xref: /freebsd/sys/dev/uart/uart_dev_ns8250.c (revision c07d6445eb89d9dd3950361b065b7bd110e3a043)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2003 Marcel Moolenaar
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include "opt_acpi.h"
30 #include "opt_platform.h"
31 #include "opt_uart.h"
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/bus.h>
39 #include <sys/conf.h>
40 #include <sys/kernel.h>
41 #include <sys/sysctl.h>
42 #include <machine/bus.h>
43 
44 #ifdef FDT
45 #include <dev/fdt/fdt_common.h>
46 #include <dev/ofw/ofw_bus.h>
47 #include <dev/ofw/ofw_bus_subr.h>
48 #endif
49 
50 #include <dev/uart/uart.h>
51 #include <dev/uart/uart_cpu.h>
52 #ifdef FDT
53 #include <dev/uart/uart_cpu_fdt.h>
54 #endif
55 #include <dev/uart/uart_bus.h>
56 #include <dev/uart/uart_dev_ns8250.h>
57 #include <dev/uart/uart_ppstypes.h>
58 #ifdef DEV_ACPI
59 #include <dev/uart/uart_cpu_acpi.h>
60 #include <contrib/dev/acpica/include/acpi.h>
61 #endif
62 
63 #include <dev/ic/ns16550.h>
64 
65 #include "uart_if.h"
66 
67 #define	DEFAULT_RCLK	1843200
68 
69 /*
70  * Set the default baudrate tolerance to 3.0%.
71  *
72  * Some embedded boards have odd reference clocks (eg 25MHz)
73  * and we need to handle higher variances in the target baud rate.
74  */
75 #ifndef	UART_DEV_TOLERANCE_PCT
76 #define	UART_DEV_TOLERANCE_PCT	30
77 #endif	/* UART_DEV_TOLERANCE_PCT */
78 
79 static int broken_txfifo = 0;
80 SYSCTL_INT(_hw, OID_AUTO, broken_txfifo, CTLFLAG_RWTUN,
81 	&broken_txfifo, 0, "UART FIFO has QEMU emulation bug");
82 
83 /*
84  * Clear pending interrupts. THRE is cleared by reading IIR. Data
85  * that may have been received gets lost here.
86  */
87 static void
88 ns8250_clrint(struct uart_bas *bas)
89 {
90 	uint8_t iir, lsr;
91 
92 	iir = uart_getreg(bas, REG_IIR);
93 	while ((iir & IIR_NOPEND) == 0) {
94 		iir &= IIR_IMASK;
95 		if (iir == IIR_RLS) {
96 			lsr = uart_getreg(bas, REG_LSR);
97 			if (lsr & (LSR_BI|LSR_FE|LSR_PE))
98 				(void)uart_getreg(bas, REG_DATA);
99 		} else if (iir == IIR_RXRDY || iir == IIR_RXTOUT)
100 			(void)uart_getreg(bas, REG_DATA);
101 		else if (iir == IIR_MLSC)
102 			(void)uart_getreg(bas, REG_MSR);
103 		uart_barrier(bas);
104 		iir = uart_getreg(bas, REG_IIR);
105 	}
106 }
107 
108 static int
109 ns8250_delay(struct uart_bas *bas)
110 {
111 	int divisor;
112 	u_char lcr;
113 
114 	lcr = uart_getreg(bas, REG_LCR);
115 	uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
116 	uart_barrier(bas);
117 	divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8);
118 	uart_barrier(bas);
119 	uart_setreg(bas, REG_LCR, lcr);
120 	uart_barrier(bas);
121 
122 	/* 1/10th the time to transmit 1 character (estimate). */
123 	if (divisor <= 134)
124 		return (16000000 * divisor / bas->rclk);
125 	return (16000 * divisor / (bas->rclk / 1000));
126 }
127 
128 static int
129 ns8250_divisor(int rclk, int baudrate)
130 {
131 	int actual_baud, divisor;
132 	int error;
133 
134 	if (baudrate == 0)
135 		return (0);
136 
137 	divisor = (rclk / (baudrate << 3) + 1) >> 1;
138 	if (divisor == 0 || divisor >= 65536)
139 		return (0);
140 	actual_baud = rclk / (divisor << 4);
141 
142 	/* 10 times error in percent: */
143 	error = ((actual_baud - baudrate) * 2000 / baudrate + 1) / 2;
144 
145 	/* enforce maximum error tolerance: */
146 	if (error < -UART_DEV_TOLERANCE_PCT || error > UART_DEV_TOLERANCE_PCT)
147 		return (0);
148 
149 	return (divisor);
150 }
151 
152 static int
153 ns8250_drain(struct uart_bas *bas, int what)
154 {
155 	int delay, limit;
156 
157 	delay = ns8250_delay(bas);
158 
159 	if (what & UART_DRAIN_TRANSMITTER) {
160 		/*
161 		 * Pick an arbitrary high limit to avoid getting stuck in
162 		 * an infinite loop when the hardware is broken. Make the
163 		 * limit high enough to handle large FIFOs.
