xref: /freebsd/sys/dev/uart/uart_dev_ns8250.c (revision c6a33c8e88c5684876e670c8189d03ad25108d8a)
1 /*-
2  * Copyright (c) 2003 Marcel Moolenaar
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include "opt_platform.h"
28 #include "opt_uart.h"
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/conf.h>
37 #include <sys/kernel.h>
38 #include <sys/sysctl.h>
39 #include <machine/bus.h>
40 
41 #ifdef FDT
42 #include <dev/fdt/fdt_common.h>
43 #include <dev/ofw/ofw_bus.h>
44 #include <dev/ofw/ofw_bus_subr.h>
45 #endif
46 
47 #include <dev/uart/uart.h>
48 #include <dev/uart/uart_cpu.h>
49 #ifdef FDT
50 #include <dev/uart/uart_cpu_fdt.h>
51 #endif
52 #include <dev/uart/uart_bus.h>
53 #include <dev/uart/uart_dev_ns8250.h>
54 
55 #include <dev/ic/ns16550.h>
56 
57 #include "uart_if.h"
58 
59 #define	DEFAULT_RCLK	1843200
60 
61 /*
62  * Set the default baudrate tolerance to 3.0%.
63  *
64  * Some embedded boards have odd reference clocks (eg 25MHz)
65  * and we need to handle higher variances in the target baud rate.
66  */
67 #ifndef	UART_DEV_TOLERANCE_PCT
68 #define	UART_DEV_TOLERANCE_PCT	30
69 #endif	/* UART_DEV_TOLERANCE_PCT */
70 
71 static int broken_txfifo = 0;
72 SYSCTL_INT(_hw, OID_AUTO, broken_txfifo, CTLFLAG_RWTUN,
73 	&broken_txfifo, 0, "UART FIFO has QEMU emulation bug");
74 
75 /*
76  * Clear pending interrupts. THRE is cleared by reading IIR. Data
77  * that may have been received gets lost here.
78  */
79 static void
80 ns8250_clrint(struct uart_bas *bas)
81 {
82 	uint8_t iir, lsr;
83 
84 	iir = uart_getreg(bas, REG_IIR);
85 	while ((iir & IIR_NOPEND) == 0) {
86 		iir &= IIR_IMASK;
87 		if (iir == IIR_RLS) {
88 			lsr = uart_getreg(bas, REG_LSR);
89 			if (lsr & (LSR_BI|LSR_FE|LSR_PE))
90 				(void)uart_getreg(bas, REG_DATA);
91 		} else if (iir == IIR_RXRDY || iir == IIR_RXTOUT)
92 			(void)uart_getreg(bas, REG_DATA);
93 		else if (iir == IIR_MLSC)
94 			(void)uart_getreg(bas, REG_MSR);
95 		uart_barrier(bas);
96 		iir = uart_getreg(bas, REG_IIR);
97 	}
98 }
99 
100 static int
101 ns8250_delay(struct uart_bas *bas)
102 {
103 	int divisor;
104 	u_char lcr;
105 
106 	lcr = uart_getreg(bas, REG_LCR);
107 	uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
108 	uart_barrier(bas);
109 	divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8);
110 	uart_barrier(bas);
111 	uart_setreg(bas, REG_LCR, lcr);
112 	uart_barrier(bas);
113 
114 	/* 1/10th the time to transmit 1 character (estimate). */
115 	if (divisor <= 134)
116 		return (16000000 * divisor / bas->rclk);
117 	return (16000 * divisor / (bas->rclk / 1000));
118 }
119 
120 static int
121 ns8250_divisor(int rclk, int baudrate)
122 {
123 	int actual_baud, divisor;
124 	int error;
125 
126 	if (baudrate == 0)
127 		return (0);
128 
129 	divisor = (rclk / (baudrate << 3) + 1) >> 1;
130 	if (divisor == 0 || divisor >= 65536)
131 		return (0);
132 	actual_baud = rclk / (divisor << 4);
133 
134 	/* 10 times error in percent: */
135 	error = ((actual_baud - baudrate) * 2000 / baudrate + 1) >> 1;
136 
137 	/* enforce maximum error tolerance: */
138 	if (error < -UART_DEV_TOLERANCE_PCT || error > UART_DEV_TOLERANCE_PCT)
139 		return (0);
140 
141 	return (divisor);
142 }
143 
144 static int
145 ns8250_drain(struct uart_bas *bas, int what)
146 {
147 	int delay, limit;
148 
149 	delay = ns8250_delay(bas);
150 
151 	if (what & UART_DRAIN_TRANSMITTER) {
152 		/*
153 		 * Pick an arbitrary high limit to avoid getting stuck in
154 		 * an infinite loop when the hardware is broken. Make the
155 		 * limit high enough to handle large FIFOs.
