xref: /freebsd/sys/dev/uart/uart_dev_ns8250.c (revision e8e8c939350bdf3c228a411caa9660c607c27a11)
1 /*-
2  * Copyright (c) 2003 Marcel Moolenaar
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include "opt_platform.h"
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/conf.h>
36 #include <sys/kernel.h>
37 #include <sys/sysctl.h>
38 #include <machine/bus.h>
39 
40 #ifdef FDT
41 #include <dev/fdt/fdt_common.h>
42 #include <dev/ofw/ofw_bus.h>
43 #include <dev/ofw/ofw_bus_subr.h>
44 #endif
45 
46 #include <dev/uart/uart.h>
47 #include <dev/uart/uart_cpu.h>
48 #ifdef FDT
49 #include <dev/uart/uart_cpu_fdt.h>
50 #endif
51 #include <dev/uart/uart_bus.h>
52 #include <dev/uart/uart_dev_ns8250.h>
53 
54 #include <dev/ic/ns16550.h>
55 
56 #include "uart_if.h"
57 
58 #define	DEFAULT_RCLK	1843200
59 
60 static int broken_txfifo = 0;
61 SYSCTL_INT(_hw, OID_AUTO, broken_txfifo, CTLFLAG_RWTUN,
62 	&broken_txfifo, 0, "UART FIFO has QEMU emulation bug");
63 
64 /*
65  * Clear pending interrupts. THRE is cleared by reading IIR. Data
66  * that may have been received gets lost here.
67  */
68 static void
69 ns8250_clrint(struct uart_bas *bas)
70 {
71 	uint8_t iir, lsr;
72 
73 	iir = uart_getreg(bas, REG_IIR);
74 	while ((iir & IIR_NOPEND) == 0) {
75 		iir &= IIR_IMASK;
76 		if (iir == IIR_RLS) {
77 			lsr = uart_getreg(bas, REG_LSR);
78 			if (lsr & (LSR_BI|LSR_FE|LSR_PE))
79 				(void)uart_getreg(bas, REG_DATA);
80 		} else if (iir == IIR_RXRDY || iir == IIR_RXTOUT)
81 			(void)uart_getreg(bas, REG_DATA);
82 		else if (iir == IIR_MLSC)
83 			(void)uart_getreg(bas, REG_MSR);
84 		uart_barrier(bas);
85 		iir = uart_getreg(bas, REG_IIR);
86 	}
87 }
88 
89 static int
90 ns8250_delay(struct uart_bas *bas)
91 {
92 	int divisor;
93 	u_char lcr;
94 
95 	lcr = uart_getreg(bas, REG_LCR);
96 	uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
97 	uart_barrier(bas);
98 	divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8);
99 	uart_barrier(bas);
100 	uart_setreg(bas, REG_LCR, lcr);
101 	uart_barrier(bas);
102 
103 	/* 1/10th the time to transmit 1 character (estimate). */
104 	if (divisor <= 134)
105 		return (16000000 * divisor / bas->rclk);
106 	return (16000 * divisor / (bas->rclk / 1000));
107 }
108 
109 static int
110 ns8250_divisor(int rclk, int baudrate)
111 {
112 	int actual_baud, divisor;
113 	int error;
114 
115 	if (baudrate == 0)
116 		return (0);
117 
118 	divisor = (rclk / (baudrate << 3) + 1) >> 1;
119 	if (divisor == 0 || divisor >= 65536)
120 		return (0);
121 	actual_baud = rclk / (divisor << 4);
122 
123 	/* 10 times error in percent: */
124 	error = ((actual_baud - baudrate) * 2000 / baudrate + 1) >> 1;
125 
126 	/* 3.0% maximum error tolerance: */
127 	if (error < -30 || error > 30)
128 		return (0);
129 
130 	return (divisor);
131 }
132 
133 static int
134 ns8250_drain(struct uart_bas *bas, int what)
135 {
136 	int delay, limit;
137 
138 	delay = ns8250_delay(bas);
139 
140 	if (what & UART_DRAIN_TRANSMITTER) {
141 		/*
142 		 * Pick an arbitrary high limit to avoid getting stuck in
143 		 * an infinite loop when the hardware is broken. Make the
144 		 * limit high enough to handle large FIFOs.
