xref: /freebsd/sys/dev/uart/uart_dev_ns8250.c (revision e32fecd0c2c3ee37c47ee100f169e7eb0282a873)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2003 Marcel Moolenaar
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include "opt_acpi.h"
30 #include "opt_platform.h"
31 #include "opt_uart.h"
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/bus.h>
39 #include <sys/conf.h>
40 #include <sys/kernel.h>
41 #include <sys/sysctl.h>
42 #include <machine/bus.h>
43 
44 #ifdef FDT
45 #include <dev/fdt/fdt_common.h>
46 #include <dev/ofw/ofw_bus.h>
47 #include <dev/ofw/ofw_bus_subr.h>
48 #endif
49 
50 #include <dev/uart/uart.h>
51 #include <dev/uart/uart_cpu.h>
52 #ifdef FDT
53 #include <dev/uart/uart_cpu_fdt.h>
54 #endif
55 #include <dev/uart/uart_bus.h>
56 #include <dev/uart/uart_dev_ns8250.h>
57 #include <dev/uart/uart_ppstypes.h>
58 #ifdef DEV_ACPI
59 #include <dev/uart/uart_cpu_acpi.h>
60 #include <contrib/dev/acpica/include/acpi.h>
61 #endif
62 
63 #include <dev/ic/ns16550.h>
64 
65 #include "uart_if.h"
66 
67 #define	DEFAULT_RCLK	1843200
68 
69 /*
70  * Set the default baudrate tolerance to 3.0%.
71  *
72  * Some embedded boards have odd reference clocks (eg 25MHz)
73  * and we need to handle higher variances in the target baud rate.
74  */
75 #ifndef	UART_DEV_TOLERANCE_PCT
76 #define	UART_DEV_TOLERANCE_PCT	30
77 #endif	/* UART_DEV_TOLERANCE_PCT */
78 
79 static int broken_txfifo = 0;
80 SYSCTL_INT(_hw, OID_AUTO, broken_txfifo, CTLFLAG_RWTUN,
81 	&broken_txfifo, 0, "UART FIFO has QEMU emulation bug");
82 
83 /*
84  * Clear pending interrupts. THRE is cleared by reading IIR. Data
85  * that may have been received gets lost here.
86  */
87 static void
88 ns8250_clrint(struct uart_bas *bas)
89 {
90 	uint8_t iir, lsr;
91 
92 	iir = uart_getreg(bas, REG_IIR);
93 	while ((iir & IIR_NOPEND) == 0) {
94 		iir &= IIR_IMASK;
95 		if (iir == IIR_RLS) {
96 			lsr = uart_getreg(bas, REG_LSR);
97 			if (lsr & (LSR_BI|LSR_FE|LSR_PE))
98 				(void)uart_getreg(bas, REG_DATA);
99 		} else if (iir == IIR_RXRDY || iir == IIR_RXTOUT)
100 			(void)uart_getreg(bas, REG_DATA);
101 		else if (iir == IIR_MLSC)
102 			(void)uart_getreg(bas, REG_MSR);
103 		uart_barrier(bas);
104 		iir = uart_getreg(bas, REG_IIR);
105 	}
106 }
107 
108 static int
109 ns8250_delay(struct uart_bas *bas)
110 {
111 	int divisor;
112 	u_char lcr;
113 
114 	lcr = uart_getreg(bas, REG_LCR);
115 	uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
116 	uart_barrier(bas);
117 	divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8);
118 	uart_barrier(bas);
119 	uart_setreg(bas, REG_LCR, lcr);
120 	uart_barrier(bas);
121 
122 	/* 1/10th the time to transmit 1 character (estimate). */
123 	if (divisor <= 134)
124 		return (16000000 * divisor / bas->rclk);
125 	return (16000 * divisor / (bas->rclk / 1000));
126 }
127 
128 static int
129 ns8250_divisor(int rclk, int baudrate)
130 {
131 	int actual_baud, divisor;
132 	int error;
133 
134 	if (baudrate == 0)
135 		return (0);
136 
137 	divisor = (rclk / (baudrate << 3) + 1) >> 1;
138 	if (divisor == 0 || divisor >= 65536)
139 		return (0);
140 	actual_baud = rclk / (divisor << 4);
141 
142 	/* 10 times error in percent: */
143 	error = ((actual_baud - baudrate) * 2000 / baudrate + 1) / 2;
144 
145 	/* enforce maximum error tolerance: */
146 	if (error < -UART_DEV_TOLERANCE_PCT || error > UART_DEV_TOLERANCE_PCT)
147 		return (0);
148 
149 	return (divisor);
150 }
151 
152 static int
153 ns8250_drain(struct uart_bas *bas, int what)
154 {
155 	int delay, limit;
156 
157 	delay = ns8250_delay(bas);
158 
159 	if (what & UART_DRAIN_TRANSMITTER) {
160 		/*
161 		 * Pick an arbitrary high limit to avoid getting stuck in
162 		 * an infinite loop when the hardware is broken. Make the
163 		 * limit high enough to handle large FIFOs.