156 		 */
157 		limit = 10*1024;
158 		while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
159 			DELAY(delay);
160 		if (limit == 0) {
161 			/* printf("ns8250: transmitter appears stuck... "); */
162 			return (EIO);
163 		}
164 	}
165 
166 	if (what & UART_DRAIN_RECEIVER) {
167 		/*
168 		 * Pick an arbitrary high limit to avoid getting stuck in
169 		 * an infinite loop when the hardware is broken. Make the
170 		 * limit high enough to handle large FIFOs and integrated
171 		 * UARTs. The HP rx2600 for example has 3 UARTs on the
172 		 * management board that tend to get a lot of data send
173 		 * to it when the UART is first activated.
174 		 */
175 		limit=10*4096;
176 		while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) {
177 			(void)uart_getreg(bas, REG_DATA);
178 			uart_barrier(bas);
179 			DELAY(delay << 2);
180 		}
181 		if (limit == 0) {
182 			/* printf("ns8250: receiver appears broken... "); */
183 			return (EIO);
184 		}
185 	}
186 
187 	return (0);
188 }
189 
190 /*
191  * We can only flush UARTs with FIFOs. UARTs without FIFOs should be
192  * drained. WARNING: this function clobbers the FIFO setting!
193  */
194 static void
195 ns8250_flush(struct uart_bas *bas, int what)
196 {
197 	uint8_t fcr;
198 
199 	fcr = FCR_ENABLE;
200 	if (what & UART_FLUSH_TRANSMITTER)
201 		fcr |= FCR_XMT_RST;
202 	if (what & UART_FLUSH_RECEIVER)
203 		fcr |= FCR_RCV_RST;
204 	uart_setreg(bas, REG_FCR, fcr);
205 	uart_barrier(bas);
206 }
207 
208 static int
209 ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
210     int parity)
211 {
212 	int divisor;
213 	uint8_t lcr;
214 
215 	lcr = 0;
216 	if (databits >= 8)
217 		lcr |= LCR_8BITS;
218 	else if (databits == 7)
219 		lcr |= LCR_7BITS;
220 	else if (databits == 6)
221 		lcr |= LCR_6BITS;
222 	else
223 		lcr |= LCR_5BITS;
224 	if (stopbits > 1)
225 		lcr |= LCR_STOPB;
226 	lcr |= parity << 3;
227 
228 	/* Set baudrate. */
229 	if (baudrate > 0) {
230 		divisor = ns8250_divisor(bas->rclk, baudrate);
231 		if (divisor == 0)
232 			return (EINVAL);
233 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
234 		uart_barrier(bas);
235 		uart_setreg(bas, REG_DLL, divisor & 0xff);
236 		uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff);
237 		uart_barrier(bas);
238 	}
239 
240 	/* Set LCR and clear DLAB. */
241 	uart_setreg(bas, REG_LCR, lcr);
242 	uart_barrier(bas);
243 	return (0);
244 }
245 
246 /*
247  * Low-level UART interface.
248  */
249 static int ns8250_probe(struct uart_bas *bas);
250 static void ns8250_init(struct uart_bas *bas, int, int, int, int);
251 static void ns8250_term(struct uart_bas *bas);
252 static void ns8250_putc(struct uart_bas *bas, int);
253 static int ns8250_rxready(struct uart_bas *bas);
254 static int ns8250_getc(struct uart_bas *bas, struct mtx *);
255 
256 struct uart_ops uart_ns8250_ops = {
257 	.probe = ns8250_probe,
258 	.init = ns8250_init,
259 	.term = ns8250_term,
260 	.putc = ns8250_putc,
261 	.rxready = ns8250_rxready,
262 	.getc = ns8250_getc,
263 };
264 
265 static int
266 ns8250_probe(struct uart_bas *bas)
267 {
268 	u_char val;
269 
270 	/* Check known 0 bits that don't depend on DLAB. */
271 	val = uart_getreg(bas, REG_IIR);
272 	if (val & 0x30)
273 		return (ENXIO);
274 	/*
275 	 * Bit 6 of the MCR (= 0x40) appears to be 1 for the Sun1699
276 	 * chip, but otherwise doesn't seem to have a function. In
277 	 * other words, uart(4) works regardless. Ignore that bit so
278 	 * the probe succeeds.