164 		 */
165 		limit = 10*1024;
166 		while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
167 			DELAY(delay);
168 		if (limit == 0) {
169 			/* printf("ns8250: transmitter appears stuck... "); */
170 			return (EIO);
171 		}
172 	}
173 
174 	if (what & UART_DRAIN_RECEIVER) {
175 		/*
176 		 * Pick an arbitrary high limit to avoid getting stuck in
177 		 * an infinite loop when the hardware is broken. Make the
178 		 * limit high enough to handle large FIFOs and integrated
179 		 * UARTs. The HP rx2600 for example has 3 UARTs on the
180 		 * management board that tend to get a lot of data send
181 		 * to it when the UART is first activated.  Assume that we
182 		 * have finished draining if LSR_RXRDY is not asserted both
183 		 * prior to and after a DELAY; but as long as LSR_RXRDY is
184 		 * asserted, read (and discard) characters as quickly as
185 		 * possible.
186 		 */
187 		limit=10*4096;
188 		while (limit && (uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) {
189 			do {
190 				(void)uart_getreg(bas, REG_DATA);
191 				uart_barrier(bas);
192 			} while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit);
193 			uart_barrier(bas);
194 			DELAY(delay << 2);
195 		}
196 		if (limit == 0) {
197 			/* printf("ns8250: receiver appears broken... "); */
198 			return (EIO);
199 		}
200 	}
201 
202 	return (0);
203 }
204 
205 /*
206  * We can only flush UARTs with FIFOs. UARTs without FIFOs should be
207  * drained. WARNING: this function clobbers the FIFO setting!
208  */
209 static void
210 ns8250_flush(struct uart_bas *bas, int what)
211 {
212 	uint8_t fcr;
213 	uint8_t lsr;
214 	int drain = 0;
215 
216 	fcr = FCR_ENABLE;
217 #ifdef CPU_XBURST
218 	fcr |= FCR_UART_ON;
219 #endif
220 	if (what & UART_FLUSH_TRANSMITTER)
221 		fcr |= FCR_XMT_RST;
222 	if (what & UART_FLUSH_RECEIVER)
223 		fcr |= FCR_RCV_RST;
224 	uart_setreg(bas, REG_FCR, fcr);
225 	uart_barrier(bas);
226 
227 	/*
228 	 * Detect and work around emulated UARTs which don't implement the
229 	 * FCR register; on these systems we need to drain the FIFO since
230 	 * the flush we request doesn't happen.  One such system is the
231 	 * Firecracker VMM, aka. the rust-vmm/vm-superio emulation code:
232 	 * https://github.com/rust-vmm/vm-superio/issues/83
233 	 */
234 	lsr = uart_getreg(bas, REG_LSR);
235 	if (((lsr & LSR_TEMT) == 0) && (what & UART_FLUSH_TRANSMITTER))
236 		drain |= UART_DRAIN_TRANSMITTER;
237 	if ((lsr & LSR_RXRDY) && (what & UART_FLUSH_RECEIVER))
238 		drain |= UART_DRAIN_RECEIVER;
239 	if (drain != 0) {
240 		printf("ns8250: UART FCR is broken\n");
241 		ns8250_drain(bas, drain);
242 	}
243 }
244 
245 static int
246 ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
247     int parity)
248 {
249 	int divisor;
250 	uint8_t lcr;
251 
252 	lcr = 0;
253 	if (databits >= 8)
254 		lcr |= LCR_8BITS;
255 	else if (databits == 7)
256 		lcr |= LCR_7BITS;
257 	else if (databits == 6)
258 		lcr |= LCR_6BITS;
259 	else
260 		lcr |= LCR_5BITS;
261 	if (stopbits > 1)
262 		lcr |= LCR_STOPB;
263 	lcr |= parity << 3;
264 
265 	/* Set baudrate. */
266 	if (baudrate > 0) {
267 		divisor = ns8250_divisor(bas->rclk, baudrate);
268 		if (divisor == 0)
269 			return (EINVAL);
270 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
271 		uart_barrier(bas);
272 		uart_setreg(bas, REG_DLL, divisor & 0xff);
273 		uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff);
274 		uart_barrier(bas);
275 	}
276 
277 	/* Set LCR and clear DLAB. */
278 	uart_setreg(bas, REG_LCR, lcr);
279 	uart_barrier(bas);
280 	return (0);
281 }
282 
283 /*
284  * Low-level UART interface.
285  */
286 static int ns8250_probe(struct uart_bas *bas);
287 static void ns8250_init(struct uart_bas *bas, int, int, int, int);
288 static void ns8250_term(struct uart_bas *bas);
289 static void ns8250_putc(struct uart_bas *bas, int);
290 static int ns8250_rxready(struct uart_bas *bas);
291 static int ns8250_getc(struct uart_bas *bas, struct mtx *);
292 
293 struct uart_ops uart_ns8250_ops = {
294 	.probe = ns8250_probe,
295 	.init = ns8250_init,
296 	.term = ns8250_term,
297 	.putc = ns8250_putc,
298 	.rxready = ns8250_rxready,
299 	.getc = ns8250_getc,
300 };
301 
302 static int
303 ns8250_probe(struct uart_bas *bas)
304 {
305 	u_char val;
306 
307 #ifdef CPU_XBURST
308 	uart_setreg(bas, REG_FCR, FCR_UART_ON);
309 #endif
310 
311 	/* Check known 0 bits that don't depend on DLAB. */
312 	val = uart_getreg(bas, REG_IIR);
313 	if (val & 0x30)
314 		return (ENXIO);
315 	/*
316 	 * Bit 6 of the MCR (= 0x40) appears to be 1 for the Sun1699
317 	 * chip, but otherwise doesn't seem to have a function. In
318 	 * other words, uart(4) works regardless. Ignore that bit so
319 	 * the probe succeeds.
