xref: /freebsd/sys/dev/uart/uart_dev_ns8250.c (revision 78ae60b447ebf420dd5cebfec30480866fd5cef4)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2003 Marcel Moolenaar
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include "opt_acpi.h"
30 #include "opt_platform.h"
31 #include "opt_uart.h"
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/conf.h>
37 #include <sys/kernel.h>
38 #include <sys/sysctl.h>
39 #include <machine/bus.h>
40 
41 #ifdef FDT
42 #include <dev/fdt/fdt_common.h>
43 #include <dev/ofw/ofw_bus.h>
44 #include <dev/ofw/ofw_bus_subr.h>
45 #endif
46 
47 #include <dev/uart/uart.h>
48 #include <dev/uart/uart_cpu.h>
49 #ifdef FDT
50 #include <dev/uart/uart_cpu_fdt.h>
51 #endif
52 #include <dev/uart/uart_bus.h>
53 #include <dev/uart/uart_dev_ns8250.h>
54 #include <dev/uart/uart_ppstypes.h>
55 #ifdef DEV_ACPI
56 #include <dev/uart/uart_cpu_acpi.h>
57 #include <contrib/dev/acpica/include/acpi.h>
58 #endif
59 
60 #include <dev/ic/ns16550.h>
61 
62 #include "uart_if.h"
63 
64 #define	DEFAULT_RCLK	1843200
65 
66 /*
67  * Set the default baudrate tolerance to 3.0%.
68  *
69  * Some embedded boards have odd reference clocks (eg 25MHz)
70  * and we need to handle higher variances in the target baud rate.
71  */
72 #ifndef	UART_DEV_TOLERANCE_PCT
73 #define	UART_DEV_TOLERANCE_PCT	30
74 #endif	/* UART_DEV_TOLERANCE_PCT */
75 
76 static int broken_txfifo = 0;
77 SYSCTL_INT(_hw, OID_AUTO, broken_txfifo, CTLFLAG_RWTUN,
78 	&broken_txfifo, 0, "UART FIFO has QEMU emulation bug");
79 
80 /*
81  * To use early printf on x86, add the following to your kernel config:
82  *
83  * options UART_NS8250_EARLY_PORT=0x3f8
84  * options EARLY_PRINTF
85 */
86 #if defined(EARLY_PRINTF) && (defined(__amd64__) || defined(__i386__))
87 static void
88 uart_ns8250_early_putc(int c)
89 {
90 	u_int stat = UART_NS8250_EARLY_PORT + REG_LSR;
91 	u_int tx = UART_NS8250_EARLY_PORT + REG_DATA;
92 	int limit = 10000; /* 10ms is plenty of time */
93 
94 	while ((inb(stat) & LSR_THRE) == 0 && --limit > 0)
95 		continue;
96 	outb(tx, c);
97 }
98 early_putc_t *early_putc = uart_ns8250_early_putc;
99 #endif /* EARLY_PRINTF */
100 
101 /*
102  * Clear pending interrupts. THRE is cleared by reading IIR. Data
103  * that may have been received gets lost here.
104  */
105 static void
106 ns8250_clrint(struct uart_bas *bas)
107 {
108 	uint8_t iir, lsr;
109 
110 	iir = uart_getreg(bas, REG_IIR);
111 	while ((iir & IIR_NOPEND) == 0) {
112 		iir &= IIR_IMASK;
113 		if (iir == IIR_RLS) {
114 			lsr = uart_getreg(bas, REG_LSR);
115 			if (lsr & (LSR_BI|LSR_FE|LSR_PE))
116 				(void)uart_getreg(bas, REG_DATA);
117 		} else if (iir == IIR_RXRDY || iir == IIR_RXTOUT)
118 			(void)uart_getreg(bas, REG_DATA);
119 		else if (iir == IIR_MLSC)
120 			(void)uart_getreg(bas, REG_MSR);
121 		uart_barrier(bas);
122 		iir = uart_getreg(bas, REG_IIR);
123 	}
124 }
125 
126 static int
127 ns8250_delay(struct uart_bas *bas)
128 {
129 	int divisor;
130 	u_char lcr;
131 
132 	lcr = uart_getreg(bas, REG_LCR);
133 	uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
134 	uart_barrier(bas);
135 	divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8);
136 	uart_barrier(bas);
137 	uart_setreg(bas, REG_LCR, lcr);
138 	uart_barrier(bas);
139 
140 	/* 1/10th the time to transmit 1 character (estimate). */
141 	if (divisor <= 134)
142 		return (16000000 * divisor / bas->rclk);
143 	return (16000 * divisor / (bas->rclk / 1000));
144 }
145 
146 static int
147 ns8250_divisor(int rclk, int baudrate)
148 {
149 	int actual_baud, divisor;
150 	int error;
151 
152 	if (baudrate == 0)
153 		return (0);
154 
155 	divisor = (rclk / (baudrate << 3) + 1) >> 1;
156 	if (divisor == 0 || divisor >= 65536)
157 		return (0);
158 	actual_baud = rclk / (divisor << 4);
159 
160 	/* 10 times error in percent: */
161 	error = ((actual_baud - baudrate) * 2000 / baudrate + 1) / 2;
162 
163 	/* enforce maximum error tolerance: */
164 	if (error < -UART_DEV_TOLERANCE_PCT || error > UART_DEV_TOLERANCE_PCT)
165 		return (0);
166 
167 	return (divisor);
168 }
169 
170 static int
171 ns8250_drain(struct uart_bas *bas, int what)
172 {
173 	int delay, limit;
174 
175 	delay = ns8250_delay(bas);
176 
177 	if (what & UART_DRAIN_TRANSMITTER) {
178 		/*
179 		 * Pick an arbitrary high limit to avoid getting stuck in
180 		 * an infinite loop when the hardware is broken. Make the
181 		 * limit high enough to handle large FIFOs.