279 	 */
280 	val = uart_getreg(bas, REG_MCR);
281 	if (val & 0xa0)
282 		return (ENXIO);
283 
284 	return (0);
285 }
286 
287 static void
288 ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
289     int parity)
290 {
291 	u_char	ier;
292 
293 	if (bas->rclk == 0)
294 		bas->rclk = DEFAULT_RCLK;
295 	ns8250_param(bas, baudrate, databits, stopbits, parity);
296 
297 	/* Disable all interrupt sources. */
298 	/*
299 	 * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA
300 	 * UARTs split the receive time-out interrupt bit out separately as
301 	 * 0x10.  This gets handled by ier_mask and ier_rxbits below.
302 	 */
303 	ier = uart_getreg(bas, REG_IER) & 0xe0;
304 	uart_setreg(bas, REG_IER, ier);
305 	uart_barrier(bas);
306 
307 	/* Disable the FIFO (if present). */
308 	uart_setreg(bas, REG_FCR, 0);
309 	uart_barrier(bas);
310 
311 	/* Set RTS & DTR. */
312 	uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR);
313 	uart_barrier(bas);
314 
315 	ns8250_clrint(bas);
316 }
317 
318 static void
319 ns8250_term(struct uart_bas *bas)
320 {
321 
322 	/* Clear RTS & DTR. */
323 	uart_setreg(bas, REG_MCR, MCR_IE);
324 	uart_barrier(bas);
325 }
326 
327 static void
328 ns8250_putc(struct uart_bas *bas, int c)
329 {
330 	int limit;
331 
332 	limit = 250000;
333 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit)
334 		DELAY(4);
335 	uart_setreg(bas, REG_DATA, c);
336 	uart_barrier(bas);
337 	limit = 250000;
338 	while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
339 		DELAY(4);
340 }
341 
342 static int
343 ns8250_rxready(struct uart_bas *bas)
344 {
345 
346 	return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0);
347 }
348 
349 static int
350 ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx)
351 {
352 	int c;
353 
354 	uart_lock(hwmtx);
355 
356 	while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) {
357 		uart_unlock(hwmtx);
358 		DELAY(4);
359 		uart_lock(hwmtx);
360 	}
361 
362 	c = uart_getreg(bas, REG_DATA);
363 
364 	uart_unlock(hwmtx);
365 
366 	return (c);
367 }
368 
369 static kobj_method_t ns8250_methods[] = {
370 	KOBJMETHOD(uart_attach,		ns8250_bus_attach),
371 	KOBJMETHOD(uart_detach,		ns8250_bus_detach),
372 	KOBJMETHOD(uart_flush,		ns8250_bus_flush),
373 	KOBJMETHOD(uart_getsig,		ns8250_bus_getsig),
374 	KOBJMETHOD(uart_ioctl,		ns8250_bus_ioctl),
375 	KOBJMETHOD(uart_ipend,		ns8250_bus_ipend),
376 	KOBJMETHOD(uart_param,		ns8250_bus_param),
377 	KOBJMETHOD(uart_probe,		ns8250_bus_probe),
378 	KOBJMETHOD(uart_receive,	ns8250_bus_receive),
379 	KOBJMETHOD(uart_setsig,		ns8250_bus_setsig),
380 	KOBJMETHOD(uart_transmit,	ns8250_bus_transmit),
381 	KOBJMETHOD(uart_grab,		ns8250_bus_grab),
382 	KOBJMETHOD(uart_ungrab,		ns8250_bus_ungrab),
383 	{ 0, 0 }
384 };
385 
386 struct uart_class uart_ns8250_class = {
387 	"ns8250",
388 	ns8250_methods,
389 	sizeof(struct ns8250_softc),
390 	.uc_ops = &uart_ns8250_ops,
391 	.uc_range = 8,
392 	.uc_rclk = DEFAULT_RCLK,
393 	.uc_rshift = 0
394 };
395 
396 #ifdef FDT
397 static struct ofw_compat_data compat_data[] = {
398 	{"ns16550",		(uintptr_t)&uart_ns8250_class},
399 	{NULL,			(uintptr_t)NULL},
400 };
401 UART_FDT_CLASS_AND_DEVICE(compat_data);
402 #endif
403 
404 #define	SIGCHG(c, i, s, d)				\
405 	if (c) {					\
406 		i |= (i & s) ? s : s | d;		\
407 	} else {					\
408 		i = (i & s) ? (i & ~s) | d : i;		\
409 	}
410 
411 int
412 ns8250_bus_attach(struct uart_softc *sc)
413 {
414 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
415 	struct uart_bas *bas;
416 	unsigned int ivar;
417 #ifdef FDT
418 	phandle_t node;
419 	pcell_t cell;
420 #endif
421 
422 	ns8250->busy_detect = 0;
423 
424 #ifdef FDT
425 	/*
426 	 * Check whether uart requires to read USR reg when IIR_BUSY and
427 	 * has broken txfifo.
