xref: /freebsd/sys/dev/uart/uart_dev_ns8250.c (revision 6c925b9c81036a86db387f75a32b423420eadf6c)
1 /*-
2  * Copyright (c) 2003 Marcel Moolenaar
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include "opt_platform.h"
28 #include "opt_uart.h"
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/conf.h>
37 #include <sys/kernel.h>
38 #include <sys/sysctl.h>
39 #include <machine/bus.h>
40 
41 #ifdef FDT
42 #include <dev/fdt/fdt_common.h>
43 #include <dev/ofw/ofw_bus.h>
44 #include <dev/ofw/ofw_bus_subr.h>
45 #endif
46 
47 #include <dev/uart/uart.h>
48 #include <dev/uart/uart_cpu.h>
49 #ifdef FDT
50 #include <dev/uart/uart_cpu_fdt.h>
51 #endif
52 #include <dev/uart/uart_bus.h>
53 #include <dev/uart/uart_dev_ns8250.h>
54 #include <dev/uart/uart_ppstypes.h>
55 
56 #include <dev/ic/ns16550.h>
57 
58 #include "uart_if.h"
59 
60 #define	DEFAULT_RCLK	1843200
61 
62 /*
63  * Set the default baudrate tolerance to 3.0%.
64  *
65  * Some embedded boards have odd reference clocks (eg 25MHz)
66  * and we need to handle higher variances in the target baud rate.
67  */
68 #ifndef	UART_DEV_TOLERANCE_PCT
69 #define	UART_DEV_TOLERANCE_PCT	30
70 #endif	/* UART_DEV_TOLERANCE_PCT */
71 
72 static int broken_txfifo = 0;
73 SYSCTL_INT(_hw, OID_AUTO, broken_txfifo, CTLFLAG_RWTUN,
74 	&broken_txfifo, 0, "UART FIFO has QEMU emulation bug");
75 
76 /*
77  * Clear pending interrupts. THRE is cleared by reading IIR. Data
78  * that may have been received gets lost here.
79  */
80 static void
81 ns8250_clrint(struct uart_bas *bas)
82 {
83 	uint8_t iir, lsr;
84 
85 	iir = uart_getreg(bas, REG_IIR);
86 	while ((iir & IIR_NOPEND) == 0) {
87 		iir &= IIR_IMASK;
88 		if (iir == IIR_RLS) {
89 			lsr = uart_getreg(bas, REG_LSR);
90 			if (lsr & (LSR_BI|LSR_FE|LSR_PE))
91 				(void)uart_getreg(bas, REG_DATA);
92 		} else if (iir == IIR_RXRDY || iir == IIR_RXTOUT)
93 			(void)uart_getreg(bas, REG_DATA);
94 		else if (iir == IIR_MLSC)
95 			(void)uart_getreg(bas, REG_MSR);
96 		uart_barrier(bas);
97 		iir = uart_getreg(bas, REG_IIR);
98 	}
99 }
100 
101 static int
102 ns8250_delay(struct uart_bas *bas)
103 {
104 	int divisor;
105 	u_char lcr;
106 
107 	lcr = uart_getreg(bas, REG_LCR);
108 	uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
109 	uart_barrier(bas);
110 	divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8);
111 	uart_barrier(bas);
112 	uart_setreg(bas, REG_LCR, lcr);
113 	uart_barrier(bas);
114 
115 	/* 1/10th the time to transmit 1 character (estimate). */
116 	if (divisor <= 134)
117 		return (16000000 * divisor / bas->rclk);
118 	return (16000 * divisor / (bas->rclk / 1000));
119 }
120 
121 static int
122 ns8250_divisor(int rclk, int baudrate)
123 {
124 	int actual_baud, divisor;
125 	int error;
126 
127 	if (baudrate == 0)
128 		return (0);
129 
130 	divisor = (rclk / (baudrate << 3) + 1) >> 1;
131 	if (divisor == 0 || divisor >= 65536)
132 		return (0);
133 	actual_baud = rclk / (divisor << 4);
134 
135 	/* 10 times error in percent: */
136 	error = ((actual_baud - baudrate) * 2000 / baudrate + 1) >> 1;
137 
138 	/* enforce maximum error tolerance: */
139 	if (error < -UART_DEV_TOLERANCE_PCT || error > UART_DEV_TOLERANCE_PCT)
140 		return (0);
141 
142 	return (divisor);
143 }
144 
145 static int
146 ns8250_drain(struct uart_bas *bas, int what)
147 {
148 	int delay, limit;
149 
150 	delay = ns8250_delay(bas);
151 
152 	if (what & UART_DRAIN_TRANSMITTER) {
153 		/*
154 		 * Pick an arbitrary high limit to avoid getting stuck in
155 		 * an infinite loop when the hardware is broken. Make the
156 		 * limit high enough to handle large FIFOs.
