xref: /freebsd/sys/dev/uart/uart_dev_ns8250.c (revision da759cfa320d5076b075d15ff3f00ab3ba5634fd)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2003 Marcel Moolenaar
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include "opt_acpi.h"
30 #include "opt_platform.h"
31 #include "opt_uart.h"
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/bus.h>
39 #include <sys/conf.h>
40 #include <sys/kernel.h>
41 #include <sys/sysctl.h>
42 #include <machine/bus.h>
43 
44 #ifdef FDT
45 #include <dev/fdt/fdt_common.h>
46 #include <dev/ofw/ofw_bus.h>
47 #include <dev/ofw/ofw_bus_subr.h>
48 #endif
49 
50 #include <dev/uart/uart.h>
51 #include <dev/uart/uart_cpu.h>
52 #ifdef FDT
53 #include <dev/uart/uart_cpu_fdt.h>
54 #endif
55 #include <dev/uart/uart_bus.h>
56 #include <dev/uart/uart_dev_ns8250.h>
57 #include <dev/uart/uart_ppstypes.h>
58 #ifdef DEV_ACPI
59 #include <dev/uart/uart_cpu_acpi.h>
60 #endif
61 
62 #include <dev/ic/ns16550.h>
63 
64 #include "uart_if.h"
65 
66 #define	DEFAULT_RCLK	1843200
67 
68 /*
69  * Set the default baudrate tolerance to 3.0%.
70  *
71  * Some embedded boards have odd reference clocks (eg 25MHz)
72  * and we need to handle higher variances in the target baud rate.
73  */
74 #ifndef	UART_DEV_TOLERANCE_PCT
75 #define	UART_DEV_TOLERANCE_PCT	30
76 #endif	/* UART_DEV_TOLERANCE_PCT */
77 
78 static int broken_txfifo = 0;
79 SYSCTL_INT(_hw, OID_AUTO, broken_txfifo, CTLFLAG_RWTUN,
80 	&broken_txfifo, 0, "UART FIFO has QEMU emulation bug");
81 
82 /*
83  * Clear pending interrupts. THRE is cleared by reading IIR. Data
84  * that may have been received gets lost here.
85  */
86 static void
87 ns8250_clrint(struct uart_bas *bas)
88 {
89 	uint8_t iir, lsr;
90 
91 	iir = uart_getreg(bas, REG_IIR);
92 	while ((iir & IIR_NOPEND) == 0) {
93 		iir &= IIR_IMASK;
94 		if (iir == IIR_RLS) {
95 			lsr = uart_getreg(bas, REG_LSR);
96 			if (lsr & (LSR_BI|LSR_FE|LSR_PE))
97 				(void)uart_getreg(bas, REG_DATA);
98 		} else if (iir == IIR_RXRDY || iir == IIR_RXTOUT)
99 			(void)uart_getreg(bas, REG_DATA);
100 		else if (iir == IIR_MLSC)
101 			(void)uart_getreg(bas, REG_MSR);
102 		uart_barrier(bas);
103 		iir = uart_getreg(bas, REG_IIR);
104 	}
105 }
106 
107 static int
108 ns8250_delay(struct uart_bas *bas)
109 {
110 	int divisor;
111 	u_char lcr;
112 
113 	lcr = uart_getreg(bas, REG_LCR);
114 	uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
115 	uart_barrier(bas);
116 	divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8);
117 	uart_barrier(bas);
118 	uart_setreg(bas, REG_LCR, lcr);
119 	uart_barrier(bas);
120 
121 	/* 1/10th the time to transmit 1 character (estimate). */
122 	if (divisor <= 134)
123 		return (16000000 * divisor / bas->rclk);
124 	return (16000 * divisor / (bas->rclk / 1000));
125 }
126 
127 static int
128 ns8250_divisor(int rclk, int baudrate)
129 {
130 	int actual_baud, divisor;
131 	int error;
132 
133 	if (baudrate == 0)
134 		return (0);
135 
136 	divisor = (rclk / (baudrate << 3) + 1) >> 1;
137 	if (divisor == 0 || divisor >= 65536)
138 		return (0);
139 	actual_baud = rclk / (divisor << 4);
140 
141 	/* 10 times error in percent: */
142 	error = ((actual_baud - baudrate) * 2000 / baudrate + 1) >> 1;
143 
144 	/* enforce maximum error tolerance: */
145 	if (error < -UART_DEV_TOLERANCE_PCT || error > UART_DEV_TOLERANCE_PCT)
146 		return (0);
147 
148 	return (divisor);
149 }
150 
151 static int
152 ns8250_drain(struct uart_bas *bas, int what)
153 {
154 	int delay, limit;
155 
156 	delay = ns8250_delay(bas);
157 
158 	if (what & UART_DRAIN_TRANSMITTER) {
159 		/*
160 		 * Pick an arbitrary high limit to avoid getting stuck in
161 		 * an infinite loop when the hardware is broken. Make the
162 		 * limit high enough to handle large FIFOs.