428 	 */
429 	node = ofw_bus_get_node(sc->sc_dev);
430 	if ((OF_getencprop(node, "busy-detect", &cell, sizeof(cell))) > 0)
431 		ns8250->busy_detect = cell ? 1 : 0;
432 	if ((OF_getencprop(node, "broken-txfifo", &cell, sizeof(cell))) > 0)
433 		broken_txfifo =  cell ? 1 : 0;
434 #endif
435 
436 	bas = &sc->sc_bas;
437 
438 	ns8250->mcr = uart_getreg(bas, REG_MCR);
439 	ns8250->fcr = FCR_ENABLE;
440 	if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags",
441 	    &ivar)) {
442 		if (UART_FLAGS_FCR_RX_LOW(ivar))
443 			ns8250->fcr |= FCR_RX_LOW;
444 		else if (UART_FLAGS_FCR_RX_MEDL(ivar))
445 			ns8250->fcr |= FCR_RX_MEDL;
446 		else if (UART_FLAGS_FCR_RX_HIGH(ivar))
447 			ns8250->fcr |= FCR_RX_HIGH;
448 		else
449 			ns8250->fcr |= FCR_RX_MEDH;
450 	} else
451 		ns8250->fcr |= FCR_RX_MEDH;
452 
453 	/* Get IER mask */
454 	ivar = 0xf0;
455 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask",
456 	    &ivar);
457 	ns8250->ier_mask = (uint8_t)(ivar & 0xff);
458 
459 	/* Get IER RX interrupt bits */
460 	ivar = IER_EMSC | IER_ERLS | IER_ERXRDY;
461 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits",
462 	    &ivar);
463 	ns8250->ier_rxbits = (uint8_t)(ivar & 0xff);
464 
465 	uart_setreg(bas, REG_FCR, ns8250->fcr);
466 	uart_barrier(bas);
467 	ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
468 
469 	if (ns8250->mcr & MCR_DTR)
470 		sc->sc_hwsig |= SER_DTR;
471 	if (ns8250->mcr & MCR_RTS)
472 		sc->sc_hwsig |= SER_RTS;
473 	ns8250_bus_getsig(sc);
474 
475 	ns8250_clrint(bas);
476 	ns8250->ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
477 	ns8250->ier |= ns8250->ier_rxbits;
478 	uart_setreg(bas, REG_IER, ns8250->ier);
479 	uart_barrier(bas);
480 
481 	/*
482 	 * Timing of the H/W access was changed with r253161 of uart_core.c
483 	 * It has been observed that an ITE IT8513E would signal a break
484 	 * condition with pretty much every character it received, unless
485 	 * it had enough time to settle between ns8250_bus_attach() and
486 	 * ns8250_bus_ipend() -- which it accidentally had before r253161.
487 	 * It's not understood why the UART chip behaves this way and it
488 	 * could very well be that the DELAY make the H/W work in the same
489 	 * accidental manner as before. More analysis is warranted, but
490 	 * at least now we fixed a known regression.
