xref: /freebsd/sys/dev/uart/uart_dev_ns8250.c (revision 8a166cafe0965f6bd72cd3d2f5372704f05cb5e8)
1 /*-
2  * Copyright (c) 2003 Marcel Moolenaar
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/bus.h>
33 #include <sys/conf.h>
34 #include <sys/kernel.h>
35 #include <sys/sysctl.h>
36 #include <machine/bus.h>
37 
38 #include <dev/uart/uart.h>
39 #include <dev/uart/uart_cpu.h>
40 #include <dev/uart/uart_bus.h>
41 
42 #include <dev/ic/ns16550.h>
43 
44 #include "uart_if.h"
45 
46 #define	DEFAULT_RCLK	1843200
47 
48 /*
49  * Clear pending interrupts. THRE is cleared by reading IIR. Data
50  * that may have been received gets lost here.
51  */
52 static void
53 ns8250_clrint(struct uart_bas *bas)
54 {
55 	uint8_t iir, lsr;
56 
57 	iir = uart_getreg(bas, REG_IIR);
58 	while ((iir & IIR_NOPEND) == 0) {
59 		iir &= IIR_IMASK;
60 		if (iir == IIR_RLS) {
61 			lsr = uart_getreg(bas, REG_LSR);
62 			if (lsr & (LSR_BI|LSR_FE|LSR_PE))
63 				(void)uart_getreg(bas, REG_DATA);
64 		} else if (iir == IIR_RXRDY || iir == IIR_RXTOUT)
65 			(void)uart_getreg(bas, REG_DATA);
66 		else if (iir == IIR_MLSC)
67 			(void)uart_getreg(bas, REG_MSR);
68 		uart_barrier(bas);
69 		iir = uart_getreg(bas, REG_IIR);
70 	}
71 }
72 
73 static int
74 ns8250_delay(struct uart_bas *bas)
75 {
76 	int divisor;
77 	u_char lcr;
78 
79 	lcr = uart_getreg(bas, REG_LCR);
80 	uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
81 	uart_barrier(bas);
82 	divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8);
83 	uart_barrier(bas);
84 	uart_setreg(bas, REG_LCR, lcr);
85 	uart_barrier(bas);
86 
87 	/* 1/10th the time to transmit 1 character (estimate). */
88 	if (divisor <= 134)
89 		return (16000000 * divisor / bas->rclk);
90 	return (16000 * divisor / (bas->rclk / 1000));
91 }
92 
93 static int
94 ns8250_divisor(int rclk, int baudrate)
95 {
96 	int actual_baud, divisor;
97 	int error;
98 
99 	if (baudrate == 0)
100 		return (0);
101 
102 	divisor = (rclk / (baudrate << 3) + 1) >> 1;
103 	if (divisor == 0 || divisor >= 65536)
104 		return (0);
105 	actual_baud = rclk / (divisor << 4);
106 
107 	/* 10 times error in percent: */
108 	error = ((actual_baud - baudrate) * 2000 / baudrate + 1) >> 1;
109 
110 	/* 3.0% maximum error tolerance: */
111 	if (error < -30 || error > 30)
112 		return (0);
113 
114 	return (divisor);
115 }
116 
117 static int
118 ns8250_drain(struct uart_bas *bas, int what)
119 {
120 	int delay, limit;
121 
122 	delay = ns8250_delay(bas);
123 
124 	if (what & UART_DRAIN_TRANSMITTER) {
125 		/*
126 		 * Pick an arbitrary high limit to avoid getting stuck in
127 		 * an infinite loop when the hardware is broken. Make the
128 		 * limit high enough to handle large FIFOs.
129 		 */
130 		limit = 10*1024;
131 		while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
132 			DELAY(delay);
133 		if (limit == 0) {
134 			/* printf("ns8250: transmitter appears stuck... "); */
135 			return (EIO);
136 		}
137 	}
138 
139 	if (what & UART_DRAIN_RECEIVER) {
140 		/*
141 		 * Pick an arbitrary high limit to avoid getting stuck in
142 		 * an infinite loop when the hardware is broken. Make the
143 		 * limit high enough to handle large FIFOs and integrated
144 		 * UARTs. The HP rx2600 for example has 3 UARTs on the
145 		 * management board that tend to get a lot of data send
146 		 * to it when the UART is first activated.
