xref: /freebsd/sys/dev/uart/uart_dev_ns8250.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*-
2  * Copyright (c) 2003 Marcel Moolenaar
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/bus.h>
33 #include <sys/conf.h>
34 #include <machine/bus.h>
35 
36 #include <dev/uart/uart.h>
37 #include <dev/uart/uart_cpu.h>
38 #include <dev/uart/uart_bus.h>
39 
40 #include <dev/ic/ns16550.h>
41 
42 #include "uart_if.h"
43 
44 #define	DEFAULT_RCLK	1843200
45 
46 /*
47  * Clear pending interrupts. THRE is cleared by reading IIR. Data
48  * that may have been received gets lost here.
49  */
50 static void
51 ns8250_clrint(struct uart_bas *bas)
52 {
53 	uint8_t iir, lsr;
54 
55 	iir = uart_getreg(bas, REG_IIR);
56 	while ((iir & IIR_NOPEND) == 0) {
57 		iir &= IIR_IMASK;
58 		if (iir == IIR_RLS) {
59 			lsr = uart_getreg(bas, REG_LSR);
60 			if (lsr & (LSR_BI|LSR_FE|LSR_PE))
61 				(void)uart_getreg(bas, REG_DATA);
62 		} else if (iir == IIR_RXRDY || iir == IIR_RXTOUT)
63 			(void)uart_getreg(bas, REG_DATA);
64 		else if (iir == IIR_MLSC)
65 			(void)uart_getreg(bas, REG_MSR);
66 		uart_barrier(bas);
67 		iir = uart_getreg(bas, REG_IIR);
68 	}
69 }
70 
71 static int
72 ns8250_delay(struct uart_bas *bas)
73 {
74 	int divisor;
75 	u_char lcr;
76 
77 	lcr = uart_getreg(bas, REG_LCR);
78 	uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
79 	uart_barrier(bas);
80 	divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8);
81 	uart_barrier(bas);
82 	uart_setreg(bas, REG_LCR, lcr);
83 	uart_barrier(bas);
84 
85 	/* 1/10th the time to transmit 1 character (estimate). */
86 	if (divisor <= 134)
87 		return (16000000 * divisor / bas->rclk);
88 	return (16000 * divisor / (bas->rclk / 1000));
89 }
90 
91 static int
92 ns8250_divisor(int rclk, int baudrate)
93 {
94 	int actual_baud, divisor;
95 	int error;
96 
97 	if (baudrate == 0)
98 		return (0);
99 
100 	divisor = (rclk / (baudrate << 3) + 1) >> 1;
101 	if (divisor == 0 || divisor >= 65536)
102 		return (0);
103 	actual_baud = rclk / (divisor << 4);
104 
105 	/* 10 times error in percent: */
106 	error = ((actual_baud - baudrate) * 2000 / baudrate + 1) >> 1;
107 
108 	/* 3.0% maximum error tolerance: */
109 	if (error < -30 || error > 30)
110 		return (0);
111 
112 	return (divisor);
113 }
114 
115 static int
116 ns8250_drain(struct uart_bas *bas, int what)
117 {
118 	int delay, limit;
119 
120 	delay = ns8250_delay(bas);
121 
122 	if (what & UART_DRAIN_TRANSMITTER) {
123 		/*
124 		 * Pick an arbitrary high limit to avoid getting stuck in
125 		 * an infinite loop when the hardware is broken. Make the
126 		 * limit high enough to handle large FIFOs.
127 		 */
128 		limit = 10*1024;
129 		while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
130 			DELAY(delay);
131 		if (limit == 0) {
132 			/* printf("ns8250: transmitter appears stuck... "); */
133 			return (EIO);
134 		}
135 	}
136 
137 	if (what & UART_DRAIN_RECEIVER) {
138 		/*
139 		 * Pick an arbitrary high limit to avoid getting stuck in
140 		 * an infinite loop when the hardware is broken. Make the
141 		 * limit high enough to handle large FIFOs and integrated
142 		 * UARTs. The HP rx2600 for example has 3 UARTs on the
143 		 * management board that tend to get a lot of data send
144 		 * to it when the UART is first activated.