491 	 */
492 	DELAY(200);
493 	return (0);
494 }
495 
496 int
497 ns8250_bus_detach(struct uart_softc *sc)
498 {
499 	struct ns8250_softc *ns8250;
500 	struct uart_bas *bas;
501 	u_char ier;
502 
503 	ns8250 = (struct ns8250_softc *)sc;
504 	bas = &sc->sc_bas;
505 	ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
506 	uart_setreg(bas, REG_IER, ier);
507 	uart_barrier(bas);
508 	ns8250_clrint(bas);
509 	return (0);
510 }
511 
512 int
513 ns8250_bus_flush(struct uart_softc *sc, int what)
514 {
515 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
516 	struct uart_bas *bas;
517 	int error;
518 
519 	bas = &sc->sc_bas;
520 	uart_lock(sc->sc_hwmtx);
521 	if (sc->sc_rxfifosz > 1) {
522 		ns8250_flush(bas, what);
523 		uart_setreg(bas, REG_FCR, ns8250->fcr);
524 		uart_barrier(bas);
525 		error = 0;
526 	} else
527 		error = ns8250_drain(bas, what);
528 	uart_unlock(sc->sc_hwmtx);
529 	return (error);
530 }
531 
532 int
533 ns8250_bus_getsig(struct uart_softc *sc)
534 {
535 	uint32_t new, old, sig;
536 	uint8_t msr;
537 
538 	do {
539 		old = sc->sc_hwsig;
540 		sig = old;
541 		uart_lock(sc->sc_hwmtx);
542 		msr = uart_getreg(&sc->sc_bas, REG_MSR);
543 		uart_unlock(sc->sc_hwmtx);
544 		SIGCHG(msr & MSR_DSR, sig, SER_DSR, SER_DDSR);
545 		SIGCHG(msr & MSR_CTS, sig, SER_CTS, SER_DCTS);
546 		SIGCHG(msr & MSR_DCD, sig, SER_DCD, SER_DDCD);
547 		SIGCHG(msr & MSR_RI,  sig, SER_RI,  SER_DRI);
548 		new = sig & ~SER_MASK_DELTA;
549 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
550 	return (sig);
551 }
552 
553 int
554 ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
555 {
556 	struct uart_bas *bas;
557 	int baudrate, divisor, error;
558 	uint8_t efr, lcr;
559 
560 	bas = &sc->sc_bas;
561 	error = 0;
562 	uart_lock(sc->sc_hwmtx);
563 	switch (request) {
564 	case UART_IOCTL_BREAK:
565 		lcr = uart_getreg(bas, REG_LCR);
566 		if (data)
567 			lcr |= LCR_SBREAK;
568 		else
569 			lcr &= ~LCR_SBREAK;
570 		uart_setreg(bas, REG_LCR, lcr);
571 		uart_barrier(bas);
572 		break;
573 	case UART_IOCTL_IFLOW:
574 		lcr = uart_getreg(bas, REG_LCR);
575 		uart_barrier(bas);
576 		uart_setreg(bas, REG_LCR, 0xbf);
577 		uart_barrier(bas);
578 		efr = uart_getreg(bas, REG_EFR);
579 		if (data)
580 			efr |= EFR_RTS;
581 		else
582 			efr &= ~EFR_RTS;
583 		uart_setreg(bas, REG_EFR, efr);
584 		uart_barrier(bas);
585 		uart_setreg(bas, REG_LCR, lcr);
586 		uart_barrier(bas);
587 		break;
588 	case UART_IOCTL_OFLOW:
589 		lcr = uart_getreg(bas, REG_LCR);
590 		uart_barrier(bas);
591 		uart_setreg(bas, REG_LCR, 0xbf);
592 		uart_barrier(bas);
593 		efr = uart_getreg(bas, REG_EFR);
594 		if (data)
595 			efr |= EFR_CTS;
596 		else
597 			efr &= ~EFR_CTS;
598 		uart_setreg(bas, REG_EFR, efr);
599 		uart_barrier(bas);
600 		uart_setreg(bas, REG_LCR, lcr);
601 		uart_barrier(bas);
602 		break;
603 	case UART_IOCTL_BAUD:
604 		lcr = uart_getreg(bas, REG_LCR);
605 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
606 		uart_barrier(bas);
607 		divisor = uart_getreg(bas, REG_DLL) |
608 		    (uart_getreg(bas, REG_DLH) << 8);
609 		uart_barrier(bas);
610 		uart_setreg(bas, REG_LCR, lcr);
611 		uart_barrier(bas);
612 		baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0;
613 		if (baudrate > 0)
614 			*(int*)data = baudrate;
615 		else
616 			error = ENXIO;
617 		break;
618 	default:
619 		error = EINVAL;
620 		break;
621 	}
622 	uart_unlock(sc->sc_hwmtx);