147 		 */
148 		limit=10*4096;
149 		while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) {
150 			(void)uart_getreg(bas, REG_DATA);
151 			uart_barrier(bas);
152 			DELAY(delay << 2);
153 		}
154 		if (limit == 0) {
155 			/* printf("ns8250: receiver appears broken... "); */
156 			return (EIO);
157 		}
158 	}
159 
160 	return (0);
161 }
162 
163 /*
164  * We can only flush UARTs with FIFOs. UARTs without FIFOs should be
165  * drained. WARNING: this function clobbers the FIFO setting!
166  */
167 static void
168 ns8250_flush(struct uart_bas *bas, int what)
169 {
170 	uint8_t fcr;
171 
172 	fcr = FCR_ENABLE;
173 	if (what & UART_FLUSH_TRANSMITTER)
174 		fcr |= FCR_XMT_RST;
175 	if (what & UART_FLUSH_RECEIVER)
176 		fcr |= FCR_RCV_RST;
177 	uart_setreg(bas, REG_FCR, fcr);
178 	uart_barrier(bas);
179 }
180 
181 static int
182 ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
183     int parity)
184 {
185 	int divisor;
186 	uint8_t lcr;
187 
188 	lcr = 0;
189 	if (databits >= 8)
190 		lcr |= LCR_8BITS;
191 	else if (databits == 7)
192 		lcr |= LCR_7BITS;
193 	else if (databits == 6)
194 		lcr |= LCR_6BITS;
195 	else
196 		lcr |= LCR_5BITS;
197 	if (stopbits > 1)
198 		lcr |= LCR_STOPB;
199 	lcr |= parity << 3;
200 
201 	/* Set baudrate. */
202 	if (baudrate > 0) {
203 		divisor = ns8250_divisor(bas->rclk, baudrate);
204 		if (divisor == 0)
205 			return (EINVAL);
206 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
207 		uart_barrier(bas);
208 		uart_setreg(bas, REG_DLL, divisor & 0xff);
209 		uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff);
210 		uart_barrier(bas);
211 	}
212 
213 	/* Set LCR and clear DLAB. */
214 	uart_setreg(bas, REG_LCR, lcr);
215 	uart_barrier(bas);
216 	return (0);
217 }
218 
219 /*
220  * Low-level UART interface.
221  */
222 static int ns8250_probe(struct uart_bas *bas);
223 static void ns8250_init(struct uart_bas *bas, int, int, int, int);
224 static void ns8250_term(struct uart_bas *bas);
225 static void ns8250_putc(struct uart_bas *bas, int);
226 static int ns8250_rxready(struct uart_bas *bas);
227 static int ns8250_getc(struct uart_bas *bas, struct mtx *);
228 
229 static struct uart_ops uart_ns8250_ops = {
230 	.probe = ns8250_probe,
231 	.init = ns8250_init,
232 	.term = ns8250_term,
233 	.putc = ns8250_putc,
234 	.rxready = ns8250_rxready,
235 	.getc = ns8250_getc,
236 };
237 
238 static int
239 ns8250_probe(struct uart_bas *bas)
240 {
241 	u_char val;
242 
243 	/* Check known 0 bits that don't depend on DLAB. */
244 	val = uart_getreg(bas, REG_IIR);
245 	if (val & 0x30)
246 		return (ENXIO);
247 	/*
248 	 * Bit 6 of the MCR (= 0x40) appears to be 1 for the Sun1699
249 	 * chip, but otherwise doesn't seem to have a function. In
250 	 * other words, uart(4) works regardless. Ignore that bit so
251 	 * the probe succeeds.
252 	 */
253 	val = uart_getreg(bas, REG_MCR);
254 	if (val & 0xa0)
255 		return (ENXIO);
256 
257 	return (0);
258 }
259 
260 static void
261 ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
262     int parity)
263 {
264 	u_char	ier;
265 
266 	if (bas->rclk == 0)
267 		bas->rclk = DEFAULT_RCLK;
268 	ns8250_param(bas, baudrate, databits, stopbits, parity);
269 
270 	/* Disable all interrupt sources. */
271 	/*
272 	 * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA
273 	 * UARTs split the receive time-out interrupt bit out separately as
274 	 * 0x10.  This gets handled by ier_mask and ier_rxbits below.