145 		 */
146 		limit=10*4096;
147 		while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) {
148 			(void)uart_getreg(bas, REG_DATA);
149 			uart_barrier(bas);
150 			DELAY(delay << 2);
151 		}
152 		if (limit == 0) {
153 			/* printf("ns8250: receiver appears broken... "); */
154 			return (EIO);
155 		}
156 	}
157 
158 	return (0);
159 }
160 
161 /*
162  * We can only flush UARTs with FIFOs. UARTs without FIFOs should be
163  * drained. WARNING: this function clobbers the FIFO setting!
164  */
165 static void
166 ns8250_flush(struct uart_bas *bas, int what)
167 {
168 	uint8_t fcr;
169 
170 	fcr = FCR_ENABLE;
171 	if (what & UART_FLUSH_TRANSMITTER)
172 		fcr |= FCR_XMT_RST;
173 	if (what & UART_FLUSH_RECEIVER)
174 		fcr |= FCR_RCV_RST;
175 	uart_setreg(bas, REG_FCR, fcr);
176 	uart_barrier(bas);
177 }
178 
179 static int
180 ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
181     int parity)
182 {
183 	int divisor;
184 	uint8_t lcr;
185 
186 	lcr = 0;
187 	if (databits >= 8)
188 		lcr |= LCR_8BITS;
189 	else if (databits == 7)
190 		lcr |= LCR_7BITS;
191 	else if (databits == 6)
192 		lcr |= LCR_6BITS;
193 	else
194 		lcr |= LCR_5BITS;
195 	if (stopbits > 1)
196 		lcr |= LCR_STOPB;
197 	lcr |= parity << 3;
198 
199 	/* Set baudrate. */
200 	if (baudrate > 0) {
201 		divisor = ns8250_divisor(bas->rclk, baudrate);
202 		if (divisor == 0)
203 			return (EINVAL);
204 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
205 		uart_barrier(bas);
206 		uart_setreg(bas, REG_DLL, divisor & 0xff);
207 		uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff);
208 		uart_barrier(bas);
209 	}
210 
211 	/* Set LCR and clear DLAB. */
212 	uart_setreg(bas, REG_LCR, lcr);
213 	uart_barrier(bas);
214 	return (0);
215 }
216 
217 /*
218  * Low-level UART interface.
219  */
220 static int ns8250_probe(struct uart_bas *bas);
221 static void ns8250_init(struct uart_bas *bas, int, int, int, int);
222 static void ns8250_term(struct uart_bas *bas);
223 static void ns8250_putc(struct uart_bas *bas, int);
224 static int ns8250_rxready(struct uart_bas *bas);
225 static int ns8250_getc(struct uart_bas *bas, struct mtx *);
226 
227 static struct uart_ops uart_ns8250_ops = {
228 	.probe = ns8250_probe,
229 	.init = ns8250_init,
230 	.term = ns8250_term,
231 	.putc = ns8250_putc,
232 	.rxready = ns8250_rxready,
233 	.getc = ns8250_getc,
234 };
235 
236 static int
237 ns8250_probe(struct uart_bas *bas)
238 {
239 	u_char val;
240 
241 	/* Check known 0 bits that don't depend on DLAB. */
242 	val = uart_getreg(bas, REG_IIR);
243 	if (val & 0x30)
244 		return (ENXIO);
245 	/*
246 	 * Bit 6 of the MCR (= 0x40) appears to be 1 for the Sun1699
247 	 * chip, but otherwise doesn't seem to have a function. In
248 	 * other words, uart(4) works regardless. Ignore that bit so
249 	 * the probe succeeds.
250 	 */
251 	val = uart_getreg(bas, REG_MCR);
252 	if (val & 0xa0)
253 		return (ENXIO);
254 
255 	return (0);
256 }
257 
258 static void
259 ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
260     int parity)
261 {
262 	u_char	ier;
263 
264 	if (bas->rclk == 0)
265 		bas->rclk = DEFAULT_RCLK;
266 	ns8250_param(bas, baudrate, databits, stopbits, parity);
267 
268 	/* Disable all interrupt sources. */
269 	/*
270 	 * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA
271 	 * UARTs split the receive time-out interrupt bit out separately as
272 	 * 0x10.  This gets handled by ier_mask and ier_rxbits below.