182 		 */
183 		limit = 10*1024;
184 		while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
185 			DELAY(delay);
186 		if (limit == 0) {
187 			/* printf("ns8250: transmitter appears stuck... "); */
188 			return (EIO);
189 		}
190 	}
191 
192 	if (what & UART_DRAIN_RECEIVER) {
193 		/*
194 		 * Pick an arbitrary high limit to avoid getting stuck in
195 		 * an infinite loop when the hardware is broken. Make the
196 		 * limit high enough to handle large FIFOs and integrated
197 		 * UARTs. The HP rx2600 for example has 3 UARTs on the
198 		 * management board that tend to get a lot of data send
199 		 * to it when the UART is first activated.  Assume that we
200 		 * have finished draining if LSR_RXRDY is not asserted both
201 		 * prior to and after a DELAY; but as long as LSR_RXRDY is
202 		 * asserted, read (and discard) characters as quickly as
203 		 * possible.
204 		 */
205 		limit=10*4096;
206 		while (limit && (uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) {
207 			do {
208 				(void)uart_getreg(bas, REG_DATA);
209 				uart_barrier(bas);
210 			} while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit);
211 			uart_barrier(bas);
212 			DELAY(delay << 2);
213 		}
214 		if (limit == 0) {
215 			/* printf("ns8250: receiver appears broken... "); */
216 			return (EIO);
217 		}
218 	}
219 
220 	return (0);
221 }
222 
223 /*
224  * We can only flush UARTs with FIFOs. UARTs without FIFOs should be
225  * drained. WARNING: this function clobbers the FIFO setting!
226  */
227 static void
228 ns8250_flush(struct uart_bas *bas, int what)
229 {
230 	uint8_t fcr;
231 	uint8_t lsr;
232 	int drain = 0;
233 
234 	fcr = FCR_ENABLE;
235 	if (what & UART_FLUSH_TRANSMITTER)
236 		fcr |= FCR_XMT_RST;
237 	if (what & UART_FLUSH_RECEIVER)
238 		fcr |= FCR_RCV_RST;
239 	uart_setreg(bas, REG_FCR, fcr);
240 	uart_barrier(bas);
241 
242 	/*
243 	 * Detect and work around emulated UARTs which don't implement the
244 	 * FCR register; on these systems we need to drain the FIFO since
245 	 * the flush we request doesn't happen.  One such system is the
246 	 * Firecracker VMM, aka. the rust-vmm/vm-superio emulation code:
247 	 * https://github.com/rust-vmm/vm-superio/issues/83
248 	 */
249 	lsr = uart_getreg(bas, REG_LSR);
250 	if (((lsr & LSR_TEMT) == 0) && (what & UART_FLUSH_TRANSMITTER))
251 		drain |= UART_DRAIN_TRANSMITTER;
252 	if ((lsr & LSR_RXRDY) && (what & UART_FLUSH_RECEIVER))
253 		drain |= UART_DRAIN_RECEIVER;
254 	if (drain != 0) {
255 		printf("ns8250: UART FCR is broken\n");
256 		ns8250_drain(bas, drain);
257 	}
258 }
259 
260 static int
261 ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
262     int parity)
263 {
264 	int divisor;
265 	uint8_t lcr;
266 
267 	/* Don't change settings when running on Hyper-V */
268 	if (vm_guest == VM_GUEST_HV)
269 		return (0);
270 
271 	lcr = 0;
272 	if (databits >= 8)
273 		lcr |= LCR_8BITS;
274 	else if (databits == 7)
275 		lcr |= LCR_7BITS;
276 	else if (databits == 6)
277 		lcr |= LCR_6BITS;
278 	else
279 		lcr |= LCR_5BITS;
280 	if (stopbits > 1)
281 		lcr |= LCR_STOPB;
282 	lcr |= parity << 3;
283 
284 	/* Set baudrate. */
285 	if (baudrate > 0) {
286 		divisor = ns8250_divisor(bas->rclk, baudrate);
287 		if (divisor == 0)
288 			return (EINVAL);
289 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
290 		uart_barrier(bas);
291 		uart_setreg(bas, REG_DLL, divisor & 0xff);
292 		uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff);
293 		uart_barrier(bas);
294 	}
295 
296 	/* Set LCR and clear DLAB. */
297 	uart_setreg(bas, REG_LCR, lcr);
298 	uart_barrier(bas);
299 	return (0);
300 }
301 
302 /*
303  * Low-level UART interface.
