xref: /freebsd/sys/dev/uart/uart_dev_ns8250.c (revision b37f6c9805edb4b89f0a8c2b78f78a3dcfc0647b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2003 Marcel Moolenaar
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include "opt_platform.h"
30 #include "opt_uart.h"
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bus.h>
38 #include <sys/conf.h>
39 #include <sys/kernel.h>
40 #include <sys/sysctl.h>
41 #include <machine/bus.h>
42 
43 #ifdef FDT
44 #include <dev/fdt/fdt_common.h>
45 #include <dev/ofw/ofw_bus.h>
46 #include <dev/ofw/ofw_bus_subr.h>
47 #endif
48 
49 #include <dev/uart/uart.h>
50 #include <dev/uart/uart_cpu.h>
51 #ifdef FDT
52 #include <dev/uart/uart_cpu_fdt.h>
53 #endif
54 #include <dev/uart/uart_bus.h>
55 #include <dev/uart/uart_dev_ns8250.h>
56 #include <dev/uart/uart_ppstypes.h>
57 
58 #include <dev/ic/ns16550.h>
59 
60 #include "uart_if.h"
61 
62 #define	DEFAULT_RCLK	1843200
63 
64 /*
65  * Set the default baudrate tolerance to 3.0%.
66  *
67  * Some embedded boards have odd reference clocks (eg 25MHz)
68  * and we need to handle higher variances in the target baud rate.
69  */
70 #ifndef	UART_DEV_TOLERANCE_PCT
71 #define	UART_DEV_TOLERANCE_PCT	30
72 #endif	/* UART_DEV_TOLERANCE_PCT */
73 
74 static int broken_txfifo = 0;
75 SYSCTL_INT(_hw, OID_AUTO, broken_txfifo, CTLFLAG_RWTUN,
76 	&broken_txfifo, 0, "UART FIFO has QEMU emulation bug");
77 
78 /*
79  * Clear pending interrupts. THRE is cleared by reading IIR. Data
80  * that may have been received gets lost here.
81  */
82 static void
83 ns8250_clrint(struct uart_bas *bas)
84 {
85 	uint8_t iir, lsr;
86 
87 	iir = uart_getreg(bas, REG_IIR);
88 	while ((iir & IIR_NOPEND) == 0) {
89 		iir &= IIR_IMASK;
90 		if (iir == IIR_RLS) {
91 			lsr = uart_getreg(bas, REG_LSR);
92 			if (lsr & (LSR_BI|LSR_FE|LSR_PE))
93 				(void)uart_getreg(bas, REG_DATA);
94 		} else if (iir == IIR_RXRDY || iir == IIR_RXTOUT)
95 			(void)uart_getreg(bas, REG_DATA);
96 		else if (iir == IIR_MLSC)
97 			(void)uart_getreg(bas, REG_MSR);
98 		uart_barrier(bas);
99 		iir = uart_getreg(bas, REG_IIR);
100 	}
101 }
102 
103 static int
104 ns8250_delay(struct uart_bas *bas)
105 {
106 	int divisor;
107 	u_char lcr;
108 
109 	lcr = uart_getreg(bas, REG_LCR);
110 	uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
111 	uart_barrier(bas);
112 	divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8);
113 	uart_barrier(bas);
114 	uart_setreg(bas, REG_LCR, lcr);
115 	uart_barrier(bas);
116 
117 	/* 1/10th the time to transmit 1 character (estimate). */
118 	if (divisor <= 134)
119 		return (16000000 * divisor / bas->rclk);
120 	return (16000 * divisor / (bas->rclk / 1000));
121 }
122 
123 static int
124 ns8250_divisor(int rclk, int baudrate)
125 {
126 	int actual_baud, divisor;
127 	int error;
128 
129 	if (baudrate == 0)
130 		return (0);
131 
132 	divisor = (rclk / (baudrate << 3) + 1) >> 1;
133 	if (divisor == 0 || divisor >= 65536)
134 		return (0);
135 	actual_baud = rclk / (divisor << 4);
136 
137 	/* 10 times error in percent: */
138 	error = ((actual_baud - baudrate) * 2000 / baudrate + 1) >> 1;
139 
140 	/* enforce maximum error tolerance: */
141 	if (error < -UART_DEV_TOLERANCE_PCT || error > UART_DEV_TOLERANCE_PCT)
142 		return (0);
143 
144 	return (divisor);
145 }
146 
147 static int
148 ns8250_drain(struct uart_bas *bas, int what)
149 {
150 	int delay, limit;
151 
152 	delay = ns8250_delay(bas);
153 
154 	if (what & UART_DRAIN_TRANSMITTER) {
155 		/*
156 		 * Pick an arbitrary high limit to avoid getting stuck in
157 		 * an infinite loop when the hardware is broken. Make the
158 		 * limit high enough to handle large FIFOs.
