1 /* 2 * Copyright (c) 2003 Marcel Moolenaar 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/bus.h> 33 #include <sys/conf.h> 34 #include <machine/bus.h> 35 36 #include <dev/uart/uart.h> 37 #include <dev/uart/uart_cpu.h> 38 #include <dev/uart/uart_bus.h> 39 #include <dev/uart/uart_dev_ns8250.h> 40 41 #include "uart_if.h" 42 43 #define DEFAULT_RCLK 1843200 44 45 /* 46 * Clear pending interrupts. THRE is cleared by reading IIR. Data 47 * that may have been received gets lost here. 48 */ 49 static void 50 ns8250_clrint(struct uart_bas *bas) 51 { 52 uint8_t iir; 53 54 iir = uart_getreg(bas, REG_IIR); 55 while ((iir & IIR_NOPEND) == 0) { 56 iir &= IIR_IMASK; 57 if (iir == IIR_RLS) 58 (void)uart_getreg(bas, REG_LSR); 59 else if (iir == IIR_RXRDY || iir == IIR_RXTOUT) 60 (void)uart_getreg(bas, REG_DATA); 61 else if (iir == IIR_MLSC) 62 (void)uart_getreg(bas, REG_MSR); 63 uart_barrier(bas); 64 iir = uart_getreg(bas, REG_IIR); 65 } 66 } 67 68 static int 69 ns8250_delay(struct uart_bas *bas) 70 { 71 int divisor; 72 u_char lcr; 73 74 lcr = uart_getreg(bas, REG_LCR); 75 uart_setreg(bas, REG_LCR, lcr | LCR_DLAB); 76 uart_barrier(bas); 77 divisor = uart_getdreg(bas, REG_DL); 78 uart_barrier(bas); 79 uart_setreg(bas, REG_LCR, lcr); 80 uart_barrier(bas); 81 82 /* 1/10th the time to transmit 1 character (estimate). */ 83 return (16000000 * divisor / bas->rclk); 84 } 85 86 static int 87 ns8250_divisor(int rclk, int baudrate) 88 { 89 int actual_baud, divisor; 90 int error; 91 92 if (baudrate == 0) 93 return (0); 94 95 divisor = (rclk / (baudrate << 3) + 1) >> 1; 96 if (divisor == 0 || divisor >= 65536) 97 return (0); 98 actual_baud = rclk / (divisor << 4); 99 100 /* 10 times error in percent: */ 101 error = ((actual_baud - baudrate) * 2000 / baudrate + 1) >> 1; 102 103 /* 3.0% maximum error tolerance: */ 104 if (error < -30 || error > 30) 105 return (0); 106 107 return (divisor); 108 } 109 110 static int 111 ns8250_drain(struct uart_bas *bas, int what) 112 { 113 int delay, limit; 114 115 delay = ns8250_delay(bas); 116 117 if (what & UART_DRAIN_TRANSMITTER) { 118 /* 119 * Pick an arbitrary high limit to avoid getting stuck in 120 * an infinite loop when the hardware is broken. Make the 121 * limit high enough to handle large FIFOs. 122 */ 123 limit = 10*1024; 124 while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit) 125 DELAY(delay); 126 if (limit == 0) { 127 /* printf("ns8250: transmitter appears stuck... "); */ 128 return (EIO); 129 } 130 } 131 132 if (what & UART_DRAIN_RECEIVER) { 133 /* 134 * Pick an arbitrary high limit to avoid getting stuck in 135 * an infinite loop when the hardware is broken. Make the 136 * limit high enough to handle large FIFOs and integrated 137 * UARTs. The HP rx2600 for example has 3 UARTs on the 138 * management board that tend to get a lot of data send 139 * to it when the UART is first activated. 