1 /*- 2 * Copyright (c) 2003 Marcel Moolenaar 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include "opt_platform.h" 28 #include "opt_uart.h" 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/bus.h> 36 #include <sys/conf.h> 37 #include <sys/kernel.h> 38 #include <sys/sysctl.h> 39 #include <machine/bus.h> 40 41 #ifdef FDT 42 #include <dev/fdt/fdt_common.h> 43 #include <dev/ofw/ofw_bus.h> 44 #include <dev/ofw/ofw_bus_subr.h> 45 #endif 46 47 #include <dev/uart/uart.h> 48 #include <dev/uart/uart_cpu.h> 49 #ifdef FDT 50 #include <dev/uart/uart_cpu_fdt.h> 51 #endif 52 #include <dev/uart/uart_bus.h> 53 #include <dev/uart/uart_dev_ns8250.h> 54 #include <dev/uart/uart_ppstypes.h> 55 56 #include <dev/ic/ns16550.h> 57 58 #include "uart_if.h" 59 60 #define DEFAULT_RCLK 1843200 61 62 /* 63 * Set the default baudrate tolerance to 3.0%. 64 * 65 * Some embedded boards have odd reference clocks (eg 25MHz) 66 * and we need to handle higher variances in the target baud rate. 67 */ 68 #ifndef UART_DEV_TOLERANCE_PCT 69 #define UART_DEV_TOLERANCE_PCT 30 70 #endif /* UART_DEV_TOLERANCE_PCT */ 71 72 static int broken_txfifo = 0; 73 SYSCTL_INT(_hw, OID_AUTO, broken_txfifo, CTLFLAG_RWTUN, 74 &broken_txfifo, 0, "UART FIFO has QEMU emulation bug"); 75 76 /* 77 * Clear pending interrupts. THRE is cleared by reading IIR. Data 78 * that may have been received gets lost here. 79 */ 80 static void 81 ns8250_clrint(struct uart_bas *bas) 82 { 83 uint8_t iir, lsr; 84 85 iir = uart_getreg(bas, REG_IIR); 86 while ((iir & IIR_NOPEND) == 0) { 87 iir &= IIR_IMASK; 88 if (iir == IIR_RLS) { 89 lsr = uart_getreg(bas, REG_LSR); 90 if (lsr & (LSR_BI|LSR_FE|LSR_PE)) 91 (void)uart_getreg(bas, REG_DATA); 92 } else if (iir == IIR_RXRDY || iir == IIR_RXTOUT) 93 (void)uart_getreg(bas, REG_DATA); 94 else if (iir == IIR_MLSC) 95 (void)uart_getreg(bas, REG_MSR); 96 uart_barrier(bas); 97 iir = uart_getreg(bas, REG_IIR); 98 } 99 } 100 101 static int 102 ns8250_delay(struct uart_bas *bas) 103 { 104 int divisor; 105 u_char lcr; 106 107 lcr = uart_getreg(bas, REG_LCR); 108 uart_setreg(bas, REG_LCR, lcr | LCR_DLAB); 109 uart_barrier(bas); 110 divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8); 111 uart_barrier(bas); 112 uart_setreg(bas, REG_LCR, lcr); 113 uart_barrier(bas); 114 115 /* 1/10th the time to transmit 1 character (estimate). */ 116 if (divisor <= 134) 117 return (16000000 * divisor / bas->rclk); 118 return (16000 * divisor / (bas->rclk / 1000)); 119 } 120 121 static int 122 ns8250_divisor(int rclk, int baudrate) 123 { 124 int actual_baud, divisor; 125 int error; 126 127 if (baudrate == 0) 128 return (0); 129 130 divisor = (rclk / (baudrate << 3) + 1) >> 1; 131 if (divisor == 0 || divisor >= 65536) 132 return (0); 133 actual_baud = rclk / (divisor << 4); 134 135 /* 10 times error in percent: */ 136 error = ((actual_baud - baudrate) * 2000 / baudrate + 1) >> 1; 137 138 /* enforce maximum error tolerance: */ 139 if (error < -UART_DEV_TOLERANCE_PCT || error > UART_DEV_TOLERANCE_PCT) 140 return (0); 141 142 return (divisor); 143 } 144 145 static int 146 ns8250_drain(struct uart_bas *bas, int what) 147 { 148 int delay, limit; 149 150 delay = ns8250_delay(bas); 151 152 if (what & UART_DRAIN_TRANSMITTER) { 153 /* 154 * Pick an arbitrary high limit to avoid getting stuck in 155 * an infinite loop when the hardware is broken. Make the 156 * limit high enough to handle large FIFOs. 