273 	 */
274 	ier = uart_getreg(bas, REG_IER) & 0xe0;
275 	uart_setreg(bas, REG_IER, ier);
276 	uart_barrier(bas);
277 
278 	/* Disable the FIFO (if present). */
279 	uart_setreg(bas, REG_FCR, 0);
280 	uart_barrier(bas);
281 
282 	/* Set RTS & DTR. */
283 	uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR);
284 	uart_barrier(bas);
285 
286 	ns8250_clrint(bas);
287 }
288 
289 static void
290 ns8250_term(struct uart_bas *bas)
291 {
292 
293 	/* Clear RTS & DTR. */
294 	uart_setreg(bas, REG_MCR, MCR_IE);
295 	uart_barrier(bas);
296 }
297 
298 static void
299 ns8250_putc(struct uart_bas *bas, int c)
300 {
301 	int limit;
302 
303 	limit = 250000;
304 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit)
305 		DELAY(4);
306 	uart_setreg(bas, REG_DATA, c);
307 	uart_barrier(bas);
308 	limit = 250000;
309 	while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
310 		DELAY(4);
311 }
312 
313 static int
314 ns8250_rxready(struct uart_bas *bas)
315 {
316 
317 	return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0);
318 }
319 
320 static int
321 ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx)
322 {
323 	int c;
324 
325 	uart_lock(hwmtx);
326 
327 	while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) {
328 		uart_unlock(hwmtx);
329 		DELAY(4);
330 		uart_lock(hwmtx);
331 	}
332 
333 	c = uart_getreg(bas, REG_DATA);
334 
335 	uart_unlock(hwmtx);
336 
337 	return (c);
338 }
339 
340 /*
341  * High-level UART interface.
342  */
343 struct ns8250_softc {
344 	struct uart_softc base;
345 	uint8_t		fcr;
346 	uint8_t		ier;
347 	uint8_t		mcr;
348 
349 	uint8_t		ier_mask;
350 	uint8_t		ier_rxbits;
351 };
352 
353 static int ns8250_bus_attach(struct uart_softc *);
354 static int ns8250_bus_detach(struct uart_softc *);
355 static int ns8250_bus_flush(struct uart_softc *, int);
356 static int ns8250_bus_getsig(struct uart_softc *);
357 static int ns8250_bus_ioctl(struct uart_softc *, int, intptr_t);
358 static int ns8250_bus_ipend(struct uart_softc *);
359 static int ns8250_bus_param(struct uart_softc *, int, int, int, int);
360 static int ns8250_bus_probe(struct uart_softc *);
361 static int ns8250_bus_receive(struct uart_softc *);
362 static int ns8250_bus_setsig(struct uart_softc *, int);
363 static int ns8250_bus_transmit(struct uart_softc *);
364 
365 static kobj_method_t ns8250_methods[] = {
366 	KOBJMETHOD(uart_attach,		ns8250_bus_attach),
367 	KOBJMETHOD(uart_detach,		ns8250_bus_detach),
368 	KOBJMETHOD(uart_flush,		ns8250_bus_flush),
369 	KOBJMETHOD(uart_getsig,		ns8250_bus_getsig),
370 	KOBJMETHOD(uart_ioctl,		ns8250_bus_ioctl),
371 	KOBJMETHOD(uart_ipend,		ns8250_bus_ipend),
372 	KOBJMETHOD(uart_param,		ns8250_bus_param),
373 	KOBJMETHOD(uart_probe,		ns8250_bus_probe),
374 	KOBJMETHOD(uart_receive,	ns8250_bus_receive),
375 	KOBJMETHOD(uart_setsig,		ns8250_bus_setsig),
376 	KOBJMETHOD(uart_transmit,	ns8250_bus_transmit),
377 	{ 0, 0 }
378 };
379 
380 struct uart_class uart_ns8250_class = {
381 	"ns8250",
382 	ns8250_methods,
383 	sizeof(struct ns8250_softc),
384 	.uc_ops = &uart_ns8250_ops,
385 	.uc_range = 8,
386 	.uc_rclk = DEFAULT_RCLK
387 };
388 
389 #define	SIGCHG(c, i, s, d)				\
390 	if (c) {					\
391 		i |= (i & s) ? s : s | d;		\
392 	} else {					\
393 		i = (i & s) ? (i & ~s) | d : i;		\
394 	}
395 
396 static int
397 ns8250_bus_attach(struct uart_softc *sc)
398 {
399 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
400 	struct uart_bas *bas;
401 	unsigned int ivar;