159 		 */
160 		limit = 10*1024;
161 		while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
162 			DELAY(delay);
163 		if (limit == 0) {
164 			/* printf("ns8250: transmitter appears stuck... "); */
165 			return (EIO);
166 		}
167 	}
168 
169 	if (what & UART_DRAIN_RECEIVER) {
170 		/*
171 		 * Pick an arbitrary high limit to avoid getting stuck in
172 		 * an infinite loop when the hardware is broken. Make the
173 		 * limit high enough to handle large FIFOs and integrated
174 		 * UARTs. The HP rx2600 for example has 3 UARTs on the
175 		 * management board that tend to get a lot of data send
176 		 * to it when the UART is first activated.
177 		 */
178 		limit=10*4096;
179 		while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) {
180 			(void)uart_getreg(bas, REG_DATA);
181 			uart_barrier(bas);
182 			DELAY(delay << 2);
183 		}
184 		if (limit == 0) {
185 			/* printf("ns8250: receiver appears broken... "); */
186 			return (EIO);
187 		}
188 	}
189 
190 	return (0);
191 }
192 
193 /*
194  * We can only flush UARTs with FIFOs. UARTs without FIFOs should be
195  * drained. WARNING: this function clobbers the FIFO setting!
196  */
197 static void
198 ns8250_flush(struct uart_bas *bas, int what)
199 {
200 	uint8_t fcr;
201 
202 	fcr = FCR_ENABLE;
203 #ifdef CPU_XBURST
204 	fcr |= FCR_UART_ON;
205 #endif
206 	if (what & UART_FLUSH_TRANSMITTER)
207 		fcr |= FCR_XMT_RST;
208 	if (what & UART_FLUSH_RECEIVER)
209 		fcr |= FCR_RCV_RST;
210 	uart_setreg(bas, REG_FCR, fcr);
211 	uart_barrier(bas);
212 }
213 
214 static int
215 ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
216     int parity)
217 {
218 	int divisor;
219 	uint8_t lcr;
220 
221 	lcr = 0;
222 	if (databits >= 8)
223 		lcr |= LCR_8BITS;
224 	else if (databits == 7)
225 		lcr |= LCR_7BITS;
226 	else if (databits == 6)
227 		lcr |= LCR_6BITS;
228 	else
229 		lcr |= LCR_5BITS;
230 	if (stopbits > 1)
231 		lcr |= LCR_STOPB;
232 	lcr |= parity << 3;
233 
234 	/* Set baudrate. */
235 	if (baudrate > 0) {
236 		divisor = ns8250_divisor(bas->rclk, baudrate);
237 		if (divisor == 0)
238 			return (EINVAL);
239 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
240 		uart_barrier(bas);
241 		uart_setreg(bas, REG_DLL, divisor & 0xff);
242 		uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff);
243 		uart_barrier(bas);
244 	}
245 
246 	/* Set LCR and clear DLAB. */
247 	uart_setreg(bas, REG_LCR, lcr);
248 	uart_barrier(bas);
249 	return (0);
250 }
251 
252 /*
253  * Low-level UART interface.
254  */
255 static int ns8250_probe(struct uart_bas *bas);
256 static void ns8250_init(struct uart_bas *bas, int, int, int, int);
257 static void ns8250_term(struct uart_bas *bas);
258 static void ns8250_putc(struct uart_bas *bas, int);
259 static int ns8250_rxready(struct uart_bas *bas);
260 static int ns8250_getc(struct uart_bas *bas, struct mtx *);
261 
262 struct uart_ops uart_ns8250_ops = {
263 	.probe = ns8250_probe,
264 	.init = ns8250_init,
265 	.term = ns8250_term,
266 	.putc = ns8250_putc,
267 	.rxready = ns8250_rxready,
268 	.getc = ns8250_getc,
269 };
270 
271 static int
272 ns8250_probe(struct uart_bas *bas)
273 {
274 	u_char val;
275 
276 #ifdef CPU_XBURST
277 	uart_setreg(bas, REG_FCR, FCR_UART_ON);
278 #endif
279 
280 	/* Check known 0 bits that don't depend on DLAB. */
281 	val = uart_getreg(bas, REG_IIR);
282 	if (val & 0x30)
283 		return (ENXIO);
284 	/*
285 	 * Bit 6 of the MCR (= 0x40) appears to be 1 for the Sun1699
286 	 * chip, but otherwise doesn't seem to have a function. In
287 	 * other words, uart(4) works regardless. Ignore that bit so
288 	 * the probe succeeds.
