipend |= SER_INT_OVERRUN;
707 		if (lsr & LSR_BI)
708 			ipend |= SER_INT_BREAK;
709 		if (lsr & LSR_RXRDY)
710 			ipend |= SER_INT_RXREADY;
711 	} else {
712 		if (iir & IIR_TXRDY) {
713 			ipend |= SER_INT_TXIDLE;
714 			uart_setreg(bas, REG_IER, ns8250->ier);
715 			uart_barrier(bas);
716 		} else
717 			ipend |= SER_INT_SIGCHG;
718 	}
719 	if (ipend == 0)
720 		ns8250_clrint(bas);
721 	uart_unlock(sc->sc_hwmtx);
722 	return (ipend);
723 }
724 
725 int
726 ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits,
727     int stopbits, int parity)
728 {
729 	struct ns8250_softc *ns8250;
730 	struct uart_bas *bas;
731 	int error, limit;
732 
733 	ns8250 = (struct ns8250_softc*)sc;
734 	bas = &sc->sc_bas;
735 	uart_lock(sc->sc_hwmtx);
736 	/*
737 	 * When using DW UART with BUSY detection it is necessary to wait
738 	 * until all serial transfers are finished before manipulating the
739 	 * line control. LCR will not be affected when UART is busy.
740 	 */
741 	if (ns8250->busy_detect != 0) {
742 		/*
743 		 * Pick an arbitrary high limit to avoid getting stuck in
744 		 * an infinite loop in case when the hardware is broken.
745 		 */
746 		limit = 10 * 1024;
747 		while (((uart_getreg(bas, DW_REG_USR) & USR_BUSY) != 0) &&
748 		    --limit)
749 			DELAY(4);
750 
751 		if (limit <= 0) {
752 			/* UART appears to be stuck */
753 			uart_unlock(sc->sc_hwmtx);
754 			return (EIO);
755 		}
756 	}
757 
758 	error = ns8250_param(bas, baudrate, databits, stopbits, parity);
759 	uart_unlock(sc->sc_hwmtx);
760 	return (error);
761 }
762 
763 int
764 ns8250_bus_probe(struct uart_softc *sc)
765 {
766 	struct ns8250_softc *ns8250;
767 	struct uart_bas *bas;
768 	int count, delay, error, limit;
769 	uint8_t lsr, mcr, ier;
770 	uint8_t val;
771 
772 	ns8250 = (struct ns8250_softc *)sc;
773 	bas = &sc->sc_bas;
774 
775 	error = ns8250_probe(bas);
776 	if (error)
777 		return (error);
778 
779 	mcr = MCR_IE;
780 	if (sc->sc_sysdev == NULL) {
781 		/* By using ns8250_init() we also set DTR and RTS. */
782 		ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE);
783 	} else
784 		mcr |= MCR_DTR | MCR_RTS;
785 
786 	error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
787 	if (error)
788 		return (error);
789 
790 	/*
791 	 * Set loopback mode. This avoids having garbage on the wire and
792 	 * also allows us send and receive data. We set DTR and RTS to
793 	 * avoid the possibility that automatic flow-control prevents
794 	 * any data from being sent.
795 	 */
796 	uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS);
797 	uart_barrier(bas);
798 
799 	/*
800 	 * Enable FIFOs. And check that the UART has them. If not, we're
801 	 * done. Since this is the first time we enable the FIFOs, we reset
802 	 * them.
803 	 */
804 	val = FCR_ENABLE;
805 #ifdef CPU_XBURST
806 	val |= FCR_UART_ON;
807 #endif
808 	uart_setreg(bas, REG_FCR, val);
809 	uart_barrier(bas);
810 	if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) {
811 		/*
812 		 * NS16450 or INS8250. We don't bother to differentiate
813 		 * between them. They're too old to be interesting.