164 		 */
165 		limit = 10*1024;
166 		while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
167 			DELAY(delay);
168 		if (limit == 0) {
169 			/* printf("ns8250: transmitter appears stuck... "); */
170 			return (EIO);
171 		}
172 	}
173 
174 	if (what & UART_DRAIN_RECEIVER) {
175 		/*
176 		 * Pick an arbitrary high limit to avoid getting stuck in
177 		 * an infinite loop when the hardware is broken. Make the
178 		 * limit high enough to handle large FIFOs and integrated
179 		 * UARTs. The HP rx2600 for example has 3 UARTs on the
180 		 * management board that tend to get a lot of data send
181 		 * to it when the UART is first activated.  Assume that we
182 		 * have finished draining if LSR_RXRDY is not asserted both
183 		 * prior to and after a DELAY; but as long as LSR_RXRDY is
184 		 * asserted, read (and discard) characters as quickly as
185 		 * possible.
186 		 */
187 		limit=10*4096;
188 		while (limit && (uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) {
189 			do {
190 				(void)uart_getreg(bas, REG_DATA);
191 				uart_barrier(bas);
192 			} while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit);
193 			uart_barrier(bas);
194 			DELAY(delay << 2);
195 		}
196 		if (limit == 0) {
197 			/* printf("ns8250: receiver appears broken... "); */
198 			return (EIO);
199 		}
200 	}
201 
202 	return (0);
203 }
204 
205 /*
206  * We can only flush UARTs with FIFOs. UARTs without FIFOs should be
207  * drained. WARNING: this function clobbers the FIFO setting!
208  */
209 static void
210 ns8250_flush(struct uart_bas *bas, int what)
211 {
212 	uint8_t fcr;
213 	uint8_t lsr;
214 	int drain = 0;
215 
216 	fcr = FCR_ENABLE;
217 #ifdef CPU_XBURST
218 	fcr |= FCR_UART_ON;
219 #endif
220 	if (what & UART_FLUSH_TRANSMITTER)
221 		fcr |= FCR_XMT_RST;
222 	if (what & UART_FLUSH_RECEIVER)
223 		fcr |= FCR_RCV_RST;
224 	uart_setreg(bas, REG_FCR, fcr);
225 	uart_barrier(bas);
226 
227 	/*
228 	 * Detect and work around emulated UARTs which don't implement the
229 	 * FCR register; on these systems we need to drain the FIFO since
230 	 * the flush we request doesn't happen.  One such system is the
231 	 * Firecracker VMM, aka. the rust-vmm/vm-superio emulation code:
232 	 * https://github.com/rust-vmm/vm-superio/issues/83
233 	 */
234 	lsr = uart_getreg(bas, REG_LSR);
235 	if (((lsr & LSR_TEMT) == 0) && (what & UART_FLUSH_TRANSMITTER))
236 		drain |= UART_DRAIN_TRANSMITTER;
237 	if ((lsr & LSR_RXRDY) && (what & UART_FLUSH_RECEIVER))
238 		drain |= UART_DRAIN_RECEIVER;
239 	if (drain != 0) {
240 		printf("ns8250: UART FCR is broken\n");
241 		ns8250_drain(bas, drain);
242 	}
243 }
244 
245 static int
246 ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
247     int parity)
248 {
249 	int divisor;
250 	uint8_t lcr;
251 
252 	/* Don't change settings when running on Hyper-V */
253 	if (vm_guest == VM_GUEST_HV)
254 		return (0);
255 
256 	lcr = 0;
257 	if (databits >= 8)
258 		lcr |= LCR_8BITS;
259 	else if (databits == 7)
260 		lcr |= LCR_7BITS;
261 	else if (databits == 6)
262 		lcr |= LCR_6BITS;
263 	else
264 		lcr |= LCR_5BITS;
265 	if (stopbits > 1)
266 		lcr |= LCR_STOPB;
267 	lcr |= parity << 3;
268 
269 	/* Set baudrate. */
270 	if (baudrate > 0) {
271 		divisor = ns8250_divisor(bas->rclk, baudrate);
272 		if (divisor == 0)
273 			return (EINVAL);
274 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
275 		uart_barrier(bas);
276 		uart_setreg(bas, REG_DLL, divisor & 0xff);
277 		uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff);
278 		uart_barrier(bas);
279 	}
280 
281 	/* Set LCR and clear DLAB. */
282 	uart_setreg(bas, REG_LCR, lcr);
283 	uart_barrier(bas);
284 	return (0);
285 }
286 
287 /*
288  * Low-level UART interface.
289  */
290 static int ns8250_probe(struct uart_bas *bas);
291 static void ns8250_init(struct uart_bas *bas, int, int, int, int);
292 static void ns8250_term(struct uart_bas *bas);
293 static void ns8250_putc(struct uart_bas *bas, int);
294 static int ns8250_rxready(struct uart_bas *bas);
295 static int ns8250_getc(struct uart_bas *bas, struct mtx *);
296 
297 struct uart_ops uart_ns8250_ops = {
298 	.probe = ns8250_probe,
299 	.init = ns8250_init,
300 	.term = ns8250_term,
301 	.putc = ns8250_putc,
302 	.rxready = ns8250_rxready,
303 	.getc = ns8250_getc,
304 };
305 
306 static int
307 ns8250_probe(struct uart_bas *bas)
308 {
309 	u_char val;
310 
311 #ifdef CPU_XBURST
312 	uart_setreg(bas, REG_FCR, FCR_UART_ON);
313 #endif
314 
315 	/* Check known 0 bits that don't depend on DLAB. */
316 	val = uart_getreg(bas, REG_IIR);
317 	if (val & 0x30)
318 		return (ENXIO);
319 	/*
320 	 * Bit 6 of the MCR (= 0x40) appears to be 1 for the Sun1699
321 	 * chip, but otherwise doesn't seem to have a function. In
322 	 * other words, uart(4) works regardless. Ignore that bit so
323 	 * the probe succeeds.