289 	 */
290 	val = uart_getreg(bas, REG_MCR);
291 	if (val & 0xa0)
292 		return (ENXIO);
293 
294 	return (0);
295 }
296 
297 static void
298 ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
299     int parity)
300 {
301 	u_char ier, val;
302 
303 	if (bas->rclk == 0)
304 		bas->rclk = DEFAULT_RCLK;
305 	ns8250_param(bas, baudrate, databits, stopbits, parity);
306 
307 	/* Disable all interrupt sources. */
308 	/*
309 	 * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA
310 	 * UARTs split the receive time-out interrupt bit out separately as
311 	 * 0x10.  This gets handled by ier_mask and ier_rxbits below.
312 	 */
313 	ier = uart_getreg(bas, REG_IER) & 0xe0;
314 	uart_setreg(bas, REG_IER, ier);
315 	uart_barrier(bas);
316 
317 	/* Disable the FIFO (if present). */
318 	val = 0;
319 #ifdef CPU_XBURST
320 	val |= FCR_UART_ON;
321 #endif
322 	uart_setreg(bas, REG_FCR, val);
323 	uart_barrier(bas);
324 
325 	/* Set RTS & DTR. */
326 	uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR);
327 	uart_barrier(bas);
328 
329 	ns8250_clrint(bas);
330 }
331 
332 static void
333 ns8250_term(struct uart_bas *bas)
334 {
335 
336 	/* Clear RTS & DTR. */
337 	uart_setreg(bas, REG_MCR, MCR_IE);
338 	uart_barrier(bas);
339 }
340 
341 static void
342 ns8250_putc(struct uart_bas *bas, int c)
343 {
344 	int limit;
345 
346 	limit = 250000;
347 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit)
348 		DELAY(4);
349 	uart_setreg(bas, REG_DATA, c);
350 	uart_barrier(bas);
351 }
352 
353 static int
354 ns8250_rxready(struct uart_bas *bas)
355 {
356 
357 	return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0);
358 }
359 
360 static int
361 ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx)
362 {
363 	int c;
364 
365 	uart_lock(hwmtx);
366 
367 	while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) {
368 		uart_unlock(hwmtx);
369 		DELAY(4);
370 		uart_lock(hwmtx);
371 	}
372 
373 	c = uart_getreg(bas, REG_DATA);
374 
375 	uart_unlock(hwmtx);
376 
377 	return (c);
378 }
379 
380 static kobj_method_t ns8250_methods[] = {
381 	KOBJMETHOD(uart_attach,		ns8250_bus_attach),
382 	KOBJMETHOD(uart_detach,		ns8250_bus_detach),
383 	KOBJMETHOD(uart_flush,		ns8250_bus_flush),
384 	KOBJMETHOD(uart_getsig,		ns8250_bus_getsig),
385 	KOBJMETHOD(uart_ioctl,		ns8250_bus_ioctl),
386 	KOBJMETHOD(uart_ipend,		ns8250_bus_ipend),
387 	KOBJMETHOD(uart_param,		ns8250_bus_param),
388 	KOBJMETHOD(uart_probe,		ns8250_bus_probe),
389 	KOBJMETHOD(uart_receive,	ns8250_bus_receive),
390 	KOBJMETHOD(uart_setsig,		ns8250_bus_setsig),
391 	KOBJMETHOD(uart_transmit,	ns8250_bus_transmit),
392 	KOBJMETHOD(uart_grab,		ns8250_bus_grab),
393 	KOBJMETHOD(uart_ungrab,		ns8250_bus_ungrab),
394 	{ 0, 0 }
395 };
396 
397 struct uart_class uart_ns8250_class = {
398 	"ns8250",
399 	ns8250_methods,
400 	sizeof(struct ns8250_softc),
401 	.uc_ops = &uart_ns8250_ops,
402 	.uc_range = 8,
403 	.uc_rclk = DEFAULT_RCLK,
404 	.uc_rshift = 0
405 };
406 
407 #ifdef FDT
408 static struct ofw_compat_data compat_data[] = {
409 	{"ns16550",		(uintptr_t)&uart_ns8250_class},
410 	{"ns16550a",		(uintptr_t)&uart_ns8250_class},
411 	{NULL,			(uintptr_t)NULL},
412 };
413 UART_FDT_CLASS_AND_DEVICE(compat_data);
414 #endif
415 
416 /* Use token-pasting to form SER_ and MSR_ named constants. */
417 #define	SER(sig)	SER_##sig
418 #define	SERD(sig)	SER_D##sig
419 #define	MSR(sig)	MSR_##sig
420 #define	MSRD(sig)	MSR_D##sig
421 
422 /*
423  * Detect signal changes using software delta detection.  The previous state of
424  * the signals is in 'var' the new hardware state is in 'msr', and 'sig' is the
425  * short name (DCD, CTS, etc) of the signal bit being processed; 'var' gets the
426  * new state of both the signal and the delta bits.