145 		 */
146 		limit = 10*1024;
147 		while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
148 			DELAY(delay);
149 		if (limit == 0) {
150 			/* printf("ns8250: transmitter appears stuck... "); */
151 			return (EIO);
152 		}
153 	}
154 
155 	if (what & UART_DRAIN_RECEIVER) {
156 		/*
157 		 * Pick an arbitrary high limit to avoid getting stuck in
158 		 * an infinite loop when the hardware is broken. Make the
159 		 * limit high enough to handle large FIFOs and integrated
160 		 * UARTs. The HP rx2600 for example has 3 UARTs on the
161 		 * management board that tend to get a lot of data send
162 		 * to it when the UART is first activated.
163 		 */
164 		limit=10*4096;
165 		while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) {
166 			(void)uart_getreg(bas, REG_DATA);
167 			uart_barrier(bas);
168 			DELAY(delay << 2);
169 		}
170 		if (limit == 0) {
171 			/* printf("ns8250: receiver appears broken... "); */
172 			return (EIO);
173 		}
174 	}
175 
176 	return (0);
177 }
178 
179 /*
180  * We can only flush UARTs with FIFOs. UARTs without FIFOs should be
181  * drained. WARNING: this function clobbers the FIFO setting!
182  */
183 static void
184 ns8250_flush(struct uart_bas *bas, int what)
185 {
186 	uint8_t fcr;
187 
188 	fcr = FCR_ENABLE;
189 	if (what & UART_FLUSH_TRANSMITTER)
190 		fcr |= FCR_XMT_RST;
191 	if (what & UART_FLUSH_RECEIVER)
192 		fcr |= FCR_RCV_RST;
193 	uart_setreg(bas, REG_FCR, fcr);
194 	uart_barrier(bas);
195 }
196 
197 static int
198 ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
199     int parity)
200 {
201 	int divisor;
202 	uint8_t lcr;
203 
204 	lcr = 0;
205 	if (databits >= 8)
206 		lcr |= LCR_8BITS;
207 	else if (databits == 7)
208 		lcr |= LCR_7BITS;
209 	else if (databits == 6)
210 		lcr |= LCR_6BITS;
211 	else
212 		lcr |= LCR_5BITS;
213 	if (stopbits > 1)
214 		lcr |= LCR_STOPB;
215 	lcr |= parity << 3;
216 
217 	/* Set baudrate. */
218 	if (baudrate > 0) {
219 		divisor = ns8250_divisor(bas->rclk, baudrate);
220 		if (divisor == 0)
221 			return (EINVAL);
222 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
223 		uart_barrier(bas);
224 		uart_setreg(bas, REG_DLL, divisor & 0xff);
225 		uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff);
226 		uart_barrier(bas);
227 	}
228 
229 	/* Set LCR and clear DLAB. */
230 	uart_setreg(bas, REG_LCR, lcr);
231 	uart_barrier(bas);
232 	return (0);
233 }
234 
235 /*
236  * Low-level UART interface.
237  */
238 static int ns8250_probe(struct uart_bas *bas);
239 static void ns8250_init(struct uart_bas *bas, int, int, int, int);
240 static void ns8250_term(struct uart_bas *bas);
241 static void ns8250_putc(struct uart_bas *bas, int);
242 static int ns8250_rxready(struct uart_bas *bas);
243 static int ns8250_getc(struct uart_bas *bas, struct mtx *);
244 
245 struct uart_ops uart_ns8250_ops = {
246 	.probe = ns8250_probe,
247 	.init = ns8250_init,
248 	.term = ns8250_term,
249 	.putc = ns8250_putc,
250 	.rxready = ns8250_rxready,
251 	.getc = ns8250_getc,
252 };
253 
254 static int
255 ns8250_probe(struct uart_bas *bas)
256 {
257 	u_char val;
258 
259 	/* Check known 0 bits that don't depend on DLAB. */
260 	val = uart_getreg(bas, REG_IIR);
261 	if (val & 0x30)
262 		return (ENXIO);
263 	/*
264 	 * Bit 6 of the MCR (= 0x40) appears to be 1 for the Sun1699
265 	 * chip, but otherwise doesn't seem to have a function. In
266 	 * other words, uart(4) works regardless. Ignore that bit so
267 	 * the probe succeeds.