304  */
305 static int ns8250_probe(struct uart_bas *bas);
306 static void ns8250_init(struct uart_bas *bas, int, int, int, int);
307 static void ns8250_term(struct uart_bas *bas);
308 static void ns8250_putc(struct uart_bas *bas, int);
309 static int ns8250_rxready(struct uart_bas *bas);
310 static int ns8250_getc(struct uart_bas *bas, struct mtx *);
311 
312 struct uart_ops uart_ns8250_ops = {
313 	.probe = ns8250_probe,
314 	.init = ns8250_init,
315 	.term = ns8250_term,
316 	.putc = ns8250_putc,
317 	.rxready = ns8250_rxready,
318 	.getc = ns8250_getc,
319 };
320 
321 static int
322 ns8250_probe(struct uart_bas *bas)
323 {
324 	u_char val;
325 
326 	/* Check known 0 bits that don't depend on DLAB. */
327 	val = uart_getreg(bas, REG_IIR);
328 	if (val & 0x30)
329 		return (ENXIO);
330 	/*
331 	 * Bit 6 of the MCR (= 0x40) appears to be 1 for the Sun1699
332 	 * chip, but otherwise doesn't seem to have a function. In
333 	 * other words, uart(4) works regardless. Ignore that bit so
334 	 * the probe succeeds.
335 	 */
336 	val = uart_getreg(bas, REG_MCR);
337 	if (val & 0xa0)
338 		return (ENXIO);
339 
340 	return (0);
341 }
342 
343 static void
344 ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
345     int parity)
346 {
347 	u_char ier;
348 
349 	if (bas->rclk == 0)
350 		bas->rclk = DEFAULT_RCLK;
351 	ns8250_param(bas, baudrate, databits, stopbits, parity);
352 
353 	/* Disable all interrupt sources. */
354 	/*
355 	 * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA
356 	 * UARTs split the receive time-out interrupt bit out separately as
357 	 * 0x10.  This gets handled by ier_mask and ier_rxbits below.
358 	 */
359 	ier = uart_getreg(bas, REG_IER) & 0xe0;
360 	uart_setreg(bas, REG_IER, ier);
361 	uart_barrier(bas);
362 
363 	/* Disable the FIFO (if present). */
364 	uart_setreg(bas, REG_FCR, 0);
365 	uart_barrier(bas);
366 
367 	/* Set RTS & DTR. */
368 	uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR);
369 	uart_barrier(bas);
370 
371 	ns8250_clrint(bas);
372 }
373 
374 static void
375 ns8250_term(struct uart_bas *bas)
376 {
377 
378 	/* Clear RTS & DTR. */
379 	uart_setreg(bas, REG_MCR, MCR_IE);
380 	uart_barrier(bas);
381 }
382 
383 static void
384 ns8250_putc(struct uart_bas *bas, int c)
385 {
386 	int limit;
387 
388 	if (vm_guest != VM_GUEST_HV) {
389 		limit = 250000;
390 		while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit)
391 			DELAY(4);
392 	}
393 	uart_setreg(bas, REG_DATA, c);
394 	uart_barrier(bas);
395 }
396 
397 static int
398 ns8250_rxready(struct uart_bas *bas)
399 {
400 
401 	return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0);
402 }
403 
404 static int
405 ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx)
406 {
407 	int c;
408 
409 	uart_lock(hwmtx);
410 
411 	while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) {
412 		uart_unlock(hwmtx);
413 		DELAY(4);
414 		uart_lock(hwmtx);
415 	}
416 
417 	c = uart_getreg(bas, REG_DATA);
418 
419 	uart_unlock(hwmtx);
420 
421 	return (c);
422 }
423 
424 static kobj_method_t ns8250_methods[] = {
425 	KOBJMETHOD(uart_attach,		ns8250_bus_attach),
426 	KOBJMETHOD(uart_detach,		ns8250_bus_detach),
427 	KOBJMETHOD(uart_flush,		ns8250_bus_flush),
428 	KOBJMETHOD(uart_getsig,		ns8250_bus_getsig),
429 	KOBJMETHOD(uart_ioctl,		ns8250_bus_ioctl),
430 	KOBJMETHOD(uart_ipend,		ns8250_bus_ipend),
431 	KOBJMETHOD(uart_param,		ns8250_bus_param),
432 	KOBJMETHOD(uart_probe,		ns8250_bus_probe),
433 	KOBJMETHOD(uart_receive,	ns8250_bus_receive),
434 	KOBJMETHOD(uart_setsig,		ns8250_bus_setsig),
435 	KOBJMETHOD(uart_transmit,	ns8250_bus_transmit),
436 	KOBJMETHOD(uart_txbusy,		ns8250_bus_txbusy),
437 	KOBJMETHOD(uart_grab,		ns8250_bus_grab),
438 	KOBJMETHOD(uart_ungrab,		ns8250_bus_ungrab),
439 	KOBJMETHOD_END
440 };
441 
442 struct uart_class uart_ns8250_class = {
443 	"ns8250",
444 	ns8250_methods,