427  */
428 #define SIGCHGSW(var, msr, sig)					\
429 	if ((msr) & MSR(sig)) {					\
430 		if ((var & SER(sig)) == 0)			\
431 			var |= SERD(sig) | SER(sig);		\
432 	} else {						\
433 		if ((var & SER(sig)) != 0)			\
434 			var = SERD(sig) | (var & ~SER(sig));	\
435 	}
436 
437 /*
438  * Detect signal changes using the hardware msr delta bits.  This is currently
439  * used only when PPS timing information is being captured using the "narrow
440  * pulse" option.  With a narrow PPS pulse the signal may not still be asserted
441  * by time the interrupt handler is invoked.  The hardware will latch the fact
442  * that it changed in the delta bits.
443  */
444 #define SIGCHGHW(var, msr, sig)					\
445 	if ((msr) & MSRD(sig)) {				\
446 		if (((msr) & MSR(sig)) != 0)			\
447 			var |= SERD(sig) | SER(sig);		\
448 		else						\
449 			var = SERD(sig) | (var & ~SER(sig));	\
450 	}
451 
452 int
453 ns8250_bus_attach(struct uart_softc *sc)
454 {
455 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
456 	struct uart_bas *bas;
457 	unsigned int ivar;
458 #ifdef FDT
459 	phandle_t node;
460 	pcell_t cell;
461 #endif
462 
463 #ifdef FDT
464 	/* Check whether uart has a broken txfifo. */
465 	node = ofw_bus_get_node(sc->sc_dev);
466 	if ((OF_getencprop(node, "broken-txfifo", &cell, sizeof(cell))) > 0)
467 		broken_txfifo =  cell ? 1 : 0;
468 #endif
469 
470 	bas = &sc->sc_bas;
471 
472 	ns8250->mcr = uart_getreg(bas, REG_MCR);
473 	ns8250->fcr = FCR_ENABLE;
474 #ifdef CPU_XBURST
475 	ns8250->fcr |= FCR_UART_ON;
476 #endif
477 	if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags",
478 	    &ivar)) {
479 		if (UART_FLAGS_FCR_RX_LOW(ivar))
480 			ns8250->fcr |= FCR_RX_LOW;
481 		else if (UART_FLAGS_FCR_RX_MEDL(ivar))
482 			ns8250->fcr |= FCR_RX_MEDL;
483 		else if (UART_FLAGS_FCR_RX_HIGH(ivar))
484 			ns8250->fcr |= FCR_RX_HIGH;
485 		else
486 			ns8250->fcr |= FCR_RX_MEDH;
487 	} else
488 		ns8250->fcr |= FCR_RX_MEDH;
489 
490 	/* Get IER mask */
491 	ivar = 0xf0;
492 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask",
493 	    &ivar);
494 	ns8250->ier_mask = (uint8_t)(ivar & 0xff);
495 
496 	/* Get IER RX interrupt bits */
497 	ivar = IER_EMSC | IER_ERLS | IER_ERXRDY;
498 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits",
499 	    &ivar);
500 	ns8250->ier_rxbits = (uint8_t)(ivar & 0xff);
501 
502 	uart_setreg(bas, REG_FCR, ns8250->fcr);
503 	uart_barrier(bas);
504 	ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
505 
506 	if (ns8250->mcr & MCR_DTR)
507 		sc->sc_hwsig |= SER_DTR;
508 	if (ns8250->mcr & MCR_RTS)
509 		sc->sc_hwsig |= SER_RTS;
510 	ns8250_bus_getsig(sc);
511 
512 	ns8250_clrint(bas);
513 	ns8250->ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
514 	ns8250->ier |= ns8250->ier_rxbits;
515 	uart_setreg(bas, REG_IER, ns8250->ier);
516 	uart_barrier(bas);
517 
518 	/*
519 	 * Timing of the H/W access was changed with r253161 of uart_core.c
520 	 * It has been observed that an ITE IT8513E would signal a break
521 	 * condition with pretty much every character it received, unless
522 	 * it had enough time to settle between ns8250_bus_attach() and
523 	 * ns8250_bus_ipend() -- which it accidentally had before r253161.
524 	 * It's not understood why the UART chip behaves this way and it
525 	 * could very well be that the DELAY make the H/W work in the same
526 	 * accidental manner as before. More analysis is warranted, but
527 	 * at least now we fixed a known regression.