157 */ 158 limit = 10*1024; 159 while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit) 160 DELAY(delay); 161 if (limit == 0) { 162 /* printf("ns8250: transmitter appears stuck... "); */ 163 return (EIO); 164 } 165 } 166 167 if (what & UART_DRAIN_RECEIVER) { 168 /* 169 * Pick an arbitrary high limit to avoid getting stuck in 170 * an infinite loop when the hardware is broken. Make the 171 * limit high enough to handle large FIFOs and integrated 172 * UARTs. The HP rx2600 for example has 3 UARTs on the 173 * management board that tend to get a lot of data send 174 * to it when the UART is first activated. 175 */ 176 limit=10*4096; 177 while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) { 178 (void)uart_getreg(bas, REG_DATA); 179 uart_barrier(bas); 180 DELAY(delay << 2); 181 } 182 if (limit == 0) { 183 /* printf("ns8250: receiver appears broken... "); */ 184 return (EIO); 185 } 186 } 187 188 return (0); 189 } 190 191 /* 192 * We can only flush UARTs with FIFOs. UARTs without FIFOs should be 193 * drained. WARNING: this function clobbers the FIFO setting! 194 */ 195 static void 196 ns8250_flush(struct uart_bas *bas, int what) 197 { 198 uint8_t fcr; 199 200 fcr = FCR_ENABLE; 201 if (what & UART_FLUSH_TRANSMITTER) 202 fcr |= FCR_XMT_RST; 203 if (what & UART_FLUSH_RECEIVER) 204 fcr |= FCR_RCV_RST; 205 uart_setreg(bas, REG_FCR, fcr); 206 uart_barrier(bas); 207 } 208 209 static int 210 ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits, 211 int parity) 212 { 213 int divisor; 214 uint8_t lcr; 215 216 lcr = 0; 217 if (databits >= 8) 218 lcr |= LCR_8BITS; 219 else if (databits == 7) 220 lcr |= LCR_7BITS; 221 else if (databits == 6) 222 lcr |= LCR_6BITS; 223 else 224 lcr |= LCR_5BITS; 225 if (stopbits > 1) 226 lcr |= LCR_STOPB; 227 lcr |= parity << 3; 228 229 /* Set baudrate. */ 230 if (baudrate > 0) { 231 divisor = ns8250_divisor(bas->rclk, baudrate); 232 if (divisor == 0) 233 return (EINVAL); 234 uart_setreg(bas, REG_LCR, lcr | LCR_DLAB); 235 uart_barrier(bas); 236 uart_setreg(bas, REG_DLL, divisor & 0xff); 237 uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff); 238 uart_barrier(bas); 239 } 240 241 /* Set LCR and clear DLAB. */ 242 uart_setreg(bas, REG_LCR, lcr); 243 uart_barrier(bas); 244 return (0); 245 } 246 247 /* 248 * Low-level UART interface. 249 */ 250 static int ns8250_probe(struct uart_bas *bas); 251 static void ns8250_init(struct uart_bas *bas, int, int, int, int); 252 static void ns8250_term(struct uart_bas *bas); 253 static void ns8250_putc(struct uart_bas *bas, int); 254 static int ns8250_rxready(struct uart_bas *bas); 255 static int ns8250_getc(struct uart_bas *bas, struct mtx *); 256 257 struct uart_ops uart_ns8250_ops = { 258 .probe = ns8250_probe, 259 .init = ns8250_init, 260 .term = ns8250_term, 261 .putc = ns8250_putc, 262 .rxready = ns8250_rxready, 263 .getc = ns8250_getc, 264 }; 265 266 static int 267 ns8250_probe(struct uart_bas *bas) 268 { 269 u_char val; 270 271 /* Check known 0 bits that don't depend on DLAB. */ 272 val = uart_getreg(bas, REG_IIR); 273 if (val & 0x30) 274 return (ENXIO); 275 /* 276 * Bit 6 of the MCR (= 0x40) appears to be 1 for the Sun1699 277 * chip, but otherwise doesn't seem to have a function. In 278 * other words, uart(4) works regardless. Ignore that bit so 279 * the probe succeeds. 