324 	 */
325 	val = uart_getreg(bas, REG_MCR);
326 	if (val & 0xa0)
327 		return (ENXIO);
328 
329 	return (0);
330 }
331 
332 static void
333 ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
334     int parity)
335 {
336 	u_char ier, val;
337 
338 	if (bas->rclk == 0)
339 		bas->rclk = DEFAULT_RCLK;
340 	ns8250_param(bas, baudrate, databits, stopbits, parity);
341 
342 	/* Disable all interrupt sources. */
343 	/*
344 	 * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA
345 	 * UARTs split the receive time-out interrupt bit out separately as
346 	 * 0x10.  This gets handled by ier_mask and ier_rxbits below.
347 	 */
348 	ier = uart_getreg(bas, REG_IER) & 0xe0;
349 	uart_setreg(bas, REG_IER, ier);
350 	uart_barrier(bas);
351 
352 	/* Disable the FIFO (if present). */
353 	val = 0;
354 #ifdef CPU_XBURST
355 	val |= FCR_UART_ON;
356 #endif
357 	uart_setreg(bas, REG_FCR, val);
358 	uart_barrier(bas);
359 
360 	/* Set RTS & DTR. */
361 	uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR);
362 	uart_barrier(bas);
363 
364 	ns8250_clrint(bas);
365 }
366 
367 static void
368 ns8250_term(struct uart_bas *bas)
369 {
370 
371 	/* Clear RTS & DTR. */
372 	uart_setreg(bas, REG_MCR, MCR_IE);
373 	uart_barrier(bas);
374 }
375 
376 static void
377 ns8250_putc(struct uart_bas *bas, int c)
378 {
379 	int limit;
380 
381 	if (vm_guest != VM_GUEST_HV) {
382 		limit = 250000;
383 		while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit)
384 			DELAY(4);
385 	}
386 	uart_setreg(bas, REG_DATA, c);
387 	uart_barrier(bas);
388 }
389 
390 static int
391 ns8250_rxready(struct uart_bas *bas)
392 {
393 
394 	return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0);
395 }
396 
397 static int
398 ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx)
399 {
400 	int c;
401 
402 	uart_lock(hwmtx);
403 
404 	while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) {
405 		uart_unlock(hwmtx);
406 		DELAY(4);
407 		uart_lock(hwmtx);
408 	}
409 
410 	c = uart_getreg(bas, REG_DATA);
411 
412 	uart_unlock(hwmtx);
413 
414 	return (c);
415 }
416 
417 static kobj_method_t ns8250_methods[] = {
418 	KOBJMETHOD(uart_attach,		ns8250_bus_attach),
419 	KOBJMETHOD(uart_detach,		ns8250_bus_detach),
420 	KOBJMETHOD(uart_flush,		ns8250_bus_flush),
421 	KOBJMETHOD(uart_getsig,		ns8250_bus_getsig),
422 	KOBJMETHOD(uart_ioctl,		ns8250_bus_ioctl),
423 	KOBJMETHOD(uart_ipend,		ns8250_bus_ipend),
424 	KOBJMETHOD(uart_param,		ns8250_bus_param),
425 	KOBJMETHOD(uart_probe,		ns8250_bus_probe),
426 	KOBJMETHOD(uart_receive,	ns8250_bus_receive),
427 	KOBJMETHOD(uart_setsig,		ns8250_bus_setsig),
428 	KOBJMETHOD(uart_transmit,	ns8250_bus_transmit),
429 	KOBJMETHOD(uart_grab,		ns8250_bus_grab),
430 	KOBJMETHOD(uart_ungrab,		ns8250_bus_ungrab),
431 	{ 0, 0 }
432 };
433 
434 struct uart_class uart_ns8250_class = {
435 	"ns8250",
436 	ns8250_methods,
437 	sizeof(struct ns8250_softc),
438 	.uc_ops = &uart_ns8250_ops,
439 	.uc_range = 8,
440 	.uc_rclk = DEFAULT_RCLK,
441 	.uc_rshift = 0
442 };
443 
444 /*
445  * XXX -- refactor out ACPI and FDT ifdefs
446  */
447 #ifdef DEV_ACPI
448 static struct acpi_uart_compat_data acpi_compat_data[] = {
449 	{"AMD0020",	&uart_ns8250_class, 0, 2, 0, 48000000, UART_F_BUSY_DETECT, "AMD / Synopsys Designware UART"},
450 	{"AMDI0020", &uart_ns8250_class, 0, 2, 0, 48000000, UART_F_BUSY_DETECT, "AMD / Synopsys Designware UART"},
451 	{"MRVL0001", &uart_ns8250_class, ACPI_DBG2_16550_SUBSET, 2, 0, 200000000, UART_F_BUSY_DETECT, "Marvell / Synopsys Designware UART"},
452 	{"SCX0006",  &uart_ns8250_class, 0, 2, 0, 62500000, UART_F_BUSY_DETECT, "SynQuacer / Synopsys Designware UART"},
453 	{"HISI0031", &uart_ns8250_class, 0, 2, 0, 200000000, UART_F_BUSY_DETECT, "HiSilicon / Synopsys Designware UART"},
454 	{"NXP0018", &uart_ns8250_class, 0, 0, 0, 350000000, UART_F_BUSY_DETECT, "NXP / Synopsys Designware UART"},
455 	{"PNP0500", &uart_ns8250_class, 0, 0, 0, 0, 0, "Standard PC COM port"},
456 	{"PNP0501", &uart_ns8250_class, 0, 0, 0, 0, 0, "16550A-compatible COM port"},
457 	{"PNP0502", &uart_ns8250_class, 0, 0, 0, 0, 0, "Multiport serial device (non-intelligent 16550)"},
458 	{"PNP0510", &uart_ns8250_class, 0, 0, 0, 0, 0, "Generic IRDA-compatible device"},
459 	{"PNP0511", &uart_ns8250_class, 0, 0, 0, 0, 0, "Generic IRDA-compatible device"},
460 	{"WACF004", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet PC Screen"},