445 	sizeof(struct ns8250_softc),
446 	.uc_ops = &uart_ns8250_ops,
447 	.uc_range = 8,
448 	.uc_rclk = DEFAULT_RCLK,
449 	.uc_rshift = 0
450 };
451 
452 /*
453  * XXX -- refactor out ACPI and FDT ifdefs
454  */
455 #ifdef DEV_ACPI
456 static struct acpi_uart_compat_data acpi_compat_data[] = {
457 	{"AMD0020",	&uart_ns8250_class, 0, 2, 0, 48000000, UART_F_BUSY_DETECT, "AMD / Synopsys Designware UART"},
458 	{"AMDI0020", &uart_ns8250_class, 0, 2, 0, 48000000, UART_F_BUSY_DETECT, "AMD / Synopsys Designware UART"},
459 	{"MRVL0001", &uart_ns8250_class, ACPI_DBG2_16550_SUBSET, 2, 0, 200000000, UART_F_BUSY_DETECT, "Marvell / Synopsys Designware UART"},
460 	{"SCX0006",  &uart_ns8250_class, 0, 2, 0, 62500000, UART_F_BUSY_DETECT, "SynQuacer / Synopsys Designware UART"},
461 	{"HISI0031", &uart_ns8250_class, 0, 2, 0, 200000000, UART_F_BUSY_DETECT, "HiSilicon / Synopsys Designware UART"},
462 	{"NXP0018", &uart_ns8250_class, 0, 0, 0, 350000000, UART_F_BUSY_DETECT, "NXP / Synopsys Designware UART"},
463 	{"PNP0500", &uart_ns8250_class, 0, 0, 0, 0, 0, "Standard PC COM port"},
464 	{"PNP0501", &uart_ns8250_class, 0, 0, 0, 0, 0, "16550A-compatible COM port"},
465 	{"PNP0502", &uart_ns8250_class, 0, 0, 0, 0, 0, "Multiport serial device (non-intelligent 16550)"},
466 	{"PNP0510", &uart_ns8250_class, 0, 0, 0, 0, 0, "Generic IRDA-compatible device"},
467 	{"PNP0511", &uart_ns8250_class, 0, 0, 0, 0, 0, "Generic IRDA-compatible device"},
468 	{"WACF004", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet PC Screen"},
469 	{"WACF00E", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet PC Screen 00e"},
470 	{"FUJ02E5", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet at FuS Lifebook T"},
471 	{NULL, 			NULL, 0, 0 , 0, 0, 0, NULL},
472 };
473 UART_ACPI_CLASS_AND_DEVICE(acpi_compat_data);
474 #endif
475 
476 #ifdef FDT
477 static struct ofw_compat_data compat_data[] = {
478 	{"ns16550",		(uintptr_t)&uart_ns8250_class},
479 	{"ns16550a",		(uintptr_t)&uart_ns8250_class},
480 	{NULL,			(uintptr_t)NULL},
481 };
482 UART_FDT_CLASS_AND_DEVICE(compat_data);
483 #endif
484 
485 /* Use token-pasting to form SER_ and MSR_ named constants. */
486 #define	SER(sig)	SER_##sig
487 #define	SERD(sig)	SER_D##sig
488 #define	MSR(sig)	MSR_##sig
489 #define	MSRD(sig)	MSR_D##sig
490 
491 /*
492  * Detect signal changes using software delta detection.  The previous state of
493  * the signals is in 'var' the new hardware state is in 'msr', and 'sig' is the
494  * short name (DCD, CTS, etc) of the signal bit being processed; 'var' gets the
495  * new state of both the signal and the delta bits.
496  */
497 #define SIGCHGSW(var, msr, sig)					\
498 	if ((msr) & MSR(sig)) {					\
499 		if ((var & SER(sig)) == 0)			\
500 			var |= SERD(sig) | SER(sig);		\
501 	} else {						\
502 		if ((var & SER(sig)) != 0)			\
503 			var = SERD(sig) | (var & ~SER(sig));	\
504 	}
505 
506 /*
507  * Detect signal changes using the hardware msr delta bits.  This is currently
508  * used only when PPS timing information is being captured using the "narrow
509  * pulse" option.  With a narrow PPS pulse the signal may not still be asserted
510  * by time the interrupt handler is invoked.  The hardware will latch the fact
511  * that it changed in the delta bits.
512  */
513 #define SIGCHGHW(var, msr, sig)					\
514 	if ((msr) & MSRD(sig)) {				\
515 		if (((msr) & MSR(sig)) != 0)			\
516 			var |= SERD(sig) | SER(sig);		\
517 		else						\
518 			var = SERD(sig) | (var & ~SER(sig));	\
519 	}
520 
521 int
522 ns8250_bus_attach(struct uart_softc *sc)
523 {
524 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
525 	struct uart_bas *bas;
526 	unsigned int ivar;
527 #ifdef FDT
528 	phandle_t node;
529 	pcell_t cell;
530 #endif
531 
532 #ifdef FDT
533 	/* Check whether uart has a broken txfifo. */
534 	node = ofw_bus_get_node(sc->sc_dev);