280 */ 281 val = uart_getreg(bas, REG_MCR); 282 if (val & 0xa0) 283 return (ENXIO); 284 285 return (0); 286 } 287 288 static void 289 ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits, 290 int parity) 291 { 292 u_char ier; 293 294 if (bas->rclk == 0) 295 bas->rclk = DEFAULT_RCLK; 296 ns8250_param(bas, baudrate, databits, stopbits, parity); 297 298 /* Disable all interrupt sources. */ 299 /* 300 * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA 301 * UARTs split the receive time-out interrupt bit out separately as 302 * 0x10. This gets handled by ier_mask and ier_rxbits below. 303 */ 304 ier = uart_getreg(bas, REG_IER) & 0xe0; 305 uart_setreg(bas, REG_IER, ier); 306 uart_barrier(bas); 307 308 /* Disable the FIFO (if present). */ 309 uart_setreg(bas, REG_FCR, 0); 310 uart_barrier(bas); 311 312 /* Set RTS & DTR. */ 313 uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR); 314 uart_barrier(bas); 315 316 ns8250_clrint(bas); 317 } 318 319 static void 320 ns8250_term(struct uart_bas *bas) 321 { 322 323 /* Clear RTS & DTR. */ 324 uart_setreg(bas, REG_MCR, MCR_IE); 325 uart_barrier(bas); 326 } 327 328 static void 329 ns8250_putc(struct uart_bas *bas, int c) 330 { 331 int limit; 332 333 limit = 250000; 334 while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit) 335 DELAY(4); 336 uart_setreg(bas, REG_DATA, c); 337 uart_barrier(bas); 338 limit = 250000; 339 while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit) 340 DELAY(4); 341 } 342 343 static int 344 ns8250_rxready(struct uart_bas *bas) 345 { 346 347 return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0); 348 } 349 350 static int 351 ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx) 352 { 353 int c; 354 355 uart_lock(hwmtx); 356 357 while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) { 358 uart_unlock(hwmtx); 359 DELAY(4); 360 uart_lock(hwmtx); 361 } 362 363 c = uart_getreg(bas, REG_DATA); 364 365 uart_unlock(hwmtx); 366 367 return (c); 368 } 369 370 static kobj_method_t ns8250_methods[] = { 371 KOBJMETHOD(uart_attach, ns8250_bus_attach), 372 KOBJMETHOD(uart_detach, ns8250_bus_detach), 373 KOBJMETHOD(uart_flush, ns8250_bus_flush), 374 KOBJMETHOD(uart_getsig, ns8250_bus_getsig), 375 KOBJMETHOD(uart_ioctl, ns8250_bus_ioctl), 376 KOBJMETHOD(uart_ipend, ns8250_bus_ipend), 377 KOBJMETHOD(uart_param, ns8250_bus_param), 378 KOBJMETHOD(uart_probe, ns8250_bus_probe), 379 KOBJMETHOD(uart_receive, ns8250_bus_receive), 380 KOBJMETHOD(uart_setsig, ns8250_bus_setsig), 381 KOBJMETHOD(uart_transmit, ns8250_bus_transmit), 382 KOBJMETHOD(uart_grab, ns8250_bus_grab), 383 KOBJMETHOD(uart_ungrab, ns8250_bus_ungrab), 384 { 0, 0 } 385 }; 386 387 struct uart_class uart_ns8250_class = { 388 "ns8250", 389 ns8250_methods, 390 sizeof(struct ns8250_softc), 391 .uc_ops = &uart_ns8250_ops, 392 .uc_range = 8, 393 .uc_rclk = DEFAULT_RCLK, 394 .uc_rshift = 0 395 }; 396 397 #ifdef FDT 398 static struct ofw_compat_data compat_data[] = { 399 {"ns16550", (uintptr_t)&uart_ns8250_class}, 400 {"snps,dw-apb-uart", (uintptr_t)&uart_ns8250_class}, 401 {NULL, (uintptr_t)NULL}, 402 }; 403 UART_FDT_CLASS_AND_DEVICE(compat_data); 404 #endif 405 406 /* Use token-pasting to form SER_ and MSR_ named constants. */ 407 #define SER(sig) SER_##sig 408 #define SERD(sig) SER_D##sig 409 #define MSR(sig) MSR_##sig 410 #define MSRD(sig) MSR_D##sig 411 412 /* 413 * Detect signal changes using software delta detection. The previous state of 414 * the signals is in 'var' the new hardware state is in 'msr', and 'sig' is the 415 * short name (DCD, CTS, etc) of the signal bit being processed; 'var' gets the 416 * new state of both the signal and the delta bits. 417 */ 418 #define SIGCHGSW(var, msr, sig) \ 