461 	{"WACF00E", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet PC Screen 00e"},
462 	{"FUJ02E5", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet at FuS Lifebook T"},
463 	{NULL, 			NULL, 0, 0 , 0, 0, 0, NULL},
464 };
465 UART_ACPI_CLASS_AND_DEVICE(acpi_compat_data);
466 #endif
467 
468 #ifdef FDT
469 static struct ofw_compat_data compat_data[] = {
470 	{"ns16550",		(uintptr_t)&uart_ns8250_class},
471 	{"ns16550a",		(uintptr_t)&uart_ns8250_class},
472 	{NULL,			(uintptr_t)NULL},
473 };
474 UART_FDT_CLASS_AND_DEVICE(compat_data);
475 #endif
476 
477 /* Use token-pasting to form SER_ and MSR_ named constants. */
478 #define	SER(sig)	SER_##sig
479 #define	SERD(sig)	SER_D##sig
480 #define	MSR(sig)	MSR_##sig
481 #define	MSRD(sig)	MSR_D##sig
482 
483 /*
484  * Detect signal changes using software delta detection.  The previous state of
485  * the signals is in 'var' the new hardware state is in 'msr', and 'sig' is the
486  * short name (DCD, CTS, etc) of the signal bit being processed; 'var' gets the
487  * new state of both the signal and the delta bits.
488  */
489 #define SIGCHGSW(var, msr, sig)					\
490 	if ((msr) & MSR(sig)) {					\
491 		if ((var & SER(sig)) == 0)			\
492 			var |= SERD(sig) | SER(sig);		\
493 	} else {						\
494 		if ((var & SER(sig)) != 0)			\
495 			var = SERD(sig) | (var & ~SER(sig));	\
496 	}
497 
498 /*
499  * Detect signal changes using the hardware msr delta bits.  This is currently
500  * used only when PPS timing information is being captured using the "narrow
501  * pulse" option.  With a narrow PPS pulse the signal may not still be asserted
502  * by time the interrupt handler is invoked.  The hardware will latch the fact
503  * that it changed in the delta bits.
504  */
505 #define SIGCHGHW(var, msr, sig)					\
506 	if ((msr) & MSRD(sig)) {				\
507 		if (((msr) & MSR(sig)) != 0)			\
508 			var |= SERD(sig) | SER(sig);		\
509 		else						\
510 			var = SERD(sig) | (var & ~SER(sig));	\
511 	}
512 
513 int
514 ns8250_bus_attach(struct uart_softc *sc)
515 {
516 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
517 	struct uart_bas *bas;
518 	unsigned int ivar;
519 #ifdef FDT
520 	phandle_t node;
521 	pcell_t cell;
522 #endif
523 
524 #ifdef FDT
525 	/* Check whether uart has a broken txfifo. */
526 	node = ofw_bus_get_node(sc->sc_dev);
527 	if ((OF_getencprop(node, "broken-txfifo", &cell, sizeof(cell))) > 0)
528 		broken_txfifo =  cell ? 1 : 0;
529 #endif
530 
531 	bas = &sc->sc_bas;
532 
533 	ns8250->busy_detect = bas->busy_detect;
534 	ns8250->mcr = uart_getreg(bas, REG_MCR);
535 	ns8250->fcr = FCR_ENABLE;
536 #ifdef CPU_XBURST
537 	ns8250->fcr |= FCR_UART_ON;
538 #endif
539 	if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags",
540 	    &ivar)) {
541 		if (UART_FLAGS_FCR_RX_LOW(ivar))
542 			ns8250->fcr |= FCR_RX_LOW;
543 		else if (UART_FLAGS_FCR_RX_MEDL(ivar))
544 			ns8250->fcr |= FCR_RX_MEDL;
545 		else if (UART_FLAGS_FCR_RX_HIGH(ivar))
546 			ns8250->fcr |= FCR_RX_HIGH;
547 		else
548 			ns8250->fcr |= FCR_RX_MEDH;
549 	} else
550 		ns8250->fcr |= FCR_RX_MEDH;
551 
552 	/* Get IER mask */
553 	ivar = 0xf0;
554 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask",
555 	    &ivar);
556 	ns8250->ier_mask = (uint8_t)(ivar & 0xff);
557 
558 	/* Get IER RX interrupt bits */
559 	ivar = IER_EMSC | IER_ERLS | IER_ERXRDY;
560 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits",
561 	    &ivar);
562 	ns8250->ier_rxbits = (uint8_t)(ivar & 0xff);
563 
564 	uart_setreg(bas, REG_FCR, ns8250->fcr);
565 	uart_barrier(bas);
566 	ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
567 
568 	if (ns8250->mcr & MCR_DTR)
569 		sc->sc_hwsig |= SER_DTR;
570 	if (ns8250->mcr & MCR_RTS)
571 		sc->sc_hwsig |= SER_RTS;
572 	ns8250_bus_getsig(sc);
573 
574 	ns8250_clrint(bas);
575 	ns8250->ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
576 	ns8250->ier |= ns8250->ier_rxbits;
577 	uart_setreg(bas, REG_IER, ns8250->ier);
578 	uart_barrier(bas);
579 
580 	/*
581 	 * Timing of the H/W access was changed with r253161 of uart_core.c
582 	 * It has been observed that an ITE IT8513E would signal a break
583 	 * condition with pretty much every character it received, unless
584 	 * it had enough time to settle between ns8250_bus_attach() and
585 	 * ns8250_bus_ipend() -- which it accidentally had before r253161.