268 	 */
269 	val = uart_getreg(bas, REG_MCR);
270 	if (val & 0xa0)
271 		return (ENXIO);
272 
273 	return (0);
274 }
275 
276 static void
277 ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
278     int parity)
279 {
280 	u_char	ier;
281 
282 	if (bas->rclk == 0)
283 		bas->rclk = DEFAULT_RCLK;
284 	ns8250_param(bas, baudrate, databits, stopbits, parity);
285 
286 	/* Disable all interrupt sources. */
287 	/*
288 	 * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA
289 	 * UARTs split the receive time-out interrupt bit out separately as
290 	 * 0x10.  This gets handled by ier_mask and ier_rxbits below.
291 	 */
292 	ier = uart_getreg(bas, REG_IER) & 0xe0;
293 	uart_setreg(bas, REG_IER, ier);
294 	uart_barrier(bas);
295 
296 	/* Disable the FIFO (if present). */
297 	uart_setreg(bas, REG_FCR, 0);
298 	uart_barrier(bas);
299 
300 	/* Set RTS & DTR. */
301 	uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR);
302 	uart_barrier(bas);
303 
304 	ns8250_clrint(bas);
305 }
306 
307 static void
308 ns8250_term(struct uart_bas *bas)
309 {
310 
311 	/* Clear RTS & DTR. */
312 	uart_setreg(bas, REG_MCR, MCR_IE);
313 	uart_barrier(bas);
314 }
315 
316 static void
317 ns8250_putc(struct uart_bas *bas, int c)
318 {
319 	int limit;
320 
321 	limit = 250000;
322 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit)
323 		DELAY(4);
324 	uart_setreg(bas, REG_DATA, c);
325 	uart_barrier(bas);
326 	limit = 250000;
327 	while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
328 		DELAY(4);
329 }
330 
331 static int
332 ns8250_rxready(struct uart_bas *bas)
333 {
334 
335 	return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0);
336 }
337 
338 static int
339 ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx)
340 {
341 	int c;
342 
343 	uart_lock(hwmtx);
344 
345 	while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) {
346 		uart_unlock(hwmtx);
347 		DELAY(4);
348 		uart_lock(hwmtx);
349 	}
350 
351 	c = uart_getreg(bas, REG_DATA);
352 
353 	uart_unlock(hwmtx);
354 
355 	return (c);
356 }
357 
358 static kobj_method_t ns8250_methods[] = {
359 	KOBJMETHOD(uart_attach,		ns8250_bus_attach),
360 	KOBJMETHOD(uart_detach,		ns8250_bus_detach),
361 	KOBJMETHOD(uart_flush,		ns8250_bus_flush),
362 	KOBJMETHOD(uart_getsig,		ns8250_bus_getsig),
363 	KOBJMETHOD(uart_ioctl,		ns8250_bus_ioctl),
364 	KOBJMETHOD(uart_ipend,		ns8250_bus_ipend),
365 	KOBJMETHOD(uart_param,		ns8250_bus_param),
366 	KOBJMETHOD(uart_probe,		ns8250_bus_probe),
367 	KOBJMETHOD(uart_receive,	ns8250_bus_receive),
368 	KOBJMETHOD(uart_setsig,		ns8250_bus_setsig),
369 	KOBJMETHOD(uart_transmit,	ns8250_bus_transmit),
370 	KOBJMETHOD(uart_grab,		ns8250_bus_grab),
371 	KOBJMETHOD(uart_ungrab,		ns8250_bus_ungrab),
372 	{ 0, 0 }
373 };
374 
375 struct uart_class uart_ns8250_class = {
376 	"ns8250",
377 	ns8250_methods,
378 	sizeof(struct ns8250_softc),
379 	.uc_ops = &uart_ns8250_ops,
380 	.uc_range = 8,
381 	.uc_rclk = DEFAULT_RCLK,
382 	.uc_rshift = 0
383 };
384 
385 #ifdef FDT
386 static struct ofw_compat_data compat_data[] = {
387 	{"ns16550",		(uintptr_t)&uart_ns8250_class},
388 	{NULL,			(uintptr_t)NULL},
389 };
390 UART_FDT_CLASS_AND_DEVICE(compat_data);
391 #endif
392 
393 #define	SIGCHG(c, i, s, d)				\
394 	if (c) {					\
395 		i |= (i & s) ? s : s | d;		\
396 	} else {					\
397 		i = (i & s) ? (i & ~s) | d : i;		\
398 	}
399 
400 int
401 ns8250_bus_attach(struct uart_softc *sc)
402 {
403 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
404 	struct uart_bas *bas;
405 	unsigned int ivar;
406 #ifdef FDT
407 	phandle_t node;
408 	pcell_t cell;
409 #endif
410 
411 	ns8250->busy_detect = 0;
412 
413 #ifdef FDT
414 	/*
415 	 * Check whether uart requires to read USR reg when IIR_BUSY and
416 	 * has broken txfifo.