320 	 */
321 	val = uart_getreg(bas, REG_MCR);
322 	if (val & 0xa0)
323 		return (ENXIO);
324 
325 	return (0);
326 }
327 
328 static void
329 ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
330     int parity)
331 {
332 	u_char ier, val;
333 
334 	if (bas->rclk == 0)
335 		bas->rclk = DEFAULT_RCLK;
336 	ns8250_param(bas, baudrate, databits, stopbits, parity);
337 
338 	/* Disable all interrupt sources. */
339 	/*
340 	 * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA
341 	 * UARTs split the receive time-out interrupt bit out separately as
342 	 * 0x10.  This gets handled by ier_mask and ier_rxbits below.
343 	 */
344 	ier = uart_getreg(bas, REG_IER) & 0xe0;
345 	uart_setreg(bas, REG_IER, ier);
346 	uart_barrier(bas);
347 
348 	/* Disable the FIFO (if present). */
349 	val = 0;
350 #ifdef CPU_XBURST
351 	val |= FCR_UART_ON;
352 #endif
353 	uart_setreg(bas, REG_FCR, val);
354 	uart_barrier(bas);
355 
356 	/* Set RTS & DTR. */
357 	uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR);
358 	uart_barrier(bas);
359 
360 	ns8250_clrint(bas);
361 }
362 
363 static void
364 ns8250_term(struct uart_bas *bas)
365 {
366 
367 	/* Clear RTS & DTR. */
368 	uart_setreg(bas, REG_MCR, MCR_IE);
369 	uart_barrier(bas);
370 }
371 
372 static void
373 ns8250_putc(struct uart_bas *bas, int c)
374 {
375 	int limit;
376 
377 	limit = 250000;
378 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit)
379 		DELAY(4);
380 	uart_setreg(bas, REG_DATA, c);
381 	uart_barrier(bas);
382 }
383 
384 static int
385 ns8250_rxready(struct uart_bas *bas)
386 {
387 
388 	return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0);
389 }
390 
391 static int
392 ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx)
393 {
394 	int c;
395 
396 	uart_lock(hwmtx);
397 
398 	while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) {
399 		uart_unlock(hwmtx);
400 		DELAY(4);
401 		uart_lock(hwmtx);
402 	}
403 
404 	c = uart_getreg(bas, REG_DATA);
405 
406 	uart_unlock(hwmtx);
407 
408 	return (c);
409 }
410 
411 static kobj_method_t ns8250_methods[] = {
412 	KOBJMETHOD(uart_attach,		ns8250_bus_attach),
413 	KOBJMETHOD(uart_detach,		ns8250_bus_detach),
414 	KOBJMETHOD(uart_flush,		ns8250_bus_flush),
415 	KOBJMETHOD(uart_getsig,		ns8250_bus_getsig),
416 	KOBJMETHOD(uart_ioctl,		ns8250_bus_ioctl),
417 	KOBJMETHOD(uart_ipend,		ns8250_bus_ipend),
418 	KOBJMETHOD(uart_param,		ns8250_bus_param),
419 	KOBJMETHOD(uart_probe,		ns8250_bus_probe),
420 	KOBJMETHOD(uart_receive,	ns8250_bus_receive),
421 	KOBJMETHOD(uart_setsig,		ns8250_bus_setsig),
422 	KOBJMETHOD(uart_transmit,	ns8250_bus_transmit),
423 	KOBJMETHOD(uart_grab,		ns8250_bus_grab),
424 	KOBJMETHOD(uart_ungrab,		ns8250_bus_ungrab),
425 	{ 0, 0 }
426 };
427 
428 struct uart_class uart_ns8250_class = {
429 	"ns8250",
430 	ns8250_methods,
431 	sizeof(struct ns8250_softc),
432 	.uc_ops = &uart_ns8250_ops,
433 	.uc_range = 8,
434 	.uc_rclk = DEFAULT_RCLK,
435 	.uc_rshift = 0
436 };
437 
438 /*
439  * XXX -- refactor out ACPI and FDT ifdefs
440  */
441 #ifdef DEV_ACPI
442 static struct acpi_uart_compat_data acpi_compat_data[] = {
443 	{"AMD0020",	&uart_ns8250_class, 0, 2, 0, 48000000, UART_F_BUSY_DETECT, "AMD / Synopsys Designware UART"},
444 	{"AMDI0020", &uart_ns8250_class, 0, 2, 0, 48000000, UART_F_BUSY_DETECT, "AMD / Synopsys Designware UART"},
445 	{"MRVL0001", &uart_ns8250_class, ACPI_DBG2_16550_SUBSET, 2, 0, 200000000, UART_F_BUSY_DETECT, "Marvell / Synopsys Designware UART"},
446 	{"SCX0006",  &uart_ns8250_class, 0, 2, 0, 62500000, UART_F_BUSY_DETECT, "SynQuacer / Synopsys Designware UART"},
447 	{"HISI0031", &uart_ns8250_class, 0, 2, 0, 200000000, UART_F_BUSY_DETECT, "HiSilicon / Synopsys Designware UART"},
448 	{"NXP0018", &uart_ns8250_class, 0, 0, 0, 350000000, UART_F_BUSY_DETECT, "NXP / Synopsys Designware UART"},
449 	{"PNP0500", &uart_ns8250_class, 0, 0, 0, 0, 0, "Standard PC COM port"},
450 	{"PNP0501", &uart_ns8250_class, 0, 0, 0, 0, 0, "16550A-compatible COM port"},
451 	{"PNP0502", &uart_ns8250_class, 0, 0, 0, 0, 0, "Multiport serial device (non-intelligent 16550)"},
452 	{"PNP0510", &uart_ns8250_class, 0, 0, 0, 0, 0, "Generic IRDA-compatible device"},
453 	{"PNP0511", &uart_ns8250_class, 0, 0, 0, 0, 0, "Generic IRDA-compatible device"},
454 	{"WACF004", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet PC Screen"},