586 	 * It's not understood why the UART chip behaves this way and it
587 	 * could very well be that the DELAY make the H/W work in the same
588 	 * accidental manner as before. More analysis is warranted, but
589 	 * at least now we fixed a known regression.
590 	 */
591 	DELAY(200);
592 	return (0);
593 }
594 
595 int
596 ns8250_bus_detach(struct uart_softc *sc)
597 {
598 	struct ns8250_softc *ns8250;
599 	struct uart_bas *bas;
600 	u_char ier;
601 
602 	ns8250 = (struct ns8250_softc *)sc;
603 	bas = &sc->sc_bas;
604 	ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
605 	uart_setreg(bas, REG_IER, ier);
606 	uart_barrier(bas);
607 	ns8250_clrint(bas);
608 	return (0);
609 }
610 
611 int
612 ns8250_bus_flush(struct uart_softc *sc, int what)
613 {
614 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
615 	struct uart_bas *bas;
616 	int error;
617 
618 	bas = &sc->sc_bas;
619 	uart_lock(sc->sc_hwmtx);
620 	if (sc->sc_rxfifosz > 1) {
621 		ns8250_flush(bas, what);
622 		uart_setreg(bas, REG_FCR, ns8250->fcr);
623 		uart_barrier(bas);
624 		error = 0;
625 	} else
626 		error = ns8250_drain(bas, what);
627 	uart_unlock(sc->sc_hwmtx);
628 	return (error);
629 }
630 
631 int
632 ns8250_bus_getsig(struct uart_softc *sc)
633 {
634 	uint32_t old, sig;
635 	uint8_t msr;
636 
637 	/*
638 	 * The delta bits are reputed to be broken on some hardware, so use
639 	 * software delta detection by default.  Use the hardware delta bits
640 	 * when capturing PPS pulses which are too narrow for software detection
641 	 * to see the edges.  Hardware delta for RI doesn't work like the
642 	 * others, so always use software for it.  Other threads may be changing
643 	 * other (non-MSR) bits in sc_hwsig, so loop until it can successfully
644 	 * update without other changes happening.  Note that the SIGCHGxx()
645 	 * macros carefully preserve the delta bits when we have to loop several
646 	 * times and a signal transitions between iterations.
647 	 */
648 	do {
649 		old = sc->sc_hwsig;
650 		sig = old;
651 		uart_lock(sc->sc_hwmtx);
652 		msr = uart_getreg(&sc->sc_bas, REG_MSR);
653 		uart_unlock(sc->sc_hwmtx);
654 		if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE) {
655 			SIGCHGHW(sig, msr, DSR);
656 			SIGCHGHW(sig, msr, CTS);
657 			SIGCHGHW(sig, msr, DCD);
658 		} else {
659 			SIGCHGSW(sig, msr, DSR);
660 			SIGCHGSW(sig, msr, CTS);
661 			SIGCHGSW(sig, msr, DCD);
662 		}
663 		SIGCHGSW(sig, msr, RI);
664 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, sig & ~SER_MASK_DELTA));
665 	return (sig);
666 }
667 
668 int
669 ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
670 {
671 	struct uart_bas *bas;
672 	int baudrate, divisor, error;
673 	uint8_t efr, lcr;
674 
675 	bas = &sc->sc_bas;
676 	error = 0;
677 	uart_lock(sc->sc_hwmtx);
678 	switch (request) {
679 	case UART_IOCTL_BREAK:
680 		lcr = uart_getreg(bas, REG_LCR);
681 		if (data)
682 			lcr |= LCR_SBREAK;
683 		else
684 			lcr &= ~LCR_SBREAK;
685 		uart_setreg(bas, REG_LCR, lcr);
686 		uart_barrier(bas);
687 		break;
688 	case UART_IOCTL_IFLOW:
689 		lcr = uart_getreg(bas, REG_LCR);
690 		uart_barrier(bas);
691 		uart_setreg(bas, REG_LCR, 0xbf);
692 		uart_barrier(bas);
693 		efr = uart_getreg(bas, REG_EFR);
694 		if (data)
695 			efr |= EFR_RTS;
696 		else
697 			efr &= ~EFR_RTS;
698 		uart_setreg(bas, REG_EFR, efr);
699 		uart_barrier(bas);
700 		uart_setreg(bas, REG_LCR, lcr);
701 		uart_barrier(bas);
702 		break;
703 	case UART_IOCTL_OFLOW:
704 		lcr = uart_getreg(bas, REG_LCR);
705 		uart_barrier(bas);
706 		uart_setreg(bas, REG_LCR, 0xbf);
707 		uart_barrier(bas);
708 		efr = uart_getreg(bas, REG_EFR);
709 		if (data)
710 			efr |= EFR_CTS;
711 		else
712 			efr &= ~EFR_CTS;
713 		uart_setreg(bas, REG_EFR, efr);
714 		uart_barrier(bas);