417 	 */
418 	node = ofw_bus_get_node(sc->sc_dev);
419 	if ((OF_getencprop(node, "busy-detect", &cell, sizeof(cell))) > 0)
420 		ns8250->busy_detect = cell ? 1 : 0;
421 	if ((OF_getencprop(node, "broken-txfifo", &cell, sizeof(cell))) > 0)
422 		broken_txfifo =  cell ? 1 : 0;
423 #endif
424 
425 	bas = &sc->sc_bas;
426 
427 	ns8250->mcr = uart_getreg(bas, REG_MCR);
428 	ns8250->fcr = FCR_ENABLE;
429 	if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags",
430 	    &ivar)) {
431 		if (UART_FLAGS_FCR_RX_LOW(ivar))
432 			ns8250->fcr |= FCR_RX_LOW;
433 		else if (UART_FLAGS_FCR_RX_MEDL(ivar))
434 			ns8250->fcr |= FCR_RX_MEDL;
435 		else if (UART_FLAGS_FCR_RX_HIGH(ivar))
436 			ns8250->fcr |= FCR_RX_HIGH;
437 		else
438 			ns8250->fcr |= FCR_RX_MEDH;
439 	} else
440 		ns8250->fcr |= FCR_RX_MEDH;
441 
442 	/* Get IER mask */
443 	ivar = 0xf0;
444 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask",
445 	    &ivar);
446 	ns8250->ier_mask = (uint8_t)(ivar & 0xff);
447 
448 	/* Get IER RX interrupt bits */
449 	ivar = IER_EMSC | IER_ERLS | IER_ERXRDY;
450 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits",
451 	    &ivar);
452 	ns8250->ier_rxbits = (uint8_t)(ivar & 0xff);
453 
454 	uart_setreg(bas, REG_FCR, ns8250->fcr);
455 	uart_barrier(bas);
456 	ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
457 
458 	if (ns8250->mcr & MCR_DTR)
459 		sc->sc_hwsig |= SER_DTR;
460 	if (ns8250->mcr & MCR_RTS)
461 		sc->sc_hwsig |= SER_RTS;
462 	ns8250_bus_getsig(sc);
463 
464 	ns8250_clrint(bas);
465 	ns8250->ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
466 	ns8250->ier |= ns8250->ier_rxbits;
467 	uart_setreg(bas, REG_IER, ns8250->ier);
468 	uart_barrier(bas);
469 
470 	/*
471 	 * Timing of the H/W access was changed with r253161 of uart_core.c
472 	 * It has been observed that an ITE IT8513E would signal a break
473 	 * condition with pretty much every character it received, unless
474 	 * it had enough time to settle between ns8250_bus_attach() and
475 	 * ns8250_bus_ipend() -- which it accidentally had before r253161.
476 	 * It's not understood why the UART chip behaves this way and it
477 	 * could very well be that the DELAY make the H/W work in the same
478 	 * accidental manner as before. More analysis is warranted, but
479 	 * at least now we fixed a known regression.
