xref: /freebsd/sys/dev/uart/uart_dev_ns8250.c (revision b3aaa0cc21c63d388230c7ef2a80abd631ff20d5)
1 /*-
2  * Copyright (c) 2003 Marcel Moolenaar
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/bus.h>
33 #include <sys/conf.h>
34 #include <machine/bus.h>
35 
36 #include <dev/uart/uart.h>
37 #include <dev/uart/uart_cpu.h>
38 #include <dev/uart/uart_bus.h>
39 
40 #include <dev/ic/ns16550.h>
41 
42 #include "uart_if.h"
43 
44 #define	DEFAULT_RCLK	1843200
45 
46 /*
47  * Clear pending interrupts. THRE is cleared by reading IIR. Data
48  * that may have been received gets lost here.
49  */
50 static void
51 ns8250_clrint(struct uart_bas *bas)
52 {
53 	uint8_t iir;
54 
55 	iir = uart_getreg(bas, REG_IIR);
56 	while ((iir & IIR_NOPEND) == 0) {
57 		iir &= IIR_IMASK;
58 		if (iir == IIR_RLS)
59 			(void)uart_getreg(bas, REG_LSR);
60 		else if (iir == IIR_RXRDY || iir == IIR_RXTOUT)
61 			(void)uart_getreg(bas, REG_DATA);
62 		else if (iir == IIR_MLSC)
63 			(void)uart_getreg(bas, REG_MSR);
64 		uart_barrier(bas);
65 		iir = uart_getreg(bas, REG_IIR);
66 	}
67 }
68 
69 static int
70 ns8250_delay(struct uart_bas *bas)
71 {
72 	int divisor;
73 	u_char lcr;
74 
75 	lcr = uart_getreg(bas, REG_LCR);
76 	uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
77 	uart_barrier(bas);
78 	divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8);
79 	uart_barrier(bas);
80 	uart_setreg(bas, REG_LCR, lcr);
81 	uart_barrier(bas);
82 
83 	/* 1/10th the time to transmit 1 character (estimate). */
84 	if (divisor <= 134)
85 		return (16000000 * divisor / bas->rclk);
86 	return (16000 * divisor / (bas->rclk / 1000));
87 }
88 
89 static int
90 ns8250_divisor(int rclk, int baudrate)
91 {
92 	int actual_baud, divisor;
93 	int error;
94 
95 	if (baudrate == 0)
96 		return (0);
97 
98 	divisor = (rclk / (baudrate << 3) + 1) >> 1;
99 	if (divisor == 0 || divisor >= 65536)
100 		return (0);
101 	actual_baud = rclk / (divisor << 4);
102 
103 	/* 10 times error in percent: */
104 	error = ((actual_baud - baudrate) * 2000 / baudrate + 1) >> 1;
105 
106 	/* 3.0% maximum error tolerance: */
107 	if (error < -30 || error > 30)
108 		return (0);
109 
110 	return (divisor);
111 }
112 
113 static int
114 ns8250_drain(struct uart_bas *bas, int what)
115 {
116 	int delay, limit;
117 
118 	delay = ns8250_delay(bas);
119 
120 	if (what & UART_DRAIN_TRANSMITTER) {
121 		/*
122 		 * Pick an arbitrary high limit to avoid getting stuck in
123 		 * an infinite loop when the hardware is broken. Make the
124 		 * limit high enough to handle large FIFOs.
125 		 */
126 		limit = 10*1024;
127 		while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
128 			DELAY(delay);
129 		if (limit == 0) {
130 			/* printf("ns8250: transmitter appears stuck... "); */
131 			return (EIO);
132 		}
133 	}
134 
135 	if (what & UART_DRAIN_RECEIVER) {
136 		/*
137 		 * Pick an arbitrary high limit to avoid getting stuck in
138 		 * an infinite loop when the hardware is broken. Make the
139 		 * limit high enough to handle large FIFOs and integrated
140 		 * UARTs. The HP rx2600 for example has 3 UARTs on the
141 		 * management board that tend to get a lot of data send
142 		 * to it when the UART is first activated.