535 	if ((OF_getencprop(node, "broken-txfifo", &cell, sizeof(cell))) > 0)
536 		broken_txfifo =  cell ? 1 : 0;
537 #endif
538 
539 	bas = &sc->sc_bas;
540 
541 	ns8250->busy_detect = bas->busy_detect;
542 	ns8250->mcr = uart_getreg(bas, REG_MCR);
543 	ns8250->fcr = FCR_ENABLE;
544 	if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags",
545 	    &ivar)) {
546 		if (UART_FLAGS_FCR_RX_LOW(ivar))
547 			ns8250->fcr |= FCR_RX_LOW;
548 		else if (UART_FLAGS_FCR_RX_MEDL(ivar))
549 			ns8250->fcr |= FCR_RX_MEDL;
550 		else if (UART_FLAGS_FCR_RX_HIGH(ivar))
551 			ns8250->fcr |= FCR_RX_HIGH;
552 		else
553 			ns8250->fcr |= FCR_RX_MEDH;
554 	} else
555 		ns8250->fcr |= FCR_RX_MEDH;
556 
557 	/* Get IER mask */
558 	ivar = 0xf0;
559 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask",
560 	    &ivar);
561 	ns8250->ier_mask = (uint8_t)(ivar & 0xff);
562 
563 	/* Get IER RX interrupt bits */
564 	ivar = IER_EMSC | IER_ERLS | IER_ERXRDY;
565 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits",
566 	    &ivar);
567 	ns8250->ier_rxbits = (uint8_t)(ivar & 0xff);
568 
569 	uart_setreg(bas, REG_FCR, ns8250->fcr);
570 	uart_barrier(bas);
571 	ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
572 
573 	if (ns8250->mcr & MCR_DTR)
574 		sc->sc_hwsig |= SER_DTR;
575 	if (ns8250->mcr & MCR_RTS)
576 		sc->sc_hwsig |= SER_RTS;
577 	ns8250_bus_getsig(sc);
578 
579 	ns8250_clrint(bas);
580 	ns8250->ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
581 	ns8250->ier |= ns8250->ier_rxbits;
582 	uart_setreg(bas, REG_IER, ns8250->ier);
583 	uart_barrier(bas);
584 
585 	/*
586 	 * Timing of the H/W access was changed with r253161 of uart_core.c
587 	 * It has been observed that an ITE IT8513E would signal a break
588 	 * condition with pretty much every character it received, unless
589 	 * it had enough time to settle between ns8250_bus_attach() and
590 	 * ns8250_bus_ipend() -- which it accidentally had before r253161.
591 	 * It's not understood why the UART chip behaves this way and it
592 	 * could very well be that the DELAY make the H/W work in the same
593 	 * accidental manner as before. More analysis is warranted, but
594 	 * at least now we fixed a known regression.
595 	 */
596 	DELAY(200);
597 	return (0);
598 }
599 
600 int
601 ns8250_bus_detach(struct uart_softc *sc)
602 {
603 	struct ns8250_softc *ns8250;
604 	struct uart_bas *bas;
605 	u_char ier;
606 
607 	ns8250 = (struct ns8250_softc *)sc;
608 	bas = &sc->sc_bas;
609 	ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
610 	uart_setreg(bas, REG_IER, ier);
611 	uart_barrier(bas);
612 	ns8250_clrint(bas);
613 	return (0);
614 }
615 
616 int
617 ns8250_bus_flush(struct uart_softc *sc, int what)
618 {
619 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
620 	struct uart_bas *bas;
621 	int error;
622 
623 	bas = &sc->sc_bas;
624 	uart_lock(sc->sc_hwmtx);
625 	if (sc->sc_rxfifosz > 1) {
626 		ns8250_flush(bas, what);
627 		uart_setreg(bas, REG_FCR, ns8250->fcr);
628 		uart_barrier(bas);
629 		error = 0;
630 	} else
631 		error = ns8250_drain(bas, what);
632 	uart_unlock(sc->sc_hwmtx);
633 	return (error);
634 }
635 
636 int
637 ns8250_bus_getsig(struct uart_softc *sc)
638 {
639 	uint32_t old, sig;
640 	uint8_t msr;
641 
642 	/*
643 	 * The delta bits are reputed to be broken on some hardware, so use
644 	 * software delta detection by default.  Use the hardware delta bits
645 	 * when capturing PPS pulses which are too narrow for software detection
646 	 * to see the edges.  Hardware delta for RI doesn't work like the
647 	 * others, so always use software for it.  Other threads may be changing
648 	 * other (non-MSR) bits in sc_hwsig, so loop until it can successfully
649 	 * update without other changes happening.  Note that the SIGCHGxx()
650 	 * macros carefully preserve the delta bits when we have to loop several
651 	 * times and a signal transitions between iterations.