715 		uart_setreg(bas, REG_LCR, lcr);
716 		uart_barrier(bas);
717 		break;
718 	case UART_IOCTL_BAUD:
719 		lcr = uart_getreg(bas, REG_LCR);
720 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
721 		uart_barrier(bas);
722 		divisor = uart_getreg(bas, REG_DLL) |
723 		    (uart_getreg(bas, REG_DLH) << 8);
724 		uart_barrier(bas);
725 		uart_setreg(bas, REG_LCR, lcr);
726 		uart_barrier(bas);
727 		baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0;
728 		if (baudrate > 0)
729 			*(int*)data = baudrate;
730 		else
731 			error = ENXIO;
732 		break;
733 	default:
734 		error = EINVAL;
735 		break;
736 	}
737 	uart_unlock(sc->sc_hwmtx);
738 	return (error);
739 }
740 
741 int
742 ns8250_bus_ipend(struct uart_softc *sc)
743 {
744 	struct uart_bas *bas;
745 	struct ns8250_softc *ns8250;
746 	int ipend;
747 	uint8_t iir, lsr;
748 
749 	ns8250 = (struct ns8250_softc *)sc;
750 	bas = &sc->sc_bas;
751 	uart_lock(sc->sc_hwmtx);
752 	iir = uart_getreg(bas, REG_IIR);
753 
754 	if (ns8250->busy_detect && (iir & IIR_BUSY) == IIR_BUSY) {
755 		(void)uart_getreg(bas, DW_REG_USR);
756 		uart_unlock(sc->sc_hwmtx);
757 		return (0);
758 	}
759 	if (iir & IIR_NOPEND) {
760 		uart_unlock(sc->sc_hwmtx);
761 		return (0);
762 	}
763 	ipend = 0;
764 	if (iir & IIR_RXRDY) {
765 		lsr = uart_getreg(bas, REG_LSR);
766 		if (lsr & LSR_OE)
767 			ipend |= SER_INT_OVERRUN;
768 		if (lsr & LSR_BI)
769 			ipend |= SER_INT_BREAK;
770 		if (lsr & LSR_RXRDY)
771 			ipend |= SER_INT_RXREADY;
772 	} else {
773 		if (iir & IIR_TXRDY) {
774 			ipend |= SER_INT_TXIDLE;
775 			ns8250->ier &= ~IER_ETXRDY;
776 			uart_setreg(bas, REG_IER, ns8250->ier);
777 			uart_barrier(bas);
778 		} else
779 			ipend |= SER_INT_SIGCHG;
780 	}
781 	if (ipend == 0)
782 		ns8250_clrint(bas);
783 	uart_unlock(sc->sc_hwmtx);
784 	return (ipend);
785 }
786 
787 int
788 ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits,
789     int stopbits, int parity)
790 {
791 	struct ns8250_softc *ns8250;
792 	struct uart_bas *bas;
793 	int error, limit;
794 
795 	ns8250 = (struct ns8250_softc*)sc;
796 	bas = &sc->sc_bas;
797 	uart_lock(sc->sc_hwmtx);
798 	/*
799 	 * When using DW UART with BUSY detection it is necessary to wait
800 	 * until all serial transfers are finished before manipulating the
801 	 * line control. LCR will not be affected when UART is busy.
802 	 */
803 	if (ns8250->busy_detect != 0) {
804 		/*
805 		 * Pick an arbitrary high limit to avoid getting stuck in
806 		 * an infinite loop in case when the hardware is broken.
807 		 */
808 		limit = 10 * 1024;
809 		while (((uart_getreg(bas, DW_REG_USR) & USR_BUSY) != 0) &&
810 		    --limit)
811 			DELAY(4);
812 
813 		if (limit <= 0) {
814 			/* UART appears to be stuck */
815 			uart_unlock(sc->sc_hwmtx);
816 			return (EIO);
817 		}
818 	}
819 
820 	error = ns8250_param(bas, baudrate, databits, stopbits, parity);
821 	uart_unlock(sc->sc_hwmtx);
822 	return (error);
823 }
824 
825 int
826 ns8250_bus_probe(struct uart_softc *sc)
827 {
828 	struct uart_bas *bas;
829 	int count, delay, error, limit;
830 	uint8_t lsr, mcr, ier;
831 	uint8_t val;
832 
833 	bas = &sc->sc_bas;
834 
835 	error = ns8250_probe(bas);
836 	if (error)
837 		return (error);
838 
839 	mcr = MCR_IE;
840 	if (sc->sc_sysdev == NULL) {
841 		/* By using ns8250_init() we also set DTR and RTS. */
842 		ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE);
843 	} else
844 		mcr |= MCR_DTR | MCR_RTS;
845 
846 	error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
847 	if (error)
848 		return (error);
849 
850 	/*
851 	 * Set loopback mode. This avoids having garbage on the wire and
852 	 * also allows us send and receive data. We set DTR and RTS to
853 	 * avoid the possibility that automatic flow-control prevents
854 	 * any data from being sent.