528 	 */
529 	DELAY(200);
530 	return (0);
531 }
532 
533 int
534 ns8250_bus_detach(struct uart_softc *sc)
535 {
536 	struct ns8250_softc *ns8250;
537 	struct uart_bas *bas;
538 	u_char ier;
539 
540 	ns8250 = (struct ns8250_softc *)sc;
541 	bas = &sc->sc_bas;
542 	ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
543 	uart_setreg(bas, REG_IER, ier);
544 	uart_barrier(bas);
545 	ns8250_clrint(bas);
546 	return (0);
547 }
548 
549 int
550 ns8250_bus_flush(struct uart_softc *sc, int what)
551 {
552 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
553 	struct uart_bas *bas;
554 	int error;
555 
556 	bas = &sc->sc_bas;
557 	uart_lock(sc->sc_hwmtx);
558 	if (sc->sc_rxfifosz > 1) {
559 		ns8250_flush(bas, what);
560 		uart_setreg(bas, REG_FCR, ns8250->fcr);
561 		uart_barrier(bas);
562 		error = 0;
563 	} else
564 		error = ns8250_drain(bas, what);
565 	uart_unlock(sc->sc_hwmtx);
566 	return (error);
567 }
568 
569 int
570 ns8250_bus_getsig(struct uart_softc *sc)
571 {
572 	uint32_t old, sig;
573 	uint8_t msr;
574 
575 	/*
576 	 * The delta bits are reputed to be broken on some hardware, so use
577 	 * software delta detection by default.  Use the hardware delta bits
578 	 * when capturing PPS pulses which are too narrow for software detection
579 	 * to see the edges.  Hardware delta for RI doesn't work like the
580 	 * others, so always use software for it.  Other threads may be changing
581 	 * other (non-MSR) bits in sc_hwsig, so loop until it can successfully
582 	 * update without other changes happening.  Note that the SIGCHGxx()
583 	 * macros carefully preserve the delta bits when we have to loop several
584 	 * times and a signal transitions between iterations.
585 	 */
586 	do {
587 		old = sc->sc_hwsig;
588 		sig = old;
589 		uart_lock(sc->sc_hwmtx);
590 		msr = uart_getreg(&sc->sc_bas, REG_MSR);
591 		uart_unlock(sc->sc_hwmtx);
592 		if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE) {
593 			SIGCHGHW(sig, msr, DSR);
594 			SIGCHGHW(sig, msr, CTS);
595 			SIGCHGHW(sig, msr, DCD);
596 		} else {
597 			SIGCHGSW(sig, msr, DSR);
598 			SIGCHGSW(sig, msr, CTS);
599 			SIGCHGSW(sig, msr, DCD);
600 		}
601 		SIGCHGSW(sig, msr, RI);
602 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, sig & ~SER_MASK_DELTA));
603 	return (sig);
604 }
605 
606 int
607 ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
608 {
609 	struct uart_bas *bas;
610 	int baudrate, divisor, error;
611 	uint8_t efr, lcr;
612 
613 	bas = &sc->sc_bas;
614 	error = 0;
615 	uart_lock(sc->sc_hwmtx);
616 	switch (request) {
617 	case UART_IOCTL_BREAK:
618 		lcr = uart_getreg(bas, REG_LCR);
619 		if (data)
620 			lcr |= LCR_SBREAK;
621 		else
622 			lcr &= ~LCR_SBREAK;
623 		uart_setreg(bas, REG_LCR, lcr);
624 		uart_barrier(bas);
625 		break;
626 	case UART_IOCTL_IFLOW:
627 		lcr = uart_getreg(bas, REG_LCR);
628 		uart_barrier(bas);
629 		uart_setreg(bas, REG_LCR, 0xbf);
630 		uart_barrier(bas);
631 		efr = uart_getreg(bas, REG_EFR);
632 		if (data)
633 			efr |= EFR_RTS;
634 		else
635 			efr &= ~EFR_RTS;
636 		uart_setreg(bas, REG_EFR, efr);
637 		uart_barrier(bas);
638 		uart_setreg(bas, REG_LCR, lcr);
639 		uart_barrier(bas);
640 		break;
641 	case UART_IOCTL_OFLOW:
642 		lcr = uart_getreg(bas, REG_LCR);
643 		uart_barrier(bas);
644 		uart_setreg(bas, REG_LCR, 0xbf);
645 		uart_barrier(bas);
646 		efr = uart_getreg(bas, REG_EFR);
647 		if (data)
648 			efr |= EFR_CTS;
649 		else
650 			efr &= ~EFR_CTS;
651 		uart_setreg(bas, REG_EFR, efr);
652 		uart_barrier(bas);
653 		uart_setreg(bas, REG_LCR, lcr);
654 		uart_barrier(bas);
655 		break;
656 	case UART_IOCTL_BAUD:
657 		lcr = uart_getreg(bas, REG_LCR);
658 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
659 		uart_barrier(bas);
660 		divisor = uart_getreg(bas, REG_DLL) |
661 		    (uart_getreg(bas, REG_DLH) << 8);