163 		 */
164 		limit = 10*1024;
165 		while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
166 			DELAY(delay);
167 		if (limit == 0) {
168 			/* printf("ns8250: transmitter appears stuck... "); */
169 			return (EIO);
170 		}
171 	}
172 
173 	if (what & UART_DRAIN_RECEIVER) {
174 		/*
175 		 * Pick an arbitrary high limit to avoid getting stuck in
176 		 * an infinite loop when the hardware is broken. Make the
177 		 * limit high enough to handle large FIFOs and integrated
178 		 * UARTs. The HP rx2600 for example has 3 UARTs on the
179 		 * management board that tend to get a lot of data send
180 		 * to it when the UART is first activated.
181 		 */
182 		limit=10*4096;
183 		while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) {
184 			(void)uart_getreg(bas, REG_DATA);
185 			uart_barrier(bas);
186 			DELAY(delay << 2);
187 		}
188 		if (limit == 0) {
189 			/* printf("ns8250: receiver appears broken... "); */
190 			return (EIO);
191 		}
192 	}
193 
194 	return (0);
195 }
196 
197 /*
198  * We can only flush UARTs with FIFOs. UARTs without FIFOs should be
199  * drained. WARNING: this function clobbers the FIFO setting!
200  */
201 static void
202 ns8250_flush(struct uart_bas *bas, int what)
203 {
204 	uint8_t fcr;
205 
206 	fcr = FCR_ENABLE;
207 #ifdef CPU_XBURST
208 	fcr |= FCR_UART_ON;
209 #endif
210 	if (what & UART_FLUSH_TRANSMITTER)
211 		fcr |= FCR_XMT_RST;
212 	if (what & UART_FLUSH_RECEIVER)
213 		fcr |= FCR_RCV_RST;
214 	uart_setreg(bas, REG_FCR, fcr);
215 	uart_barrier(bas);
216 }
217 
218 static int
219 ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
220     int parity)
221 {
222 	int divisor;
223 	uint8_t lcr;
224 
225 	lcr = 0;
226 	if (databits >= 8)
227 		lcr |= LCR_8BITS;
228 	else if (databits == 7)
229 		lcr |= LCR_7BITS;
230 	else if (databits == 6)
231 		lcr |= LCR_6BITS;
232 	else
233 		lcr |= LCR_5BITS;
234 	if (stopbits > 1)
235 		lcr |= LCR_STOPB;
236 	lcr |= parity << 3;
237 
238 	/* Set baudrate. */
239 	if (baudrate > 0) {
240 		divisor = ns8250_divisor(bas->rclk, baudrate);
241 		if (divisor == 0)
242 			return (EINVAL);
243 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
244 		uart_barrier(bas);
245 		uart_setreg(bas, REG_DLL, divisor & 0xff);
246 		uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff);
247 		uart_barrier(bas);
248 	}
249 
250 	/* Set LCR and clear DLAB. */
251 	uart_setreg(bas, REG_LCR, lcr);
252 	uart_barrier(bas);
253 	return (0);
254 }
255 
256 /*
257  * Low-level UART interface.
258  */
259 static int ns8250_probe(struct uart_bas *bas);
260 static void ns8250_init(struct uart_bas *bas, int, int, int, int);
261 static void ns8250_term(struct uart_bas *bas);
262 static void ns8250_putc(struct uart_bas *bas, int);
263 static int ns8250_rxready(struct uart_bas *bas);
264 static int ns8250_getc(struct uart_bas *bas, struct mtx *);
265 
266 struct uart_ops uart_ns8250_ops = {
267 	.probe = ns8250_probe,
268 	.init = ns8250_init,
269 	.term = ns8250_term,
270 	.putc = ns8250_putc,
271 	.rxready = ns8250_rxready,
272 	.getc = ns8250_getc,
273 };
274 
275 static int
276 ns8250_probe(struct uart_bas *bas)
277 {
278 	u_char val;
279 
280 #ifdef CPU_XBURST
281 	uart_setreg(bas, REG_FCR, FCR_UART_ON);
282 #endif
283 
284 	/* Check known 0 bits that don't depend on DLAB. */
285 	val = uart_getreg(bas, REG_IIR);
286 	if (val & 0x30)
287 		return (ENXIO);
288 	/*
289 	 * Bit 6 of the MCR (= 0x40) appears to be 1 for the Sun1699
290 	 * chip, but otherwise doesn't seem to have a function. In
291 	 * other words, uart(4) works regardless. Ignore that bit so
292 	 * the probe succeeds.
293 	 */
294 	val = uart_getreg(bas, REG_MCR);
295 	if (val & 0xa0)
296 		return (ENXIO);
297 
298 	return (0);
299 }
300 
301 static void
302 ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
303     int parity)
304 {
305 	u_char ier, val;
306 
307 	if (bas->rclk == 0)
308 		bas->rclk = DEFAULT_RCLK;
309 	ns8250_param(bas, baudrate, databits, stopbits, parity);
310 
311 	/* Disable all interrupt sources. */
312 	/*
313 	 * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA
314 	 * UARTs split the receive time-out interrupt bit out separately as
315 	 * 0x10.  This gets handled by ier_mask and ier_rxbits below.