480 	 */
481 	DELAY(200);
482 	return (0);
483 }
484 
485 int
486 ns8250_bus_detach(struct uart_softc *sc)
487 {
488 	struct ns8250_softc *ns8250;
489 	struct uart_bas *bas;
490 	u_char ier;
491 
492 	ns8250 = (struct ns8250_softc *)sc;
493 	bas = &sc->sc_bas;
494 	ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
495 	uart_setreg(bas, REG_IER, ier);
496 	uart_barrier(bas);
497 	ns8250_clrint(bas);
498 	return (0);
499 }
500 
501 int
502 ns8250_bus_flush(struct uart_softc *sc, int what)
503 {
504 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
505 	struct uart_bas *bas;
506 	int error;
507 
508 	bas = &sc->sc_bas;
509 	uart_lock(sc->sc_hwmtx);
510 	if (sc->sc_rxfifosz > 1) {
511 		ns8250_flush(bas, what);
512 		uart_setreg(bas, REG_FCR, ns8250->fcr);
513 		uart_barrier(bas);
514 		error = 0;
515 	} else
516 		error = ns8250_drain(bas, what);
517 	uart_unlock(sc->sc_hwmtx);
518 	return (error);
519 }
520 
521 int
522 ns8250_bus_getsig(struct uart_softc *sc)
523 {
524 	uint32_t new, old, sig;
525 	uint8_t msr;
526 
527 	do {
528 		old = sc->sc_hwsig;
529 		sig = old;
530 		uart_lock(sc->sc_hwmtx);
531 		msr = uart_getreg(&sc->sc_bas, REG_MSR);
532 		uart_unlock(sc->sc_hwmtx);
533 		SIGCHG(msr & MSR_DSR, sig, SER_DSR, SER_DDSR);
534 		SIGCHG(msr & MSR_CTS, sig, SER_CTS, SER_DCTS);
535 		SIGCHG(msr & MSR_DCD, sig, SER_DCD, SER_DDCD);
536 		SIGCHG(msr & MSR_RI,  sig, SER_RI,  SER_DRI);
537 		new = sig & ~SER_MASK_DELTA;
538 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
539 	return (sig);
540 }
541 
542 int
543 ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
544 {
545 	struct uart_bas *bas;
546 	int baudrate, divisor, error;
547 	uint8_t efr, lcr;
548 
549 	bas = &sc->sc_bas;
550 	error = 0;
551 	uart_lock(sc->sc_hwmtx);
552 	switch (request) {
553 	case UART_IOCTL_BREAK:
554 		lcr = uart_getreg(bas, REG_LCR);
555 		if (data)
556 			lcr |= LCR_SBREAK;
557 		else
558 			lcr &= ~LCR_SBREAK;
559 		uart_setreg(bas, REG_LCR, lcr);
560 		uart_barrier(bas);
561 		break;
562 	case UART_IOCTL_IFLOW:
563 		lcr = uart_getreg(bas, REG_LCR);
564 		uart_barrier(bas);
565 		uart_setreg(bas, REG_LCR, 0xbf);
566 		uart_barrier(bas);
567 		efr = uart_getreg(bas, REG_EFR);
568 		if (data)
569 			efr |= EFR_RTS;
570 		else
571 			efr &= ~EFR_RTS;
572 		uart_setreg(bas, REG_EFR, efr);
573 		uart_barrier(bas);
574 		uart_setreg(bas, REG_LCR, lcr);
575 		uart_barrier(bas);
576 		break;
577 	case UART_IOCTL_OFLOW:
578 		lcr = uart_getreg(bas, REG_LCR);
579 		uart_barrier(bas);
580 		uart_setreg(bas, REG_LCR, 0xbf);
581 		uart_barrier(bas);
582 		efr = uart_getreg(bas, REG_EFR);
583 		if (data)
584 			efr |= EFR_CTS;
585 		else
586 			efr &= ~EFR_CTS;
587 		uart_setreg(bas, REG_EFR, efr);
588 		uart_barrier(bas);
589 		uart_setreg(bas, REG_LCR, lcr);
590 		uart_barrier(bas);
591 		break;
592 	case UART_IOCTL_BAUD:
593 		lcr = uart_getreg(bas, REG_LCR);
594 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
595 		uart_barrier(bas);
596 		divisor = uart_getreg(bas, REG_DLL) |
597 		    (uart_getreg(bas, REG_DLH) << 8);
598 		uart_barrier(bas);
599 		uart_setreg(bas, REG_LCR, lcr);
600 		uart_barrier(bas);
601 		baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0;
602 		if (baudrate > 0)
603 			*(int*)data = baudrate;
604 		else
605 			error = ENXIO;
606 		break;
607 	default:
608 		error = EINVAL;
609 		break;
610 	}
611 	uart_unlock(sc->sc_hwmtx);