140 */ 141 limit=10*4096; 142 while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) { 143 (void)uart_getreg(bas, REG_DATA); 144 uart_barrier(bas); 145 DELAY(delay << 2); 146 } 147 if (limit == 0) { 148 /* printf("ns8250: receiver appears broken... "); */ 149 return (EIO); 150 } 151 } 152 153 return (0); 154 } 155 156 /* 157 * We can only flush UARTs with FIFOs. UARTs without FIFOs should be 158 * drained. WARNING: this function clobbers the FIFO setting! 159 */ 160 static void 161 ns8250_flush(struct uart_bas *bas, int what) 162 { 163 uint8_t fcr; 164 165 fcr = FCR_ENABLE; 166 if (what & UART_FLUSH_TRANSMITTER) 167 fcr |= FCR_XMT_RST; 168 if (what & UART_FLUSH_RECEIVER) 169 fcr |= FCR_RCV_RST; 170 uart_setreg(bas, REG_FCR, fcr); 171 uart_barrier(bas); 172 } 173 174 static int 175 ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits, 176 int parity) 177 { 178 int divisor; 179 uint8_t lcr; 180 181 lcr = 0; 182 if (databits >= 8) 183 lcr |= LCR_8BITS; 184 else if (databits == 7) 185 lcr |= LCR_7BITS; 186 else if (databits == 6) 187 lcr |= LCR_6BITS; 188 else 189 lcr |= LCR_5BITS; 190 if (stopbits > 1) 191 lcr |= LCR_STOPB; 192 lcr |= parity << 3; 193 194 /* Set baudrate. */ 195 if (baudrate > 0) { 196 uart_setreg(bas, REG_LCR, lcr | LCR_DLAB); 197 uart_barrier(bas); 198 divisor = ns8250_divisor(bas->rclk, baudrate); 199 if (divisor == 0) 200 return (EINVAL); 201 uart_setdreg(bas, REG_DL, divisor); 202 uart_barrier(bas); 203 } 204 205 /* Set LCR and clear DLAB. */ 206 uart_setreg(bas, REG_LCR, lcr); 207 uart_barrier(bas); 208 return (0); 209 } 210 211 /* 212 * Low-level UART interface. 213 */ 214 static int ns8250_probe(struct uart_bas *bas); 215 static void ns8250_init(struct uart_bas *bas, int, int, int, int); 216 static void ns8250_term(struct uart_bas *bas); 217 static void ns8250_putc(struct uart_bas *bas, int); 218 static int ns8250_poll(struct uart_bas *bas); 219 static int ns8250_getc(struct uart_bas *bas); 220 221 struct uart_ops uart_ns8250_ops = { 222 .probe = ns8250_probe, 223 .init = ns8250_init, 224 .term = ns8250_term, 225 .putc = ns8250_putc, 226 .poll = ns8250_poll, 227 .getc = ns8250_getc, 228 }; 229 230 static int 231 ns8250_probe(struct uart_bas *bas) 232 { 233 u_char lcr, val; 234 235 /* Check known 0 bits that don't depend on DLAB. */ 236 val = uart_getreg(bas, REG_IIR); 237 if (val & 0x30) 238 return (ENXIO); 239 val = uart_getreg(bas, REG_MCR); 240 if (val & 0xe0) 241 return (ENXIO); 242 243 lcr = uart_getreg(bas, REG_LCR); 244 uart_setreg(bas, REG_LCR, lcr & ~LCR_DLAB); 245 uart_barrier(bas); 246 247 /* Check known 0 bits that depend on !DLAB. */ 248 val = uart_getreg(bas, REG_IER); 249 if (val & 0xf0) 250 goto fail; 251 252 uart_setreg(bas, REG_LCR, lcr); 253 uart_barrier(bas); 254 return (0); 255 256 fail: 257 uart_setreg(bas, REG_LCR, lcr); 258 uart_barrier(bas); 259 return (ENXIO); 260 } 261 262 static void 263 ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits, 264 int parity) 265 { 266 267 if (bas->rclk == 0) 268 bas->rclk = DEFAULT_RCLK; 