652 	 */
653 	do {
654 		old = sc->sc_hwsig;
655 		sig = old;
656 		uart_lock(sc->sc_hwmtx);
657 		msr = uart_getreg(&sc->sc_bas, REG_MSR);
658 		uart_unlock(sc->sc_hwmtx);
659 		if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE) {
660 			SIGCHGHW(sig, msr, DSR);
661 			SIGCHGHW(sig, msr, CTS);
662 			SIGCHGHW(sig, msr, DCD);
663 		} else {
664 			SIGCHGSW(sig, msr, DSR);
665 			SIGCHGSW(sig, msr, CTS);
666 			SIGCHGSW(sig, msr, DCD);
667 		}
668 		SIGCHGSW(sig, msr, RI);
669 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, sig & ~SER_MASK_DELTA));
670 	return (sig);
671 }
672 
673 int
674 ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
675 {
676 	struct uart_bas *bas;
677 	int baudrate, divisor, error;
678 	uint8_t efr, lcr;
679 
680 	bas = &sc->sc_bas;
681 	error = 0;
682 	uart_lock(sc->sc_hwmtx);
683 	switch (request) {
684 	case UART_IOCTL_BREAK:
685 		lcr = uart_getreg(bas, REG_LCR);
686 		if (data)
687 			lcr |= LCR_SBREAK;
688 		else
689 			lcr &= ~LCR_SBREAK;
690 		uart_setreg(bas, REG_LCR, lcr);
691 		uart_barrier(bas);
692 		break;
693 	case UART_IOCTL_IFLOW:
694 		lcr = uart_getreg(bas, REG_LCR);
695 		uart_barrier(bas);
696 		uart_setreg(bas, REG_LCR, 0xbf);
697 		uart_barrier(bas);
698 		efr = uart_getreg(bas, REG_EFR);
699 		if (data)
700 			efr |= EFR_RTS;
701 		else
702 			efr &= ~EFR_RTS;
703 		uart_setreg(bas, REG_EFR, efr);
704 		uart_barrier(bas);
705 		uart_setreg(bas, REG_LCR, lcr);
706 		uart_barrier(bas);
707 		break;
708 	case UART_IOCTL_OFLOW:
709 		lcr = uart_getreg(bas, REG_LCR);
710 		uart_barrier(bas);
711 		uart_setreg(bas, REG_LCR, 0xbf);
712 		uart_barrier(bas);
713 		efr = uart_getreg(bas, REG_EFR);
714 		if (data)
715 			efr |= EFR_CTS;
716 		else
717 			efr &= ~EFR_CTS;
718 		uart_setreg(bas, REG_EFR, efr);
719 		uart_barrier(bas);
720 		uart_setreg(bas, REG_LCR, lcr);
721 		uart_barrier(bas);
722 		break;
723 	case UART_IOCTL_BAUD:
724 		lcr = uart_getreg(bas, REG_LCR);
725 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
726 		uart_barrier(bas);
727 		divisor = uart_getreg(bas, REG_DLL) |
728 		    (uart_getreg(bas, REG_DLH) << 8);
729 		uart_barrier(bas);
730 		uart_setreg(bas, REG_LCR, lcr);
731 		uart_barrier(bas);
732 		baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0;
733 		if (baudrate > 0)
734 			*(int*)data = baudrate;
735 		else
736 			error = ENXIO;
737 		break;
738 	default:
739 		error = EINVAL;
740 		break;
741 	}
742 	uart_unlock(sc->sc_hwmtx);
743 	return (error);
744 }
745 
746 int
747 ns8250_bus_ipend(struct uart_softc *sc)
748 {
749 	struct uart_bas *bas;
750 	struct ns8250_softc *ns8250;
751 	int ipend;
752 	uint8_t iir, lsr;
753 
754 	ns8250 = (struct ns8250_softc *)sc;
755 	bas = &sc->sc_bas;
756 	uart_lock(sc->sc_hwmtx);
757 	iir = uart_getreg(bas, REG_IIR);
758 
759 	if (ns8250->busy_detect && (iir & IIR_BUSY) == IIR_BUSY) {
760 		(void)uart_getreg(bas, DW_REG_USR);
761 		uart_unlock(sc->sc_hwmtx);
762 		return (0);
763 	}
764 	if (iir & IIR_NOPEND) {
765 		uart_unlock(sc->sc_hwmtx);
766 		return (0);
767 	}
768 	ipend = 0;
769 	if (iir & IIR_RXRDY) {
770 		lsr = uart_getreg(bas, REG_LSR);
771 		if (lsr & LSR_OE)
772 			ipend |= SER_INT_OVERRUN;
773 		if (lsr & LSR_BI)
774 			ipend |= SER_INT_BREAK;
775 		if (lsr & LSR_RXRDY)
776 			ipend |= SER_INT_RXREADY;
777 	} else {
778 		if (iir & IIR_TXRDY) {
779 			ipend |= SER_INT_TXIDLE;
780 			ns8250->ier &= ~IER_ETXRDY;
781 			uart_setreg(bas, REG_IER, ns8250->ier);
782 			uart_barrier(bas);
783 		} else
784 			ipend |= SER_INT_SIGCHG;
785 	}
786 	if (ipend == 0)
787 		ns8250_clrint(bas);
788 	uart_unlock(sc->sc_hwmtx);
789 	return (ipend);
790 }
791 
792 int
793 ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits,
794     int stopbits, int parity)
795 {
796 	struct ns8250_softc *ns8250;
797 	struct uart_bas *bas;
798 	int error, limit;
799 
800 	ns8250 = (struct ns8250_softc*)sc;
801 	bas = &sc->sc_bas;
802 	uart_lock(sc->sc_hwmtx);
803 	/*
804 	 * When using DW UART with BUSY detection it is necessary to wait
805 	 * until all serial transfers are finished before manipulating the
806 	 * line control. LCR will not be affected when UART is busy.
807 	 */
808 	if (ns8250->busy_detect != 0) {
809 		/*
810 		 * Pick an arbitrary high limit to avoid getting stuck in
811 		 * an infinite loop in case when the hardware is broken.