855 	 */
856 	uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS);
857 	uart_barrier(bas);
858 
859 	/*
860 	 * Enable FIFOs. And check that the UART has them. If not, we're
861 	 * done. Since this is the first time we enable the FIFOs, we reset
862 	 * them.
863 	 */
864 	val = FCR_ENABLE;
865 #ifdef CPU_XBURST
866 	val |= FCR_UART_ON;
867 #endif
868 	uart_setreg(bas, REG_FCR, val);
869 	uart_barrier(bas);
870 	if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) {
871 		/*
872 		 * NS16450 or INS8250. We don't bother to differentiate
873 		 * between them. They're too old to be interesting.
874 		 */
875 		uart_setreg(bas, REG_MCR, mcr);
876 		uart_barrier(bas);
877 		sc->sc_rxfifosz = sc->sc_txfifosz = 1;
878 		device_set_desc(sc->sc_dev, "8250 or 16450 or compatible");
879 		return (0);
880 	}
881 
882 	val = FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST;
883 #ifdef CPU_XBURST
884 	val |= FCR_UART_ON;
885 #endif
886 	uart_setreg(bas, REG_FCR, val);
887 	uart_barrier(bas);
888 
889 	count = 0;
890 	delay = ns8250_delay(bas);
891 
892 	/* We have FIFOs. Drain the transmitter and receiver. */
893 	error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER);
894 	if (error) {
895 		uart_setreg(bas, REG_MCR, mcr);
896 		val = 0;
897 #ifdef CPU_XBURST
898 		val |= FCR_UART_ON;
899 #endif
900 		uart_setreg(bas, REG_FCR, val);
901 		uart_barrier(bas);
902 		goto describe;
903 	}
904 
905 	/*
906 	 * We should have a sufficiently clean "pipe" to determine the
907 	 * size of the FIFOs. We send as much characters as is reasonable
908 	 * and wait for the overflow bit in the LSR register to be
909 	 * asserted, counting the characters as we send them. Based on
910 	 * that count we know the FIFO size.
911 	 */
912 	do {
913 		uart_setreg(bas, REG_DATA, 0);
914 		uart_barrier(bas);
915 		count++;
916 
917 		limit = 30;
918 		lsr = 0;
919 		/*
920 		 * LSR bits are cleared upon read, so we must accumulate
921 		 * them to be able to test LSR_OE below.
922 		 */
923 		while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 &&
924 		    --limit)
925 			DELAY(delay);
926 		if (limit == 0) {
927 			/* See the comment in ns8250_init(). */
928 			ier = uart_getreg(bas, REG_IER) & 0xe0;
929 			uart_setreg(bas, REG_IER, ier);
930 			uart_setreg(bas, REG_MCR, mcr);
931 			val = 0;
932 #ifdef CPU_XBURST
933 			val |= FCR_UART_ON;
934 #endif
935 			uart_setreg(bas, REG_FCR, val);
936 			uart_barrier(bas);
937 			count = 0;
938 			goto describe;
939 		}
940 	} while ((lsr & LSR_OE) == 0 && count < 260);
941 	count--;
942 
943 	uart_setreg(bas, REG_MCR, mcr);
944 
945 	/* Reset FIFOs. */
946 	ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
947 
948  describe:
949 	if (count >= 14 && count <= 16) {
950 		sc->sc_rxfifosz = 16;
951 		device_set_desc(sc->sc_dev, "16550 or compatible");
952 	} else if (count >= 28 && count <= 32) {
953 		sc->sc_rxfifosz = 32;
954 		device_set_desc(sc->sc_dev, "16650 or compatible");
955 	} else if (count >= 56 && count <= 64) {
956 		sc->sc_rxfifosz = 64;
957 		device_set_desc(sc->sc_dev, "16750 or compatible");
958 	} else if (count >= 112 && count <= 128) {
959 		sc->sc_rxfifosz = 128;
960 		device_set_desc(sc->sc_dev, "16950 or compatible");
961 	} else if (count >= 224 && count <= 256) {
962 		sc->sc_rxfifosz = 256;
963 		device_set_desc(sc->sc_dev, "16x50 with 256 byte FIFO");
964 	} else {
965 		sc->sc_rxfifosz = 16;
966 		device_set_desc(sc->sc_dev,
967 		    "Non-standard ns8250 class UART with FIFOs");
968 	}
969 
970 	/*
971 	 * Force the Tx FIFO size to 16 bytes for now. We don't program the
972 	 * Tx trigger. Also, we assume that all data has been sent when the
973 	 * interrupt happens.