269 ns8250_param(bas, baudrate, databits, stopbits, parity); 270 271 /* Disable all interrupt sources. */ 272 uart_setreg(bas, REG_IER, 0); 273 uart_barrier(bas); 274 275 /* Disable the FIFO (if present). */ 276 uart_setreg(bas, REG_FCR, 0); 277 uart_barrier(bas); 278 279 /* Set RTS & DTR. */ 280 uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR); 281 uart_barrier(bas); 282 283 ns8250_clrint(bas); 284 } 285 286 static void 287 ns8250_term(struct uart_bas *bas) 288 { 289 290 /* Clear RTS & DTR. */ 291 uart_setreg(bas, REG_MCR, MCR_IE); 292 uart_barrier(bas); 293 } 294 295 static void 296 ns8250_putc(struct uart_bas *bas, int c) 297 { 298 int delay, limit; 299 300 /* 1/10th the time to transmit 1 character (estimate). */ 301 delay = ns8250_delay(bas); 302 303 limit = 20; 304 while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit) 305 DELAY(delay); 306 uart_setreg(bas, REG_DATA, c); 307 uart_barrier(bas); 308 limit = 40; 309 while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit) 310 DELAY(delay); 311 } 312 313 static int 314 ns8250_poll(struct uart_bas *bas) 315 { 316 317 if (uart_getreg(bas, REG_LSR) & LSR_RXRDY) 318 return (uart_getreg(bas, REG_DATA)); 319 return (-1); 320 } 321 322 static int 323 ns8250_getc(struct uart_bas *bas) 324 { 325 int delay; 326 327 /* 1/10th the time to transmit 1 character (estimate). */ 328 delay = ns8250_delay(bas); 329 330 while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) 331 DELAY(delay); 332 return (uart_getreg(bas, REG_DATA)); 333 } 334 335 /* 336 * High-level UART interface. 337 */ 338 struct ns8250_softc { 339 struct uart_softc base; 340 uint8_t fcr; 341 uint8_t ier; 342 uint8_t mcr; 343 }; 344 345 static int ns8250_bus_attach(struct uart_softc *); 346 static int ns8250_bus_detach(struct uart_softc *); 347 static int ns8250_bus_flush(struct uart_softc *, int); 348 static int ns8250_bus_getsig(struct uart_softc *); 349 static int ns8250_bus_ioctl(struct uart_softc *, int, intptr_t); 350 static int ns8250_bus_ipend(struct uart_softc *); 351 static int ns8250_bus_param(struct uart_softc *, int, int, int, int); 352 static int ns8250_bus_probe(struct uart_softc *); 353 static int ns8250_bus_receive(struct uart_softc *); 354 static int ns8250_bus_setsig(struct uart_softc *, int); 355 static int ns8250_bus_transmit(struct uart_softc *); 356 357 static kobj_method_t ns8250_methods[] = { 358 KOBJMETHOD(uart_attach, ns8250_bus_attach), 359 KOBJMETHOD(uart_detach, ns8250_bus_detach), 360 KOBJMETHOD(uart_flush, ns8250_bus_flush), 361 KOBJMETHOD(uart_getsig, ns8250_bus_getsig), 362 KOBJMETHOD(uart_ioctl, ns8250_bus_ioctl), 363 KOBJMETHOD(uart_ipend, ns8250_bus_ipend), 364 KOBJMETHOD(uart_param, ns8250_bus_param), 365 KOBJMETHOD(uart_probe, ns8250_bus_probe), 366 KOBJMETHOD(uart_receive, ns8250_bus_receive), 367 KOBJMETHOD(uart_setsig, ns8250_bus_setsig), 368 KOBJMETHOD(uart_transmit, ns8250_bus_transmit), 369 { 0, 0 } 370 }; 371 372 struct