143 		 */
144 		limit=10*4096;
145 		while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) {
146 			(void)uart_getreg(bas, REG_DATA);
147 			uart_barrier(bas);
148 			DELAY(delay << 2);
149 		}
150 		if (limit == 0) {
151 			/* printf("ns8250: receiver appears broken... "); */
152 			return (EIO);
153 		}
154 	}
155 
156 	return (0);
157 }
158 
159 /*
160  * We can only flush UARTs with FIFOs. UARTs without FIFOs should be
161  * drained. WARNING: this function clobbers the FIFO setting!
162  */
163 static void
164 ns8250_flush(struct uart_bas *bas, int what)
165 {
166 	uint8_t fcr;
167 
168 	fcr = FCR_ENABLE;
169 	if (what & UART_FLUSH_TRANSMITTER)
170 		fcr |= FCR_XMT_RST;
171 	if (what & UART_FLUSH_RECEIVER)
172 		fcr |= FCR_RCV_RST;
173 	uart_setreg(bas, REG_FCR, fcr);
174 	uart_barrier(bas);
175 }
176 
177 static int
178 ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
179     int parity)
180 {
181 	int divisor;
182 	uint8_t lcr;
183 
184 	lcr = 0;
185 	if (databits >= 8)
186 		lcr |= LCR_8BITS;
187 	else if (databits == 7)
188 		lcr |= LCR_7BITS;
189 	else if (databits == 6)
190 		lcr |= LCR_6BITS;
191 	else
192 		lcr |= LCR_5BITS;
193 	if (stopbits > 1)
194 		lcr |= LCR_STOPB;
195 	lcr |= parity << 3;
196 
197 	/* Set baudrate. */
198 	if (baudrate > 0) {
199 		divisor = ns8250_divisor(bas->rclk, baudrate);
200 		if (divisor == 0)
201 			return (EINVAL);
202 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
203 		uart_barrier(bas);
204 		uart_setreg(bas, REG_DLL, divisor & 0xff);
205 		uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff);
206 		uart_barrier(bas);
207 	}
208 
209 	/* Set LCR and clear DLAB. */
210 	uart_setreg(bas, REG_LCR, lcr);
211 	uart_barrier(bas);
212 	return (0);
213 }
214 
215 /*
216  * Low-level UART interface.
217  */
218 static int ns8250_probe(struct uart_bas *bas);
219 static void ns8250_init(struct uart_bas *bas, int, int, int, int);
220 static void ns8250_term(struct uart_bas *bas);
221 static void ns8250_putc(struct uart_bas *bas, int);
222 static int ns8250_rxready(struct uart_bas *bas);
223 static int ns8250_getc(struct uart_bas *bas, struct mtx *);
224 
225 static struct uart_ops uart_ns8250_ops = {
226 	.probe = ns8250_probe,
227 	.init = ns8250_init,
228 	.term = ns8250_term,
229 	.putc = ns8250_putc,
230 	.rxready = ns8250_rxready,
231 	.getc = ns8250_getc,
232 };
233 
234 static int
235 ns8250_probe(struct uart_bas *bas)
236 {
237 	u_char val;
238 
239 	/* Check known 0 bits that don't depend on DLAB. */
240 	val = uart_getreg(bas, REG_IIR);
241 	if (val & 0x30)
242 		return (ENXIO);
243 	val = uart_getreg(bas, REG_MCR);
244 	if (val & 0xe0)
245 		return (ENXIO);
246 
247 	return (0);
248 }
249 
250 static void
251 ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
252     int parity)
253 {
254 	u_char	ier;
255 
256 	if (bas->rclk == 0)
257 		bas->rclk = DEFAULT_RCLK;
258 	ns8250_param(bas, baudrate, databits, stopbits, parity);
259 
260 	/* Disable all interrupt sources. */
261 	/*
262 	 * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA
263 	 * UARTs split the receive time-out interrupt bit out separately as
264 	 * 0x10.  This gets handled by ier_mask and ier_rxbits below.