455 	{"WACF00E", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet PC Screen 00e"},
456 	{"FUJ02E5", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet at FuS Lifebook T"},
457 	{NULL, 			NULL, 0, 0 , 0, 0, 0, NULL},
458 };
459 UART_ACPI_CLASS_AND_DEVICE(acpi_compat_data);
460 #endif
461 
462 #ifdef FDT
463 static struct ofw_compat_data compat_data[] = {
464 	{"ns16550",		(uintptr_t)&uart_ns8250_class},
465 	{"ns16550a",		(uintptr_t)&uart_ns8250_class},
466 	{NULL,			(uintptr_t)NULL},
467 };
468 UART_FDT_CLASS_AND_DEVICE(compat_data);
469 #endif
470 
471 /* Use token-pasting to form SER_ and MSR_ named constants. */
472 #define	SER(sig)	SER_##sig
473 #define	SERD(sig)	SER_D##sig
474 #define	MSR(sig)	MSR_##sig
475 #define	MSRD(sig)	MSR_D##sig
476 
477 /*
478  * Detect signal changes using software delta detection.  The previous state of
479  * the signals is in 'var' the new hardware state is in 'msr', and 'sig' is the
480  * short name (DCD, CTS, etc) of the signal bit being processed; 'var' gets the
481  * new state of both the signal and the delta bits.
482  */
483 #define SIGCHGSW(var, msr, sig)					\
484 	if ((msr) & MSR(sig)) {					\
485 		if ((var & SER(sig)) == 0)			\
486 			var |= SERD(sig) | SER(sig);		\
487 	} else {						\
488 		if ((var & SER(sig)) != 0)			\
489 			var = SERD(sig) | (var & ~SER(sig));	\
490 	}
491 
492 /*
493  * Detect signal changes using the hardware msr delta bits.  This is currently
494  * used only when PPS timing information is being captured using the "narrow
495  * pulse" option.  With a narrow PPS pulse the signal may not still be asserted
496  * by time the interrupt handler is invoked.  The hardware will latch the fact
497  * that it changed in the delta bits.
498  */
499 #define SIGCHGHW(var, msr, sig)					\
500 	if ((msr) & MSRD(sig)) {				\
501 		if (((msr) & MSR(sig)) != 0)			\
502 			var |= SERD(sig) | SER(sig);		\
503 		else						\
504 			var = SERD(sig) | (var & ~SER(sig));	\
505 	}
506 
507 int
508 ns8250_bus_attach(struct uart_softc *sc)
509 {
510 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
511 	struct uart_bas *bas;
512 	unsigned int ivar;
513 #ifdef FDT
514 	phandle_t node;
515 	pcell_t cell;
516 #endif
517 
518 #ifdef FDT
519 	/* Check whether uart has a broken txfifo. */
520 	node = ofw_bus_get_node(sc->sc_dev);
521 	if ((OF_getencprop(node, "broken-txfifo", &cell, sizeof(cell))) > 0)
522 		broken_txfifo =  cell ? 1 : 0;
523 #endif
524 
525 	bas = &sc->sc_bas;
526 
527 	ns8250->busy_detect = bas->busy_detect;
528 	ns8250->mcr = uart_getreg(bas, REG_MCR);
529 	ns8250->fcr = FCR_ENABLE;
530 #ifdef CPU_XBURST
531 	ns8250->fcr |= FCR_UART_ON;
532 #endif
533 	if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags",
534 	    &ivar)) {
535 		if (UART_FLAGS_FCR_RX_LOW(ivar))
536 			ns8250->fcr |= FCR_RX_LOW;
537 		else if (UART_FLAGS_FCR_RX_MEDL(ivar))
538 			ns8250->fcr |= FCR_RX_MEDL;
539 		else if (UART_FLAGS_FCR_RX_HIGH(ivar))
540 			ns8250->fcr |= FCR_RX_HIGH;
541 		else
542 			ns8250->fcr |= FCR_RX_MEDH;
543 	} else
544 		ns8250->fcr |= FCR_RX_MEDH;
545 
546 	/* Get IER mask */
547 	ivar = 0xf0;
548 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask",
549 	    &ivar);
550 	ns8250->ier_mask = (uint8_t)(ivar & 0xff);
551 
552 	/* Get IER RX interrupt bits */
553 	ivar = IER_EMSC | IER_ERLS | IER_ERXRDY;
554 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits",
555 	    &ivar);
556 	ns8250->ier_rxbits = (uint8_t)(ivar & 0xff);
557 
558 	uart_setreg(bas, REG_FCR, ns8250->fcr);
559 	uart_barrier(bas);
560 	ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
561 
562 	if (ns8250->mcr & MCR_DTR)
563 		sc->sc_hwsig |= SER_DTR;
564 	if (ns8250->mcr & MCR_RTS)
565 		sc->sc_hwsig |= SER_RTS;
566 	ns8250_bus_getsig(sc);
567 
568 	ns8250_clrint(bas);
569 	ns8250->ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
570 	ns8250->ier |= ns8250->ier_rxbits;
571 	uart_setreg(bas, REG_IER, ns8250->ier);
572 	uart_barrier(bas);
573 
574 	/*
575 	 * Timing of the H/W access was changed with r253161 of uart_core.c
576 	 * It has been observed that an ITE IT8513E would signal a break
577 	 * condition with pretty much every character it received, unless
578 	 * it had enough time to settle between ns8250_bus_attach() and
579 	 * ns8250_bus_ipend() -- which it accidentally had before r253161.