623 	return (error);
624 }
625 
626 int
627 ns8250_bus_ipend(struct uart_softc *sc)
628 {
629 	struct uart_bas *bas;
630 	struct ns8250_softc *ns8250;
631 	int ipend;
632 	uint8_t iir, lsr;
633 
634 	ns8250 = (struct ns8250_softc *)sc;
635 	bas = &sc->sc_bas;
636 	uart_lock(sc->sc_hwmtx);
637 	iir = uart_getreg(bas, REG_IIR);
638 
639 	if (ns8250->busy_detect && (iir & IIR_BUSY) == IIR_BUSY) {
640 		(void)uart_getreg(bas, DW_REG_USR);
641 		uart_unlock(sc->sc_hwmtx);
642 		return (0);
643 	}
644 	if (iir & IIR_NOPEND) {
645 		uart_unlock(sc->sc_hwmtx);
646 		return (0);
647 	}
648 	ipend = 0;
649 	if (iir & IIR_RXRDY) {
650 		lsr = uart_getreg(bas, REG_LSR);
651 		if (lsr & LSR_OE)
652 			ipend |= SER_INT_OVERRUN;
653 		if (lsr & LSR_BI)
654 			ipend |= SER_INT_BREAK;
655 		if (lsr & LSR_RXRDY)
656 			ipend |= SER_INT_RXREADY;
657 	} else {
658 		if (iir & IIR_TXRDY) {
659 			ipend |= SER_INT_TXIDLE;
660 			uart_setreg(bas, REG_IER, ns8250->ier);
661 		} else
662 			ipend |= SER_INT_SIGCHG;
663 	}
664 	if (ipend == 0)
665 		ns8250_clrint(bas);
666 	uart_unlock(sc->sc_hwmtx);
667 	return (ipend);
668 }
669 
670 int
671 ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits,
672     int stopbits, int parity)
673 {
674 	struct ns8250_softc *ns8250;
675 	struct uart_bas *bas;
676 	int error, limit;
677 
678 	ns8250 = (struct ns8250_softc*)sc;
679 	bas = &sc->sc_bas;
680 	uart_lock(sc->sc_hwmtx);
681 	/*
682 	 * When using DW UART with BUSY detection it is necessary to wait
683 	 * until all serial transfers are finished before manipulating the
684 	 * line control. LCR will not be affected when UART is busy.
685 	 */
686 	if (ns8250->busy_detect != 0) {
687 		/*
688 		 * Pick an arbitrary high limit to avoid getting stuck in
689 		 * an infinite loop in case when the hardware is broken.
690 		 */
691 		limit = 10 * 1024;
692 		while (((uart_getreg(bas, DW_REG_USR) & USR_BUSY) != 0) &&
693 		    --limit)
694 			DELAY(4);
695 
696 		if (limit <= 0) {
697 			/* UART appears to be stuck */
698 			uart_unlock(sc->sc_hwmtx);
699 			return (EIO);
700 		}
701 	}
702 
703 	error = ns8250_param(bas, baudrate, databits, stopbits, parity);
704 	uart_unlock(sc->sc_hwmtx);
705 	return (error);
706 }
707 
708 int
709 ns8250_bus_probe(struct uart_softc *sc)
710 {
711 	struct ns8250_softc *ns8250;
712 	struct uart_bas *bas;
713 	int count, delay, error, limit;
714 	uint8_t lsr, mcr, ier;
715 
716 	ns8250 = (struct ns8250_softc *)sc;
717 	bas = &sc->sc_bas;
718 
719 	error = ns8250_probe(bas);
720 	if (error)
721 		return (error);
722 
723 	mcr = MCR_IE;
724 	if (sc->sc_sysdev == NULL) {
725 		/* By using ns8250_init() we also set DTR and RTS. */
726 		ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE);
727 	} else
728 		mcr |= MCR_DTR | MCR_RTS;
729 
730 	error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
731 	if (error)
732 		return (error);
733 
734 	/*
735 	 * Set loopback mode. This avoids having garbage on the wire and
736 	 * also allows us send and receive data. We set DTR and RTS to
737 	 * avoid the possibility that automatic flow-control prevents
738 	 * any data from being sent.
739 	 */
740 	uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS);
741 	uart_barrier(bas);
742 
743 	/*
744 	 * Enable FIFOs. And check that the UART has them. If not, we're
745 	 * done. Since this is the first time we enable the FIFOs, we reset
746 	 * them.