974 	 */
975 	sc->sc_txfifosz = 16;
976 
977 #if 0
978 	/*
979 	 * XXX there are some issues related to hardware flow control and
980 	 * it's likely that uart(4) is the cause. This basically needs more
981 	 * investigation, but we avoid using for hardware flow control
982 	 * until then.
983 	 */
984 	/* 16650s or higher have automatic flow control. */
985 	if (sc->sc_rxfifosz > 16) {
986 		sc->sc_hwiflow = 1;
987 		sc->sc_hwoflow = 1;
988 	}
989 #endif
990 
991 	return (0);
992 }
993 
994 int
995 ns8250_bus_receive(struct uart_softc *sc)
996 {
997 	struct uart_bas *bas;
998 	int xc;
999 	uint8_t lsr;
1000 
1001 	bas = &sc->sc_bas;
1002 	uart_lock(sc->sc_hwmtx);
1003 	lsr = uart_getreg(bas, REG_LSR);
1004 	while (lsr & LSR_RXRDY) {
1005 		if (uart_rx_full(sc)) {
1006 			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
1007 			break;
1008 		}
1009 		xc = uart_getreg(bas, REG_DATA);
1010 		if (lsr & LSR_FE)
1011 			xc |= UART_STAT_FRAMERR;
1012 		if (lsr & LSR_PE)
1013 			xc |= UART_STAT_PARERR;
1014 		uart_rx_put(sc, xc);
1015 		lsr = uart_getreg(bas, REG_LSR);
1016 	}
1017 	/* Discard everything left in the Rx FIFO. */
1018 	while (lsr & LSR_RXRDY) {
1019 		(void)uart_getreg(bas, REG_DATA);
1020 		uart_barrier(bas);
1021 		lsr = uart_getreg(bas, REG_LSR);
1022 	}
1023 	uart_unlock(sc->sc_hwmtx);
1024  	return (0);
1025 }
1026 
1027 int
1028 ns8250_bus_setsig(struct uart_softc *sc, int sig)
1029 {
1030 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1031 	struct uart_bas *bas;
1032 	uint32_t new, old;
1033 
1034 	bas = &sc->sc_bas;
1035 	do {
1036 		old = sc->sc_hwsig;
1037 		new = old;
1038 		if (sig & SER_DDTR) {
1039 			new = (new & ~SER_DTR) | (sig & (SER_DTR | SER_DDTR));
1040 		}
1041 		if (sig & SER_DRTS) {
1042 			new = (new & ~SER_RTS) | (sig & (SER_RTS | SER_DRTS));
1043 		}
1044 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
1045 	uart_lock(sc->sc_hwmtx);
1046 	ns8250->mcr &= ~(MCR_DTR|MCR_RTS);
1047 	if (new & SER_DTR)
1048 		ns8250->mcr |= MCR_DTR;
1049 	if (new & SER_RTS)
1050 		ns8250->mcr |= MCR_RTS;
1051 	uart_setreg(bas, REG_MCR, ns8250->mcr);
1052 	uart_barrier(bas);
1053 	uart_unlock(sc->sc_hwmtx);
1054 	return (0);
1055 }
1056 
1057 int
1058 ns8250_bus_transmit(struct uart_softc *sc)
1059 {
1060 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1061 	struct uart_bas *bas;
1062 	int i;
1063 
1064 	bas = &sc->sc_bas;
1065 	uart_lock(sc->sc_hwmtx);
1066 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0)
1067 		DELAY(4);
1068 	for (i = 0; i < sc->sc_txdatasz; i++) {
1069 		uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]);
1070 		uart_barrier(bas);
1071 	}
1072 	if (!broken_txfifo)
1073 		ns8250->ier |= IER_ETXRDY;
1074 	uart_setreg(bas, REG_IER, ns8250->ier);
1075 	uart_barrier(bas);
1076 	if (broken_txfifo)
1077 		ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
1078 	else
1079 		sc->sc_txbusy = 1;
1080 	uart_unlock(sc->sc_hwmtx);
1081 	if (broken_txfifo)
1082 		uart_sched_softih(sc, SER_INT_TXIDLE);
1083 	return (0);
1084 }
1085 
1086 void
1087 ns8250_bus_grab(struct uart_softc *sc)
1088 {
1089 	struct uart_bas *bas = &sc->sc_bas;
1090 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1091 	u_char ier;
1092 
1093 	/*
1094 	 * turn off all interrupts to enter polling mode. Leave the
1095 	 * saved mask alone. We'll restore whatever it was in ungrab.
1096 	 * All pending interrupt signals are reset when IER is set to 0.
1097 	 */
1098 	uart_lock(sc->sc_hwmtx);
1099 	ier = uart_getreg(bas, REG_IER);
1100 	uart_setreg(bas, REG_IER, ier & ns8250->ier_mask);
1101 	uart_barrier(bas);
1102 	uart_unlock(sc->sc_hwmtx);
1103 }
1104 
1105 void
1106 ns8250_bus_ungrab(struct uart_softc *sc)
1107 {
1108 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1109 	struct uart_bas *bas = &sc->sc_bas;
1110 
1111 	/*
1112 	 * Restore previous interrupt mask
1113 	 */
1114 	uart_lock(sc->sc_hwmtx);
1115 	uart_setreg(bas, REG_IER, ns8250->ier);
1116 	uart_barrier(bas);
1117 	uart_unlock(sc->sc_hwmtx);
1118 }
1119