580 	 * It's not understood why the UART chip behaves this way and it
581 	 * could very well be that the DELAY make the H/W work in the same
582 	 * accidental manner as before. More analysis is warranted, but
583 	 * at least now we fixed a known regression.
584 	 */
585 	DELAY(200);
586 	return (0);
587 }
588 
589 int
590 ns8250_bus_detach(struct uart_softc *sc)
591 {
592 	struct ns8250_softc *ns8250;
593 	struct uart_bas *bas;
594 	u_char ier;
595 
596 	ns8250 = (struct ns8250_softc *)sc;
597 	bas = &sc->sc_bas;
598 	ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
599 	uart_setreg(bas, REG_IER, ier);
600 	uart_barrier(bas);
601 	ns8250_clrint(bas);
602 	return (0);
603 }
604 
605 int
606 ns8250_bus_flush(struct uart_softc *sc, int what)
607 {
608 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
609 	struct uart_bas *bas;
610 	int error;
611 
612 	bas = &sc->sc_bas;
613 	uart_lock(sc->sc_hwmtx);
614 	if (sc->sc_rxfifosz > 1) {
615 		ns8250_flush(bas, what);
616 		uart_setreg(bas, REG_FCR, ns8250->fcr);
617 		uart_barrier(bas);
618 		error = 0;
619 	} else
620 		error = ns8250_drain(bas, what);
621 	uart_unlock(sc->sc_hwmtx);
622 	return (error);
623 }
624 
625 int
626 ns8250_bus_getsig(struct uart_softc *sc)
627 {
628 	uint32_t old, sig;
629 	uint8_t msr;
630 
631 	/*
632 	 * The delta bits are reputed to be broken on some hardware, so use
633 	 * software delta detection by default.  Use the hardware delta bits
634 	 * when capturing PPS pulses which are too narrow for software detection
635 	 * to see the edges.  Hardware delta for RI doesn't work like the
636 	 * others, so always use software for it.  Other threads may be changing
637 	 * other (non-MSR) bits in sc_hwsig, so loop until it can successfully
638 	 * update without other changes happening.  Note that the SIGCHGxx()
639 	 * macros carefully preserve the delta bits when we have to loop several
640 	 * times and a signal transitions between iterations.
641 	 */
642 	do {
643 		old = sc->sc_hwsig;
644 		sig = old;
645 		uart_lock(sc->sc_hwmtx);
646 		msr = uart_getreg(&sc->sc_bas, REG_MSR);
647 		uart_unlock(sc->sc_hwmtx);
648 		if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE) {
649 			SIGCHGHW(sig, msr, DSR);
650 			SIGCHGHW(sig, msr, CTS);
651 			SIGCHGHW(sig, msr, DCD);
652 		} else {
653 			SIGCHGSW(sig, msr, DSR);
654 			SIGCHGSW(sig, msr, CTS);
655 			SIGCHGSW(sig, msr, DCD);
656 		}
657 		SIGCHGSW(sig, msr, RI);
658 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, sig & ~SER_MASK_DELTA));
659 	return (sig);
660 }
661 
662 int
663 ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
664 {
665 	struct uart_bas *bas;
666 	int baudrate, divisor, error;
667 	uint8_t efr, lcr;
668 
669 	bas = &sc->sc_bas;
670 	error = 0;
671 	uart_lock(sc->sc_hwmtx);
672 	switch (request) {
673 	case UART_IOCTL_BREAK:
674 		lcr = uart_getreg(bas, REG_LCR);
675 		if (data)
676 			lcr |= LCR_SBREAK;
677 		else
678 			lcr &= ~LCR_SBREAK;
679 		uart_setreg(bas, REG_LCR, lcr);
680 		uart_barrier(bas);
681 		break;
682 	case UART_IOCTL_IFLOW:
683 		lcr = uart_getreg(bas, REG_LCR);
684 		uart_barrier(bas);
685 		uart_setreg(bas, REG_LCR, 0xbf);
686 		uart_barrier(bas);
687 		efr = uart_getreg(bas, REG_EFR);
688 		if (data)
689 			efr |= EFR_RTS;
690 		else
691 			efr &= ~EFR_RTS;
692 		uart_setreg(bas, REG_EFR, efr);
693 		uart_barrier(bas);
694 		uart_setreg(bas, REG_LCR, lcr);
695 		uart_barrier(bas);
696 		break;
697 	case UART_IOCTL_OFLOW:
698 		lcr = uart_getreg(bas, REG_LCR);
699 		uart_barrier(bas);
700 		uart_setreg(bas, REG_LCR, 0xbf);
701 		uart_barrier(bas);
702 		efr = uart_getreg(bas, REG_EFR);
703 		if (data)
704 			efr |= EFR_CTS;
705 		else
706 			efr &= ~EFR_CTS;
707 		uart_setreg(bas, REG_EFR, efr);
708 		uart_barrier(bas);