747 	 */
748 	uart_setreg(bas, REG_FCR, FCR_ENABLE);
749 	uart_barrier(bas);
750 	if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) {
751 		/*
752 		 * NS16450 or INS8250. We don't bother to differentiate
753 		 * between them. They're too old to be interesting.
754 		 */
755 		uart_setreg(bas, REG_MCR, mcr);
756 		uart_barrier(bas);
757 		sc->sc_rxfifosz = sc->sc_txfifosz = 1;
758 		device_set_desc(sc->sc_dev, "8250 or 16450 or compatible");
759 		return (0);
760 	}
761 
762 	uart_setreg(bas, REG_FCR, FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST);
763 	uart_barrier(bas);
764 
765 	count = 0;
766 	delay = ns8250_delay(bas);
767 
768 	/* We have FIFOs. Drain the transmitter and receiver. */
769 	error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER);
770 	if (error) {
771 		uart_setreg(bas, REG_MCR, mcr);
772 		uart_setreg(bas, REG_FCR, 0);
773 		uart_barrier(bas);
774 		goto describe;
775 	}
776 
777 	/*
778 	 * We should have a sufficiently clean "pipe" to determine the
779 	 * size of the FIFOs. We send as much characters as is reasonable
780 	 * and wait for the overflow bit in the LSR register to be
781 	 * asserted, counting the characters as we send them. Based on
782 	 * that count we know the FIFO size.
783 	 */
784 	do {
785 		uart_setreg(bas, REG_DATA, 0);
786 		uart_barrier(bas);
787 		count++;
788 
789 		limit = 30;
790 		lsr = 0;
791 		/*
792 		 * LSR bits are cleared upon read, so we must accumulate
793 		 * them to be able to test LSR_OE below.
794 		 */
795 		while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 &&
796 		    --limit)
797 			DELAY(delay);
798 		if (limit == 0) {
799 			ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
800 			uart_setreg(bas, REG_IER, ier);
801 			uart_setreg(bas, REG_MCR, mcr);
802 			uart_setreg(bas, REG_FCR, 0);
803 			uart_barrier(bas);
804 			count = 0;
805 			goto describe;
806 		}
807 	} while ((lsr & LSR_OE) == 0 && count < 130);
808 	count--;
809 
810 	uart_setreg(bas, REG_MCR, mcr);
811 
812 	/* Reset FIFOs. */
813 	ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
814 
815  describe:
816 	if (count >= 14 && count <= 16) {
817 		sc->sc_rxfifosz = 16;
818 		device_set_desc(sc->sc_dev, "16550 or compatible");
819 	} else if (count >= 28 && count <= 32) {
820 		sc->sc_rxfifosz = 32;
821 		device_set_desc(sc->sc_dev, "16650 or compatible");
822 	} else if (count >= 56 && count <= 64) {
823 		sc->sc_rxfifosz = 64;
824 		device_set_desc(sc->sc_dev, "16750 or compatible");
825 	} else if (count >= 112 && count <= 128) {
826 		sc->sc_rxfifosz = 128;
827 		device_set_desc(sc->sc_dev, "16950 or compatible");
828 	} else {
829 		sc->sc_rxfifosz = 16;
830 		device_set_desc(sc->sc_dev,
831 		    "Non-standard ns8250 class UART with FIFOs");
832 	}
833 
834 	/*
835 	 * Force the Tx FIFO size to 16 bytes for now. We don't program the
836 	 * Tx trigger. Also, we assume that all data has been sent when the
837 	 * interrupt happens.
838 	 */
839 	sc->sc_txfifosz = 16;
840 
841 #if 0
842 	/*
843 	 * XXX there are some issues related to hardware flow control and
844 	 * it's likely that uart(4) is the cause. This basicly needs more
845 	 * investigation, but we avoid using for hardware flow control
846 	 * until then.