uart_class uart_ns8250_class = { 373 "ns8250 class", 374 ns8250_methods, 375 sizeof(struct ns8250_softc), 376 .uc_range = 8, 377 .uc_rclk = DEFAULT_RCLK 378 }; 379 380 #define SIGCHG(c, i, s, d) \ 381 if (c) { \ 382 i |= (i & s) ? s : s | d; \ 383 } else { \ 384 i = (i & s) ? (i & ~s) | d : i; \ 385 } 386 387 static int 388 ns8250_bus_attach(struct uart_softc *sc) 389 { 390 struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc; 391 struct uart_bas *bas; 392 393 bas = &sc->sc_bas; 394 395 ns8250->mcr = uart_getreg(bas, REG_MCR); 396 ns8250->fcr = FCR_ENABLE | FCR_RX_MEDH; 397 uart_setreg(bas, REG_FCR, ns8250->fcr); 398 uart_barrier(bas); 399 ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER); 400 401 if (ns8250->mcr & MCR_DTR) 402 sc->sc_hwsig |= SER_DTR; 403 if (ns8250->mcr & MCR_RTS) 404 sc->sc_hwsig |= SER_RTS; 405 ns8250_bus_getsig(sc); 406 407 ns8250_clrint(bas); 408 ns8250->ier = IER_EMSC | IER_ERLS | IER_ERXRDY; 409 uart_setreg(bas, REG_IER, ns8250->ier); 410 uart_barrier(bas); 411 return (0); 412 } 413 414 static int 415 ns8250_bus_detach(struct uart_softc *sc) 416 { 417 struct uart_bas *bas; 418 419 bas = &sc->sc_bas; 420 uart_setreg(bas, REG_IER, 0); 421 uart_barrier(bas); 422 ns8250_clrint(bas); 423 return (0); 424 } 425 426 static int 427 ns8250_bus_flush(struct uart_softc *sc, int what) 428 { 429 struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc; 430 struct uart_bas *bas; 431 int error; 432 433 bas = &sc->sc_bas; 434 mtx_lock_spin(&sc->sc_hwmtx); 435 if (sc->sc_hasfifo) { 436 ns8250_flush(bas, what); 437 uart_setreg(bas, REG_FCR, ns8250->fcr); 438 uart_barrier(bas); 439 error = 0; 440 } else 441 error = ns8250_drain(bas, what); 442 mtx_unlock_spin(&sc->sc_hwmtx); 443 return (error); 444 } 445 446 static int 447 ns8250_bus_getsig(struct uart_softc *sc) 448 { 449 uint32_t new, old, sig; 450 uint8_t msr; 451 452 do { 453 old = sc->sc_hwsig; 454 sig = old; 455 mtx_lock_spin(&sc->sc_hwmtx); 456 msr = uart_getreg(&sc->sc_bas, REG_MSR); 457 mtx_unlock_spin(&sc->sc_hwmtx); 458 SIGCHG(msr & MSR_DSR, sig, SER_DSR, SER_DDSR); 459 SIGCHG(msr & MSR_CTS, sig, SER_CTS, SER_DCTS); 460 SIGCHG(msr & MSR_DCD, sig, SER_DCD, SER_DDCD); 461 SIGCHG(msr & MSR_RI, sig, SER_RI, SER_DRI); 462 new = sig & ~UART_SIGMASK_DELTA; 463 } while (!atomic_cmpset_32(&sc->sc_hwsig, old, new)); 464 return (sig); 465 } 466 467 static int 468 ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data) 469 { 470 struct uart_bas *bas; 471 int error; 472 uint8_t efr, lcr; 473 474 bas = &sc->sc_bas; 475 error = 0; 476 mtx_lock_spin(&sc->sc_hwmtx); 477 switch (request) { 478 case UART_IOCTL_BREAK: 479 lcr = uart_getreg(bas, REG_LCR); 480 if (data) 481 lcr |= LCR_SBREAK; 482 else 483 lcr &= ~LCR_SBREAK; 484 uart_setreg(bas, REG_LCR, lcr); 485 uart_barrier(bas); 486 break; 487 case UART_IOCTL_IFLOW: 488 lcr = uart_getreg(bas, REG_LCR); 489 uart_barrier(bas); 490 uart_setreg(bas, REG_LCR, 0xbf); 491 uart_barrier(bas); 