812 		 */
813 		limit = 10 * 1024;
814 		while (((uart_getreg(bas, DW_REG_USR) & USR_BUSY) != 0) &&
815 		    --limit)
816 			DELAY(4);
817 
818 		if (limit <= 0) {
819 			/* UART appears to be stuck */
820 			uart_unlock(sc->sc_hwmtx);
821 			return (EIO);
822 		}
823 	}
824 
825 	error = ns8250_param(bas, baudrate, databits, stopbits, parity);
826 	uart_unlock(sc->sc_hwmtx);
827 	return (error);
828 }
829 
830 int
831 ns8250_bus_probe(struct uart_softc *sc)
832 {
833 	struct uart_bas *bas;
834 	int count, delay, error, limit;
835 	uint8_t lsr, mcr, ier;
836 
837 	bas = &sc->sc_bas;
838 
839 	error = ns8250_probe(bas);
840 	if (error)
841 		return (error);
842 
843 	mcr = MCR_IE;
844 	if (sc->sc_sysdev == NULL) {
845 		/* By using ns8250_init() we also set DTR and RTS. */
846 		ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE);
847 	} else
848 		mcr |= MCR_DTR | MCR_RTS;
849 
850 	error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
851 	if (error)
852 		return (error);
853 
854 	/*
855 	 * Set loopback mode. This avoids having garbage on the wire and
856 	 * also allows us send and receive data. We set DTR and RTS to
857 	 * avoid the possibility that automatic flow-control prevents
858 	 * any data from being sent.
859 	 */
860 	uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS);
861 	uart_barrier(bas);
862 
863 	/*
864 	 * Enable FIFOs. And check that the UART has them. If not, we're
865 	 * done. Since this is the first time we enable the FIFOs, we reset
866 	 * them.
867 	 */
868 	uart_setreg(bas, REG_FCR, FCR_ENABLE);
869 	uart_barrier(bas);
870 	if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) {
871 		/*
872 		 * NS16450 or INS8250. We don't bother to differentiate
873 		 * between them. They're too old to be interesting.
874 		 */
875 		uart_setreg(bas, REG_MCR, mcr);
876 		uart_barrier(bas);
877 		sc->sc_rxfifosz = sc->sc_txfifosz = 1;
878 		device_set_desc(sc->sc_dev, "8250 or 16450 or compatible");
879 		return (0);
880 	}
881 
882 	uart_setreg(bas, REG_FCR, FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST);
883 	uart_barrier(bas);
884 
885 	count = 0;
886 	delay = ns8250_delay(bas);
887 
888 	/* We have FIFOs. Drain the transmitter and receiver. */
889 	error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER);
890 	if (error) {
891 		uart_setreg(bas, REG_MCR, mcr);
892 		uart_setreg(bas, REG_FCR, 0);
893 		uart_barrier(bas);
894 		goto describe;
895 	}
896 
897 	/*
898 	 * We should have a sufficiently clean "pipe" to determine the
899 	 * size of the FIFOs. We send as much characters as is reasonable
900 	 * and wait for the overflow bit in the LSR register to be
901 	 * asserted, counting the characters as we send them. Based on
902 	 * that count we know the FIFO size.
903 	 */
904 	do {
905 		uart_setreg(bas, REG_DATA, 0);
906 		uart_barrier(bas);
907 		count++;
908 
909 		limit = 30;
910 		lsr = 0;
911 		/*
912 		 * LSR bits are cleared upon read, so we must accumulate
913 		 * them to be able to test LSR_OE below.
914 		 */
915 		while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 &&
916 		    --limit)
917 			DELAY(delay);
918 		if (limit == 0) {
919 			/* See the comment in ns8250_init(). */
920 			ier = uart_getreg(bas, REG_IER) & 0xe0;
921 			uart_setreg(bas, REG_IER, ier);
922 			uart_setreg(bas, REG_MCR, mcr);
923 			uart_setreg(bas, REG_FCR, 0);
924 			uart_barrier(bas);
925 			count = 0;
926 			goto describe;
927 		}
928 	} while ((lsr & LSR_OE) == 0 && count < 260);
929 	count--;
930 
931 	uart_setreg(bas, REG_MCR, mcr);
932 
933 	/* Reset FIFOs. */
934 	ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
935 
936  describe:
937 	if (count >= 14 && count <= 16) {
938 		sc->sc_rxfifosz = 16;
939 		device_set_desc(sc->sc_dev, "16550 or compatible");
940 	} else if (count >= 28 && count <= 32) {
941 		sc->sc_rxfifosz = 32;
942 		device_set_desc(sc->sc_dev, "16650 or compatible");
943 	} else if (count >= 56 && count <= 64) {
944 		sc->sc_rxfifosz = 64;
945 		device_set_desc(sc->sc_dev, "16750 or compatible");
946 	} else if (count >= 112 && count <= 128) {
947 		sc->sc_rxfifosz = 128;
948 		device_set_desc(sc->sc_dev, "16950 or compatible");
949 	} else if (count >= 224 && count <= 256) {
950 		sc->sc_rxfifosz = 256;
951 		device_set_desc(sc->sc_dev, "16x50 with 256 byte FIFO");
952 	} else {
953 		sc->sc_rxfifosz = 16;
954 		device_set_desc(sc->sc_dev,
955 		    "Non-standard ns8250 class UART with FIFOs");
956 	}
957 
958 	/*
959 	 * Force the Tx FIFO size to 16 bytes for now. We don't program the
960 	 * Tx trigger. Also, we assume that all data has been sent when the
961 	 * interrupt happens.
962 	 */
963 	sc->sc_txfifosz = 16;
964 
965 #if 0
966 	/*
967 	 * XXX there are some issues related to hardware flow control and
968 	 * it's likely that uart(4) is the cause. This basically needs more
969 	 * investigation, but we avoid using for hardware flow control
970 	 * until then.