316 	 */
317 	ier = uart_getreg(bas, REG_IER) & 0xe0;
318 	uart_setreg(bas, REG_IER, ier);
319 	uart_barrier(bas);
320 
321 	/* Disable the FIFO (if present). */
322 	val = 0;
323 #ifdef CPU_XBURST
324 	val |= FCR_UART_ON;
325 #endif
326 	uart_setreg(bas, REG_FCR, val);
327 	uart_barrier(bas);
328 
329 	/* Set RTS & DTR. */
330 	uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR);
331 	uart_barrier(bas);
332 
333 	ns8250_clrint(bas);
334 }
335 
336 static void
337 ns8250_term(struct uart_bas *bas)
338 {
339 
340 	/* Clear RTS & DTR. */
341 	uart_setreg(bas, REG_MCR, MCR_IE);
342 	uart_barrier(bas);
343 }
344 
345 static void
346 ns8250_putc(struct uart_bas *bas, int c)
347 {
348 	int limit;
349 
350 	limit = 250000;
351 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit)
352 		DELAY(4);
353 	uart_setreg(bas, REG_DATA, c);
354 	uart_barrier(bas);
355 }
356 
357 static int
358 ns8250_rxready(struct uart_bas *bas)
359 {
360 
361 	return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0);
362 }
363 
364 static int
365 ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx)
366 {
367 	int c;
368 
369 	uart_lock(hwmtx);
370 
371 	while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) {
372 		uart_unlock(hwmtx);
373 		DELAY(4);
374 		uart_lock(hwmtx);
375 	}
376 
377 	c = uart_getreg(bas, REG_DATA);
378 
379 	uart_unlock(hwmtx);
380 
381 	return (c);
382 }
383 
384 static kobj_method_t ns8250_methods[] = {
385 	KOBJMETHOD(uart_attach,		ns8250_bus_attach),
386 	KOBJMETHOD(uart_detach,		ns8250_bus_detach),
387 	KOBJMETHOD(uart_flush,		ns8250_bus_flush),
388 	KOBJMETHOD(uart_getsig,		ns8250_bus_getsig),
389 	KOBJMETHOD(uart_ioctl,		ns8250_bus_ioctl),
390 	KOBJMETHOD(uart_ipend,		ns8250_bus_ipend),
391 	KOBJMETHOD(uart_param,		ns8250_bus_param),
392 	KOBJMETHOD(uart_probe,		ns8250_bus_probe),
393 	KOBJMETHOD(uart_receive,	ns8250_bus_receive),
394 	KOBJMETHOD(uart_setsig,		ns8250_bus_setsig),
395 	KOBJMETHOD(uart_transmit,	ns8250_bus_transmit),
396 	KOBJMETHOD(uart_grab,		ns8250_bus_grab),
397 	KOBJMETHOD(uart_ungrab,		ns8250_bus_ungrab),
398 	{ 0, 0 }
399 };
400 
401 struct uart_class uart_ns8250_class = {
402 	"ns8250",
403 	ns8250_methods,
404 	sizeof(struct ns8250_softc),
405 	.uc_ops = &uart_ns8250_ops,
406 	.uc_range = 8,
407 	.uc_rclk = DEFAULT_RCLK,
408 	.uc_rshift = 0
409 };
410 
411 /*
412  * XXX -- refactor out ACPI and FDT ifdefs
413  */
414 #ifdef DEV_ACPI
415 static struct acpi_uart_compat_data acpi_compat_data[] = {
416 	{"AMD0020",	&uart_ns8250_class, 0, 2, 0, 48000000, UART_F_BUSY_DETECT, "AMD / Synopsys Designware UART"},
417 	{"AMDI0020", &uart_ns8250_class, 0, 2, 0, 48000000, UART_F_BUSY_DETECT, "AMD / Synopsys Designware UART"},
418 	{"MRVL0001", &uart_ns8250_class, 0, 2, 0, 200000000, UART_F_BUSY_DETECT, "Marvell / Synopsys Designware UART"},
419 	{"SCX0006",  &uart_ns8250_class, 0, 2, 0, 62500000, UART_F_BUSY_DETECT, "SynQuacer / Synopsys Designware UART"},
420 	{"HISI0031", &uart_ns8250_class, 0, 2, 0, 200000000, UART_F_BUSY_DETECT, "HiSilicon / Synopsys Designware UART"},
421 	{"PNP0500", &uart_ns8250_class, 0, 0, 0, 0, 0, "Standard PC COM port"},
422 	{"PNP0501", &uart_ns8250_class, 0, 0, 0, 0, 0, "16550A-compatible COM port"},
423 	{"PNP0502", &uart_ns8250_class, 0, 0, 0, 0, 0, "Multiport serial device (non-intelligent 16550)"},
424 	{"PNP0510", &uart_ns8250_class, 0, 0, 0, 0, 0, "Generic IRDA-compatible device"},
425 	{"PNP0511", &uart_ns8250_class, 0, 0, 0, 0, 0, "Generic IRDA-compatible device"},
426 	{"WACF004", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet PC Screen"},
427 	{"WACF00E", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet PC Screen 00e"},
428 	{"FUJ02E5", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet at FuS Lifebook T"},
429 	{NULL, 			NULL, 0, 0 , 0, 0, 0, NULL},
430 };
431 UART_ACPI_CLASS_AND_DEVICE(acpi_compat_data);
432 #endif
433 
434 #ifdef FDT
435 static struct ofw_compat_data compat_data[] = {
436 	{"ns16550",		(uintptr_t)&uart_ns8250_class},
437 	{"ns16550a",		(uintptr_t)&uart_ns8250_class},
438 	{NULL,			(uintptr_t)NULL},
439 };
440 UART_FDT_CLASS_AND_DEVICE(compat_data);
441 #endif
442 
443 /* Use token-pasting to form SER_ and MSR_ named constants. */
444 #define	SER(sig)	SER_##sig
445 #define	SERD(sig)	SER_D##sig
446 #define	MSR(sig)	MSR_##sig
447 #define	MSRD(sig)	MSR_D##sig
448 
449 /*
450  * Detect signal changes using software delta detection.  The previous state of
451  * the signals is in 'var' the new hardware state is in 'msr', and 'sig' is the
452  * short name (DCD, CTS, etc) of the signal bit being processed; 'var' gets the
453  * new state of both the signal and the delta bits.