275 	 */
276 	ier = uart_getreg(bas, REG_IER) & 0xe0;
277 	uart_setreg(bas, REG_IER, ier);
278 	uart_barrier(bas);
279 
280 	/* Disable the FIFO (if present). */
281 	uart_setreg(bas, REG_FCR, 0);
282 	uart_barrier(bas);
283 
284 	/* Set RTS & DTR. */
285 	uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR);
286 	uart_barrier(bas);
287 
288 	ns8250_clrint(bas);
289 }
290 
291 static void
292 ns8250_term(struct uart_bas *bas)
293 {
294 
295 	/* Clear RTS & DTR. */
296 	uart_setreg(bas, REG_MCR, MCR_IE);
297 	uart_barrier(bas);
298 }
299 
300 static void
301 ns8250_putc(struct uart_bas *bas, int c)
302 {
303 	int limit;
304 
305 	limit = 250000;
306 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit)
307 		DELAY(4);
308 	uart_setreg(bas, REG_DATA, c);
309 	uart_barrier(bas);
310 	limit = 250000;
311 	while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
312 		DELAY(4);
313 }
314 
315 static int
316 ns8250_rxready(struct uart_bas *bas)
317 {
318 
319 	return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0);
320 }
321 
322 static int
323 ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx)
324 {
325 	int c;
326 
327 	uart_lock(hwmtx);
328 
329 	while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) {
330 		uart_unlock(hwmtx);
331 		DELAY(4);
332 		uart_lock(hwmtx);
333 	}
334 
335 	c = uart_getreg(bas, REG_DATA);
336 
337 	uart_unlock(hwmtx);
338 
339 	return (c);
340 }
341 
342 /*
343  * High-level UART interface.
344  */
345 struct ns8250_softc {
346 	struct uart_softc base;
347 	uint8_t		fcr;
348 	uint8_t		ier;
349 	uint8_t		mcr;
350 
351 	uint8_t		ier_mask;
352 	uint8_t		ier_rxbits;
353 };
354 
355 static int ns8250_bus_attach(struct uart_softc *);
356 static int ns8250_bus_detach(struct uart_softc *);
357 static int ns8250_bus_flush(struct uart_softc *, int);
358 static int ns8250_bus_getsig(struct uart_softc *);
359 static int ns8250_bus_ioctl(struct uart_softc *, int, intptr_t);
360 static int ns8250_bus_ipend(struct uart_softc *);
361 static int ns8250_bus_param(struct uart_softc *, int, int, int, int);
362 static int ns8250_bus_probe(struct uart_softc *);
363 static int ns8250_bus_receive(struct uart_softc *);
364 static int ns8250_bus_setsig(struct uart_softc *, int);
365 static int ns8250_bus_transmit(struct uart_softc *);
366 
367 static kobj_method_t ns8250_methods[] = {
368 	KOBJMETHOD(uart_attach,		ns8250_bus_attach),
369 	KOBJMETHOD(uart_detach,		ns8250_bus_detach),
370 	KOBJMETHOD(uart_flush,		ns8250_bus_flush),
371 	KOBJMETHOD(uart_getsig,		ns8250_bus_getsig),
372 	KOBJMETHOD(uart_ioctl,		ns8250_bus_ioctl),
373 	KOBJMETHOD(uart_ipend,		ns8250_bus_ipend),
374 	KOBJMETHOD(uart_param,		ns8250_bus_param),
375 	KOBJMETHOD(uart_probe,		ns8250_bus_probe),
376 	KOBJMETHOD(uart_receive,	ns8250_bus_receive),
377 	KOBJMETHOD(uart_setsig,		ns8250_bus_setsig),
378 	KOBJMETHOD(uart_transmit,	ns8250_bus_transmit),
379 	{ 0, 0 }
380 };
381 
382 struct uart_class uart_ns8250_class = {
383 	"ns8250",
384 	ns8250_methods,
385 	sizeof(struct ns8250_softc),
386 	.uc_ops = &uart_ns8250_ops,
387 	.uc_range = 8,
388 	.uc_rclk = DEFAULT_RCLK
389 };
390 
391 #define	SIGCHG(c, i, s, d)				\
392 	if (c) {					\
393 		i |= (i & s) ? s : s | d;		\
394 	} else {					\
395 		i = (i & s) ? (i & ~s) | d : i;		\
396 	}
397 
398 static int
399 ns8250_bus_attach(struct uart_softc *sc)
400 {
401 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
402 	struct uart_bas *bas;
403 	unsigned int ivar;
404 
405 	bas = &sc->sc_bas;
406 