814 		 */
815 		uart_setreg(bas, REG_MCR, mcr);
816 		uart_barrier(bas);
817 		sc->sc_rxfifosz = sc->sc_txfifosz = 1;
818 		device_set_desc(sc->sc_dev, "8250 or 16450 or compatible");
819 		return (0);
820 	}
821 
822 	val = FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST;
823 #ifdef CPU_XBURST
824 	val |= FCR_UART_ON;
825 #endif
826 	uart_setreg(bas, REG_FCR, val);
827 	uart_barrier(bas);
828 
829 	count = 0;
830 	delay = ns8250_delay(bas);
831 
832 	/* We have FIFOs. Drain the transmitter and receiver. */
833 	error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER);
834 	if (error) {
835 		uart_setreg(bas, REG_MCR, mcr);
836 		val = 0;
837 #ifdef CPU_XBURST
838 		val |= FCR_UART_ON;
839 #endif
840 		uart_setreg(bas, REG_FCR, val);
841 		uart_barrier(bas);
842 		goto describe;
843 	}
844 
845 	/*
846 	 * We should have a sufficiently clean "pipe" to determine the
847 	 * size of the FIFOs. We send as much characters as is reasonable
848 	 * and wait for the overflow bit in the LSR register to be
849 	 * asserted, counting the characters as we send them. Based on
850 	 * that count we know the FIFO size.
851 	 */
852 	do {
853 		uart_setreg(bas, REG_DATA, 0);
854 		uart_barrier(bas);
855 		count++;
856 
857 		limit = 30;
858 		lsr = 0;
859 		/*
860 		 * LSR bits are cleared upon read, so we must accumulate
861 		 * them to be able to test LSR_OE below.
862 		 */
863 		while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 &&
864 		    --limit)
865 			DELAY(delay);
866 		if (limit == 0) {
867 			ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
868 			uart_setreg(bas, REG_IER, ier);
869 			uart_setreg(bas, REG_MCR, mcr);
870 			val = 0;
871 #ifdef CPU_XBURST
872 			val |= FCR_UART_ON;
873 #endif
874 			uart_setreg(bas, REG_FCR, val);
875 			uart_barrier(bas);
876 			count = 0;
877 			goto describe;
878 		}
879 	} while ((lsr & LSR_OE) == 0 && count < 260);
880 	count--;
881 
882 	uart_setreg(bas, REG_MCR, mcr);
883 
884 	/* Reset FIFOs. */
885 	ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
886 
887  describe:
888 	if (count >= 14 && count <= 16) {
889 		sc->sc_rxfifosz = 16;
890 		device_set_desc(sc->sc_dev, "16550 or compatible");
891 	} else if (count >= 28 && count <= 32) {
892 		sc->sc_rxfifosz = 32;
893 		device_set_desc(sc->sc_dev, "16650 or compatible");
894 	} else if (count >= 56 && count <= 64) {
895 		sc->sc_rxfifosz = 64;
896 		device_set_desc(sc->sc_dev, "16750 or compatible");
897 	} else if (count >= 112 && count <= 128) {
898 		sc->sc_rxfifosz = 128;
899 		device_set_desc(sc->sc_dev, "16950 or compatible");
900 	} else if (count >= 224 && count <= 256) {
901 		sc->sc_rxfifosz = 256;
902 		device_set_desc(sc->sc_dev, "16x50 with 256 byte FIFO");
903 	} else {
904 		sc->sc_rxfifosz = 16;
905 		device_set_desc(sc->sc_dev,
906 		    "Non-standard ns8250 class UART with FIFOs");
907 	}
908 
909 	/*
910 	 * Force the Tx FIFO size to 16 bytes for now. We don't program the
911 	 * Tx trigger. Also, we assume that all data has been sent when the
912 	 * interrupt happens.
913 	 */
914 	sc->sc_txfifosz = 16;
915 
916 #if 0
917 	/*
918 	 * XXX there are some issues related to hardware flow control and
919 	 * it's likely that uart(4) is the cause. This basically needs more
920 	 * investigation, but we avoid using for hardware flow control
921 	 * until then.