971 	 */
972 	/* 16650s or higher have automatic flow control. */
973 	if (sc->sc_rxfifosz > 16) {
974 		sc->sc_hwiflow = 1;
975 		sc->sc_hwoflow = 1;
976 	}
977 #endif
978 
979 	return (0);
980 }
981 
982 int
983 ns8250_bus_receive(struct uart_softc *sc)
984 {
985 	struct uart_bas *bas;
986 	int xc;
987 	uint8_t lsr;
988 
989 	bas = &sc->sc_bas;
990 	uart_lock(sc->sc_hwmtx);
991 	lsr = uart_getreg(bas, REG_LSR);
992 	while (lsr & LSR_RXRDY) {
993 		if (uart_rx_full(sc)) {
994 			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
995 			break;
996 		}
997 		xc = uart_getreg(bas, REG_DATA);
998 		if (lsr & LSR_FE)
999 			xc |= UART_STAT_FRAMERR;
1000 		if (lsr & LSR_PE)
1001 			xc |= UART_STAT_PARERR;
1002 		uart_rx_put(sc, xc);
1003 		lsr = uart_getreg(bas, REG_LSR);
1004 	}
1005 	/* Discard everything left in the Rx FIFO. */
1006 	while (lsr & LSR_RXRDY) {
1007 		(void)uart_getreg(bas, REG_DATA);
1008 		uart_barrier(bas);
1009 		lsr = uart_getreg(bas, REG_LSR);
1010 	}
1011 	uart_unlock(sc->sc_hwmtx);
1012  	return (0);
1013 }
1014 
1015 int
1016 ns8250_bus_setsig(struct uart_softc *sc, int sig)
1017 {
1018 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1019 	struct uart_bas *bas;
1020 	uint32_t new, old;
1021 
1022 	bas = &sc->sc_bas;
1023 	do {
1024 		old = sc->sc_hwsig;
1025 		new = old;
1026 		if (sig & SER_DDTR) {
1027 			new = (new & ~SER_DTR) | (sig & (SER_DTR | SER_DDTR));
1028 		}
1029 		if (sig & SER_DRTS) {
1030 			new = (new & ~SER_RTS) | (sig & (SER_RTS | SER_DRTS));
1031 		}
1032 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
1033 	uart_lock(sc->sc_hwmtx);
1034 	ns8250->mcr &= ~(MCR_DTR|MCR_RTS);
1035 	if (new & SER_DTR)
1036 		ns8250->mcr |= MCR_DTR;
1037 	if (new & SER_RTS)
1038 		ns8250->mcr |= MCR_RTS;
1039 	uart_setreg(bas, REG_MCR, ns8250->mcr);
1040 	uart_barrier(bas);
1041 	uart_unlock(sc->sc_hwmtx);
1042 	return (0);
1043 }
1044 
1045 int
1046 ns8250_bus_transmit(struct uart_softc *sc)
1047 {
1048 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1049 	struct uart_bas *bas;
1050 	int i;
1051 
1052 	bas = &sc->sc_bas;
1053 	uart_lock(sc->sc_hwmtx);
1054 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0)
1055 		DELAY(4);
1056 	for (i = 0; i < sc->sc_txdatasz; i++) {
1057 		uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]);
1058 		uart_barrier(bas);
1059 	}
1060 	if (!broken_txfifo)
1061 		ns8250->ier |= IER_ETXRDY;
1062 	uart_setreg(bas, REG_IER, ns8250->ier);
1063 	uart_barrier(bas);
1064 	if (broken_txfifo)
1065 		ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
1066 	else
1067 		sc->sc_txbusy = 1;
1068 	uart_unlock(sc->sc_hwmtx);
1069 	if (broken_txfifo)
1070 		uart_sched_softih(sc, SER_INT_TXIDLE);
1071 	return (0);
1072 }
1073 
1074 bool
1075 ns8250_bus_txbusy(struct uart_softc *sc)
1076 {
1077 	struct uart_bas *bas = &sc->sc_bas;
1078 
1079 	if ((uart_getreg(bas, REG_LSR) & (LSR_TEMT | LSR_THRE)) !=
1080 	    (LSR_TEMT | LSR_THRE))
1081 		return (true);
1082 	return (false);
1083 }
1084 
1085 void
1086 ns8250_bus_grab(struct uart_softc *sc)
1087 {
1088 	struct uart_bas *bas = &sc->sc_bas;
1089 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1090 	u_char ier;
1091 
1092 	/*
1093 	 * turn off all interrupts to enter polling mode. Leave the
1094 	 * saved mask alone. We'll restore whatever it was in ungrab.
1095 	 * All pending interrupt signals are reset when IER is set to 0.
1096 	 */
1097 	uart_lock(sc->sc_hwmtx);
1098 	ier = uart_getreg(bas, REG_IER);
1099 	uart_setreg(bas, REG_IER, ier & ns8250->ier_mask);
1100 	uart_barrier(bas);
1101 	uart_unlock(sc->sc_hwmtx);
1102 }
1103 
1104 void
1105 ns8250_bus_ungrab(struct uart_softc *sc)
1106 {
1107 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1108 	struct uart_bas *bas = &sc->sc_bas;
1109 
1110 	/*
1111 	 * Restore previous interrupt mask
1112 	 */
1113 	uart_lock(sc->sc_hwmtx);
1114 	uart_setreg(bas, REG_IER, ns8250->ier);
1115 	uart_barrier(bas);
1116 	uart_unlock(sc->sc_hwmtx);
1117 }
1118