402 
403 	bas = &sc->sc_bas;
404 
405 	ns8250->mcr = uart_getreg(bas, REG_MCR);
406 	ns8250->fcr = FCR_ENABLE;
407 	if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags",
408 	    &ivar)) {
409 		if (UART_FLAGS_FCR_RX_LOW(ivar))
410 			ns8250->fcr |= FCR_RX_LOW;
411 		else if (UART_FLAGS_FCR_RX_MEDL(ivar))
412 			ns8250->fcr |= FCR_RX_MEDL;
413 		else if (UART_FLAGS_FCR_RX_HIGH(ivar))
414 			ns8250->fcr |= FCR_RX_HIGH;
415 		else
416 			ns8250->fcr |= FCR_RX_MEDH;
417 	} else
418 		ns8250->fcr |= FCR_RX_MEDH;
419 
420 	/* Get IER mask */
421 	ivar = 0xf0;
422 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask",
423 	    &ivar);
424 	ns8250->ier_mask = (uint8_t)(ivar & 0xff);
425 
426 	/* Get IER RX interrupt bits */
427 	ivar = IER_EMSC | IER_ERLS | IER_ERXRDY;
428 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits",
429 	    &ivar);
430 	ns8250->ier_rxbits = (uint8_t)(ivar & 0xff);
431 
432 	uart_setreg(bas, REG_FCR, ns8250->fcr);
433 	uart_barrier(bas);
434 	ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
435 
436 	if (ns8250->mcr & MCR_DTR)
437 		sc->sc_hwsig |= SER_DTR;
438 	if (ns8250->mcr & MCR_RTS)
439 		sc->sc_hwsig |= SER_RTS;
440 	ns8250_bus_getsig(sc);
441 
442 	ns8250_clrint(bas);
443 	ns8250->ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
444 	ns8250->ier |= ns8250->ier_rxbits;
445 	uart_setreg(bas, REG_IER, ns8250->ier);
446 	uart_barrier(bas);
447 
448 	return (0);
449 }
450 
451 static int
452 ns8250_bus_detach(struct uart_softc *sc)
453 {
454 	struct ns8250_softc *ns8250;
455 	struct uart_bas *bas;
456 	u_char ier;
457 
458 	ns8250 = (struct ns8250_softc *)sc;
459 	bas = &sc->sc_bas;
460 	ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
461 	uart_setreg(bas, REG_IER, ier);
462 	uart_barrier(bas);
463 	ns8250_clrint(bas);
464 	return (0);
465 }
466 
467 static int
468 ns8250_bus_flush(struct uart_softc *sc, int what)
469 {
470 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
471 	struct uart_bas *bas;
472 	int error;
473 
474 	bas = &sc->sc_bas;
475 	uart_lock(sc->sc_hwmtx);
476 	if (sc->sc_rxfifosz > 1) {
477 		ns8250_flush(bas, what);
478 		uart_setreg(bas, REG_FCR, ns8250->fcr);
479 		uart_barrier(bas);
480 		error = 0;
481 	} else
482 		error = ns8250_drain(bas, what);
483 	uart_unlock(sc->sc_hwmtx);
484 	return (error);
485 }
486 
487 static int
488 ns8250_bus_getsig(struct uart_softc *sc)
489 {
490 	uint32_t new, old, sig;
491 	uint8_t msr;
492 
493 	do {
494 		old = sc->sc_hwsig;
495 		sig = old;
496 		uart_lock(sc->sc_hwmtx);
497 		msr = uart_getreg(&sc->sc_bas, REG_MSR);
498 		uart_unlock(sc->sc_hwmtx);
499 		SIGCHG(msr & MSR_DSR, sig, SER_DSR, SER_DDSR);
500 		SIGCHG(msr & MSR_CTS, sig, SER_CTS, SER_DCTS);
501 		SIGCHG(msr & MSR_DCD, sig, SER_DCD, SER_DDCD);
502 		SIGCHG(msr & MSR_RI,  sig, SER_RI,  SER_DRI);
503 		new = sig & ~SER_MASK_DELTA;
504 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
505 	return (sig);
506 }
507 
508 static int
509 ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
510 {
511 	struct uart_bas *bas;
512 	int baudrate, divisor, error;
513 	uint8_t efr, lcr;
514 
515 	bas = &sc->sc_bas;
516 	error = 0;
517 	uart_lock(sc->sc_hwmtx);
518 	switch (request) {
519 	case UART_IOCTL_BREAK:
520 		lcr = uart_getreg(bas, REG_LCR);
521 		if (data)
522 			lcr |= LCR_SBREAK;
523 		else
524 			lcr &= ~LCR_SBREAK;
525 		uart_setreg(bas, REG_LCR, lcr);
526 		uart_barrier(bas);
527 		break;
528 	case UART_IOCTL_IFLOW:
529 		lcr = uart_getreg(bas, REG_LCR);
530 		uart_barrier(bas);
531 		uart_setreg(bas, REG_LCR, 0xbf);
532 		uart_barrier(bas);
533 		efr = uart_getreg(bas, REG_EFR);
534 		if (data)
535 			efr |= EFR_RTS;
536 		else
537 			efr &= ~EFR_RTS;
538 		uart_setreg(bas, REG_EFR, efr);
539 		uart_barrier(bas);
540 		uart_setreg(bas, REG_LCR, lcr);
541 		uart_barrier(bas);
542 		break;
543 	case UART_IOCTL_OFLOW:
544 		lcr = uart_getreg(bas, REG_LCR);
545 		uart_barrier(bas);
546 		uart_setreg(bas, REG_LCR, 0xbf);
547 		uart_barrier(bas);
548 		efr = uart_getreg(bas, REG_EFR);
549 		if (data)
550 			efr |= EFR_CTS;
551 		else
552 			efr &= ~EFR_CTS;
553 		uart_setreg(bas, REG_EFR, efr);
554 		uart_barrier(bas);
555 		uart_setreg(bas, REG_LCR, lcr);
556 		uart_barrier(bas);
557 		break;
558 	case UART_IOCTL_BAUD:
559 		lcr = uart_getreg(bas, REG_LCR);
560 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
561 		uart_barrier(bas);
562 		divisor = uart_getreg(bas, REG_DLL) |
563 		    (uart_getreg(bas, REG_DLH) << 8);
564 		uart_barrier(bas);
565 		uart_setreg(bas, REG_LCR, lcr);
566 		uart_barrier(bas);
567 		baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0;
568 		if (baudrate > 0)
569 			*(int*)data = baudrate;
570 		else
571 			error = ENXIO;
572 		break;
573 	default:
574 		error = EINVAL;
575 		break;
576 	}
577 	uart_unlock(sc->sc_hwmtx);
578 	return (error);
579 }
580 
581 static int
582 ns8250_bus_ipend(struct uart_softc *sc)
583 {
584 	struct uart_bas *bas;
585 	int ipend;
586 	uint8_t iir, lsr;
587 
588 	bas = &sc->sc_bas;
589 	uart_lock(sc->sc_hwmtx);
590 	iir = uart_getreg(bas, REG_IIR);
591 	if (iir & IIR_NOPEND) {
592 		uart_unlock(sc->sc_hwmtx);
593 		return (0);
594 	}
595 	ipend = 0;
596 	if (iir & IIR_RXRDY) {
597 		lsr = uart_getreg(bas, REG_LSR);
598 		if (lsr & LSR_OE)
599 			ipend |= SER_INT_OVERRUN;
600 		if (lsr & LSR_BI)
601 			ipend |= SER_INT_BREAK;
602 		if (lsr & LSR_RXRDY)
603 			ipend |= SER_INT_RXREADY;
604 	} else {
605 		if (iir & IIR_TXRDY)
606 			ipend |= SER_INT_TXIDLE;
607 		else
608 			ipend |= SER_INT_SIGCHG;
609 	}
610 	if (ipend == 0)
611 		ns8250_clrint(bas);
612 	uart_unlock(sc->sc_hwmtx);
613 	return (ipend);
614 }
615 
616 static int
617 ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits,
618     int stopbits, int parity)
619 {
620 	struct uart_bas *bas;
621 	int error;
622 
623 	bas = &sc->sc_bas;
624 	uart_lock(sc->sc_hwmtx);
625 	error = ns8250_param(bas, baudrate, databits, stopbits, parity);
626 	uart_unlock(sc->sc_hwmtx);
627 	return (error);
628 }
629 
630 static int
631 ns8250_bus_probe(struct uart_softc *sc)
632 {
633 	struct ns8250_softc *ns8250;
634 	struct uart_bas *bas;
635 	int count, delay, error, limit;
636 	uint8_t lsr, mcr, ier;
637 
638 	ns8250 = (struct ns8250_softc *)sc;
639 	bas = &sc->sc_bas;
640 
641 	error = ns8250_probe(bas);
642 	if (error)
643 		return (error);
644 
645 	mcr = MCR_IE;
646 	if (sc->sc_sysdev == NULL) {
647 		/* By using ns8250_init() we also set DTR and RTS. */
648 		ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE);
649 	} else
650 		mcr |= MCR_DTR | MCR_RTS;
651 
652 	error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
653 	if (error)
654 		return (error);
655 
656 	/*
657 	 * Set loopback mode. This avoids having garbage on the wire and
658 	 * also allows us send and receive data. We set DTR and RTS to
659 	 * avoid the possibility that automatic flow-control prevents
660 	 * any data from being sent.