922 	 */
923 	/* 16650s or higher have automatic flow control. */
924 	if (sc->sc_rxfifosz > 16) {
925 		sc->sc_hwiflow = 1;
926 		sc->sc_hwoflow = 1;
927 	}
928 #endif
929 
930 	return (0);
931 }
932 
933 int
934 ns8250_bus_receive(struct uart_softc *sc)
935 {
936 	struct uart_bas *bas;
937 	int xc;
938 	uint8_t lsr;
939 
940 	bas = &sc->sc_bas;
941 	uart_lock(sc->sc_hwmtx);
942 	lsr = uart_getreg(bas, REG_LSR);
943 	while (lsr & LSR_RXRDY) {
944 		if (uart_rx_full(sc)) {
945 			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
946 			break;
947 		}
948 		xc = uart_getreg(bas, REG_DATA);
949 		if (lsr & LSR_FE)
950 			xc |= UART_STAT_FRAMERR;
951 		if (lsr & LSR_PE)
952 			xc |= UART_STAT_PARERR;
953 		uart_rx_put(sc, xc);
954 		lsr = uart_getreg(bas, REG_LSR);
955 	}
956 	/* Discard everything left in the Rx FIFO. */
957 	while (lsr & LSR_RXRDY) {
958 		(void)uart_getreg(bas, REG_DATA);
959 		uart_barrier(bas);
960 		lsr = uart_getreg(bas, REG_LSR);
961 	}
962 	uart_unlock(sc->sc_hwmtx);
963  	return (0);
964 }
965 
966 int
967 ns8250_bus_setsig(struct uart_softc *sc, int sig)
968 {
969 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
970 	struct uart_bas *bas;
971 	uint32_t new, old;
972 
973 	bas = &sc->sc_bas;
974 	do {
975 		old = sc->sc_hwsig;
976 		new = old;
977 		if (sig & SER_DDTR) {
978 			new = (new & ~SER_DTR) | (sig & (SER_DTR | SER_DDTR));
979 		}
980 		if (sig & SER_DRTS) {
981 			new = (new & ~SER_RTS) | (sig & (SER_RTS | SER_DRTS));
982 		}
983 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
984 	uart_lock(sc->sc_hwmtx);
985 	ns8250->mcr &= ~(MCR_DTR|MCR_RTS);
986 	if (new & SER_DTR)
987 		ns8250->mcr |= MCR_DTR;
988 	if (new & SER_RTS)
989 		ns8250->mcr |= MCR_RTS;
990 	uart_setreg(bas, REG_MCR, ns8250->mcr);
991 	uart_barrier(bas);
992 	uart_unlock(sc->sc_hwmtx);
993 	return (0);
994 }
995 
996 int
997 ns8250_bus_transmit(struct uart_softc *sc)
998 {
999 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1000 	struct uart_bas *bas;
1001 	int i;
1002 
1003 	bas = &sc->sc_bas;
1004 	uart_lock(sc->sc_hwmtx);
1005 	if (sc->sc_txdatasz > 1) {
1006 		if ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0)
1007 			ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
1008 	} else {
1009 		while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0)
1010 			DELAY(4);
1011 	}
1012 	for (i = 0; i < sc->sc_txdatasz; i++) {
1013 		uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]);
1014 		uart_barrier(bas);
1015 	}
1016 	uart_setreg(bas, REG_IER, ns8250->ier | IER_ETXRDY);
1017 	uart_barrier(bas);
1018 	if (broken_txfifo)
1019 		ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
1020 	else
1021 		sc->sc_txbusy = 1;
1022 	uart_unlock(sc->sc_hwmtx);
1023 	if (broken_txfifo)
1024 		uart_sched_softih(sc, SER_INT_TXIDLE);
1025 	return (0);
1026 }
1027 
1028 void
1029 ns8250_bus_grab(struct uart_softc *sc)
1030 {
1031 	struct uart_bas *bas = &sc->sc_bas;
1032 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1033 	u_char ier;
1034 
1035 	/*
1036 	 * turn off all interrupts to enter polling mode. Leave the
1037 	 * saved mask alone. We'll restore whatever it was in ungrab.
1038 	 * All pending interrupt signals are reset when IER is set to 0.
1039 	 */
1040 	uart_lock(sc->sc_hwmtx);
1041 	ier = uart_getreg(bas, REG_IER);
1042 	uart_setreg(bas, REG_IER, ier & ns8250->ier_mask);
1043 	uart_barrier(bas);
1044 	uart_unlock(sc->sc_hwmtx);
1045 }
1046 
1047 void
1048 ns8250_bus_ungrab(struct uart_softc *sc)
1049 {
1050 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1051 	struct uart_bas *bas = &sc->sc_bas;
1052 
1053 	/*
1054 	 * Restore previous interrupt mask
1055 	 */
1056 	uart_lock(sc->sc_hwmtx);
1057 	uart_setreg(bas, REG_IER, ns8250->ier);
1058 	uart_barrier(bas);
1059 	uart_unlock(sc->sc_hwmtx);
1060 }
1061