157 		 */
158 		limit = 10*1024;
159 		while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
160 			DELAY(delay);
161 		if (limit == 0) {
162 			/* printf("ns8250: transmitter appears stuck... "); */
163 			return (EIO);
164 		}
165 	}
166 
167 	if (what & UART_DRAIN_RECEIVER) {
168 		/*
169 		 * Pick an arbitrary high limit to avoid getting stuck in
170 		 * an infinite loop when the hardware is broken. Make the
171 		 * limit high enough to handle large FIFOs and integrated
172 		 * UARTs. The HP rx2600 for example has 3 UARTs on the
173 		 * management board that tend to get a lot of data send
174 		 * to it when the UART is first activated.
175 		 */
176 		limit=10*4096;
177 		while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) {
178 			(void)uart_getreg(bas, REG_DATA);
179 			uart_barrier(bas);
180 			DELAY(delay << 2);
181 		}
182 		if (limit == 0) {
183 			/* printf("ns8250: receiver appears broken... "); */
184 			return (EIO);
185 		}
186 	}
187 
188 	return (0);
189 }
190 
191 /*
192  * We can only flush UARTs with FIFOs. UARTs without FIFOs should be
193  * drained. WARNING: this function clobbers the FIFO setting!
194  */
195 static void
196 ns8250_flush(struct uart_bas *bas, int what)
197 {
198 	uint8_t fcr;
199 
200 	fcr = FCR_ENABLE;
201 #ifdef CPU_XBURST
202 	fcr |= FCR_UART_ON;
203 #endif
204 	if (what & UART_FLUSH_TRANSMITTER)
205 		fcr |= FCR_XMT_RST;
206 	if (what & UART_FLUSH_RECEIVER)
207 		fcr |= FCR_RCV_RST;
208 	uart_setreg(bas, REG_FCR, fcr);
209 	uart_barrier(bas);
210 }
211 
212 static int
213 ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
214     int parity)
215 {
216 	int divisor;
217 	uint8_t lcr;
218 
219 	lcr = 0;
220 	if (databits >= 8)
221 		lcr |= LCR_8BITS;
222 	else if (databits == 7)
223 		lcr |= LCR_7BITS;
224 	else if (databits == 6)
225 		lcr |= LCR_6BITS;
226 	else
227 		lcr |= LCR_5BITS;
228 	if (stopbits > 1)
229 		lcr |= LCR_STOPB;
230 	lcr |= parity << 3;
231 
232 	/* Set baudrate. */
233 	if (baudrate > 0) {
234 		divisor = ns8250_divisor(bas->rclk, baudrate);
235 		if (divisor == 0)
236 			return (EINVAL);
237 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
238 		uart_barrier(bas);
239 		uart_setreg(bas, REG_DLL, divisor & 0xff);
240 		uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff);
241 		uart_barrier(bas);
242 	}
243 
244 	/* Set LCR and clear DLAB. */
245 	uart_setreg(bas, REG_LCR, lcr);
246 	uart_barrier(bas);
247 	return (0);
248 }
249 
250 /*
251  * Low-level UART interface.
252  */
253 static int ns8250_probe(struct uart_bas *bas);
254 static void ns8250_init(struct uart_bas *bas, int, int, int, int);
255 static void ns8250_term(struct uart_bas *bas);
256 static void ns8250_putc(struct uart_bas *bas, int);
257 static int ns8250_rxready(struct uart_bas *bas);
258 static int ns8250_getc(struct uart_bas *bas, struct mtx *);
259 
260 struct uart_ops uart_ns8250_ops = {
261 	.probe = ns8250_probe,
262 	.init = ns8250_init,
263 	.term = ns8250_term,
264 	.putc = ns8250_putc,
265 	.rxready = ns8250_rxready,
266 	.getc = ns8250_getc,
267 };
268 
269 static int
270 ns8250_probe(struct uart_bas *bas)
271 {
272 	u_char val;
273 
274 #ifdef CPU_XBURST
275 	uart_setreg(bas, REG_FCR, FCR_UART_ON);
276 #endif
277 
278 	/* Check known 0 bits that don't depend on DLAB. */
279 	val = uart_getreg(bas, REG_IIR);
280 	if (val & 0x30)
281 		return (ENXIO);
282 	/*
283 	 * Bit 6 of the MCR (= 0x40) appears to be 1 for the Sun1699
284 	 * chip, but otherwise doesn't seem to have a function. In
285 	 * other words, uart(4) works regardless. Ignore that bit so
286 	 * the probe succeeds.