492 efr = uart_getreg(bas, REG_EFR); 493 if (data) 494 efr |= EFR_RTS; 495 else 496 efr &= ~EFR_RTS; 497 uart_setreg(bas, REG_EFR, efr); 498 uart_barrier(bas); 499 uart_setreg(bas, REG_LCR, lcr); 500 uart_barrier(bas); 501 break; 502 case UART_IOCTL_OFLOW: 503 lcr = uart_getreg(bas, REG_LCR); 504 uart_barrier(bas); 505 uart_setreg(bas, REG_LCR, 0xbf); 506 uart_barrier(bas); 507 efr = uart_getreg(bas, REG_EFR); 508 if (data) 509 efr |= EFR_CTS; 510 else 511 efr &= ~EFR_CTS; 512 uart_setreg(bas, REG_EFR, efr); 513 uart_barrier(bas); 514 uart_setreg(bas, REG_LCR, lcr); 515 uart_barrier(bas); 516 break; 517 default: 518 error = EINVAL; 519 break; 520 } 521 mtx_unlock_spin(&sc->sc_hwmtx); 522 return (error); 523 } 524 525 static int 526 ns8250_bus_ipend(struct uart_softc *sc) 527 { 528 struct uart_bas *bas; 529 int ipend; 530 uint8_t iir, lsr; 531 532 bas = &sc->sc_bas; 533 mtx_lock_spin(&sc->sc_hwmtx); 534 iir = uart_getreg(bas, REG_IIR); 535 if (iir & IIR_NOPEND) { 536 mtx_unlock_spin(&sc->sc_hwmtx); 537 return (0); 538 } 539 ipend = 0; 540 if (iir & IIR_RXRDY) { 541 lsr = uart_getreg(bas, REG_LSR); 542 mtx_unlock_spin(&sc->sc_hwmtx); 543 if (lsr & LSR_OE) 544 ipend |= UART_IPEND_OVERRUN; 545 if (lsr & LSR_BI) 546 ipend |= UART_IPEND_BREAK; 547 if (lsr & LSR_RXRDY) 548 ipend |= UART_IPEND_RXREADY; 549 } else { 550 mtx_unlock_spin(&sc->sc_hwmtx); 551 if (iir & IIR_TXRDY) 552 ipend |= UART_IPEND_TXIDLE; 553 else 554 ipend |= UART_IPEND_SIGCHG; 555 } 556 return ((sc->sc_leaving) ? 0 : ipend); 557 } 558 559 static int 560 ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits, 561 int stopbits, int parity) 562 { 563 struct uart_bas *bas; 564 int error; 565 566 bas = &sc->sc_bas; 567 mtx_lock_spin(&sc->sc_hwmtx); 568 error = ns8250_param(bas, baudrate, databits, stopbits, parity); 569 mtx_unlock_spin(&sc->sc_hwmtx); 570 return (error); 571 } 572 573 static int 574 ns8250_bus_probe(struct uart_softc *sc) 575 { 576 struct uart_bas *bas; 577 int count, delay, error, limit; 578 uint8_t lsr, mcr; 579 580 bas = &sc->sc_bas; 581 582 error = ns8250_probe(bas); 583 if (error) 584 return (error); 585 586 mcr = MCR_IE; 587 if (sc->sc_sysdev == NULL) { 588 /* By using ns8250_init() we also set DTR and RTS. */ 589 ns8250_init(bas, 9600, 8, 1, UART_PARITY_NONE); 590 } else 591 mcr |= MCR_DTR | MCR_RTS; 592 593 error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER); 594 if (error) 595 return (error); 596 597 /* 598 * Set loopback mode. This avoids having garbage on the wire and 599 * also allows us send and receive data. We set DTR and RTS to 600 * avoid the possibility that automatic flow-control prevents 601 * any data from being sent. 602 */ 603 uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS); 604 uart_barrier(bas); 605 606 /* 607 * Enable FIFOs. And check that the UART has them. If not, we're 608 * done. Since this is the first time we enable the FIFOs, we reset 609 * them. 610 */ 611 uart_setreg(bas, REG_FCR, FCR_ENABLE); 612 uart_barrier(bas); 613 sc->sc_hasfifo = (uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK) ? 