419 if ((msr) & MSR(sig)) { \ 420 if ((var & SER(sig)) == 0) \ 421 var |= SERD(sig) | SER(sig); \ 422 } else { \ 423 if ((var & SER(sig)) != 0) \ 424 var = SERD(sig) | (var & ~SER(sig)); \ 425 } 426 427 /* 428 * Detect signal changes using the hardware msr delta bits. This is currently 429 * used only when PPS timing information is being captured using the "narrow 430 * pulse" option. With a narrow PPS pulse the signal may not still be asserted 431 * by time the interrupt handler is invoked. The hardware will latch the fact 432 * that it changed in the delta bits. 433 */ 434 #define SIGCHGHW(var, msr, sig) \ 435 if ((msr) & MSRD(sig)) { \ 436 if (((msr) & MSR(sig)) != 0) \ 437 var |= SERD(sig) | SER(sig); \ 438 else \ 439 var = SERD(sig) | (var & ~SER(sig)); \ 440 } 441 442 int 443 ns8250_bus_attach(struct uart_softc *sc) 444 { 445 struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc; 446 struct uart_bas *bas; 447 unsigned int ivar; 448 #ifdef FDT 449 phandle_t node; 450 pcell_t cell; 451 #endif 452 453 ns8250->busy_detect = 0; 454 455 #ifdef FDT 456 /* 457 * Check whether uart requires to read USR reg when IIR_BUSY and 458 * has broken txfifo. 459 */ 460 ns8250->busy_detect = ofw_bus_is_compatible(sc->sc_dev, "snps,dw-apb-uart"); 461 node = ofw_bus_get_node(sc->sc_dev); 462 /* XXX: This is kept for a short time for compatibility with older device trees */ 463 if ((OF_getencprop(node, "busy-detect", &cell, sizeof(cell))) > 0 464 && cell != 0) 465 ns8250->busy_detect = 1; 466 if ((OF_getencprop(node, "broken-txfifo", &cell, sizeof(cell))) > 0) 467 broken_txfifo = cell ? 1 : 0; 468 #endif 469 470 bas = &sc->sc_bas; 471 472 ns8250->mcr = uart_getreg(bas, REG_MCR); 473 ns8250->fcr = FCR_ENABLE; 474 if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags", 475 &ivar)) { 476 if (UART_FLAGS_FCR_RX_LOW(ivar)) 477 ns8250->fcr |= FCR_RX_LOW; 478 else if (UART_FLAGS_FCR_RX_MEDL(ivar)) 479 ns8250->fcr |= FCR_RX_MEDL; 480 else if (UART_FLAGS_FCR_RX_HIGH(ivar)) 481 ns8250->fcr |= FCR_RX_HIGH; 482 else 483 ns8250->fcr |= FCR_RX_MEDH; 484 } else 485 ns8250->fcr |= FCR_RX_MEDH; 486 487 /* Get IER mask */ 488 ivar = 0xf0; 489 resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask", 490 &ivar); 491 ns8250->ier_mask = (uint8_t)(ivar & 0xff); 492 493 /* Get IER RX interrupt bits */ 494 ivar = IER_EMSC | IER_ERLS | IER_ERXRDY; 495 resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits", 496 &ivar); 497 ns8250->ier_rxbits = (uint8_t)(ivar & 0xff); 498 499 uart_setreg(bas, REG_FCR, ns8250->fcr); 500 uart_barrier(bas); 501 ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER); 502 503 if (ns8250->mcr & MCR_DTR) 504 sc->sc_hwsig |= SER_DTR; 505 if (ns8250->mcr & MCR_RTS) 506 sc->sc_hwsig |= SER_RTS; 507 ns8250_bus_getsig(sc); 508 509 ns8250_clrint(bas); 510 ns8250->ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask; 511 ns8250->ier |= ns8250->ier_rxbits; 512 uart_setreg(bas, REG_IER, ns8250->ier); 513 uart_barrier(bas); 514 515 /* 516 * Timing of the H/W access was changed with r253161 of uart_core.c 517 * It has been observed that an ITE IT8513E would signal a break 518 * condition with pretty much every character it received, unless 519 * it had enough time to settle between ns8250_bus_attach() and 520 * ns8250_bus_ipend() -- which it accidentally had before r253161. 