847 	 */
848 	/* 16650s or higher have automatic flow control. */
849 	if (sc->sc_rxfifosz > 16) {
850 		sc->sc_hwiflow = 1;
851 		sc->sc_hwoflow = 1;
852 	}
853 #endif
854 
855 	return (0);
856 }
857 
858 int
859 ns8250_bus_receive(struct uart_softc *sc)
860 {
861 	struct uart_bas *bas;
862 	int xc;
863 	uint8_t lsr;
864 
865 	bas = &sc->sc_bas;
866 	uart_lock(sc->sc_hwmtx);
867 	lsr = uart_getreg(bas, REG_LSR);
868 	while (lsr & LSR_RXRDY) {
869 		if (uart_rx_full(sc)) {
870 			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
871 			break;
872 		}
873 		xc = uart_getreg(bas, REG_DATA);
874 		if (lsr & LSR_FE)
875 			xc |= UART_STAT_FRAMERR;
876 		if (lsr & LSR_PE)
877 			xc |= UART_STAT_PARERR;
878 		uart_rx_put(sc, xc);
879 		lsr = uart_getreg(bas, REG_LSR);
880 	}
881 	/* Discard everything left in the Rx FIFO. */
882 	while (lsr & LSR_RXRDY) {
883 		(void)uart_getreg(bas, REG_DATA);
884 		uart_barrier(bas);
885 		lsr = uart_getreg(bas, REG_LSR);
886 	}
887 	uart_unlock(sc->sc_hwmtx);
888  	return (0);
889 }
890 
891 int
892 ns8250_bus_setsig(struct uart_softc *sc, int sig)
893 {
894 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
895 	struct uart_bas *bas;
896 	uint32_t new, old;
897 
898 	bas = &sc->sc_bas;
899 	do {
900 		old = sc->sc_hwsig;
901 		new = old;
902 		if (sig & SER_DDTR) {
903 			SIGCHG(sig & SER_DTR, new, SER_DTR,
904 			    SER_DDTR);
905 		}
906 		if (sig & SER_DRTS) {
907 			SIGCHG(sig & SER_RTS, new, SER_RTS,
908 			    SER_DRTS);
909 		}
910 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
911 	uart_lock(sc->sc_hwmtx);
912 	ns8250->mcr &= ~(MCR_DTR|MCR_RTS);
913 	if (new & SER_DTR)
914 		ns8250->mcr |= MCR_DTR;
915 	if (new & SER_RTS)
916 		ns8250->mcr |= MCR_RTS;
917 	uart_setreg(bas, REG_MCR, ns8250->mcr);
918 	uart_barrier(bas);
919 	uart_unlock(sc->sc_hwmtx);
920 	return (0);
921 }
922 
923 int
924 ns8250_bus_transmit(struct uart_softc *sc)
925 {
926 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
927 	struct uart_bas *bas;
928 	int i;
929 
930 	bas = &sc->sc_bas;
931 	uart_lock(sc->sc_hwmtx);
932 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0)
933 		;
934 	uart_setreg(bas, REG_IER, ns8250->ier | IER_ETXRDY);
935 	uart_barrier(bas);
936 	for (i = 0; i < sc->sc_txdatasz; i++) {
937 		uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]);
938 		uart_barrier(bas);
939 	}
940 	if (broken_txfifo)
941 		ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
942 	else
943 		sc->sc_txbusy = 1;
944 	uart_unlock(sc->sc_hwmtx);
945 	if (broken_txfifo)
946 		uart_sched_softih(sc, SER_INT_TXIDLE);
947 	return (0);
948 }
949 
950 void
951 ns8250_bus_grab(struct uart_softc *sc)
952 {
953 	struct uart_bas *bas = &sc->sc_bas;
954 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
955 	u_char ier;
956 
957 	/*
958 	 * turn off all interrupts to enter polling mode. Leave the
959 	 * saved mask alone. We'll restore whatever it was in ungrab.
960 	 * All pending interupt signals are reset when IER is set to 0.
961 	 */
962 	uart_lock(sc->sc_hwmtx);
963 	ier = uart_getreg(bas, REG_IER);
964 	uart_setreg(bas, REG_IER, ier & ns8250->ier_mask);
965 	uart_barrier(bas);
966 	uart_unlock(sc->sc_hwmtx);
967 }
968 
969 void
970 ns8250_bus_ungrab(struct uart_softc *sc)
971 {
972 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
973 	struct uart_bas *bas = &sc->sc_bas;
974 
975 	/*
976 	 * Restore previous interrupt mask
977 	 */
978 	uart_lock(sc->sc_hwmtx);
979 	uart_setreg(bas, REG_IER, ns8250->ier);
980 	uart_barrier(bas);
981 	uart_unlock(sc->sc_hwmtx);
982 }
983