265 	 */
266 	ier = uart_getreg(bas, REG_IER) & 0xe0;
267 	uart_setreg(bas, REG_IER, ier);
268 	uart_barrier(bas);
269 
270 	/* Disable the FIFO (if present). */
271 	uart_setreg(bas, REG_FCR, 0);
272 	uart_barrier(bas);
273 
274 	/* Set RTS & DTR. */
275 	uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR);
276 	uart_barrier(bas);
277 
278 	ns8250_clrint(bas);
279 }
280 
281 static void
282 ns8250_term(struct uart_bas *bas)
283 {
284 
285 	/* Clear RTS & DTR. */
286 	uart_setreg(bas, REG_MCR, MCR_IE);
287 	uart_barrier(bas);
288 }
289 
290 static void
291 ns8250_putc(struct uart_bas *bas, int c)
292 {
293 	int limit;
294 
295 	limit = 250000;
296 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit)
297 		DELAY(4);
298 	uart_setreg(bas, REG_DATA, c);
299 	uart_barrier(bas);
300 	limit = 250000;
301 	while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
302 		DELAY(4);
303 }
304 
305 static int
306 ns8250_rxready(struct uart_bas *bas)
307 {
308 
309 	return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0);
310 }
311 
312 static int
313 ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx)
314 {
315 	int c;
316 
317 	uart_lock(hwmtx);
318 
319 	while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) {
320 		uart_unlock(hwmtx);
321 		DELAY(4);
322 		uart_lock(hwmtx);
323 	}
324 
325 	c = uart_getreg(bas, REG_DATA);
326 
327 	uart_unlock(hwmtx);
328 
329 	return (c);
330 }
331 
332 /*
333  * High-level UART interface.
334  */
335 struct ns8250_softc {
336 	struct uart_softc base;
337 	uint8_t		fcr;
338 	uint8_t		ier;
339 	uint8_t		mcr;
340 
341 	uint8_t		ier_mask;
342 	uint8_t		ier_rxbits;
343 };
344 
345 static int ns8250_bus_attach(struct uart_softc *);
346 static int ns8250_bus_detach(struct uart_softc *);
347 static int ns8250_bus_flush(struct uart_softc *, int);
348 static int ns8250_bus_getsig(struct uart_softc *);
349 static int ns8250_bus_ioctl(struct uart_softc *, int, intptr_t);
350 static int ns8250_bus_ipend(struct uart_softc *);
351 static int ns8250_bus_param(struct uart_softc *, int, int, int, int);
352 static int ns8250_bus_probe(struct uart_softc *);
353 static int ns8250_bus_receive(struct uart_softc *);
354 static int ns8250_bus_setsig(struct uart_softc *, int);
355 static int ns8250_bus_transmit(struct uart_softc *);
356 
357 static kobj_method_t ns8250_methods[] = {
358 	KOBJMETHOD(uart_attach,		ns8250_bus_attach),
359 	KOBJMETHOD(uart_detach,		ns8250_bus_detach),
360 	KOBJMETHOD(uart_flush,		ns8250_bus_flush),
361 	KOBJMETHOD(uart_getsig,		ns8250_bus_getsig),
362 	KOBJMETHOD(uart_ioctl,		ns8250_bus_ioctl),
363 	KOBJMETHOD(uart_ipend,		ns8250_bus_ipend),
364 	KOBJMETHOD(uart_param,		ns8250_bus_param),
365 	KOBJMETHOD(uart_probe,		ns8250_bus_probe),
366 	KOBJMETHOD(uart_receive,	ns8250_bus_receive),
367 	KOBJMETHOD(uart_setsig,		ns8250_bus_setsig),
368 	KOBJMETHOD(uart_transmit,	ns8250_bus_transmit),
369 	{ 0, 0 }
370 };
371 
372 struct uart_class uart_ns8250_class = {
373 	"ns8250",
374 	ns8250_methods,
375 	sizeof(struct ns8250_softc),
376 	.uc_ops = &uart_ns8250_ops,
377 	.uc_range = 8,
378 	.uc_rclk = DEFAULT_RCLK
379 };
380 
381 #define	SIGCHG(c, i, s, d)				\
382 	if (c) {					\
383 		i |= (i & s) ? s : s | d;		\
384 	} else {					\
385 		i = (i & s) ? (i & ~s) | d : i;		\
386 	}
387 
388 static int
389 ns8250_bus_attach(struct uart_softc *sc)
390 {
391 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
392 	struct uart_bas *bas;
393 	unsigned int ivar;
394 