521 * It's not understood why the UART chip behaves this way and it 522 * could very well be that the DELAY make the H/W work in the same 523 * accidental manner as before. More analysis is warranted, but 524 * at least now we fixed a known regression. 525 */ 526 DELAY(200); 527 return (0); 528 } 529 530 int 531 ns8250_bus_detach(struct uart_softc *sc) 532 { 533 struct ns8250_softc *ns8250; 534 struct uart_bas *bas; 535 u_char ier; 536 537 ns8250 = (struct ns8250_softc *)sc; 538 bas = &sc->sc_bas; 539 ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask; 540 uart_setreg(bas, REG_IER, ier); 541 uart_barrier(bas); 542 ns8250_clrint(bas); 543 return (0); 544 } 545 546 int 547 ns8250_bus_flush(struct uart_softc *sc, int what) 548 { 549 struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc; 550 struct uart_bas *bas; 551 int error; 552 553 bas = &sc->sc_bas; 554 uart_lock(sc->sc_hwmtx); 555 if (sc->sc_rxfifosz > 1) { 556 ns8250_flush(bas, what); 557 uart_setreg(bas, REG_FCR, ns8250->fcr); 558 uart_barrier(bas); 559 error = 0; 560 } else 561 error = ns8250_drain(bas, what); 562 uart_unlock(sc->sc_hwmtx); 563 return (error); 564 } 565 566 int 567 ns8250_bus_getsig(struct uart_softc *sc) 568 { 569 uint32_t old, sig; 570 uint8_t msr; 571 572 /* 573 * The delta bits are reputed to be broken on some hardware, so use 574 * software delta detection by default. Use the hardware delta bits 575 * when capturing PPS pulses which are too narrow for software detection 576 * to see the edges. Hardware delta for RI doesn't work like the 577 * others, so always use software for it. Other threads may be changing 578 * other (non-MSR) bits in sc_hwsig, so loop until it can succesfully 579 * update without other changes happening. Note that the SIGCHGxx() 580 * macros carefully preserve the delta bits when we have to loop several 581 * times and a signal transitions between iterations. 582 */ 583 do { 584 old = sc->sc_hwsig; 585 sig = old; 586 uart_lock(sc->sc_hwmtx); 587 msr = uart_getreg(&sc->sc_bas, REG_MSR); 588 uart_unlock(sc->sc_hwmtx); 589 if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE) { 590 SIGCHGHW(sig, msr, DSR); 591 SIGCHGHW(sig, msr, CTS); 592 SIGCHGHW(sig, msr, DCD); 593 } else { 594 SIGCHGSW(sig, msr, DSR); 595 SIGCHGSW(sig, msr, CTS); 596 SIGCHGSW(sig, msr, DCD); 597 } 598 SIGCHGSW(sig, msr, RI); 599 } while (!atomic_cmpset_32(&sc->sc_hwsig, old, sig & ~SER_MASK_DELTA)); 600 return (sig); 601 } 602 603 int 604 ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data) 605 { 606 struct uart_bas *bas; 607 int baudrate, divisor, error; 608 uint8_t efr, lcr; 609 610 bas = &sc->sc_bas; 611 error = 0; 612 uart_lock(sc->sc_hwmtx); 613 switch (request) { 614 case UART_IOCTL_BREAK: 615 lcr = uart_getreg(bas, REG_LCR); 616 if (data) 617 lcr |= LCR_SBREAK; 618 else 619 lcr &= ~LCR_SBREAK; 620 uart_setreg(bas, REG_LCR, lcr); 621 uart_barrier(bas); 622 break; 623 case UART_IOCTL_IFLOW: 624 lcr = uart_getreg(bas, REG_LCR); 625 uart_barrier(bas); 626 uart_setreg(bas, REG_LCR, 0xbf); 627 uart_barrier(bas); 628 efr = uart_getreg(bas, REG_EFR); 629 if (data) 630 efr |= EFR_RTS; 631 else 632 efr &= ~EFR_RTS; 633 uart_setreg(bas, REG_EFR, efr); 634 uart_barrier(bas); 635 uart_setreg(bas, REG_LCR, lcr); 636 uart_barrier(bas); 637 break; 638 case UART_IOCTL_OFLOW: 639 lcr = uart_getreg(bas, REG_LCR); 640 uart_barrier(bas); 641 uart_setreg(bas, REG_LCR, 0xbf); 642 uart_barrier(bas); 643 efr = uart_getreg(bas, REG_EFR); 644 if (data) 645 efr |= EFR_CTS; 646 else 647 efr &= ~EFR_CTS; 648 uart_setreg(bas, REG_EFR, efr); 649 uart_barrier(bas); 