454  */
455 #define SIGCHGSW(var, msr, sig)					\
456 	if ((msr) & MSR(sig)) {					\
457 		if ((var & SER(sig)) == 0)			\
458 			var |= SERD(sig) | SER(sig);		\
459 	} else {						\
460 		if ((var & SER(sig)) != 0)			\
461 			var = SERD(sig) | (var & ~SER(sig));	\
462 	}
463 
464 /*
465  * Detect signal changes using the hardware msr delta bits.  This is currently
466  * used only when PPS timing information is being captured using the "narrow
467  * pulse" option.  With a narrow PPS pulse the signal may not still be asserted
468  * by time the interrupt handler is invoked.  The hardware will latch the fact
469  * that it changed in the delta bits.
470  */
471 #define SIGCHGHW(var, msr, sig)					\
472 	if ((msr) & MSRD(sig)) {				\
473 		if (((msr) & MSR(sig)) != 0)			\
474 			var |= SERD(sig) | SER(sig);		\
475 		else						\
476 			var = SERD(sig) | (var & ~SER(sig));	\
477 	}
478 
479 int
480 ns8250_bus_attach(struct uart_softc *sc)
481 {
482 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
483 	struct uart_bas *bas;
484 	unsigned int ivar;
485 #ifdef FDT
486 	phandle_t node;
487 	pcell_t cell;
488 #endif
489 
490 #ifdef FDT
491 	/* Check whether uart has a broken txfifo. */
492 	node = ofw_bus_get_node(sc->sc_dev);
493 	if ((OF_getencprop(node, "broken-txfifo", &cell, sizeof(cell))) > 0)
494 		broken_txfifo =  cell ? 1 : 0;
495 #endif
496 
497 	bas = &sc->sc_bas;
498 
499 	ns8250->busy_detect = bas->busy_detect;
500 	ns8250->mcr = uart_getreg(bas, REG_MCR);
501 	ns8250->fcr = FCR_ENABLE;
502 #ifdef CPU_XBURST
503 	ns8250->fcr |= FCR_UART_ON;
504 #endif
505 	if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags",
506 	    &ivar)) {
507 		if (UART_FLAGS_FCR_RX_LOW(ivar))
508 			ns8250->fcr |= FCR_RX_LOW;
509 		else if (UART_FLAGS_FCR_RX_MEDL(ivar))
510 			ns8250->fcr |= FCR_RX_MEDL;
511 		else if (UART_FLAGS_FCR_RX_HIGH(ivar))
512 			ns8250->fcr |= FCR_RX_HIGH;
513 		else
514 			ns8250->fcr |= FCR_RX_MEDH;
515 	} else
516 		ns8250->fcr |= FCR_RX_MEDH;
517 
518 	/* Get IER mask */
519 	ivar = 0xf0;
520 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask",
521 	    &ivar);
522 	ns8250->ier_mask = (uint8_t)(ivar & 0xff);
523 
524 	/* Get IER RX interrupt bits */
525 	ivar = IER_EMSC | IER_ERLS | IER_ERXRDY;
526 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits",
527 	    &ivar);
528 	ns8250->ier_rxbits = (uint8_t)(ivar & 0xff);
529 
530 	uart_setreg(bas, REG_FCR, ns8250->fcr);
531 	uart_barrier(bas);
532 	ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
533 
534 	if (ns8250->mcr & MCR_DTR)
535 		sc->sc_hwsig |= SER_DTR;
536 	if (ns8250->mcr & MCR_RTS)
537 		sc->sc_hwsig |= SER_RTS;
538 	ns8250_bus_getsig(sc);
539 
540 	ns8250_clrint(bas);
541 	ns8250->ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
542 	ns8250->ier |= ns8250->ier_rxbits;
543 	uart_setreg(bas, REG_IER, ns8250->ier);
544 	uart_barrier(bas);
545 
546 	/*
547 	 * Timing of the H/W access was changed with r253161 of uart_core.c
548 	 * It has been observed that an ITE IT8513E would signal a break
549 	 * condition with pretty much every character it received, unless
550 	 * it had enough time to settle between ns8250_bus_attach() and
551 	 * ns8250_bus_ipend() -- which it accidentally had before r253161.