395 	bas = &sc->sc_bas;
396 
397 	ns8250->mcr = uart_getreg(bas, REG_MCR);
398 	ns8250->fcr = FCR_ENABLE;
399 	if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags",
400 	    &ivar)) {
401 		if (UART_FLAGS_FCR_RX_LOW(ivar))
402 			ns8250->fcr |= FCR_RX_LOW;
403 		else if (UART_FLAGS_FCR_RX_MEDL(ivar))
404 			ns8250->fcr |= FCR_RX_MEDL;
405 		else if (UART_FLAGS_FCR_RX_HIGH(ivar))
406 			ns8250->fcr |= FCR_RX_HIGH;
407 		else
408 			ns8250->fcr |= FCR_RX_MEDH;
409 	} else
410 		ns8250->fcr |= FCR_RX_MEDH;
411 
412 	/* Get IER mask */
413 	ivar = 0xf0;
414 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask",
415 	    &ivar);
416 	ns8250->ier_mask = (uint8_t)(ivar & 0xff);
417 
418 	/* Get IER RX interrupt bits */
419 	ivar = IER_EMSC | IER_ERLS | IER_ERXRDY;
420 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits",
421 	    &ivar);
422 	ns8250->ier_rxbits = (uint8_t)(ivar & 0xff);
423 
424 	uart_setreg(bas, REG_FCR, ns8250->fcr);
425 	uart_barrier(bas);
426 	ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
427 
428 	if (ns8250->mcr & MCR_DTR)
429 		sc->sc_hwsig |= SER_DTR;
430 	if (ns8250->mcr & MCR_RTS)
431 		sc->sc_hwsig |= SER_RTS;
432 	ns8250_bus_getsig(sc);
433 
434 	ns8250_clrint(bas);
435 	ns8250->ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
436 	ns8250->ier |= ns8250->ier_rxbits;
437 	uart_setreg(bas, REG_IER, ns8250->ier);
438 	uart_barrier(bas);
439 
440 	return (0);
441 }
442 
443 static int
444 ns8250_bus_detach(struct uart_softc *sc)
445 {
446 	struct ns8250_softc *ns8250;
447 	struct uart_bas *bas;
448 	u_char ier;
449 
450 	ns8250 = (struct ns8250_softc *)sc;
451 	bas = &sc->sc_bas;
452 	ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
453 	uart_setreg(bas, REG_IER, ier);
454 	uart_barrier(bas);
455 	ns8250_clrint(bas);
456 	return (0);
457 }
458 
459 static int
460 ns8250_bus_flush(struct uart_softc *sc, int what)
461 {
462 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
463 	struct uart_bas *bas;
464 	int error;
465 
466 	bas = &sc->sc_bas;
467 	uart_lock(sc->sc_hwmtx);
468 	if (sc->sc_rxfifosz > 1) {
469 		ns8250_flush(bas, what);
470 		uart_setreg(bas, REG_FCR, ns8250->fcr);
471 		uart_barrier(bas);
472 		error = 0;
473 	} else
474 		error = ns8250_drain(bas, what);
475 	uart_unlock(sc->sc_hwmtx);
476 	return (error);
477 }
478 
479 static int
480 ns8250_bus_getsig(struct uart_softc *sc)
481 {
482 	uint32_t new, old, sig;
483 	uint8_t msr;
484 
485 	do {
486 		old = sc->sc_hwsig;
487 		sig = old;
488 		uart_lock(sc->sc_hwmtx);
489 		msr = uart_getreg(&sc->sc_bas, REG_MSR);
490 		uart_unlock(sc->sc_hwmtx);
491 		SIGCHG(msr & MSR_DSR, sig, SER_DSR, SER_DDSR);
492 		SIGCHG(msr & MSR_CTS, sig, SER_CTS, SER_DCTS);
493 		SIGCHG(msr & MSR_DCD, sig, SER_DCD, SER_DDCD);
494 		SIGCHG(msr & MSR_RI,  sig, SER_RI,  SER_DRI);
495 		new = sig & ~SER_MASK_DELTA;
496 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
497 	return (sig);
498 }
499 
500 static int
501 ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
502 {
503 	struct uart_bas *bas;
504 	int baudrate, divisor, error;
505 	uint8_t efr, lcr;
506 
507 	bas = &sc->sc_bas;
508 	error = 0;
509 	uart_lock(sc->sc_hwmtx);
510 	switch (request) {
511 	case UART_IOCTL_BREAK:
512 		lcr = uart_getreg(bas, REG_LCR);
513 		if (data)
514 			lcr |= LCR_SBREAK;
515 		else
516 			lcr &= ~LCR_SBREAK;
517 		uart_setreg(bas, REG_LCR, lcr);
518 		uart_barrier(bas);
519 		break;
520 	case UART_IOCTL_IFLOW:
521 		lcr = uart_getreg(bas, REG_LCR);
522 		uart_barrier(bas);
523 		uart_setreg(bas, REG_LCR, 0xbf);
524 		uart_barrier(bas);
525 		efr = uart_getreg(bas, REG_EFR);
526 		if (data)
527 			efr |= EFR_RTS;
528 		else
529 			efr &= ~EFR_RTS;
530 		uart_setreg(bas, REG_EFR, efr);
531 		uart_barrier(bas);
532 		uart_setreg(bas, REG_LCR, lcr);
533 		uart_barrier(bas);
534 		break;
535 	case UART_IOCTL_OFLOW:
536 		lcr = uart_getreg(bas, REG_LCR);
537 		uart_barrier(bas);
538 		uart_setreg(bas, REG_LCR, 0xbf);
539 		uart_barrier(bas);
540 		efr = uart_getreg(bas, REG_EFR);
541 		if (data)
542 			efr |= EFR_CTS;
543 		else
544 			efr &= ~EFR_CTS;
545 		uart_setreg(bas, REG_EFR, efr);
546 		uart_barrier(bas);
547 		uart_setreg(bas, REG_LCR, lcr);
548 		uart_barrier(bas);
549 		break;
550 	case UART_IOCTL_BAUD:
551 		lcr = uart_getreg(bas, REG_LCR);
552 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
553 		uart_barrier(bas);
554 		divisor = uart_getreg(bas, REG_DLL) |
555 		    (uart_getreg(bas, REG_DLH) << 8);
556 		uart_barrier(bas);
557 		uart_setreg(bas, REG_LCR, lcr);
558 		uart_barrier(bas);
559 		baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0;
560 		if (baudrate > 0)
561 			*(int*)data = baudrate;
562 		else
563 			error = ENXIO;
564 		break;
565 	default:
566 		error = EINVAL;
567 		break;
568 	}
569 	uart_unlock(sc->sc_hwmtx);
570 	return (error);
571 }
572 
573 static int
574 ns8250_bus_ipend(struct uart_softc *sc)
575 {
576 	struct uart_bas *bas;
577 	int ipend;
578 	uint8_t iir, lsr;
579 
580 	bas = &sc->sc_bas;
581 	uart_lock(sc->sc_hwmtx);
582 	iir = uart_getreg(bas, REG_IIR);
583 	if (iir & IIR_NOPEND) {
584 		uart_unlock(sc->sc_hwmtx);
585 		return (0);
586 	}
587 	ipend = 0;
588 	if (iir & IIR_RXRDY) {
589 		lsr = uart_getreg(bas, REG_LSR);
590 		uart_unlock(sc->sc_hwmtx);
591 		if (lsr & LSR_OE)
592 			ipend |= SER_INT_OVERRUN;
593 		if (lsr & LSR_BI)
594 			ipend |= SER_INT_BREAK;
595 		if (lsr & LSR_RXRDY)
596 			ipend |= SER_INT_RXREADY;
597 	} else {
598 		uart_unlock(sc->sc_hwmtx);
599 		if (iir & IIR_TXRDY)
600 			ipend |= SER_INT_TXIDLE;
601 		else
602 			ipend |= SER_INT_SIGCHG;
603 	}
604 	return ((sc->sc_leaving) ? 0 : ipend);
605 }
606 
607 static int
608 ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits,
609     int stopbits, int parity)
610 {
611 	struct uart_bas *bas;
612 	int error;
613 
614 	bas = &sc->sc_bas;
615 	uart_lock(sc->sc_hwmtx);
616 	error = ns8250_param(bas, baudrate, databits, stopbits, parity);
617 	uart_unlock(sc->sc_hwmtx);
618 	return (error);
619 }
620 
621 static int
622 ns8250_bus_probe(struct uart_softc *sc)
623 {
624 	struct ns8250_softc *ns8250;
625 	struct uart_bas *bas;
626 	int count, delay, error, limit;
627 	uint8_t lsr, mcr, ier;
628 
629 	ns8250 = (struct ns8250_softc *)sc;
630 	bas = &sc->sc_bas;
631 
632 	error = ns8250_probe(bas);
633 	if (error)
634 		return (error);
635 
636 	mcr = MCR_IE;
637 	if (sc->sc_sysdev == NULL) {
638 		/* By using ns8250_init() we also set DTR and RTS. */
639 		ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE);
640 	} else
641 		mcr |= MCR_DTR | MCR_RTS;
642 
643 	error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
644 	if (error)
645 		return (error);
646 
647 	/*
648 	 * Set loopback mode. This avoids having garbage on the wire and
649 	 * also allows us send and receive data. We set DTR and RTS to
650 	 * avoid the possibility that automatic flow-control prevents
651 	 * any data from being sent.