661 	 */
662 	uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS);
663 	uart_barrier(bas);
664 
665 	/*
666 	 * Enable FIFOs. And check that the UART has them. If not, we're
667 	 * done. Since this is the first time we enable the FIFOs, we reset
668 	 * them.
669 	 */
670 	uart_setreg(bas, REG_FCR, FCR_ENABLE);
671 	uart_barrier(bas);
672 	if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) {
673 		/*
674 		 * NS16450 or INS8250. We don't bother to differentiate
675 		 * between them. They're too old to be interesting.
676 		 */
677 		uart_setreg(bas, REG_MCR, mcr);
678 		uart_barrier(bas);
679 		sc->sc_rxfifosz = sc->sc_txfifosz = 1;
680 		device_set_desc(sc->sc_dev, "8250 or 16450 or compatible");
681 		return (0);
682 	}
683 
684 	uart_setreg(bas, REG_FCR, FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST);
685 	uart_barrier(bas);
686 
687 	count = 0;
688 	delay = ns8250_delay(bas);
689 
690 	/* We have FIFOs. Drain the transmitter and receiver. */
691 	error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER);
692 	if (error) {
693 		uart_setreg(bas, REG_MCR, mcr);
694 		uart_setreg(bas, REG_FCR, 0);
695 		uart_barrier(bas);
696 		goto describe;
697 	}
698 
699 	/*
700 	 * We should have a sufficiently clean "pipe" to determine the
701 	 * size of the FIFOs. We send as much characters as is reasonable
702 	 * and wait for the overflow bit in the LSR register to be
703 	 * asserted, counting the characters as we send them. Based on
704 	 * that count we know the FIFO size.
705 	 */
706 	do {
707 		uart_setreg(bas, REG_DATA, 0);
708 		uart_barrier(bas);
709 		count++;
710 
711 		limit = 30;
712 		lsr = 0;
713 		/*
714 		 * LSR bits are cleared upon read, so we must accumulate
715 		 * them to be able to test LSR_OE below.
716 		 */
717 		while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 &&
718 		    --limit)
719 			DELAY(delay);
720 		if (limit == 0) {
721 			ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
722 			uart_setreg(bas, REG_IER, ier);
723 			uart_setreg(bas, REG_MCR, mcr);
724 			uart_setreg(bas, REG_FCR, 0);
725 			uart_barrier(bas);
726 			count = 0;
727 			goto describe;
728 		}
729 	} while ((lsr & LSR_OE) == 0 && count < 130);
730 	count--;
731 
732 	uart_setreg(bas, REG_MCR, mcr);
733 
734 	/* Reset FIFOs. */
735 	ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
736 
737  describe:
738 	if (count >= 14 && count <= 16) {
739 		sc->sc_rxfifosz = 16;
740 		device_set_desc(sc->sc_dev, "16550 or compatible");
741 	} else if (count >= 28 && count <= 32) {
742 		sc->sc_rxfifosz = 32;
743 		device_set_desc(sc->sc_dev, "16650 or compatible");
744 	} else if (count >= 56 && count <= 64) {
745 		sc->sc_rxfifosz = 64;
746 		device_set_desc(sc->sc_dev, "16750 or compatible");
747 	} else if (count >= 112 && count <= 128) {
748 		sc->sc_rxfifosz = 128;
749 		device_set_desc(sc->sc_dev, "16950 or compatible");
750 	} else {
751 		sc->sc_rxfifosz = 16;
752 		device_set_desc(sc->sc_dev,
753 		    "Non-standard ns8250 class UART with FIFOs");
754 	}
755 
756 	/*
757 	 * Force the Tx FIFO size to 16 bytes for now. We don't program the
758 	 * Tx trigger. Also, we assume that all data has been sent when the
759 	 * interrupt happens.