407 	ns8250->mcr = uart_getreg(bas, REG_MCR);
408 	ns8250->fcr = FCR_ENABLE;
409 	if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags",
410 	    &ivar)) {
411 		if (UART_FLAGS_FCR_RX_LOW(ivar))
412 			ns8250->fcr |= FCR_RX_LOW;
413 		else if (UART_FLAGS_FCR_RX_MEDL(ivar))
414 			ns8250->fcr |= FCR_RX_MEDL;
415 		else if (UART_FLAGS_FCR_RX_HIGH(ivar))
416 			ns8250->fcr |= FCR_RX_HIGH;
417 		else
418 			ns8250->fcr |= FCR_RX_MEDH;
419 	} else
420 		ns8250->fcr |= FCR_RX_MEDH;
421 
422 	/* Get IER mask */
423 	ivar = 0xf0;
424 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask",
425 	    &ivar);
426 	ns8250->ier_mask = (uint8_t)(ivar & 0xff);
427 
428 	/* Get IER RX interrupt bits */
429 	ivar = IER_EMSC | IER_ERLS | IER_ERXRDY;
430 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits",
431 	    &ivar);
432 	ns8250->ier_rxbits = (uint8_t)(ivar & 0xff);
433 
434 	uart_setreg(bas, REG_FCR, ns8250->fcr);
435 	uart_barrier(bas);
436 	ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
437 
438 	if (ns8250->mcr & MCR_DTR)
439 		sc->sc_hwsig |= SER_DTR;
440 	if (ns8250->mcr & MCR_RTS)
441 		sc->sc_hwsig |= SER_RTS;
442 	ns8250_bus_getsig(sc);
443 
444 	ns8250_clrint(bas);
445 	ns8250->ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
446 	ns8250->ier |= ns8250->ier_rxbits;
447 	uart_setreg(bas, REG_IER, ns8250->ier);
448 	uart_barrier(bas);
449 
450 	return (0);
451 }
452 
453 static int
454 ns8250_bus_detach(struct uart_softc *sc)
455 {
456 	struct ns8250_softc *ns8250;
457 	struct uart_bas *bas;
458 	u_char ier;
459 
460 	ns8250 = (struct ns8250_softc *)sc;
461 	bas = &sc->sc_bas;
462 	ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
463 	uart_setreg(bas, REG_IER, ier);
464 	uart_barrier(bas);
465 	ns8250_clrint(bas);
466 	return (0);
467 }
468 
469 static int
470 ns8250_bus_flush(struct uart_softc *sc, int what)
471 {
472 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
473 	struct uart_bas *bas;
474 	int error;
475 
476 	bas = &sc->sc_bas;
477 	uart_lock(sc->sc_hwmtx);
478 	if (sc->sc_rxfifosz > 1) {
479 		ns8250_flush(bas, what);
480 		uart_setreg(bas, REG_FCR, ns8250->fcr);
481 		uart_barrier(bas);
482 		error = 0;
483 	} else
484 		error = ns8250_drain(bas, what);
485 	uart_unlock(sc->sc_hwmtx);
486 	return (error);
487 }
488 
489 static int
490 ns8250_bus_getsig(struct uart_softc *sc)
491 {
492 	uint32_t new, old, sig;
493 	uint8_t msr;
494 
495 	do {
496 		old = sc->sc_hwsig;
497 		sig = old;
498 		uart_lock(sc->sc_hwmtx);
499 		msr = uart_getreg(&sc->sc_bas, REG_MSR);
500 		uart_unlock(sc->sc_hwmtx);
501 		SIGCHG(msr & MSR_DSR, sig, SER_DSR, SER_DDSR);
502 		SIGCHG(msr & MSR_CTS, sig, SER_CTS, SER_DCTS);
503 		SIGCHG(msr & MSR_DCD, sig, SER_DCD, SER_DDCD);
504 		SIGCHG(msr & MSR_RI,  sig, SER_RI,  SER_DRI);
505 		new = sig & ~SER_MASK_DELTA;
506 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
507 	return (sig);
508 }
509 
510 static int
511 ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
512 {
513 	struct uart_bas *bas;
514 	int baudrate, divisor, error;
515 	uint8_t efr, lcr;
516 
517 	bas = &sc->sc_bas;
518 	error = 0;
519 	uart_lock(sc->sc_hwmtx);
520 	switch (request) {
521 	case UART_IOCTL_BREAK:
522 		lcr = uart_getreg(bas, REG_LCR);
523 		if (data)
524 			lcr |= LCR_SBREAK;
525 		else
526 			lcr &= ~LCR_SBREAK;
527 		uart_setreg(bas, REG_LCR, lcr);
528 		uart_barrier(bas);
529 		break;
530 	case UART_IOCTL_IFLOW:
531 		lcr = uart_getreg(bas, REG_LCR);
532 		uart_barrier(bas);
533 		uart_setreg(bas, REG_LCR, 0xbf);