652 	 */
653 	uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS);
654 	uart_barrier(bas);
655 
656 	/*
657 	 * Enable FIFOs. And check that the UART has them. If not, we're
658 	 * done. Since this is the first time we enable the FIFOs, we reset
659 	 * them.
660 	 */
661 	uart_setreg(bas, REG_FCR, FCR_ENABLE);
662 	uart_barrier(bas);
663 	if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) {
664 		/*
665 		 * NS16450 or INS8250. We don't bother to differentiate
666 		 * between them. They're too old to be interesting.
667 		 */
668 		uart_setreg(bas, REG_MCR, mcr);
669 		uart_barrier(bas);
670 		sc->sc_rxfifosz = sc->sc_txfifosz = 1;
671 		device_set_desc(sc->sc_dev, "8250 or 16450 or compatible");
672 		return (0);
673 	}
674 
675 	uart_setreg(bas, REG_FCR, FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST);
676 	uart_barrier(bas);
677 
678 	count = 0;
679 	delay = ns8250_delay(bas);
680 
681 	/* We have FIFOs. Drain the transmitter and receiver. */
682 	error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER);
683 	if (error) {
684 		uart_setreg(bas, REG_MCR, mcr);
685 		uart_setreg(bas, REG_FCR, 0);
686 		uart_barrier(bas);
687 		goto describe;
688 	}
689 
690 	/*
691 	 * We should have a sufficiently clean "pipe" to determine the
692 	 * size of the FIFOs. We send as much characters as is reasonable
693 	 * and wait for the the overflow bit in the LSR register to be
694 	 * asserted, counting the characters as we send them. Based on
695 	 * that count we know the FIFO size.
696 	 */
697 	do {
698 		uart_setreg(bas, REG_DATA, 0);
699 		uart_barrier(bas);
700 		count++;
701 
702 		limit = 30;
703 		lsr = 0;
704 		/*
705 		 * LSR bits are cleared upon read, so we must accumulate
706 		 * them to be able to test LSR_OE below.
707 		 */
708 		while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 &&
709 		    --limit)
710 			DELAY(delay);
711 		if (limit == 0) {
712 			ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
713 			uart_setreg(bas, REG_IER, ier);
714 			uart_setreg(bas, REG_MCR, mcr);
715 			uart_setreg(bas, REG_FCR, 0);
716 			uart_barrier(bas);
717 			count = 0;
718 			goto describe;
719 		}
720 	} while ((lsr & LSR_OE) == 0 && count < 130);
721 	count--;
722 
723 	uart_setreg(bas, REG_MCR, mcr);
724 
725 	/* Reset FIFOs. */
726 	ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
727 
728  describe:
729 	if (count >= 14 && count <= 16) {
730 		sc->sc_rxfifosz = 16;
731 		device_set_desc(sc->sc_dev, "16550 or compatible");
732 	} else if (count >= 28 && count <= 32) {
733 		sc->sc_rxfifosz = 32;
734 		device_set_desc(sc->sc_dev, "16650 or compatible");
735 	} else if (count >= 56 && count <= 64) {
736 		sc->sc_rxfifosz = 64;
737 		device_set_desc(sc->sc_dev, "16750 or compatible");
738 	} else if (count >= 112 && count <= 128) {
739 		sc->sc_rxfifosz = 128;
740 		device_set_desc(sc->sc_dev, "16950 or compatible");
741 	} else {
742 		sc->sc_rxfifosz = 16;
743 		device_set_desc(sc->sc_dev,
744 		    "Non-standard ns8250 class UART with FIFOs");
745 	}
746 
747 	/*
748 	 * Force the Tx FIFO size to 16 bytes for now. We don't program the
749 	 * Tx trigger. Also, we assume that all data has been sent when the
750 	 * interrupt happens.