709 		uart_setreg(bas, REG_LCR, lcr);
710 		uart_barrier(bas);
711 		break;
712 	case UART_IOCTL_BAUD:
713 		lcr = uart_getreg(bas, REG_LCR);
714 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
715 		uart_barrier(bas);
716 		divisor = uart_getreg(bas, REG_DLL) |
717 		    (uart_getreg(bas, REG_DLH) << 8);
718 		uart_barrier(bas);
719 		uart_setreg(bas, REG_LCR, lcr);
720 		uart_barrier(bas);
721 		baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0;
722 		if (baudrate > 0)
723 			*(int*)data = baudrate;
724 		else
725 			error = ENXIO;
726 		break;
727 	default:
728 		error = EINVAL;
729 		break;
730 	}
731 	uart_unlock(sc->sc_hwmtx);
732 	return (error);
733 }
734 
735 int
736 ns8250_bus_ipend(struct uart_softc *sc)
737 {
738 	struct uart_bas *bas;
739 	struct ns8250_softc *ns8250;
740 	int ipend;
741 	uint8_t iir, lsr;
742 
743 	ns8250 = (struct ns8250_softc *)sc;
744 	bas = &sc->sc_bas;
745 	uart_lock(sc->sc_hwmtx);
746 	iir = uart_getreg(bas, REG_IIR);
747 
748 	if (ns8250->busy_detect && (iir & IIR_BUSY) == IIR_BUSY) {
749 		(void)uart_getreg(bas, DW_REG_USR);
750 		uart_unlock(sc->sc_hwmtx);
751 		return (0);
752 	}
753 	if (iir & IIR_NOPEND) {
754 		uart_unlock(sc->sc_hwmtx);
755 		return (0);
756 	}
757 	ipend = 0;
758 	if (iir & IIR_RXRDY) {
759 		lsr = uart_getreg(bas, REG_LSR);
760 		if (lsr & LSR_OE)
761 			ipend |= SER_INT_OVERRUN;
762 		if (lsr & LSR_BI)
763 			ipend |= SER_INT_BREAK;
764 		if (lsr & LSR_RXRDY)
765 			ipend |= SER_INT_RXREADY;
766 	} else {
767 		if (iir & IIR_TXRDY) {
768 			ipend |= SER_INT_TXIDLE;
769 			ns8250->ier &= ~IER_ETXRDY;
770 			uart_setreg(bas, REG_IER, ns8250->ier);
771 			uart_barrier(bas);
772 		} else
773 			ipend |= SER_INT_SIGCHG;
774 	}
775 	if (ipend == 0)
776 		ns8250_clrint(bas);
777 	uart_unlock(sc->sc_hwmtx);
778 	return (ipend);
779 }
780 
781 int
782 ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits,
783     int stopbits, int parity)
784 {
785 	struct ns8250_softc *ns8250;
786 	struct uart_bas *bas;
787 	int error, limit;
788 
789 	ns8250 = (struct ns8250_softc*)sc;
790 	bas = &sc->sc_bas;
791 	uart_lock(sc->sc_hwmtx);
792 	/*
793 	 * When using DW UART with BUSY detection it is necessary to wait
794 	 * until all serial transfers are finished before manipulating the
795 	 * line control. LCR will not be affected when UART is busy.
796 	 */
797 	if (ns8250->busy_detect != 0) {
798 		/*
799 		 * Pick an arbitrary high limit to avoid getting stuck in
800 		 * an infinite loop in case when the hardware is broken.
801 		 */
802 		limit = 10 * 1024;
803 		while (((uart_getreg(bas, DW_REG_USR) & USR_BUSY) != 0) &&
804 		    --limit)
805 			DELAY(4);
806 
807 		if (limit <= 0) {
808 			/* UART appears to be stuck */
809 			uart_unlock(sc->sc_hwmtx);
810 			return (EIO);
811 		}
812 	}
813 
814 	error = ns8250_param(bas, baudrate, databits, stopbits, parity);
815 	uart_unlock(sc->sc_hwmtx);
816 	return (error);
817 }
818 
819 int
820 ns8250_bus_probe(struct uart_softc *sc)
821 {
822 	struct uart_bas *bas;
823 	int count, delay, error, limit;
824 	uint8_t lsr, mcr, ier;
825 	uint8_t val;
826 
827 	bas = &sc->sc_bas;
828 
829 	error = ns8250_probe(bas);
830 	if (error)
831 		return (error);
832 
833 	mcr = MCR_IE;
834 	if (sc->sc_sysdev == NULL) {
835 		/* By using ns8250_init() we also set DTR and RTS. */
836 		ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE);
837 	} else
838 		mcr |= MCR_DTR | MCR_RTS;
839 
840 	error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
841 	if (error)
842 		return (error);
843 
844 	/*
845 	 * Set loopback mode. This avoids having garbage on the wire and
846 	 * also allows us send and receive data. We set DTR and RTS to
847 	 * avoid the possibility that automatic flow-control prevents
848 	 * any data from being sent.