650 uart_setreg(bas, REG_LCR, lcr); 651 uart_barrier(bas); 652 break; 653 case UART_IOCTL_BAUD: 654 lcr = uart_getreg(bas, REG_LCR); 655 uart_setreg(bas, REG_LCR, lcr | LCR_DLAB); 656 uart_barrier(bas); 657 divisor = uart_getreg(bas, REG_DLL) | 658 (uart_getreg(bas, REG_DLH) << 8); 659 uart_barrier(bas); 660 uart_setreg(bas, REG_LCR, lcr); 661 uart_barrier(bas); 662 baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0; 663 if (baudrate > 0) 664 *(int*)data = baudrate; 665 else 666 error = ENXIO; 667 break; 668 default: 669 error = EINVAL; 670 break; 671 } 672 uart_unlock(sc->sc_hwmtx); 673 return (error); 674 } 675 676 int 677 ns8250_bus_ipend(struct uart_softc *sc) 678 { 679 struct uart_bas *bas; 680 struct ns8250_softc *ns8250; 681 int ipend; 682 uint8_t iir, lsr; 683 684 ns8250 = (struct ns8250_softc *)sc; 685 bas = &sc->sc_bas; 686 uart_lock(sc->sc_hwmtx); 687 iir = uart_getreg(bas, REG_IIR); 688 689 if (ns8250->busy_detect && (iir & IIR_BUSY) == IIR_BUSY) { 690 (void)uart_getreg(bas, DW_REG_USR); 691 uart_unlock(sc->sc_hwmtx); 692 return (0); 693 } 694 if (iir & IIR_NOPEND) { 695 uart_unlock(sc->sc_hwmtx); 696 return (0); 697 } 698 ipend = 0; 699 if (iir & IIR_RXRDY) { 700 lsr = uart_getreg(bas, REG_LSR); 701 if (lsr & LSR_OE) 702 ipend |= SER_INT_OVERRUN; 703 if (lsr & LSR_BI) 704 ipend |= SER_INT_BREAK; 705 if (lsr & LSR_RXRDY) 706 ipend |= SER_INT_RXREADY; 707 } else { 708 if (iir & IIR_TXRDY) { 709 ipend |= SER_INT_TXIDLE; 710 uart_setreg(bas, REG_IER, ns8250->ier); 711 uart_barrier(bas); 712 } else 713 ipend |= SER_INT_SIGCHG; 714 } 715 if (ipend == 0) 716 ns8250_clrint(bas); 717 uart_unlock(sc->sc_hwmtx); 718 return (ipend); 719 } 720 721 int 722 ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits, 723 int stopbits, int parity) 724 { 725 struct ns8250_softc *ns8250; 726 struct uart_bas *bas; 727 int error, limit; 728 729 ns8250 = (struct ns8250_softc*)sc; 730 bas = &sc->sc_bas; 731 uart_lock(sc->sc_hwmtx); 732 /* 733 * When using DW UART with BUSY detection it is necessary to wait 734 * until all serial transfers are finished before manipulating the 735 * line control. LCR will not be affected when UART is busy. 736 */ 737 if (ns8250->busy_detect != 0) { 738 /* 739 * Pick an arbitrary high limit to avoid getting stuck in 740 * an infinite loop in case when the hardware is broken. 741 */ 742 limit = 10 * 1024; 743 while (((uart_getreg(bas, DW_REG_USR) & USR_BUSY) != 0) && 744 --limit) 745 DELAY(4); 746 747 if (limit <= 0) { 748 /* UART appears to be stuck */ 749 uart_unlock(sc->sc_hwmtx); 750 return (EIO); 751 } 752 } 753 754 error = ns8250_param(bas, baudrate, databits, stopbits, parity); 755 uart_unlock(sc->sc_hwmtx); 756 return (error); 757 } 758 759 int 760 ns8250_bus_probe(struct uart_softc *sc) 761 { 762 struct ns8250_softc *ns8250; 763 struct uart_bas *bas; 764 int count, delay, error, limit; 765 uint8_t lsr, mcr, ier; 766 767 ns8250 = (struct ns8250_softc *)sc; 768 bas = &sc->sc_bas; 769 770 error = ns8250_probe(bas); 771 if (error) 772 return (error); 773 774 mcr = MCR_IE; 775 if (sc->sc_sysdev == NULL) { 776 /* By using ns8250_init() we also set DTR and RTS. */ 777 ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE); 778 } else 779 mcr |= MCR_DTR | MCR_RTS; 780 781 error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER); 782 if (error) 783 return (error); 784 785 /* 786 * Set loopback mode. This avoids having garbage on the wire and 787 * also allows us send and