287 	 */
288 	val = uart_getreg(bas, REG_MCR);
289 	if (val & 0xa0)
290 		return (ENXIO);
291 
292 	return (0);
293 }
294 
295 static void
296 ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
297     int parity)
298 {
299 	u_char ier, val;
300 
301 	if (bas->rclk == 0)
302 		bas->rclk = DEFAULT_RCLK;
303 	ns8250_param(bas, baudrate, databits, stopbits, parity);
304 
305 	/* Disable all interrupt sources. */
306 	/*
307 	 * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA
308 	 * UARTs split the receive time-out interrupt bit out separately as
309 	 * 0x10.  This gets handled by ier_mask and ier_rxbits below.
310 	 */
311 	ier = uart_getreg(bas, REG_IER) & 0xe0;
312 	uart_setreg(bas, REG_IER, ier);
313 	uart_barrier(bas);
314 
315 	/* Disable the FIFO (if present). */
316 	val = 0;
317 #ifdef CPU_XBURST
318 	val = FCR_UART_ON;
319 #endif
320 	uart_setreg(bas, REG_FCR, val);
321 	uart_barrier(bas);
322 
323 	/* Set RTS & DTR. */
324 	uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR);
325 	uart_barrier(bas);
326 
327 	ns8250_clrint(bas);
328 }
329 
330 static void
331 ns8250_term(struct uart_bas *bas)
332 {
333 
334 	/* Clear RTS & DTR. */
335 	uart_setreg(bas, REG_MCR, MCR_IE);
336 	uart_barrier(bas);
337 }
338 
339 static void
340 ns8250_putc(struct uart_bas *bas, int c)
341 {
342 	int limit;
343 
344 	limit = 250000;
345 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit)
346 		DELAY(4);
347 	uart_setreg(bas, REG_DATA, c);
348 	uart_barrier(bas);
349 	limit = 250000;
350 	while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
351 		DELAY(4);
352 }
353 
354 static int
355 ns8250_rxready(struct uart_bas *bas)
356 {
357 
358 	return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0);
359 }
360 
361 static int
362 ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx)
363 {
364 	int c;
365 
366 	uart_lock(hwmtx);
367 
368 	while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) {
369 		uart_unlock(hwmtx);
370 		DELAY(4);
371 		uart_lock(hwmtx);
372 	}
373 
374 	c = uart_getreg(bas, REG_DATA);
375 
376 	uart_unlock(hwmtx);
377 
378 	return (c);
379 }
380 
381 static kobj_method_t ns8250_methods[] = {
382 	KOBJMETHOD(uart_attach,		ns8250_bus_attach),
383 	KOBJMETHOD(uart_detach,		ns8250_bus_detach),
384 	KOBJMETHOD(uart_flush,		ns8250_bus_flush),
385 	KOBJMETHOD(uart_getsig,		ns8250_bus_getsig),
386 	KOBJMETHOD(uart_ioctl,		ns8250_bus_ioctl),
387 	KOBJMETHOD(uart_ipend,		ns8250_bus_ipend),
388 	KOBJMETHOD(uart_param,		ns8250_bus_param),
389 	KOBJMETHOD(uart_probe,		ns8250_bus_probe),
390 	KOBJMETHOD(uart_receive,	ns8250_bus_receive),
391 	KOBJMETHOD(uart_setsig,		ns8250_bus_setsig),
392 	KOBJMETHOD(uart_transmit,	ns8250_bus_transmit),
393 	KOBJMETHOD(uart_grab,		ns8250_bus_grab),
394 	KOBJMETHOD(uart_ungrab,		ns8250_bus_ungrab),
395 	{ 0, 0 }
396 };
397 
398 struct uart_class uart_ns8250_class = {
399 	"ns8250",
400 	ns8250_methods,
401 	sizeof(struct ns8250_softc),
402 	.uc_ops = &uart_ns8250_ops,
403 	.uc_range = 8,
404 	.uc_rclk = DEFAULT_RCLK,
405 	.uc_rshift = 0
406 };
407 
408 #ifdef FDT
409 static struct ofw_compat_data compat_data[] = {
410 	{"ns16550",		(uintptr_t)&uart_ns8250_class},
411 	{"ns16550a",		(uintptr_t)&uart_ns8250_class},
412 	{NULL,			(uintptr_t)NULL},
413 };
414 UART_FDT_CLASS_AND_DEVICE(compat_data);
415 #endif
416 
417 /* Use token-pasting to form SER_ and MSR_ named constants. */
418 #define	SER(sig)	SER_##sig
419 #define	SERD(sig)	SER_D##sig
420 #define	MSR(sig)	MSR_##sig
421 #define	MSRD(sig)	MSR_D##sig
422 
423 /*
424  * Detect signal changes using software delta detection.  The previous state of
425  * the signals is in 'var' the new hardware state is in 'msr', and 'sig' is the
426  * short name (DCD, CTS, etc) of the signal bit being processed; 'var' gets the
427  * new state of both the signal and the delta bits.