662 		uart_barrier(bas);
663 		uart_setreg(bas, REG_LCR, lcr);
664 		uart_barrier(bas);
665 		baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0;
666 		if (baudrate > 0)
667 			*(int*)data = baudrate;
668 		else
669 			error = ENXIO;
670 		break;
671 	default:
672 		error = EINVAL;
673 		break;
674 	}
675 	uart_unlock(sc->sc_hwmtx);
676 	return (error);
677 }
678 
679 int
680 ns8250_bus_ipend(struct uart_softc *sc)
681 {
682 	struct uart_bas *bas;
683 	struct ns8250_softc *ns8250;
684 	int ipend;
685 	uint8_t iir, lsr;
686 
687 	ns8250 = (struct ns8250_softc *)sc;
688 	bas = &sc->sc_bas;
689 	uart_lock(sc->sc_hwmtx);
690 	iir = uart_getreg(bas, REG_IIR);
691 
692 	if (ns8250->busy_detect && (iir & IIR_BUSY) == IIR_BUSY) {
693 		(void)uart_getreg(bas, DW_REG_USR);
694 		uart_unlock(sc->sc_hwmtx);
695 		return (0);
696 	}
697 	if (iir & IIR_NOPEND) {
698 		uart_unlock(sc->sc_hwmtx);
699 		return (0);
700 	}
701 	ipend = 0;
702 	if (iir & IIR_RXRDY) {
703 		lsr = uart_getreg(bas, REG_LSR);
704 		if (lsr & LSR_OE)
705 			ipend |= SER_INT_OVERRUN;
706 		if (lsr & LSR_BI)
707 			ipend |= SER_INT_BREAK;
708 		if (lsr & LSR_RXRDY)
709 			ipend |= SER_INT_RXREADY;
710 	} else {
711 		if (iir & IIR_TXRDY) {
712 			ipend |= SER_INT_TXIDLE;
713 			uart_setreg(bas, REG_IER, ns8250->ier);
714 			uart_barrier(bas);
715 		} else
716 			ipend |= SER_INT_SIGCHG;
717 	}
718 	if (ipend == 0)
719 		ns8250_clrint(bas);
720 	uart_unlock(sc->sc_hwmtx);
721 	return (ipend);
722 }
723 
724 int
725 ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits,
726     int stopbits, int parity)
727 {
728 	struct ns8250_softc *ns8250;
729 	struct uart_bas *bas;
730 	int error, limit;
731 
732 	ns8250 = (struct ns8250_softc*)sc;
733 	bas = &sc->sc_bas;
734 	uart_lock(sc->sc_hwmtx);
735 	/*
736 	 * When using DW UART with BUSY detection it is necessary to wait
737 	 * until all serial transfers are finished before manipulating the
738 	 * line control. LCR will not be affected when UART is busy.
739 	 */
740 	if (ns8250->busy_detect != 0) {
741 		/*
742 		 * Pick an arbitrary high limit to avoid getting stuck in
743 		 * an infinite loop in case when the hardware is broken.
744 		 */
745 		limit = 10 * 1024;
746 		while (((uart_getreg(bas, DW_REG_USR) & USR_BUSY) != 0) &&
747 		    --limit)
748 			DELAY(4);
749 
750 		if (limit <= 0) {
751 			/* UART appears to be stuck */
752 			uart_unlock(sc->sc_hwmtx);
753 			return (EIO);
754 		}
755 	}
756 
757 	error = ns8250_param(bas, baudrate, databits, stopbits, parity);
758 	uart_unlock(sc->sc_hwmtx);
759 	return (error);
760 }
761 
762 int
763 ns8250_bus_probe(struct uart_softc *sc)
764 {
765 	struct ns8250_softc *ns8250;
766 	struct uart_bas *bas;
767 	int count, delay, error, limit;
768 	uint8_t lsr, mcr, ier;
769 	uint8_t val;
770 
771 	ns8250 = (struct ns8250_softc *)sc;
772 	bas = &sc->sc_bas;
773 
774 	error = ns8250_probe(bas);
775 	if (error)
776 		return (error);
777 
778 	mcr = MCR_IE;
779 	if (sc->sc_sysdev == NULL) {
780 		/* By using ns8250_init() we also set DTR and RTS. */
781 		ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE);
782 	} else
783 		mcr |= MCR_DTR | MCR_RTS;
784 
785 	error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
786 	if (error)
787 		return (error);
788 
789 	/*
790 	 * Set loopback mode. This avoids having garbage on the wire and
791 	 * also allows us send and receive data. We set DTR and RTS to
792 	 * avoid the possibility that automatic flow-control prevents
793 	 * any data from being sent.
794 	 */
795 	uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS);
796 	uart_barrier(bas);
797 
798 	/*
799 	 * Enable FIFOs. And check that the UART has them. If not, we're
800 	 * done. Since this is the first time we enable the FIFOs, we reset
801 	 * them.