552 	 * It's not understood why the UART chip behaves this way and it
553 	 * could very well be that the DELAY make the H/W work in the same
554 	 * accidental manner as before. More analysis is warranted, but
555 	 * at least now we fixed a known regression.
556 	 */
557 	DELAY(200);
558 	return (0);
559 }
560 
561 int
562 ns8250_bus_detach(struct uart_softc *sc)
563 {
564 	struct ns8250_softc *ns8250;
565 	struct uart_bas *bas;
566 	u_char ier;
567 
568 	ns8250 = (struct ns8250_softc *)sc;
569 	bas = &sc->sc_bas;
570 	ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
571 	uart_setreg(bas, REG_IER, ier);
572 	uart_barrier(bas);
573 	ns8250_clrint(bas);
574 	return (0);
575 }
576 
577 int
578 ns8250_bus_flush(struct uart_softc *sc, int what)
579 {
580 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
581 	struct uart_bas *bas;
582 	int error;
583 
584 	bas = &sc->sc_bas;
585 	uart_lock(sc->sc_hwmtx);
586 	if (sc->sc_rxfifosz > 1) {
587 		ns8250_flush(bas, what);
588 		uart_setreg(bas, REG_FCR, ns8250->fcr);
589 		uart_barrier(bas);
590 		error = 0;
591 	} else
592 		error = ns8250_drain(bas, what);
593 	uart_unlock(sc->sc_hwmtx);
594 	return (error);
595 }
596 
597 int
598 ns8250_bus_getsig(struct uart_softc *sc)
599 {
600 	uint32_t old, sig;
601 	uint8_t msr;
602 
603 	/*
604 	 * The delta bits are reputed to be broken on some hardware, so use
605 	 * software delta detection by default.  Use the hardware delta bits
606 	 * when capturing PPS pulses which are too narrow for software detection
607 	 * to see the edges.  Hardware delta for RI doesn't work like the
608 	 * others, so always use software for it.  Other threads may be changing
609 	 * other (non-MSR) bits in sc_hwsig, so loop until it can successfully
610 	 * update without other changes happening.  Note that the SIGCHGxx()
611 	 * macros carefully preserve the delta bits when we have to loop several
612 	 * times and a signal transitions between iterations.
613 	 */
614 	do {
615 		old = sc->sc_hwsig;
616 		sig = old;
617 		uart_lock(sc->sc_hwmtx);
618 		msr = uart_getreg(&sc->sc_bas, REG_MSR);
619 		uart_unlock(sc->sc_hwmtx);
620 		if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE) {
621 			SIGCHGHW(sig, msr, DSR);
622 			SIGCHGHW(sig, msr, CTS);
623 			SIGCHGHW(sig, msr, DCD);
624 		} else {
625 			SIGCHGSW(sig, msr, DSR);
626 			SIGCHGSW(sig, msr, CTS);
627 			SIGCHGSW(sig, msr, DCD);
628 		}
629 		SIGCHGSW(sig, msr, RI);
630 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, sig & ~SER_MASK_DELTA));
631 	return (sig);
632 }
633 
634 int
635 ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
636 {
637 	struct uart_bas *bas;
638 	int baudrate, divisor, error;
639 	uint8_t efr, lcr;
640 
641 	bas = &sc->sc_bas;
642 	error = 0;
643 	uart_lock(sc->sc_hwmtx);
644 	switch (request) {
645 	case UART_IOCTL_BREAK:
646 		lcr = uart_getreg(bas, REG_LCR);
647 		if (data)
648 			lcr |= LCR_SBREAK;
649 		else
650 			lcr &= ~LCR_SBREAK;
651 		uart_setreg(bas, REG_LCR, lcr);
652 		uart_barrier(bas);
653 		break;
654 	case UART_IOCTL_IFLOW:
655 		lcr = uart_getreg(bas, REG_LCR);
656 		uart_barrier(bas);
657 		uart_setreg(bas, REG_LCR, 0xbf);
658 		uart_barrier(bas);
659 		efr = uart_getreg(bas, REG_EFR);
660 		if (data)
661 			efr |= EFR_RTS;
662 		else
663 			efr &= ~EFR_RTS;
664 		uart_setreg(bas, REG_EFR, efr);
665 		uart_barrier(bas);
666 		uart_setreg(bas, REG_LCR, lcr);
667 		uart_barrier(bas);
668 		break;
669 	case UART_IOCTL_OFLOW:
670 		lcr = uart_getreg(bas, REG_LCR);
671 		uart_barrier(bas);
672 		uart_setreg(bas, REG_LCR, 0xbf);
673 		uart_barrier(bas);
674 		efr = uart_getreg(bas, REG_EFR);
675 		if (data)
676 			efr |= EFR_CTS;
677 		else
678 			efr &= ~EFR_CTS;
679 		uart_setreg(bas, REG_EFR, efr);
680 		uart_barrier(bas);
681 		uart_setreg(bas, REG_LCR, lcr);