534 		uart_barrier(bas);
535 		efr = uart_getreg(bas, REG_EFR);
536 		if (data)
537 			efr |= EFR_RTS;
538 		else
539 			efr &= ~EFR_RTS;
540 		uart_setreg(bas, REG_EFR, efr);
541 		uart_barrier(bas);
542 		uart_setreg(bas, REG_LCR, lcr);
543 		uart_barrier(bas);
544 		break;
545 	case UART_IOCTL_OFLOW:
546 		lcr = uart_getreg(bas, REG_LCR);
547 		uart_barrier(bas);
548 		uart_setreg(bas, REG_LCR, 0xbf);
549 		uart_barrier(bas);
550 		efr = uart_getreg(bas, REG_EFR);
551 		if (data)
552 			efr |= EFR_CTS;
553 		else
554 			efr &= ~EFR_CTS;
555 		uart_setreg(bas, REG_EFR, efr);
556 		uart_barrier(bas);
557 		uart_setreg(bas, REG_LCR, lcr);
558 		uart_barrier(bas);
559 		break;
560 	case UART_IOCTL_BAUD:
561 		lcr = uart_getreg(bas, REG_LCR);
562 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
563 		uart_barrier(bas);
564 		divisor = uart_getreg(bas, REG_DLL) |
565 		    (uart_getreg(bas, REG_DLH) << 8);
566 		uart_barrier(bas);
567 		uart_setreg(bas, REG_LCR, lcr);
568 		uart_barrier(bas);
569 		baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0;
570 		if (baudrate > 0)
571 			*(int*)data = baudrate;
572 		else
573 			error = ENXIO;
574 		break;
575 	default:
576 		error = EINVAL;
577 		break;
578 	}
579 	uart_unlock(sc->sc_hwmtx);
580 	return (error);
581 }
582 
583 static int
584 ns8250_bus_ipend(struct uart_softc *sc)
585 {
586 	struct uart_bas *bas;
587 	struct ns8250_softc *ns8250;
588 	int ipend;
589 	uint8_t iir, lsr;
590 
591 	ns8250 = (struct ns8250_softc *)sc;
592 	bas = &sc->sc_bas;
593 	uart_lock(sc->sc_hwmtx);
594 	iir = uart_getreg(bas, REG_IIR);
595 	if (iir & IIR_NOPEND) {
596 		uart_unlock(sc->sc_hwmtx);
597 		return (0);
598 	}
599 	ipend = 0;
600 	if (iir & IIR_RXRDY) {
601 		lsr = uart_getreg(bas, REG_LSR);
602 		if (lsr & LSR_OE)
603 			ipend |= SER_INT_OVERRUN;
604 		if (lsr & LSR_BI)
605 			ipend |= SER_INT_BREAK;
606 		if (lsr & LSR_RXRDY)
607 			ipend |= SER_INT_RXREADY;
608 	} else {
609 		if (iir & IIR_TXRDY) {
610 			ipend |= SER_INT_TXIDLE;
611 			uart_setreg(bas, REG_IER, ns8250->ier);
612 		} else
613 			ipend |= SER_INT_SIGCHG;
614 	}
615 	if (ipend == 0)
616 		ns8250_clrint(bas);
617 	uart_unlock(sc->sc_hwmtx);
618 	return (ipend);
619 }
620 
621 static int
622 ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits,
623     int stopbits, int parity)
624 {
625 	struct uart_bas *bas;
626 	int error;
627 
628 	bas = &sc->sc_bas;
629 	uart_lock(sc->sc_hwmtx);
630 	error = ns8250_param(bas, baudrate, databits, stopbits, parity);
631 	uart_unlock(sc->sc_hwmtx);
632 	return (error);
633 }
634 
635 static int
636 ns8250_bus_probe(struct uart_softc *sc)
637 {
638 	struct ns8250_softc *ns8250;
639 	struct uart_bas *bas;
640 	int count, delay, error, limit;
641 	uint8_t lsr, mcr, ier;
642 
643 	ns8250 = (struct ns8250_softc *)sc;
644 	bas = &sc->sc_bas;
645 
646 	error = ns8250_probe(bas);
647 	if (error)
648 		return (error);
649 
650 	mcr = MCR_IE;
651 	if (sc->sc_sysdev == NULL) {
652 		/* By using ns8250_init() we also set DTR and RTS. */
653 		ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE);
654 	} else
655 		mcr |= MCR_DTR | MCR_RTS;
656 
657 	error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
658 	if (error)
659 		return (error);
660 
661 	/*
662 	 * Set loopback mode. This avoids having garbage on the wire and
663 	 * also allows us send and receive data. We set DTR and RTS to
664 	 * avoid the possibility that automatic flow-control prevents
665 	 * any data from being sent.