849 	 */
850 	uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS);
851 	uart_barrier(bas);
852 
853 	/*
854 	 * Enable FIFOs. And check that the UART has them. If not, we're
855 	 * done. Since this is the first time we enable the FIFOs, we reset
856 	 * them.
857 	 */
858 	val = FCR_ENABLE;
859 #ifdef CPU_XBURST
860 	val |= FCR_UART_ON;
861 #endif
862 	uart_setreg(bas, REG_FCR, val);
863 	uart_barrier(bas);
864 	if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) {
865 		/*
866 		 * NS16450 or INS8250. We don't bother to differentiate
867 		 * between them. They're too old to be interesting.
868 		 */
869 		uart_setreg(bas, REG_MCR, mcr);
870 		uart_barrier(bas);
871 		sc->sc_rxfifosz = sc->sc_txfifosz = 1;
872 		device_set_desc(sc->sc_dev, "8250 or 16450 or compatible");
873 		return (0);
874 	}
875 
876 	val = FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST;
877 #ifdef CPU_XBURST
878 	val |= FCR_UART_ON;
879 #endif
880 	uart_setreg(bas, REG_FCR, val);
881 	uart_barrier(bas);
882 
883 	count = 0;
884 	delay = ns8250_delay(bas);
885 
886 	/* We have FIFOs. Drain the transmitter and receiver. */
887 	error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER);
888 	if (error) {
889 		uart_setreg(bas, REG_MCR, mcr);
890 		val = 0;
891 #ifdef CPU_XBURST
892 		val |= FCR_UART_ON;
893 #endif
894 		uart_setreg(bas, REG_FCR, val);
895 		uart_barrier(bas);
896 		goto describe;
897 	}
898 
899 	/*
900 	 * We should have a sufficiently clean "pipe" to determine the
901 	 * size of the FIFOs. We send as much characters as is reasonable
902 	 * and wait for the overflow bit in the LSR register to be
903 	 * asserted, counting the characters as we send them. Based on
904 	 * that count we know the FIFO size.
905 	 */
906 	do {
907 		uart_setreg(bas, REG_DATA, 0);
908 		uart_barrier(bas);
909 		count++;
910 
911 		limit = 30;
912 		lsr = 0;
913 		/*
914 		 * LSR bits are cleared upon read, so we must accumulate
915 		 * them to be able to test LSR_OE below.
916 		 */
917 		while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 &&
918 		    --limit)
919 			DELAY(delay);
920 		if (limit == 0) {
921 			/* See the comment in ns8250_init(). */
922 			ier = uart_getreg(bas, REG_IER) & 0xe0;
923 			uart_setreg(bas, REG_IER, ier);
924 			uart_setreg(bas, REG_MCR, mcr);
925 			val = 0;
926 #ifdef CPU_XBURST
927 			val |= FCR_UART_ON;
928 #endif
929 			uart_setreg(bas, REG_FCR, val);
930 			uart_barrier(bas);
931 			count = 0;
932 			goto describe;
933 		}
934 	} while ((lsr & LSR_OE) == 0 && count < 260);
935 	count--;
936 
937 	uart_setreg(bas, REG_MCR, mcr);
938 
939 	/* Reset FIFOs. */
940 	ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
941 
942  describe:
943 	if (count >= 14 && count <= 16) {
944 		sc->sc_rxfifosz = 16;
945 		device_set_desc(sc->sc_dev, "16550 or compatible");
946 	} else if (count >= 28 && count <= 32) {
947 		sc->sc_rxfifosz = 32;
948 		device_set_desc(sc->sc_dev, "16650 or compatible");
949 	} else if (count >= 56 && count <= 64) {
950 		sc->sc_rxfifosz = 64;
951 		device_set_desc(sc->sc_dev, "16750 or compatible");
952 	} else if (count >= 112 && count <= 128) {
953 		sc->sc_rxfifosz = 128;
954 		device_set_desc(sc->sc_dev, "16950 or compatible");
955 	} else if (count >= 224 && count <= 256) {
956 		sc->sc_rxfifosz = 256;
957 		device_set_desc(sc->sc_dev, "16x50 with 256 byte FIFO");
958 	} else {
959 		sc->sc_rxfifosz = 16;
960 		device_set_desc(sc->sc_dev,
961 		    "Non-standard ns8250 class UART with FIFOs");
962 	}
963 
964 	/*
965 	 * Force the Tx FIFO size to 16 bytes for now. We don't program the
966 	 * Tx trigger. Also, we assume that all data has been sent when the
967 	 * interrupt happens.