802 	 */
803 	val = FCR_ENABLE;
804 #ifdef CPU_XBURST
805 	val |= FCR_UART_ON;
806 #endif
807 	uart_setreg(bas, REG_FCR, val);
808 	uart_barrier(bas);
809 	if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) {
810 		/*
811 		 * NS16450 or INS8250. We don't bother to differentiate
812 		 * between them. They're too old to be interesting.
813 		 */
814 		uart_setreg(bas, REG_MCR, mcr);
815 		uart_barrier(bas);
816 		sc->sc_rxfifosz = sc->sc_txfifosz = 1;
817 		device_set_desc(sc->sc_dev, "8250 or 16450 or compatible");
818 		return (0);
819 	}
820 
821 	val = FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST;
822 #ifdef CPU_XBURST
823 	val |= FCR_UART_ON;
824 #endif
825 	uart_setreg(bas, REG_FCR, val);
826 	uart_barrier(bas);
827 
828 	count = 0;
829 	delay = ns8250_delay(bas);
830 
831 	/* We have FIFOs. Drain the transmitter and receiver. */
832 	error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER);
833 	if (error) {
834 		uart_setreg(bas, REG_MCR, mcr);
835 		val = 0;
836 #ifdef CPU_XBURST
837 		val |= FCR_UART_ON;
838 #endif
839 		uart_setreg(bas, REG_FCR, val);
840 		uart_barrier(bas);
841 		goto describe;
842 	}
843 
844 	/*
845 	 * We should have a sufficiently clean "pipe" to determine the
846 	 * size of the FIFOs. We send as much characters as is reasonable
847 	 * and wait for the overflow bit in the LSR register to be
848 	 * asserted, counting the characters as we send them. Based on
849 	 * that count we know the FIFO size.
850 	 */
851 	do {
852 		uart_setreg(bas, REG_DATA, 0);
853 		uart_barrier(bas);
854 		count++;
855 
856 		limit = 30;
857 		lsr = 0;
858 		/*
859 		 * LSR bits are cleared upon read, so we must accumulate
860 		 * them to be able to test LSR_OE below.
861 		 */
862 		while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 &&
863 		    --limit)
864 			DELAY(delay);
865 		if (limit == 0) {
866 			ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
867 			uart_setreg(bas, REG_IER, ier);
868 			uart_setreg(bas, REG_MCR, mcr);
869 			val = 0;
870 #ifdef CPU_XBURST
871 			val |= FCR_UART_ON;
872 #endif
873 			uart_setreg(bas, REG_FCR, val);
874 			uart_barrier(bas);
875 			count = 0;
876 			goto describe;
877 		}
878 	} while ((lsr & LSR_OE) == 0 && count < 260);
879 	count--;
880 
881 	uart_setreg(bas, REG_MCR, mcr);
882 
883 	/* Reset FIFOs. */
884 	ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
885 
886  describe:
887 	if (count >= 14 && count <= 16) {
888 		sc->sc_rxfifosz = 16;
889 		device_set_desc(sc->sc_dev, "16550 or compatible");
890 	} else if (count >= 28 && count <= 32) {
891 		sc->sc_rxfifosz = 32;
892 		device_set_desc(sc->sc_dev, "16650 or compatible");
893 	} else if (count >= 56 && count <= 64) {
894 		sc->sc_rxfifosz = 64;
895 		device_set_desc(sc->sc_dev, "16750 or compatible");
896 	} else if (count >= 112 && count <= 128) {
897 		sc->sc_rxfifosz = 128;
898 		device_set_desc(sc->sc_dev, "16950 or compatible");
899 	} else if (count >= 224 && count <= 256) {
900 		sc->sc_rxfifosz = 256;
901 		device_set_desc(sc->sc_dev, "16x50 with 256 byte FIFO");
902 	} else {
903 		sc->sc_rxfifosz = 16;
904 		device_set_desc(sc->sc_dev,
905 		    "Non-standard ns8250 class UART with FIFOs");
906 	}
907 
908 	/*
909 	 * Force the Tx FIFO size to 16 bytes for now. We don't program the
910 	 * Tx trigger. Also, we assume that all data has been sent when the
911 	 * interrupt happens.
912 	 */
913 	sc->sc_txfifosz = 16;
914 
915 #if 0
916 	/*
917 	 * XXX there are some issues related to hardware flow control and
918 	 * it's likely that uart(4) is the cause. This basically needs more
919 	 * investigation, but we avoid using for hardware flow control
920 	 * until then.