666 	 */
667 	uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS);
668 	uart_barrier(bas);
669 
670 	/*
671 	 * Enable FIFOs. And check that the UART has them. If not, we're
672 	 * done. Since this is the first time we enable the FIFOs, we reset
673 	 * them.
674 	 */
675 	uart_setreg(bas, REG_FCR, FCR_ENABLE);
676 	uart_barrier(bas);
677 	if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) {
678 		/*
679 		 * NS16450 or INS8250. We don't bother to differentiate
680 		 * between them. They're too old to be interesting.
681 		 */
682 		uart_setreg(bas, REG_MCR, mcr);
683 		uart_barrier(bas);
684 		sc->sc_rxfifosz = sc->sc_txfifosz = 1;
685 		device_set_desc(sc->sc_dev, "8250 or 16450 or compatible");
686 		return (0);
687 	}
688 
689 	uart_setreg(bas, REG_FCR, FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST);
690 	uart_barrier(bas);
691 
692 	count = 0;
693 	delay = ns8250_delay(bas);
694 
695 	/* We have FIFOs. Drain the transmitter and receiver. */
696 	error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER);
697 	if (error) {
698 		uart_setreg(bas, REG_MCR, mcr);
699 		uart_setreg(bas, REG_FCR, 0);
700 		uart_barrier(bas);
701 		goto describe;
702 	}
703 
704 	/*
705 	 * We should have a sufficiently clean "pipe" to determine the
706 	 * size of the FIFOs. We send as much characters as is reasonable
707 	 * and wait for the overflow bit in the LSR register to be
708 	 * asserted, counting the characters as we send them. Based on
709 	 * that count we know the FIFO size.
710 	 */
711 	do {
712 		uart_setreg(bas, REG_DATA, 0);
713 		uart_barrier(bas);
714 		count++;
715 
716 		limit = 30;
717 		lsr = 0;
718 		/*
719 		 * LSR bits are cleared upon read, so we must accumulate
720 		 * them to be able to test LSR_OE below.
721 		 */
722 		while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 &&
723 		    --limit)
724 			DELAY(delay);
725 		if (limit == 0) {
726 			ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
727 			uart_setreg(bas, REG_IER, ier);
728 			uart_setreg(bas, REG_MCR, mcr);
729 			uart_setreg(bas, REG_FCR, 0);
730 			uart_barrier(bas);
731 			count = 0;
732 			goto describe;
733 		}
734 	} while ((lsr & LSR_OE) == 0 && count < 130);
735 	count--;
736 
737 	uart_setreg(bas, REG_MCR, mcr);
738 
739 	/* Reset FIFOs. */
740 	ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
741 
742  describe:
743 	if (count >= 14 && count <= 16) {
744 		sc->sc_rxfifosz = 16;
745 		device_set_desc(sc->sc_dev, "16550 or compatible");
746 	} else if (count >= 28 && count <= 32) {
747 		sc->sc_rxfifosz = 32;
748 		device_set_desc(sc->sc_dev, "16650 or compatible");
749 	} else if (count >= 56 && count <= 64) {
750 		sc->sc_rxfifosz = 64;
751 		device_set_desc(sc->sc_dev, "16750 or compatible");
752 	} else if (count >= 112 && count <= 128) {
753 		sc->sc_rxfifosz = 128;
754 		device_set_desc(sc->sc_dev, "16950 or compatible");
755 	} else {
756 		sc->sc_rxfifosz = 16;
757 		device_set_desc(sc->sc_dev,
758 		    "Non-standard ns8250 class UART with FIFOs");
759 	}
760 
761 	/*
762 	 * Force the Tx FIFO size to 16 bytes for now. We don't program the
763 	 * Tx trigger. Also, we assume that all data has been sent when the
764 	 * interrupt happens.