968 	 */
969 	sc->sc_txfifosz = 16;
970 
971 #if 0
972 	/*
973 	 * XXX there are some issues related to hardware flow control and
974 	 * it's likely that uart(4) is the cause. This basically needs more
975 	 * investigation, but we avoid using for hardware flow control
976 	 * until then.
977 	 */
978 	/* 16650s or higher have automatic flow control. */
979 	if (sc->sc_rxfifosz > 16) {
980 		sc->sc_hwiflow = 1;
981 		sc->sc_hwoflow = 1;
982 	}
983 #endif
984 
985 	return (0);
986 }
987 
988 int
989 ns8250_bus_receive(struct uart_softc *sc)
990 {
991 	struct uart_bas *bas;
992 	int xc;
993 	uint8_t lsr;
994 
995 	bas = &sc->sc_bas;
996 	uart_lock(sc->sc_hwmtx);
997 	lsr = uart_getreg(bas, REG_LSR);
998 	while (lsr & LSR_RXRDY) {
999 		if (uart_rx_full(sc)) {
1000 			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
1001 			break;
1002 		}
1003 		xc = uart_getreg(bas, REG_DATA);
1004 		if (lsr & LSR_FE)
1005 			xc |= UART_STAT_FRAMERR;
1006 		if (lsr & LSR_PE)
1007 			xc |= UART_STAT_PARERR;
1008 		uart_rx_put(sc, xc);
1009 		lsr = uart_getreg(bas, REG_LSR);
1010 	}
1011 	/* Discard everything left in the Rx FIFO. */
1012 	while (lsr & LSR_RXRDY) {
1013 		(void)uart_getreg(bas, REG_DATA);
1014 		uart_barrier(bas);
1015 		lsr = uart_getreg(bas, REG_LSR);
1016 	}
1017 	uart_unlock(sc->sc_hwmtx);
1018  	return (0);
1019 }
1020 
1021 int
1022 ns8250_bus_setsig(struct uart_softc *sc, int sig)
1023 {
1024 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1025 	struct uart_bas *bas;
1026 	uint32_t new, old;
1027 
1028 	bas = &sc->sc_bas;
1029 	do {
1030 		old = sc->sc_hwsig;
1031 		new = old;
1032 		if (sig & SER_DDTR) {
1033 			new = (new & ~SER_DTR) | (sig & (SER_DTR | SER_DDTR));
1034 		}
1035 		if (sig & SER_DRTS) {
1036 			new = (new & ~SER_RTS) | (sig & (SER_RTS | SER_DRTS));
1037 		}
1038 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
1039 	uart_lock(sc->sc_hwmtx);
1040 	ns8250->mcr &= ~(MCR_DTR|MCR_RTS);
1041 	if (new & SER_DTR)
1042 		ns8250->mcr |= MCR_DTR;
1043 	if (new & SER_RTS)
1044 		ns8250->mcr |= MCR_RTS;
1045 	uart_setreg(bas, REG_MCR, ns8250->mcr);
1046 	uart_barrier(bas);
1047 	uart_unlock(sc->sc_hwmtx);
1048 	return (0);
1049 }
1050 
1051 int
1052 ns8250_bus_transmit(struct uart_softc *sc)
1053 {
1054 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1055 	struct uart_bas *bas;
1056 	int i;
1057 
1058 	bas = &sc->sc_bas;
1059 	uart_lock(sc->sc_hwmtx);
1060 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0)
1061 		DELAY(4);
1062 	for (i = 0; i < sc->sc_txdatasz; i++) {
1063 		uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]);
1064 		uart_barrier(bas);
1065 	}
1066 	if (!broken_txfifo)
1067 		ns8250->ier |= IER_ETXRDY;
1068 	uart_setreg(bas, REG_IER, ns8250->ier);
1069 	uart_barrier(bas);
1070 	if (broken_txfifo)
1071 		ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
1072 	else
1073 		sc->sc_txbusy = 1;
1074 	uart_unlock(sc->sc_hwmtx);
1075 	if (broken_txfifo)
1076 		uart_sched_softih(sc, SER_INT_TXIDLE);
1077 	return (0);
1078 }
1079 
1080 void
1081 ns8250_bus_grab(struct uart_softc *sc)
1082 {
1083 	struct uart_bas *bas = &sc->sc_bas;
1084 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1085 	u_char ier;
1086 
1087 	/*
1088 	 * turn off all interrupts to enter polling mode. Leave the
1089 	 * saved mask alone. We'll restore whatever it was in ungrab.
1090 	 * All pending interrupt signals are reset when IER is set to 0.
1091 	 */
1092 	uart_lock(sc->sc_hwmtx);
1093 	ier = uart_getreg(bas, REG_IER);
1094 	uart_setreg(bas, REG_IER, ier & ns8250->ier_mask);
1095 	uart_barrier(bas);
1096 	uart_unlock(sc->sc_hwmtx);
1097 }
1098 
1099 void
1100 ns8250_bus_ungrab(struct uart_softc *sc)
1101 {
1102 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1103 	struct uart_bas *bas = &sc->sc_bas;
1104 
1105 	/*
1106 	 * Restore previous interrupt mask
1107 	 */
1108 	uart_lock(sc->sc_hwmtx);
1109 	uart_setreg(bas, REG_IER, ns8250->ier);
1110 	uart_barrier(bas);
1111 	uart_unlock(sc->sc_hwmtx);
1112 }
1113