760 	 */
761 	sc->sc_txfifosz = 16;
762 
763 #if 0
764 	/*
765 	 * XXX there are some issues related to hardware flow control and
766 	 * it's likely that uart(4) is the cause. This basicly needs more
767 	 * investigation, but we avoid using for hardware flow control
768 	 * until then.
769 	 */
770 	/* 16650s or higher have automatic flow control. */
771 	if (sc->sc_rxfifosz > 16) {
772 		sc->sc_hwiflow = 1;
773 		sc->sc_hwoflow = 1;
774 	}
775 #endif
776 
777 	return (0);
778 }
779 
780 static int
781 ns8250_bus_receive(struct uart_softc *sc)
782 {
783 	struct uart_bas *bas;
784 	int xc;
785 	uint8_t lsr;
786 
787 	bas = &sc->sc_bas;
788 	uart_lock(sc->sc_hwmtx);
789 	lsr = uart_getreg(bas, REG_LSR);
790 	while (lsr & LSR_RXRDY) {
791 		if (uart_rx_full(sc)) {
792 			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
793 			break;
794 		}
795 		xc = uart_getreg(bas, REG_DATA);
796 		if (lsr & LSR_FE)
797 			xc |= UART_STAT_FRAMERR;
798 		if (lsr & LSR_PE)
799 			xc |= UART_STAT_PARERR;
800 		uart_rx_put(sc, xc);
801 		lsr = uart_getreg(bas, REG_LSR);
802 	}
803 	/* Discard everything left in the Rx FIFO. */
804 	while (lsr & LSR_RXRDY) {
805 		(void)uart_getreg(bas, REG_DATA);
806 		uart_barrier(bas);
807 		lsr = uart_getreg(bas, REG_LSR);
808 	}
809 	uart_unlock(sc->sc_hwmtx);
810  	return (0);
811 }
812 
813 static int
814 ns8250_bus_setsig(struct uart_softc *sc, int sig)
815 {
816 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
817 	struct uart_bas *bas;
818 	uint32_t new, old;
819 
820 	bas = &sc->sc_bas;
821 	do {
822 		old = sc->sc_hwsig;
823 		new = old;
824 		if (sig & SER_DDTR) {
825 			SIGCHG(sig & SER_DTR, new, SER_DTR,
826 			    SER_DDTR);
827 		}
828 		if (sig & SER_DRTS) {
829 			SIGCHG(sig & SER_RTS, new, SER_RTS,
830 			    SER_DRTS);
831 		}
832 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
833 	uart_lock(sc->sc_hwmtx);
834 	ns8250->mcr &= ~(MCR_DTR|MCR_RTS);
835 	if (new & SER_DTR)
836 		ns8250->mcr |= MCR_DTR;
837 	if (new & SER_RTS)
838 		ns8250->mcr |= MCR_RTS;
839 	uart_setreg(bas, REG_MCR, ns8250->mcr);
840 	uart_barrier(bas);
841 	uart_unlock(sc->sc_hwmtx);
842 	return (0);
843 }
844 
845 static int
846 ns8250_bus_transmit(struct uart_softc *sc)
847 {
848 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
849 	struct uart_bas *bas;
850 	int i;
851 
852 	bas = &sc->sc_bas;
853 	uart_lock(sc->sc_hwmtx);
854 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0)
855 		;
856 	uart_setreg(bas, REG_IER, ns8250->ier | IER_ETXRDY);
857 	uart_barrier(bas);
858 	for (i = 0; i < sc->sc_txdatasz; i++) {
859 		uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]);
860 		uart_barrier(bas);
861 	}
862 	sc->sc_txbusy = 1;
863 	uart_unlock(sc->sc_hwmtx);
864 	return (0);
865 }
866