682 		uart_barrier(bas);
683 		break;
684 	case UART_IOCTL_BAUD:
685 		lcr = uart_getreg(bas, REG_LCR);
686 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
687 		uart_barrier(bas);
688 		divisor = uart_getreg(bas, REG_DLL) |
689 		    (uart_getreg(bas, REG_DLH) << 8);
690 		uart_barrier(bas);
691 		uart_setreg(bas, REG_LCR, lcr);
692 		uart_barrier(bas);
693 		baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0;
694 		if (baudrate > 0)
695 			*(int*)data = baudrate;
696 		else
697 			error = ENXIO;
698 		break;
699 	default:
700 		error = EINVAL;
701 		break;
702 	}
703 	uart_unlock(sc->sc_hwmtx);
704 	return (error);
705 }
706 
707 int
708 ns8250_bus_ipend(struct uart_softc *sc)
709 {
710 	struct uart_bas *bas;
711 	struct ns8250_softc *ns8250;
712 	int ipend;
713 	uint8_t iir, lsr;
714 
715 	ns8250 = (struct ns8250_softc *)sc;
716 	bas = &sc->sc_bas;
717 	uart_lock(sc->sc_hwmtx);
718 	iir = uart_getreg(bas, REG_IIR);
719 
720 	if (ns8250->busy_detect && (iir & IIR_BUSY) == IIR_BUSY) {
721 		(void)uart_getreg(bas, DW_REG_USR);
722 		uart_unlock(sc->sc_hwmtx);
723 		return (0);
724 	}
725 	if (iir & IIR_NOPEND) {
726 		uart_unlock(sc->sc_hwmtx);
727 		return (0);
728 	}
729 	ipend = 0;
730 	if (iir & IIR_RXRDY) {
731 		lsr = uart_getreg(bas, REG_LSR);
732 		if (lsr & LSR_OE)
733 			ipend |= SER_INT_OVERRUN;
734 		if (lsr & LSR_BI)
735 			ipend |= SER_INT_BREAK;
736 		if (lsr & LSR_RXRDY)
737 			ipend |= SER_INT_RXREADY;
738 	} else {
739 		if (iir & IIR_TXRDY) {
740 			ipend |= SER_INT_TXIDLE;
741 			uart_setreg(bas, REG_IER, ns8250->ier);
742 			uart_barrier(bas);
743 		} else
744 			ipend |= SER_INT_SIGCHG;
745 	}
746 	if (ipend == 0)
747 		ns8250_clrint(bas);
748 	uart_unlock(sc->sc_hwmtx);
749 	return (ipend);
750 }
751 
752 int
753 ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits,
754     int stopbits, int parity)
755 {
756 	struct ns8250_softc *ns8250;
757 	struct uart_bas *bas;
758 	int error, limit;
759 
760 	ns8250 = (struct ns8250_softc*)sc;
761 	bas = &sc->sc_bas;
762 	uart_lock(sc->sc_hwmtx);
763 	/*
764 	 * When using DW UART with BUSY detection it is necessary to wait
765 	 * until all serial transfers are finished before manipulating the
766 	 * line control. LCR will not be affected when UART is busy.
767 	 */
768 	if (ns8250->busy_detect != 0) {
769 		/*
770 		 * Pick an arbitrary high limit to avoid getting stuck in
771 		 * an infinite loop in case when the hardware is broken.
772 		 */
773 		limit = 10 * 1024;
774 		while (((uart_getreg(bas, DW_REG_USR) & USR_BUSY) != 0) &&
775 		    --limit)
776 			DELAY(4);
777 
778 		if (limit <= 0) {
779 			/* UART appears to be stuck */
780 			uart_unlock(sc->sc_hwmtx);
781 			return (EIO);
782 		}
783 	}
784 
785 	error = ns8250_param(bas, baudrate, databits, stopbits, parity);
786 	uart_unlock(sc->sc_hwmtx);
787 	return (error);
788 }
789 
790 int
791 ns8250_bus_probe(struct uart_softc *sc)
792 {
793 	struct ns8250_softc *ns8250;
794 	struct uart_bas *bas;
795 	int count, delay, error, limit;
796 	uint8_t lsr, mcr, ier;
797 	uint8_t val;
798 
799 	ns8250 = (struct ns8250_softc *)sc;
800 	bas = &sc->sc_bas;
801 
802 	error = ns8250_probe(bas);
803 	if (error)
804 		return (error);
805 
806 	mcr = MCR_IE;
807 	if (sc->sc_sysdev == NULL) {
808 		/* By using ns8250_init() we also set DTR and RTS. */
809 		ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE);
810 	} else
811 		mcr |= MCR_DTR | MCR_RTS;
812 
813 	error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
814 	if (error)
815 		return (error);
816 
817 	/*
818 	 * Set loopback mode. This avoids having garbage on the wire and
819 	 * also allows us send and receive data. We set DTR and RTS to
820 	 * avoid the possibility that automatic flow-control prevents
821 	 * any data from being sent.