751 	 */
752 	sc->sc_txfifosz = 16;
753 
754 #if 0
755 	/*
756 	 * XXX there are some issues related to hardware flow control and
757 	 * it's likely that uart(4) is the cause. This basicly needs more
758 	 * investigation, but we avoid using for hardware flow control
759 	 * until then.
760 	 */
761 	/* 16650s or higher have automatic flow control. */
762 	if (sc->sc_rxfifosz > 16) {
763 		sc->sc_hwiflow = 1;
764 		sc->sc_hwoflow = 1;
765 	}
766 #endif
767 
768 	return (0);
769 }
770 
771 static int
772 ns8250_bus_receive(struct uart_softc *sc)
773 {
774 	struct uart_bas *bas;
775 	int xc;
776 	uint8_t lsr;
777 
778 	bas = &sc->sc_bas;
779 	uart_lock(sc->sc_hwmtx);
780 	lsr = uart_getreg(bas, REG_LSR);
781 	while (lsr & LSR_RXRDY) {
782 		if (uart_rx_full(sc)) {
783 			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
784 			break;
785 		}
786 		xc = uart_getreg(bas, REG_DATA);
787 		if (lsr & LSR_FE)
788 			xc |= UART_STAT_FRAMERR;
789 		if (lsr & LSR_PE)
790 			xc |= UART_STAT_PARERR;
791 		uart_rx_put(sc, xc);
792 		lsr = uart_getreg(bas, REG_LSR);
793 	}
794 	/* Discard everything left in the Rx FIFO. */
795 	while (lsr & LSR_RXRDY) {
796 		(void)uart_getreg(bas, REG_DATA);
797 		uart_barrier(bas);
798 		lsr = uart_getreg(bas, REG_LSR);
799 	}
800 	uart_unlock(sc->sc_hwmtx);
801  	return (0);
802 }
803 
804 static int
805 ns8250_bus_setsig(struct uart_softc *sc, int sig)
806 {
807 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
808 	struct uart_bas *bas;
809 	uint32_t new, old;
810 
811 	bas = &sc->sc_bas;
812 	do {
813 		old = sc->sc_hwsig;
814 		new = old;
815 		if (sig & SER_DDTR) {
816 			SIGCHG(sig & SER_DTR, new, SER_DTR,
817 			    SER_DDTR);
818 		}
819 		if (sig & SER_DRTS) {
820 			SIGCHG(sig & SER_RTS, new, SER_RTS,
821 			    SER_DRTS);
822 		}
823 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
824 	uart_lock(sc->sc_hwmtx);
825 	ns8250->mcr &= ~(MCR_DTR|MCR_RTS);
826 	if (new & SER_DTR)
827 		ns8250->mcr |= MCR_DTR;
828 	if (new & SER_RTS)
829 		ns8250->mcr |= MCR_RTS;
830 	uart_setreg(bas, REG_MCR, ns8250->mcr);
831 	uart_barrier(bas);
832 	uart_unlock(sc->sc_hwmtx);
833 	return (0);
834 }
835 
836 static int
837 ns8250_bus_transmit(struct uart_softc *sc)
838 {
839 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
840 	struct uart_bas *bas;
841 	int i;
842 
843 	bas = &sc->sc_bas;
844 	uart_lock(sc->sc_hwmtx);
845 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0)
846 		;
847 	uart_setreg(bas, REG_IER, ns8250->ier | IER_ETXRDY);
848 	uart_barrier(bas);
849 	for (i = 0; i < sc->sc_txdatasz; i++) {
850 		uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]);
851 		uart_barrier(bas);
852 	}
853 	sc->sc_txbusy = 1;
854 	uart_unlock(sc->sc_hwmtx);
855 	return (0);
856 }
857