428  */
429 #define SIGCHGSW(var, msr, sig)					\
430 	if ((msr) & MSR(sig)) {					\
431 		if ((var & SER(sig)) == 0)			\
432 			var |= SERD(sig) | SER(sig);		\
433 	} else {						\
434 		if ((var & SER(sig)) != 0)			\
435 			var = SERD(sig) | (var & ~SER(sig));	\
436 	}
437 
438 /*
439  * Detect signal changes using the hardware msr delta bits.  This is currently
440  * used only when PPS timing information is being captured using the "narrow
441  * pulse" option.  With a narrow PPS pulse the signal may not still be asserted
442  * by time the interrupt handler is invoked.  The hardware will latch the fact
443  * that it changed in the delta bits.
444  */
445 #define SIGCHGHW(var, msr, sig)					\
446 	if ((msr) & MSRD(sig)) {				\
447 		if (((msr) & MSR(sig)) != 0)			\
448 			var |= SERD(sig) | SER(sig);		\
449 		else						\
450 			var = SERD(sig) | (var & ~SER(sig));	\
451 	}
452 
453 int
454 ns8250_bus_attach(struct uart_softc *sc)
455 {
456 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
457 	struct uart_bas *bas;
458 	unsigned int ivar;
459 #ifdef FDT
460 	phandle_t node;
461 	pcell_t cell;
462 #endif
463 
464 #ifdef FDT
465 	/* Check whether uart has a broken txfifo. */
466 	node = ofw_bus_get_node(sc->sc_dev);
467 	if ((OF_getencprop(node, "broken-txfifo", &cell, sizeof(cell))) > 0)
468 		broken_txfifo =  cell ? 1 : 0;
469 #endif
470 
471 	bas = &sc->sc_bas;
472 
473 	ns8250->mcr = uart_getreg(bas, REG_MCR);
474 	ns8250->fcr = FCR_ENABLE;
475 #ifdef CPU_XBURST
476 	ns8250->fcr |= FCR_UART_ON;
477 #endif
478 	if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags",
479 	    &ivar)) {
480 		if (UART_FLAGS_FCR_RX_LOW(ivar))
481 			ns8250->fcr |= FCR_RX_LOW;
482 		else if (UART_FLAGS_FCR_RX_MEDL(ivar))
483 			ns8250->fcr |= FCR_RX_MEDL;
484 		else if (UART_FLAGS_FCR_RX_HIGH(ivar))
485 			ns8250->fcr |= FCR_RX_HIGH;
486 		else
487 			ns8250->fcr |= FCR_RX_MEDH;
488 	} else
489 		ns8250->fcr |= FCR_RX_MEDH;
490 
491 	/* Get IER mask */
492 	ivar = 0xf0;
493 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask",
494 	    &ivar);
495 	ns8250->ier_mask = (uint8_t)(ivar & 0xff);
496 
497 	/* Get IER RX interrupt bits */
498 	ivar = IER_EMSC | IER_ERLS | IER_ERXRDY;
499 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits",
500 	    &ivar);
501 	ns8250->ier_rxbits = (uint8_t)(ivar & 0xff);
502 
503 	uart_setreg(bas, REG_FCR, ns8250->fcr);
504 	uart_barrier(bas);
505 	ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
506 
507 	if (ns8250->mcr & MCR_DTR)
508 		sc->sc_hwsig |= SER_DTR;
509 	if (ns8250->mcr & MCR_RTS)
510 		sc->sc_hwsig |= SER_RTS;
511 	ns8250_bus_getsig(sc);
512 
513 	ns8250_clrint(bas);
514 	ns8250->ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
515 	ns8250->ier |= ns8250->ier_rxbits;
516 	uart_setreg(bas, REG_IER, ns8250->ier);
517 	uart_barrier(bas);
518 
519 	/*
520 	 * Timing of the H/W access was changed with r253161 of uart_core.c
521 	 * It has been observed that an ITE IT8513E would signal a break
522 	 * condition with pretty much every character it received, unless
523 	 * it had enough time to settle between ns8250_bus_attach() and
524 	 * ns8250_bus_ipend() -- which it accidentally had before r253161.
525 	 * It's not understood why the UART chip behaves this way and it
526 	 * could very well be that the DELAY make the H/W work in the same
527 	 * accidental manner as before. More analysis is warranted, but
528 	 * at least now we fixed a known regression.