receive data. We set DTR and RTS to 788 * avoid the possibility that automatic flow-control prevents 789 * any data from being sent. 790 */ 791 uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS); 792 uart_barrier(bas); 793 794 /* 795 * Enable FIFOs. And check that the UART has them. If not, we're 796 * done. Since this is the first time we enable the FIFOs, we reset 797 * them. 798 */ 799 uart_setreg(bas, REG_FCR, FCR_ENABLE); 800 uart_barrier(bas); 801 if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) { 802 /* 803 * NS16450 or INS8250. We don't bother to differentiate 804 * between them. They're too old to be interesting. 805 */ 806 uart_setreg(bas, REG_MCR, mcr); 807 uart_barrier(bas); 808 sc->sc_rxfifosz = sc->sc_txfifosz = 1; 809 device_set_desc(sc->sc_dev, "8250 or 16450 or compatible"); 810 return (0); 811 } 812 813 uart_setreg(bas, REG_FCR, FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST); 814 uart_barrier(bas); 815 816 count = 0; 817 delay = ns8250_delay(bas); 818 819 /* We have FIFOs. Drain the transmitter and receiver. */ 820 error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER); 821 if (error) { 822 uart_setreg(bas, REG_MCR, mcr); 823 uart_setreg(bas, REG_FCR, 0); 824 uart_barrier(bas); 825 goto describe; 826 } 827 828 /* 829 * We should have a sufficiently clean "pipe" to determine the 830 * size of the FIFOs. We send as much characters as is reasonable 831 * and wait for the overflow bit in the LSR register to be 832 * asserted, counting the characters as we send them. Based on 833 * that count we know the FIFO size. 834 */ 835 do { 836 uart_setreg(bas, REG_DATA, 0); 837 uart_barrier(bas); 838 count++; 839 840 limit = 30; 841 lsr = 0; 842 /* 843 * LSR bits are cleared upon read, so we must accumulate 844 * them to be able to test LSR_OE below. 845 */ 846 while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 && 847 --limit) 848 DELAY(delay); 849 if (limit == 0) { 850 ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask; 851 uart_setreg(bas, REG_IER, ier); 852 uart_setreg(bas, REG_MCR, mcr); 853 uart_setreg(bas, REG_FCR, 0); 854 uart_barrier(bas); 855 count = 0; 856 goto describe; 857 } 858 } while ((lsr & LSR_OE) == 0 && count < 130); 859 count--; 860 861 uart_setreg(bas, REG_MCR, mcr); 862 863 /* Reset FIFOs. */ 864 ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER); 865 866 describe: 867 if (count >= 14 && count <= 16) { 868 sc->sc_rxfifosz = 16; 869 device_set_desc(sc->sc_dev, "16550 or compatible"); 870 } else if (count >= 28 && count <= 32) { 871 sc->sc_rxfifosz = 32; 872 device_set_desc(sc->sc_dev, "16650 or compatible"); 873 } else if (count >= 56 && count <= 64) { 874 sc->sc_rxfifosz = 64; 875 device_set_desc(sc->sc_dev, "16750 or compatible"); 876 } else if (count >= 112 && count <= 128) { 877 sc->sc_rxfifosz = 128; 878 device_set_desc(sc->sc_dev, "16950 or compatible"); 879 } else { 880 sc->sc_rxfifosz = 16; 881 device_set_desc(sc->sc_dev, 882 "Non-standard ns8250 class UART with FIFOs"); 883 } 884 885 /* 886 * Force the Tx FIFO size to 16 bytes for now. We don't program the 887 * Tx trigger. Also, we assume that all data has been sent when the 888 * interrupt happens. 