612 	return (error);
613 }
614 
615 int
616 ns8250_bus_ipend(struct uart_softc *sc)
617 {
618 	struct uart_bas *bas;
619 	struct ns8250_softc *ns8250;
620 	int ipend;
621 	uint8_t iir, lsr;
622 
623 	ns8250 = (struct ns8250_softc *)sc;
624 	bas = &sc->sc_bas;
625 	uart_lock(sc->sc_hwmtx);
626 	iir = uart_getreg(bas, REG_IIR);
627 
628 	if (ns8250->busy_detect && (iir & IIR_BUSY) == IIR_BUSY) {
629 		(void)uart_getreg(bas, DW_REG_USR);
630 		uart_unlock(sc->sc_hwmtx);
631 		return (0);
632 	}
633 	if (iir & IIR_NOPEND) {
634 		uart_unlock(sc->sc_hwmtx);
635 		return (0);
636 	}
637 	ipend = 0;
638 	if (iir & IIR_RXRDY) {
639 		lsr = uart_getreg(bas, REG_LSR);
640 		if (lsr & LSR_OE)
641 			ipend |= SER_INT_OVERRUN;
642 		if (lsr & LSR_BI)
643 			ipend |= SER_INT_BREAK;
644 		if (lsr & LSR_RXRDY)
645 			ipend |= SER_INT_RXREADY;
646 	} else {
647 		if (iir & IIR_TXRDY) {
648 			ipend |= SER_INT_TXIDLE;
649 			uart_setreg(bas, REG_IER, ns8250->ier);
650 		} else
651 			ipend |= SER_INT_SIGCHG;
652 	}
653 	if (ipend == 0)
654 		ns8250_clrint(bas);
655 	uart_unlock(sc->sc_hwmtx);
656 	return (ipend);
657 }
658 
659 int
660 ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits,
661     int stopbits, int parity)
662 {
663 	struct ns8250_softc *ns8250;
664 	struct uart_bas *bas;
665 	int error, limit;
666 
667 	ns8250 = (struct ns8250_softc*)sc;
668 	bas = &sc->sc_bas;
669 	uart_lock(sc->sc_hwmtx);
670 	/*
671 	 * When using DW UART with BUSY detection it is necessary to wait
672 	 * until all serial transfers are finished before manipulating the
673 	 * line control. LCR will not be affected when UART is busy.
674 	 */
675 	if (ns8250->busy_detect != 0) {
676 		/*
677 		 * Pick an arbitrary high limit to avoid getting stuck in
678 		 * an infinite loop in case when the hardware is broken.
679 		 */
680 		limit = 10 * 1024;
681 		while (((uart_getreg(bas, DW_REG_USR) & USR_BUSY) != 0) &&
682 		    --limit)
683 			DELAY(4);
684 
685 		if (limit <= 0) {
686 			/* UART appears to be stuck */
687 			uart_unlock(sc->sc_hwmtx);
688 			return (EIO);
689 		}
690 	}
691 
692 	error = ns8250_param(bas, baudrate, databits, stopbits, parity);
693 	uart_unlock(sc->sc_hwmtx);
694 	return (error);
695 }
696 
697 int
698 ns8250_bus_probe(struct uart_softc *sc)
699 {
700 	struct ns8250_softc *ns8250;
701 	struct uart_bas *bas;
702 	int count, delay, error, limit;
703 	uint8_t lsr, mcr, ier;
704 
705 	ns8250 = (struct ns8250_softc *)sc;
706 	bas = &sc->sc_bas;
707 
708 	error = ns8250_probe(bas);
709 	if (error)
710 		return (error);
711 
712 	mcr = MCR_IE;
713 	if (sc->sc_sysdev == NULL) {
714 		/* By using ns8250_init() we also set DTR and RTS. */
715 		ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE);
716 	} else
717 		mcr |= MCR_DTR | MCR_RTS;
718 
719 	error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
720 	if (error)
721 		return (error);
722 
723 	/*
724 	 * Set loopback mode. This avoids having garbage on the wire and
725 	 * also allows us send and receive data. We set DTR and RTS to
726 	 * avoid the possibility that automatic flow-control prevents
727 	 * any data from being sent.
728 	 */
729 	uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS);
730 	uart_barrier(bas);
731 
732 	/*
733 	 * Enable FIFOs. And check that the UART has them. If not, we're
734 	 * done. Since this is the first time we enable the FIFOs, we reset
735 	 * them.