822 	 */
823 	uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS);
824 	uart_barrier(bas);
825 
826 	/*
827 	 * Enable FIFOs. And check that the UART has them. If not, we're
828 	 * done. Since this is the first time we enable the FIFOs, we reset
829 	 * them.
830 	 */
831 	val = FCR_ENABLE;
832 #ifdef CPU_XBURST
833 	val |= FCR_UART_ON;
834 #endif
835 	uart_setreg(bas, REG_FCR, val);
836 	uart_barrier(bas);
837 	if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) {
838 		/*
839 		 * NS16450 or INS8250. We don't bother to differentiate
840 		 * between them. They're too old to be interesting.
841 		 */
842 		uart_setreg(bas, REG_MCR, mcr);
843 		uart_barrier(bas);
844 		sc->sc_rxfifosz = sc->sc_txfifosz = 1;
845 		device_set_desc(sc->sc_dev, "8250 or 16450 or compatible");
846 		return (0);
847 	}
848 
849 	val = FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST;
850 #ifdef CPU_XBURST
851 	val |= FCR_UART_ON;
852 #endif
853 	uart_setreg(bas, REG_FCR, val);
854 	uart_barrier(bas);
855 
856 	count = 0;
857 	delay = ns8250_delay(bas);
858 
859 	/* We have FIFOs. Drain the transmitter and receiver. */
860 	error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER);
861 	if (error) {
862 		uart_setreg(bas, REG_MCR, mcr);
863 		val = 0;
864 #ifdef CPU_XBURST
865 		val |= FCR_UART_ON;
866 #endif
867 		uart_setreg(bas, REG_FCR, val);
868 		uart_barrier(bas);
869 		goto describe;
870 	}
871 
872 	/*
873 	 * We should have a sufficiently clean "pipe" to determine the
874 	 * size of the FIFOs. We send as much characters as is reasonable
875 	 * and wait for the overflow bit in the LSR register to be
876 	 * asserted, counting the characters as we send them. Based on
877 	 * that count we know the FIFO size.
878 	 */
879 	do {
880 		uart_setreg(bas, REG_DATA, 0);
881 		uart_barrier(bas);
882 		count++;
883 
884 		limit = 30;
885 		lsr = 0;
886 		/*
887 		 * LSR bits are cleared upon read, so we must accumulate
888 		 * them to be able to test LSR_OE below.
889 		 */
890 		while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 &&
891 		    --limit)
892 			DELAY(delay);
893 		if (limit == 0) {
894 			ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
895 			uart_setreg(bas, REG_IER, ier);
896 			uart_setreg(bas, REG_MCR, mcr);
897 			val = 0;
898 #ifdef CPU_XBURST
899 			val |= FCR_UART_ON;
900 #endif
901 			uart_setreg(bas, REG_FCR, val);
902 			uart_barrier(bas);
903 			count = 0;
904 			goto describe;
905 		}
906 	} while ((lsr & LSR_OE) == 0 && count < 260);
907 	count--;
908 
909 	uart_setreg(bas, REG_MCR, mcr);
910 
911 	/* Reset FIFOs. */
912 	ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
913 
914  describe:
915 	if (count >= 14 && count <= 16) {
916 		sc->sc_rxfifosz = 16;
917 		device_set_desc(sc->sc_dev, "16550 or compatible");
918 	} else if (count >= 28 && count <= 32) {
919 		sc->sc_rxfifosz = 32;
920 		device_set_desc(sc->sc_dev, "16650 or compatible");
921 	} else if (count >= 56 && count <= 64) {
922 		sc->sc_rxfifosz = 64;
923 		device_set_desc(sc->sc_dev, "16750 or compatible");
924 	} else if (count >= 112 && count <= 128) {
925 		sc->sc_rxfifosz = 128;
926 		device_set_desc(sc->sc_dev, "16950 or compatible");
927 	} else if (count >= 224 && count <= 256) {
928 		sc->sc_rxfifosz = 256;
929 		device_set_desc(sc->sc_dev, "16x50 with 256 byte FIFO");
930 	} else {
931 		sc->sc_rxfifosz = 16;
932 		device_set_desc(sc->sc_dev,
933 		    "Non-standard ns8250 class UART with FIFOs");
934 	}
935 
936 	/*
937 	 * Force the Tx FIFO size to 16 bytes for now. We don't program the
938 	 * Tx trigger. Also, we assume that all data has been sent when the
939 	 * interrupt happens.
940 	 */
941 	sc->sc_txfifosz = 16;
942 
943 #if 0
944 	/*
945 	 * XXX there are some issues related to hardware flow control and
946 	 * it's likely that uart(4) is the cause. This basically needs more
947 	 * investigation, but we avoid using for hardware flow control
948 	 * until then.