529 	 */
530 	DELAY(200);
531 	return (0);
532 }
533 
534 int
535 ns8250_bus_detach(struct uart_softc *sc)
536 {
537 	struct ns8250_softc *ns8250;
538 	struct uart_bas *bas;
539 	u_char ier;
540 
541 	ns8250 = (struct ns8250_softc *)sc;
542 	bas = &sc->sc_bas;
543 	ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
544 	uart_setreg(bas, REG_IER, ier);
545 	uart_barrier(bas);
546 	ns8250_clrint(bas);
547 	return (0);
548 }
549 
550 int
551 ns8250_bus_flush(struct uart_softc *sc, int what)
552 {
553 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
554 	struct uart_bas *bas;
555 	int error;
556 
557 	bas = &sc->sc_bas;
558 	uart_lock(sc->sc_hwmtx);
559 	if (sc->sc_rxfifosz > 1) {
560 		ns8250_flush(bas, what);
561 		uart_setreg(bas, REG_FCR, ns8250->fcr);
562 		uart_barrier(bas);
563 		error = 0;
564 	} else
565 		error = ns8250_drain(bas, what);
566 	uart_unlock(sc->sc_hwmtx);
567 	return (error);
568 }
569 
570 int
571 ns8250_bus_getsig(struct uart_softc *sc)
572 {
573 	uint32_t old, sig;
574 	uint8_t msr;
575 
576 	/*
577 	 * The delta bits are reputed to be broken on some hardware, so use
578 	 * software delta detection by default.  Use the hardware delta bits
579 	 * when capturing PPS pulses which are too narrow for software detection
580 	 * to see the edges.  Hardware delta for RI doesn't work like the
581 	 * others, so always use software for it.  Other threads may be changing
582 	 * other (non-MSR) bits in sc_hwsig, so loop until it can successfully
583 	 * update without other changes happening.  Note that the SIGCHGxx()
584 	 * macros carefully preserve the delta bits when we have to loop several
585 	 * times and a signal transitions between iterations.
586 	 */
587 	do {
588 		old = sc->sc_hwsig;
589 		sig = old;
590 		uart_lock(sc->sc_hwmtx);
591 		msr = uart_getreg(&sc->sc_bas, REG_MSR);
592 		uart_unlock(sc->sc_hwmtx);
593 		if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE) {
594 			SIGCHGHW(sig, msr, DSR);
595 			SIGCHGHW(sig, msr, CTS);
596 			SIGCHGHW(sig, msr, DCD);
597 		} else {
598 			SIGCHGSW(sig, msr, DSR);
599 			SIGCHGSW(sig, msr, CTS);
600 			SIGCHGSW(sig, msr, DCD);
601 		}
602 		SIGCHGSW(sig, msr, RI);
603 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, sig & ~SER_MASK_DELTA));
604 	return (sig);
605 }
606 
607 int
608 ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
609 {
610 	struct uart_bas *bas;
611 	int baudrate, divisor, error;
612 	uint8_t efr, lcr;
613 
614 	bas = &sc->sc_bas;
615 	error = 0;
616 	uart_lock(sc->sc_hwmtx);
617 	switch (request) {
618 	case UART_IOCTL_BREAK:
619 		lcr = uart_getreg(bas, REG_LCR);
620 		if (data)
621 			lcr |= LCR_SBREAK;
622 		else
623 			lcr &= ~LCR_SBREAK;
624 		uart_setreg(bas, REG_LCR, lcr);
625 		uart_barrier(bas);
626 		break;
627 	case UART_IOCTL_IFLOW:
628 		lcr = uart_getreg(bas, REG_LCR);
629 		uart_barrier(bas);
630 		uart_setreg(bas, REG_LCR, 0xbf);
631 		uart_barrier(bas);
632 		efr = uart_getreg(bas, REG_EFR);
633 		if (data)
634 			efr |= EFR_RTS;
635 		else
636 			efr &= ~EFR_RTS;
637 		uart_setreg(bas, REG_EFR, efr);
638 		uart_barrier(bas);
639 		uart_setreg(bas, REG_LCR, lcr);
640 		uart_barrier(bas);
641 		break;
642 	case UART_IOCTL_OFLOW:
643 		lcr = uart_getreg(bas, REG_LCR);
644 		uart_barrier(bas);
645 		uart_setreg(bas, REG_LCR, 0xbf);
646 		uart_barrier(bas);
647 		efr = uart_getreg(bas, REG_EFR);
648 		if (data)
649 			efr |= EFR_CTS;
650 		else
651 			efr &= ~EFR_CTS;
652 		uart_setreg(bas, REG_EFR, efr);
653 		uart_barrier(bas);
654 		uart_setreg(bas, REG_LCR, lcr);
655 		uart_barrier(bas);
656 		break;
657 	case UART_IOCTL_BAUD:
658 		lcr = uart_getreg(bas, REG_LCR);