736 	 */
737 	uart_setreg(bas, REG_FCR, FCR_ENABLE);
738 	uart_barrier(bas);
739 	if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) {
740 		/*
741 		 * NS16450 or INS8250. We don't bother to differentiate
742 		 * between them. They're too old to be interesting.
743 		 */
744 		uart_setreg(bas, REG_MCR, mcr);
745 		uart_barrier(bas);
746 		sc->sc_rxfifosz = sc->sc_txfifosz = 1;
747 		device_set_desc(sc->sc_dev, "8250 or 16450 or compatible");
748 		return (0);
749 	}
750 
751 	uart_setreg(bas, REG_FCR, FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST);
752 	uart_barrier(bas);
753 
754 	count = 0;
755 	delay = ns8250_delay(bas);
756 
757 	/* We have FIFOs. Drain the transmitter and receiver. */
758 	error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER);
759 	if (error) {
760 		uart_setreg(bas, REG_MCR, mcr);
761 		uart_setreg(bas, REG_FCR, 0);
762 		uart_barrier(bas);
763 		goto describe;
764 	}
765 
766 	/*
767 	 * We should have a sufficiently clean "pipe" to determine the
768 	 * size of the FIFOs. We send as much characters as is reasonable
769 	 * and wait for the overflow bit in the LSR register to be
770 	 * asserted, counting the characters as we send them. Based on
771 	 * that count we know the FIFO size.
772 	 */
773 	do {
774 		uart_setreg(bas, REG_DATA, 0);
775 		uart_barrier(bas);
776 		count++;
777 
778 		limit = 30;
779 		lsr = 0;
780 		/*
781 		 * LSR bits are cleared upon read, so we must accumulate
782 		 * them to be able to test LSR_OE below.
783 		 */
784 		while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 &&
785 		    --limit)
786 			DELAY(delay);
787 		if (limit == 0) {
788 			ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
789 			uart_setreg(bas, REG_IER, ier);
790 			uart_setreg(bas, REG_MCR, mcr);
791 			uart_setreg(bas, REG_FCR, 0);
792 			uart_barrier(bas);
793 			count = 0;
794 			goto describe;
795 		}
796 	} while ((lsr & LSR_OE) == 0 && count < 130);
797 	count--;
798 
799 	uart_setreg(bas, REG_MCR, mcr);
800 
801 	/* Reset FIFOs. */
802 	ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
803 
804  describe:
805 	if (count >= 14 && count <= 16) {
806 		sc->sc_rxfifosz = 16;
807 		device_set_desc(sc->sc_dev, "16550 or compatible");
808 	} else if (count >= 28 && count <= 32) {
809 		sc->sc_rxfifosz = 32;
810 		device_set_desc(sc->sc_dev, "16650 or compatible");
811 	} else if (count >= 56 && count <= 64) {
812 		sc->sc_rxfifosz = 64;
813 		device_set_desc(sc->sc_dev, "16750 or compatible");
814 	} else if (count >= 112 && count <= 128) {
815 		sc->sc_rxfifosz = 128;
816 		device_set_desc(sc->sc_dev, "16950 or compatible");
817 	} else {
818 		sc->sc_rxfifosz = 16;
819 		device_set_desc(sc->sc_dev,
820 		    "Non-standard ns8250 class UART with FIFOs");
821 	}
822 
823 	/*
824 	 * Force the Tx FIFO size to 16 bytes for now. We don't program the
825 	 * Tx trigger. Also, we assume that all data has been sent when the
826 	 * interrupt happens.
827 	 */
828 	sc->sc_txfifosz = 16;
829 
830 #if 0
831 	/*
832 	 * XXX there are some issues related to hardware flow control and
833 	 * it's likely that uart(4) is the cause. This basicly needs more
834 	 * investigation, but we avoid using for hardware flow control
835 	 * until then.