765 	 */
766 	sc->sc_txfifosz = 16;
767 
768 #if 0
769 	/*
770 	 * XXX there are some issues related to hardware flow control and
771 	 * it's likely that uart(4) is the cause. This basicly needs more
772 	 * investigation, but we avoid using for hardware flow control
773 	 * until then.
774 	 */
775 	/* 16650s or higher have automatic flow control. */
776 	if (sc->sc_rxfifosz > 16) {
777 		sc->sc_hwiflow = 1;
778 		sc->sc_hwoflow = 1;
779 	}
780 #endif
781 
782 	return (0);
783 }
784 
785 static int
786 ns8250_bus_receive(struct uart_softc *sc)
787 {
788 	struct uart_bas *bas;
789 	int xc;
790 	uint8_t lsr;
791 
792 	bas = &sc->sc_bas;
793 	uart_lock(sc->sc_hwmtx);
794 	lsr = uart_getreg(bas, REG_LSR);
795 	while (lsr & LSR_RXRDY) {
796 		if (uart_rx_full(sc)) {
797 			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
798 			break;
799 		}
800 		xc = uart_getreg(bas, REG_DATA);
801 		if (lsr & LSR_FE)
802 			xc |= UART_STAT_FRAMERR;
803 		if (lsr & LSR_PE)
804 			xc |= UART_STAT_PARERR;
805 		uart_rx_put(sc, xc);
806 		lsr = uart_getreg(bas, REG_LSR);
807 	}
808 	/* Discard everything left in the Rx FIFO. */
809 	while (lsr & LSR_RXRDY) {
810 		(void)uart_getreg(bas, REG_DATA);
811 		uart_barrier(bas);
812 		lsr = uart_getreg(bas, REG_LSR);
813 	}
814 	uart_unlock(sc->sc_hwmtx);
815  	return (0);
816 }
817 
818 static int
819 ns8250_bus_setsig(struct uart_softc *sc, int sig)
820 {
821 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
822 	struct uart_bas *bas;
823 	uint32_t new, old;
824 
825 	bas = &sc->sc_bas;
826 	do {
827 		old = sc->sc_hwsig;
828 		new = old;
829 		if (sig & SER_DDTR) {
830 			SIGCHG(sig & SER_DTR, new, SER_DTR,
831 			    SER_DDTR);
832 		}
833 		if (sig & SER_DRTS) {
834 			SIGCHG(sig & SER_RTS, new, SER_RTS,
835 			    SER_DRTS);
836 		}
837 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
838 	uart_lock(sc->sc_hwmtx);
839 	ns8250->mcr &= ~(MCR_DTR|MCR_RTS);
840 	if (new & SER_DTR)
841 		ns8250->mcr |= MCR_DTR;
842 	if (new & SER_RTS)
843 		ns8250->mcr |= MCR_RTS;
844 	uart_setreg(bas, REG_MCR, ns8250->mcr);
845 	uart_barrier(bas);
846 	uart_unlock(sc->sc_hwmtx);
847 	return (0);
848 }
849 
850 static int broken_txfifo = 0;
851 SYSCTL_INT(_hw, OID_AUTO, broken_txfifo, CTLFLAG_RW | CTLFLAG_TUN,
852 	&broken_txfifo, 0, "UART FIFO has QEMU emulation bug");
853 TUNABLE_INT("hw.broken_txfifo", &broken_txfifo);
854 
855 static int
856 ns8250_bus_transmit(struct uart_softc *sc)
857 {
858 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
859 	struct uart_bas *bas;
860 	int i;
861 
862 	bas = &sc->sc_bas;
863 	uart_lock(sc->sc_hwmtx);
864 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0)
865 		;
866 	uart_setreg(bas, REG_IER, ns8250->ier | IER_ETXRDY);
867 	uart_barrier(bas);
868 	for (i = 0; i < sc->sc_txdatasz; i++) {
869 		uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]);
870 		uart_barrier(bas);
871 	}
872 	if (broken_txfifo)
873 		ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
874 	else
875 		sc->sc_txbusy = 1;
876 	uart_unlock(sc->sc_hwmtx);
877 	if (broken_txfifo)
878 		uart_sched_softih(sc, SER_INT_TXIDLE);
879 	return (0);
880 }
881