949 	 */
950 	/* 16650s or higher have automatic flow control. */
951 	if (sc->sc_rxfifosz > 16) {
952 		sc->sc_hwiflow = 1;
953 		sc->sc_hwoflow = 1;
954 	}
955 #endif
956 
957 	return (0);
958 }
959 
960 int
961 ns8250_bus_receive(struct uart_softc *sc)
962 {
963 	struct uart_bas *bas;
964 	int xc;
965 	uint8_t lsr;
966 
967 	bas = &sc->sc_bas;
968 	uart_lock(sc->sc_hwmtx);
969 	lsr = uart_getreg(bas, REG_LSR);
970 	while (lsr & LSR_RXRDY) {
971 		if (uart_rx_full(sc)) {
972 			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
973 			break;
974 		}
975 		xc = uart_getreg(bas, REG_DATA);
976 		if (lsr & LSR_FE)
977 			xc |= UART_STAT_FRAMERR;
978 		if (lsr & LSR_PE)
979 			xc |= UART_STAT_PARERR;
980 		uart_rx_put(sc, xc);
981 		lsr = uart_getreg(bas, REG_LSR);
982 	}
983 	/* Discard everything left in the Rx FIFO. */
984 	while (lsr & LSR_RXRDY) {
985 		(void)uart_getreg(bas, REG_DATA);
986 		uart_barrier(bas);
987 		lsr = uart_getreg(bas, REG_LSR);
988 	}
989 	uart_unlock(sc->sc_hwmtx);
990  	return (0);
991 }
992 
993 int
994 ns8250_bus_setsig(struct uart_softc *sc, int sig)
995 {
996 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
997 	struct uart_bas *bas;
998 	uint32_t new, old;
999 
1000 	bas = &sc->sc_bas;
1001 	do {
1002 		old = sc->sc_hwsig;
1003 		new = old;
1004 		if (sig & SER_DDTR) {
1005 			new = (new & ~SER_DTR) | (sig & (SER_DTR | SER_DDTR));
1006 		}
1007 		if (sig & SER_DRTS) {
1008 			new = (new & ~SER_RTS) | (sig & (SER_RTS | SER_DRTS));
1009 		}
1010 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
1011 	uart_lock(sc->sc_hwmtx);
1012 	ns8250->mcr &= ~(MCR_DTR|MCR_RTS);
1013 	if (new & SER_DTR)
1014 		ns8250->mcr |= MCR_DTR;
1015 	if (new & SER_RTS)
1016 		ns8250->mcr |= MCR_RTS;
1017 	uart_setreg(bas, REG_MCR, ns8250->mcr);
1018 	uart_barrier(bas);
1019 	uart_unlock(sc->sc_hwmtx);
1020 	return (0);
1021 }
1022 
1023 int
1024 ns8250_bus_transmit(struct uart_softc *sc)
1025 {
1026 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1027 	struct uart_bas *bas;
1028 	int i;
1029 
1030 	bas = &sc->sc_bas;
1031 	uart_lock(sc->sc_hwmtx);
1032 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0)
1033 		DELAY(4);
1034 	for (i = 0; i < sc->sc_txdatasz; i++) {
1035 		uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]);
1036 		uart_barrier(bas);
1037 	}
1038 	uart_setreg(bas, REG_IER, ns8250->ier | IER_ETXRDY);
1039 	uart_barrier(bas);
1040 	if (broken_txfifo)
1041 		ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
1042 	else
1043 		sc->sc_txbusy = 1;
1044 	uart_unlock(sc->sc_hwmtx);
1045 	if (broken_txfifo)
1046 		uart_sched_softih(sc, SER_INT_TXIDLE);
1047 	return (0);
1048 }
1049 
1050 void
1051 ns8250_bus_grab(struct uart_softc *sc)
1052 {
1053 	struct uart_bas *bas = &sc->sc_bas;
1054 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1055 	u_char ier;
1056 
1057 	/*
1058 	 * turn off all interrupts to enter polling mode. Leave the
1059 	 * saved mask alone. We'll restore whatever it was in ungrab.
1060 	 * All pending interrupt signals are reset when IER is set to 0.
1061 	 */
1062 	uart_lock(sc->sc_hwmtx);
1063 	ier = uart_getreg(bas, REG_IER);
1064 	uart_setreg(bas, REG_IER, ier & ns8250->ier_mask);
1065 	uart_barrier(bas);
1066 	uart_unlock(sc->sc_hwmtx);
1067 }
1068 
1069 void
1070 ns8250_bus_ungrab(struct uart_softc *sc)
1071 {
1072 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1073 	struct uart_bas *bas = &sc->sc_bas;
1074 
1075 	/*
1076 	 * Restore previous interrupt mask
1077 	 */
1078 	uart_lock(sc->sc_hwmtx);
1079 	uart_setreg(bas, REG_IER, ns8250->ier);
1080 	uart_barrier(bas);
1081 	uart_unlock(sc->sc_hwmtx);
1082 }
1083