659 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
660 		uart_barrier(bas);
661 		divisor = uart_getreg(bas, REG_DLL) |
662 		    (uart_getreg(bas, REG_DLH) << 8);
663 		uart_barrier(bas);
664 		uart_setreg(bas, REG_LCR, lcr);
665 		uart_barrier(bas);
666 		baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0;
667 		if (baudrate > 0)
668 			*(int*)data = baudrate;
669 		else
670 			error = ENXIO;
671 		break;
672 	default:
673 		error = EINVAL;
674 		break;
675 	}
676 	uart_unlock(sc->sc_hwmtx);
677 	return (error);
678 }
679 
680 int
681 ns8250_bus_ipend(struct uart_softc *sc)
682 {
683 	struct uart_bas *bas;
684 	struct ns8250_softc *ns8250;
685 	int ipend;
686 	uint8_t iir, lsr;
687 
688 	ns8250 = (struct ns8250_softc *)sc;
689 	bas = &sc->sc_bas;
690 	uart_lock(sc->sc_hwmtx);
691 	iir = uart_getreg(bas, REG_IIR);
692 
693 	if (ns8250->busy_detect && (iir & IIR_BUSY) == IIR_BUSY) {
694 		(void)uart_getreg(bas, DW_REG_USR);
695 		uart_unlock(sc->sc_hwmtx);
696 		return (0);
697 	}
698 	if (iir & IIR_NOPEND) {
699 		uart_unlock(sc->sc_hwmtx);
700 		return (0);
701 	}
702 	ipend = 0;
703 	if (iir & IIR_RXRDY) {
704 		lsr = uart_getreg(bas, REG_LSR);
705 		if (lsr & LSR_OE)
706 			ipend |= SER_INT_OVERRUN;
707 		if (lsr & LSR_BI)
708 			ipend |= SER_INT_BREAK;
709 		if (lsr & LSR_RXRDY)
710 			ipend |= SER_INT_RXREADY;
711 	} else {
712 		if (iir & IIR_TXRDY) {
713 			ipend |= SER_INT_TXIDLE;
714 			uart_setreg(bas, REG_IER, ns8250->ier);
715 			uart_barrier(bas);
716 		} else
717 			ipend |= SER_INT_SIGCHG;
718 	}
719 	if (ipend == 0)
720 		ns8250_clrint(bas);
721 	uart_unlock(sc->sc_hwmtx);
722 	return (ipend);
723 }
724 
725 int
726 ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits,
727     int stopbits, int parity)
728 {
729 	struct ns8250_softc *ns8250;
730 	struct uart_bas *bas;
731 	int error, limit;
732 
733 	ns8250 = (struct ns8250_softc*)sc;
734 	bas = &sc->sc_bas;
735 	uart_lock(sc->sc_hwmtx);
736 	/*
737 	 * When using DW UART with BUSY detection it is necessary to wait
738 	 * until all serial transfers are finished before manipulating the
739 	 * line control. LCR will not be affected when UART is busy.
740 	 */
741 	if (ns8250->busy_detect != 0) {
742 		/*
743 		 * Pick an arbitrary high limit to avoid getting stuck in
744 		 * an infinite loop in case when the hardware is broken.
745 		 */
746 		limit = 10 * 1024;
747 		while (((uart_getreg(bas, DW_REG_USR) & USR_BUSY) != 0) &&
748 		    --limit)
749 			DELAY(4);
750 
751 		if (limit <= 0) {
752 			/* UART appears to be stuck */
753 			uart_unlock(sc->sc_hwmtx);
754 			return (EIO);
755 		}
756 	}
757 
758 	error = ns8250_param(bas, baudrate, databits, stopbits, parity);
759 	uart_unlock(sc->sc_hwmtx);
760 	return (error);
761 }
762 
763 int
764 ns8250_bus_probe(struct uart_softc *sc)
765 {
766 	struct ns8250_softc *ns8250;
767 	struct uart_bas *bas;
768 	int count, delay, error, limit;
769 	uint8_t lsr, mcr, ier;
770 	uint8_t val;
771 
772 	ns8250 = (struct ns8250_softc *)sc;
773 	bas = &sc->sc_bas;
774 
775 	error = ns8250_probe(bas);
776 	if (error)
777 		return (error);
778 
779 	mcr = MCR_IE;
780 	if (sc->sc_sysdev == NULL) {
781 		/* By using ns8250_init() we also set DTR and RTS. */
782 		ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE);
783 	} else
784 		mcr |= MCR_DTR | MCR_RTS;
785 
786 	error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
787 	if (error)
788 		return (error);
789 
790 	/*
791 	 * Set loopback mode. This avoids having garbage on the wire and
792 	 * also allows us send and receive data. We set DTR and RTS to
793 	 * avoid the possibility that automatic flow-control prevents
794 	 * any data from being sent.