889 */ 890 sc->sc_txfifosz = 16; 891 892 #if 0 893 /* 894 * XXX there are some issues related to hardware flow control and 895 * it's likely that uart(4) is the cause. This basicly needs more 896 * investigation, but we avoid using for hardware flow control 897 * until then. 898 */ 899 /* 16650s or higher have automatic flow control. */ 900 if (sc->sc_rxfifosz > 16) { 901 sc->sc_hwiflow = 1; 902 sc->sc_hwoflow = 1; 903 } 904 #endif 905 906 return (0); 907 } 908 909 int 910 ns8250_bus_receive(struct uart_softc *sc) 911 { 912 struct uart_bas *bas; 913 int xc; 914 uint8_t lsr; 915 916 bas = &sc->sc_bas; 917 uart_lock(sc->sc_hwmtx); 918 lsr = uart_getreg(bas, REG_LSR); 919 while (lsr & LSR_RXRDY) { 920 if (uart_rx_full(sc)) { 921 sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN; 922 break; 923 } 924 xc = uart_getreg(bas, REG_DATA); 925 if (lsr & LSR_FE) 926 xc |= UART_STAT_FRAMERR; 927 if (lsr & LSR_PE) 928 xc |= UART_STAT_PARERR; 929 uart_rx_put(sc, xc); 930 lsr = uart_getreg(bas, REG_LSR); 931 } 932 /* Discard everything left in the Rx FIFO. */ 933 while (lsr & LSR_RXRDY) { 934 (void)uart_getreg(bas, REG_DATA); 935 uart_barrier(bas); 936 lsr = uart_getreg(bas, REG_LSR); 937 } 938 uart_unlock(sc->sc_hwmtx); 939 return (0); 940 } 941 942 int 943 ns8250_bus_setsig(struct uart_softc *sc, int sig) 944 { 945 struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc; 946 struct uart_bas *bas; 947 uint32_t new, old; 948 949 bas = &sc->sc_bas; 950 do { 951 old = sc->sc_hwsig; 952 new = old; 953 if (sig & SER_DDTR) { 954 new = (new & ~SER_DTR) | (sig & (SER_DTR | SER_DDTR)); 955 } 956 if (sig & SER_DRTS) { 957 new = (new & ~SER_RTS) | (sig & (SER_RTS | SER_DRTS)); 958 } 959 } while (!atomic_cmpset_32(&sc->sc_hwsig, old, new)); 960 uart_lock(sc->sc_hwmtx); 961 ns8250->mcr &= ~(MCR_DTR|MCR_RTS); 962 if (new & SER_DTR) 963 ns8250->mcr |= MCR_DTR; 964 if (new & SER_RTS) 965 ns8250->mcr |= MCR_RTS; 966 uart_setreg(bas, REG_MCR, ns8250->mcr); 967 uart_barrier(bas); 968 uart_unlock(sc->sc_hwmtx); 969 return (0); 970 } 971 972 int 973 ns8250_bus_transmit(struct uart_softc *sc) 974 { 975 struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc; 976 struct uart_bas *bas; 977 int i; 978 979 bas = &sc->sc_bas; 980 uart_lock(sc->sc_hwmtx); 981 while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0) 982 ; 983 for (i = 0; i < sc->sc_txdatasz; i++) { 984 uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]); 985 uart_barrier(bas); 986 } 987 uart_setreg(bas, REG_IER, ns8250->ier | IER_ETXRDY); 988 uart_barrier(bas); 989 if (broken_txfifo) 990 ns8250_drain(bas, UART_DRAIN_TRANSMITTER); 991 else 992 sc->sc_txbusy = 1; 993 uart_unlock(sc->sc_hwmtx); 994 if (broken_txfifo) 995 uart_sched_softih(sc, SER_INT_TXIDLE); 996 return (0); 997 } 998 999 void 1000 ns8250_bus_grab(struct uart_softc *sc) 1001 { 1002 struct uart_bas *bas = &sc->sc_bas; 1003 struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc; 1004 u_char ier; 1005 1006 /* 1007 * turn off all interrupts to enter polling mode. Leave the 1008 * saved mask alone. We'll restore whatever it was in ungrab. 1009 * All pending interupt signals are reset when IER is set to 0. 1010 */ 1011 uart_lock(sc->sc_hwmtx); 1012 ier = uart_getreg(bas, REG_IER); 1013 uart_setreg(bas, REG_IER, ier & ns8250->ier_mask); 1014 uart_barrier(bas); 1015 uart_unlock(sc->sc_hwmtx); 1016 } 1017 1018 void 1019 ns8250_bus_ungrab(struct uart_softc *sc) 1020 { 1021 struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc; 1022 struct uart_bas *bas = &sc->sc_bas; 1023 1024 /* 1025 * Restore previous interrupt mask 1026 */ 1027 uart_lock(sc->sc_hwmtx); 1028 uart_setreg(bas, REG_IER, ns8250->ier); 1029 uart_barrier(bas); 1030 uart_unlock(sc->sc_hwmtx); 1031 } 1032