836 	 */
837 	/* 16650s or higher have automatic flow control. */
838 	if (sc->sc_rxfifosz > 16) {
839 		sc->sc_hwiflow = 1;
840 		sc->sc_hwoflow = 1;
841 	}
842 #endif
843 
844 	return (0);
845 }
846 
847 int
848 ns8250_bus_receive(struct uart_softc *sc)
849 {
850 	struct uart_bas *bas;
851 	int xc;
852 	uint8_t lsr;
853 
854 	bas = &sc->sc_bas;
855 	uart_lock(sc->sc_hwmtx);
856 	lsr = uart_getreg(bas, REG_LSR);
857 	while (lsr & LSR_RXRDY) {
858 		if (uart_rx_full(sc)) {
859 			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
860 			break;
861 		}
862 		xc = uart_getreg(bas, REG_DATA);
863 		if (lsr & LSR_FE)
864 			xc |= UART_STAT_FRAMERR;
865 		if (lsr & LSR_PE)
866 			xc |= UART_STAT_PARERR;
867 		uart_rx_put(sc, xc);
868 		lsr = uart_getreg(bas, REG_LSR);
869 	}
870 	/* Discard everything left in the Rx FIFO. */
871 	while (lsr & LSR_RXRDY) {
872 		(void)uart_getreg(bas, REG_DATA);
873 		uart_barrier(bas);
874 		lsr = uart_getreg(bas, REG_LSR);
875 	}
876 	uart_unlock(sc->sc_hwmtx);
877  	return (0);
878 }
879 
880 int
881 ns8250_bus_setsig(struct uart_softc *sc, int sig)
882 {
883 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
884 	struct uart_bas *bas;
885 	uint32_t new, old;
886 
887 	bas = &sc->sc_bas;
888 	do {
889 		old = sc->sc_hwsig;
890 		new = old;
891 		if (sig & SER_DDTR) {
892 			SIGCHG(sig & SER_DTR, new, SER_DTR,
893 			    SER_DDTR);
894 		}
895 		if (sig & SER_DRTS) {
896 			SIGCHG(sig & SER_RTS, new, SER_RTS,
897 			    SER_DRTS);
898 		}
899 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
900 	uart_lock(sc->sc_hwmtx);
901 	ns8250->mcr &= ~(MCR_DTR|MCR_RTS);
902 	if (new & SER_DTR)
903 		ns8250->mcr |= MCR_DTR;
904 	if (new & SER_RTS)
905 		ns8250->mcr |= MCR_RTS;
906 	uart_setreg(bas, REG_MCR, ns8250->mcr);
907 	uart_barrier(bas);
908 	uart_unlock(sc->sc_hwmtx);
909 	return (0);
910 }
911 
912 int
913 ns8250_bus_transmit(struct uart_softc *sc)
914 {
915 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
916 	struct uart_bas *bas;
917 	int i;
918 
919 	bas = &sc->sc_bas;
920 	uart_lock(sc->sc_hwmtx);
921 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0)
922 		;
923 	uart_setreg(bas, REG_IER, ns8250->ier | IER_ETXRDY);
924 	uart_barrier(bas);
925 	for (i = 0; i < sc->sc_txdatasz; i++) {
926 		uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]);
927 		uart_barrier(bas);
928 	}
929 	if (broken_txfifo)
930 		ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
931 	else
932 		sc->sc_txbusy = 1;
933 	uart_unlock(sc->sc_hwmtx);
934 	if (broken_txfifo)
935 		uart_sched_softih(sc, SER_INT_TXIDLE);
936 	return (0);
937 }
938 
939 void
940 ns8250_bus_grab(struct uart_softc *sc)
941 {
942 	struct uart_bas *bas = &sc->sc_bas;
943 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
944 	u_char ier;
945 
946 	/*
947 	 * turn off all interrupts to enter polling mode. Leave the
948 	 * saved mask alone. We'll restore whatever it was in ungrab.
949 	 * All pending interupt signals are reset when IER is set to 0.
950 	 */
951 	uart_lock(sc->sc_hwmtx);
952 	ier = uart_getreg(bas, REG_IER);
953 	uart_setreg(bas, REG_IER, ier & ns8250->ier_mask);
954 	uart_barrier(bas);
955 	uart_unlock(sc->sc_hwmtx);
956 }
957 
958 void
959 ns8250_bus_ungrab(struct uart_softc *sc)
960 {
961 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
962 	struct uart_bas *bas = &sc->sc_bas;
963 
964 	/*
965 	 * Restore previous interrupt mask
966 	 */
967 	uart_lock(sc->sc_hwmtx);
968 	uart_setreg(bas, REG_IER, ns8250->ier);
969 	uart_barrier(bas);
970 	uart_unlock(sc->sc_hwmtx);
971 }
972