921 	 */
922 	/* 16650s or higher have automatic flow control. */
923 	if (sc->sc_rxfifosz > 16) {
924 		sc->sc_hwiflow = 1;
925 		sc->sc_hwoflow = 1;
926 	}
927 #endif
928 
929 	return (0);
930 }
931 
932 int
933 ns8250_bus_receive(struct uart_softc *sc)
934 {
935 	struct uart_bas *bas;
936 	int xc;
937 	uint8_t lsr;
938 
939 	bas = &sc->sc_bas;
940 	uart_lock(sc->sc_hwmtx);
941 	lsr = uart_getreg(bas, REG_LSR);
942 	while (lsr & LSR_RXRDY) {
943 		if (uart_rx_full(sc)) {
944 			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
945 			break;
946 		}
947 		xc = uart_getreg(bas, REG_DATA);
948 		if (lsr & LSR_FE)
949 			xc |= UART_STAT_FRAMERR;
950 		if (lsr & LSR_PE)
951 			xc |= UART_STAT_PARERR;
952 		uart_rx_put(sc, xc);
953 		lsr = uart_getreg(bas, REG_LSR);
954 	}
955 	/* Discard everything left in the Rx FIFO. */
956 	while (lsr & LSR_RXRDY) {
957 		(void)uart_getreg(bas, REG_DATA);
958 		uart_barrier(bas);
959 		lsr = uart_getreg(bas, REG_LSR);
960 	}
961 	uart_unlock(sc->sc_hwmtx);
962  	return (0);
963 }
964 
965 int
966 ns8250_bus_setsig(struct uart_softc *sc, int sig)
967 {
968 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
969 	struct uart_bas *bas;
970 	uint32_t new, old;
971 
972 	bas = &sc->sc_bas;
973 	do {
974 		old = sc->sc_hwsig;
975 		new = old;
976 		if (sig & SER_DDTR) {
977 			new = (new & ~SER_DTR) | (sig & (SER_DTR | SER_DDTR));
978 		}
979 		if (sig & SER_DRTS) {
980 			new = (new & ~SER_RTS) | (sig & (SER_RTS | SER_DRTS));
981 		}
982 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
983 	uart_lock(sc->sc_hwmtx);
984 	ns8250->mcr &= ~(MCR_DTR|MCR_RTS);
985 	if (new & SER_DTR)
986 		ns8250->mcr |= MCR_DTR;
987 	if (new & SER_RTS)
988 		ns8250->mcr |= MCR_RTS;
989 	uart_setreg(bas, REG_MCR, ns8250->mcr);
990 	uart_barrier(bas);
991 	uart_unlock(sc->sc_hwmtx);
992 	return (0);
993 }
994 
995 int
996 ns8250_bus_transmit(struct uart_softc *sc)
997 {
998 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
999 	struct uart_bas *bas;
1000 	int i;
1001 
1002 	bas = &sc->sc_bas;
1003 	uart_lock(sc->sc_hwmtx);
1004 	if (sc->sc_txdatasz > 1) {
1005 		if ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0)
1006 			ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
1007 	} else {
1008 		while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0)
1009 			DELAY(4);
1010 	}
1011 	for (i = 0; i < sc->sc_txdatasz; i++) {
1012 		uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]);
1013 		uart_barrier(bas);
1014 	}
1015 	uart_setreg(bas, REG_IER, ns8250->ier | IER_ETXRDY);
1016 	uart_barrier(bas);
1017 	if (broken_txfifo)
1018 		ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
1019 	else
1020 		sc->sc_txbusy = 1;
1021 	uart_unlock(sc->sc_hwmtx);
1022 	if (broken_txfifo)
1023 		uart_sched_softih(sc, SER_INT_TXIDLE);
1024 	return (0);
1025 }
1026 
1027 void
1028 ns8250_bus_grab(struct uart_softc *sc)
1029 {
1030 	struct uart_bas *bas = &sc->sc_bas;
1031 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1032 	u_char ier;
1033 
1034 	/*
1035 	 * turn off all interrupts to enter polling mode. Leave the
1036 	 * saved mask alone. We'll restore whatever it was in ungrab.
1037 	 * All pending interrupt signals are reset when IER is set to 0.
1038 	 */
1039 	uart_lock(sc->sc_hwmtx);
1040 	ier = uart_getreg(bas, REG_IER);
1041 	uart_setreg(bas, REG_IER, ier & ns8250->ier_mask);
1042 	uart_barrier(bas);
1043 	uart_unlock(sc->sc_hwmtx);
1044 }
1045 
1046 void
1047 ns8250_bus_ungrab(struct uart_softc *sc)
1048 {
1049 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1050 	struct uart_bas *bas = &sc->sc_bas;
1051 
1052 	/*
1053 	 * Restore previous interrupt mask
1054 	 */
1055 	uart_lock(sc->sc_hwmtx);
1056 	uart_setreg(bas, REG_IER, ns8250->ier);
1057 	uart_barrier(bas);
1058 	uart_unlock(sc->sc_hwmtx);
1059 }
1060