795 	 */
796 	uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS);
797 	uart_barrier(bas);
798 
799 	/*
800 	 * Enable FIFOs. And check that the UART has them. If not, we're
801 	 * done. Since this is the first time we enable the FIFOs, we reset
802 	 * them.
803 	 */
804 	val = FCR_ENABLE;
805 #ifdef CPU_XBURST
806 	val |= FCR_UART_ON;
807 #endif
808 	uart_setreg(bas, REG_FCR, val);
809 	uart_barrier(bas);
810 	if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) {
811 		/*
812 		 * NS16450 or INS8250. We don't bother to differentiate
813 		 * between them. They're too old to be interesting.
814 		 */
815 		uart_setreg(bas, REG_MCR, mcr);
816 		uart_barrier(bas);
817 		sc->sc_rxfifosz = sc->sc_txfifosz = 1;
818 		device_set_desc(sc->sc_dev, "8250 or 16450 or compatible");
819 		return (0);
820 	}
821 
822 	val = FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST;
823 #ifdef CPU_XBURST
824 	val |= FCR_UART_ON;
825 #endif
826 	uart_setreg(bas, REG_FCR, val);
827 	uart_barrier(bas);
828 
829 	count = 0;
830 	delay = ns8250_delay(bas);
831 
832 	/* We have FIFOs. Drain the transmitter and receiver. */
833 	error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER);
834 	if (error) {
835 		uart_setreg(bas, REG_MCR, mcr);
836 		val = 0;
837 #ifdef CPU_XBURST
838 		val |= FCR_UART_ON;
839 #endif
840 		uart_setreg(bas, REG_FCR, val);
841 		uart_barrier(bas);
842 		goto describe;
843 	}
844 
845 	/*
846 	 * We should have a sufficiently clean "pipe" to determine the
847 	 * size of the FIFOs. We send as much characters as is reasonable
848 	 * and wait for the overflow bit in the LSR register to be
849 	 * asserted, counting the characters as we send them. Based on
850 	 * that count we know the FIFO size.
851 	 */
852 	do {
853 		uart_setreg(bas, REG_DATA, 0);
854 		uart_barrier(bas);
855 		count++;
856 
857 		limit = 30;
858 		lsr = 0;
859 		/*
860 		 * LSR bits are cleared upon read, so we must accumulate
861 		 * them to be able to test LSR_OE below.
862 		 */
863 		while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 &&
864 		    --limit)
865 			DELAY(delay);
866 		if (limit == 0) {
867 			ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
868 			uart_setreg(bas, REG_IER, ier);
869 			uart_setreg(bas, REG_MCR, mcr);
870 			val = 0;
871 #ifdef CPU_XBURST
872 			val |= FCR_UART_ON;
873 #endif
874 			uart_setreg(bas, REG_FCR, val);
875 			uart_barrier(bas);
876 			count = 0;
877 			goto describe;
878 		}
879 	} while ((lsr & LSR_OE) == 0 && count < 130);
880 	count--;
881 
882 	uart_setreg(bas, REG_MCR, mcr);
883 
884 	/* Reset FIFOs. */
885 	ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
886 
887  describe:
888 	if (count >= 14 && count <= 16) {
889 		sc->sc_rxfifosz = 16;
890 		device_set_desc(sc->sc_dev, "16550 or compatible");
891 	} else if (count >= 28 && count <= 32) {
892 		sc->sc_rxfifosz = 32;
893 		device_set_desc(sc->sc_dev, "16650 or compatible");
894 	} else if (count >= 56 && count <= 64) {
895 		sc->sc_rxfifosz = 64;
896 		device_set_desc(sc->sc_dev, "16750 or compatible");
897 	} else if (count >= 112 && count <= 128) {
898 		sc->sc_rxfifosz = 128;
899 		device_set_desc(sc->sc_dev, "16950 or compatible");
900 	} else {
901 		sc->sc_rxfifosz = 16;
902 		device_set_desc(sc->sc_dev,
903 		    "Non-standard ns8250 class UART with FIFOs");
904 	}
905 
906 	/*
907 	 * Force the Tx FIFO size to 16 bytes for now. We don't program the
908 	 * Tx trigger. Also, we assume that all data has been sent when the
909 	 * interrupt happens.
910 	 */
911 	sc->sc_txfifosz = 16;
912 
913 #if 0
914 	/*
915 	 * XXX there are some issues related to hardware flow control and
916 	 * it's likely that uart(4) is the cause. This basically needs more
917 	 * investigation, but we avoid using for hardware flow control
918 	 * until then.
919 	 */
920 	/* 16650s or higher have automatic flow control. */
921 	if (sc->sc_rxfifosz > 16) {
922 		sc->sc_hwiflow = 1;
923 		sc->sc_hwoflow = 1;
924 	}
925 #endif
926 
927 	return (0);
928 }
929 
930 int
931 ns8250_bus_receive(struct uart_softc *sc)
932 {
933 	struct uart_bas *bas;
934 	int xc;
935 	uint8_t lsr;
936 
937 	bas = &sc->sc_bas;
938 	uart_lock(sc->sc_hwmtx);
939 	lsr = uart_getreg(bas, REG_LSR);
940 	while (lsr & LSR_RXRDY) {
941 		if (uart_rx_full(sc)) {
942 			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
943 			break;
944 		}
945 		xc = uart_getreg(bas, REG_DATA);
946 		if (lsr & LSR_FE)
947 			xc |= UART_STAT_FRAMERR;
948 		if (lsr & LSR_PE)
949 			xc |= UART_STAT_PARERR;
950 		uart_rx_put(sc, xc);
951 		lsr = uart_getreg(bas, REG_LSR);
952 	}
953 	/* Discard everything left in the Rx FIFO. */
954 	while (lsr & LSR_RXRDY) {
955 		(void)uart_getreg(bas, REG_DATA);
956 		uart_barrier(bas);
957 		lsr = uart_getreg(bas, REG_LSR);
958 	}
959 	uart_unlock(sc->sc_hwmtx);
960  	return (0);
961 }
962 
963 int
964 ns8250_bus_setsig(struct uart_softc *sc, int sig)
965 {
966 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
967 	struct uart_bas *bas;
968 	uint32_t new, old;
969 
970 	bas = &sc->sc_bas;
971 	do {
972 		old = sc->sc_hwsig;
973 		new = old;
974 		if (sig & SER_DDTR) {
975 			new = (new & ~SER_DTR) | (sig & (SER_DTR | SER_DDTR));
976 		}
977 		if (sig & SER_DRTS) {
978 			new = (new & ~SER_RTS) | (sig & (SER_RTS | SER_DRTS));
979 		}
980 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
981 	uart_lock(sc->sc_hwmtx);
982 	ns8250->mcr &= ~(MCR_DTR|MCR_RTS);
983 	if (new & SER_DTR)
984 		ns8250->mcr |= MCR_DTR;
985 	if (new & SER_RTS)
986 		ns8250->mcr |= MCR_RTS;
987 	uart_setreg(bas, REG_MCR, ns8250->mcr);
988 	uart_barrier(bas);
989 	uart_unlock(sc->sc_hwmtx);
990 	return (0);
991 }
992 
993 int
994 ns8250_bus_transmit(struct uart_softc *sc)
995 {
996 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
997 	struct uart_bas *bas;
998 	int i;
999 
1000 	bas = &sc->sc_bas;
1001 	uart_lock(sc->sc_hwmtx);
1002 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0)
1003 		;
1004 	for (i = 0; i < sc->sc_txdatasz; i++) {
1005 		uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]);
1006 		uart_barrier(bas);
1007 	}
1008 	uart_setreg(bas, REG_IER, ns8250->ier | IER_ETXRDY);
1009 	uart_barrier(bas);
1010 	if (broken_txfifo)
1011 		ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
1012 	else
1013 		sc->sc_txbusy = 1;
1014 	uart_unlock(sc->sc_hwmtx);
1015 	if (broken_txfifo)
1016 		uart_sched_softih(sc, SER_INT_TXIDLE);
1017 	return (0);
1018 }
1019 
1020 void
1021 ns8250_bus_grab(struct uart_softc *sc)
1022 {
1023 	struct uart_bas *bas = &sc->sc_bas;
1024 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1025 	u_char ier;
1026 
1027 	/*
1028 	 * turn off all interrupts to enter polling mode. Leave the
1029 	 * saved mask alone. We'll restore whatever it was in ungrab.
1030 	 * All pending interrupt signals are reset when IER is set to 0.
1031 	 */
1032 	uart_lock(sc->sc_hwmtx);
1033 	ier = uart_getreg(bas, REG_IER);
1034 	uart_setreg(bas, REG_IER, ier & ns8250->ier_mask);
1035 	uart_barrier(bas);
1036 	uart_unlock(sc->sc_hwmtx);
1037 }
1038 
1039 void
1040 ns8250_bus_ungrab(struct uart_softc *sc)
1041 {
1042 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1043 	struct uart_bas *bas = &sc->sc_bas;
1044 
1045 	/*
1046 	 * Restore previous interrupt mask
1047 	 */
1048 	uart_lock(sc->sc_hwmtx);
1049 	uart_setreg(bas, REG_IER, ns8250->ier);
1050 	uart_barrier(bas);
1051 	uart_unlock(sc->sc_hwmtx);
1052 }
1053