1 : 0; 614 if (!sc->sc_hasfifo) { 615 /* 616 * NS16450 or INS8250. We don't bother to differentiate 617 * between them. They're too old to be interesting. 618 */ 619 uart_setreg(bas, REG_MCR, mcr); 620 uart_barrier(bas); 621 device_set_desc(sc->sc_dev, "8250 or 16450 or compatible"); 622 return (0); 623 } 624 625 uart_setreg(bas, REG_FCR, FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST); 626 uart_barrier(bas); 627 628 count = 0; 629 delay = ns8250_delay(bas); 630 631 /* We have FIFOs. Drain the transmitter and receiver. */ 632 error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER); 633 if (error) { 634 uart_setreg(bas, REG_MCR, mcr); 635 uart_setreg(bas, REG_FCR, 0); 636 uart_barrier(bas); 637 goto describe; 638 } 639 640 /* 641 * We should have a sufficiently clean "pipe" to determine the 642 * size of the FIFOs. We send as much characters as is reasonable 643 * and wait for the the overflow bit in the LSR register to be 644 * asserted, counting the characters as we send them. Based on 645 * that count we know the FIFO size. 646 */ 647 do { 648 uart_setreg(bas, REG_DATA, 0); 649 uart_barrier(bas); 650 count++; 651 652 limit = 30; 653 lsr = 0; 654 /* 655 * LSR bits are cleared upon read, so we must accumulate 656 * them to be able to test LSR_OE below. 657 */ 658 while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 && 659 --limit) 660 DELAY(delay); 661 if (limit == 0) { 662 uart_setreg(bas, REG_IER, 0); 663 uart_setreg(bas, REG_MCR, mcr); 664 uart_setreg(bas, REG_FCR, 0); 665 uart_barrier(bas); 666 count = 0; 667 goto describe; 668 } 669 } while ((lsr & LSR_OE) == 0 && count < 130); 670 count--; 671 672 uart_setreg(bas, REG_MCR, mcr); 673 674 /* Reset FIFOs. */ 675 ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER); 676 677 describe: 678 if (count >= 14 && count <= 16) { 679 sc->sc_rxfifosz = 16; 680 device_set_desc(sc->sc_dev, "16550 or compatible"); 681 } else if (count >= 28 && count <= 32) { 682 sc->sc_rxfifosz = 32; 683 device_set_desc(sc->sc_dev, "16650 or compatible"); 684 } else if (count >= 56 && count <= 64) { 685 sc->sc_rxfifosz = 64; 686 device_set_desc(sc->sc_dev, "16750 or compatible"); 687 } else if (count >= 112 && count <= 128) { 688 sc->sc_rxfifosz = 128; 689 device_set_desc(sc->sc_dev, "16950 or compatible"); 690 } else { 691 sc->sc_rxfifosz = 16; 692 device_set_desc(sc->sc_dev, 693 "Non-standard ns8250 class UART with FIFOs"); 694 } 695 696 /* 697 * Force the Tx FIFO size to 16 bytes for now. We don't program the 698 * Tx trigger. Also, we assume that all data has been sent when the 699 * interrupt happens. 700 */ 701 sc->sc_txfifosz = 16; 702 703 /* 16650s or higher have automatic flow control. */ 704 if (sc->sc_rxfifosz > 16) { 705 sc->sc_hwiflow = 1; 706 sc->sc_hwoflow = 1; 707 } 708 709 return (0); 710 } 711 712 static int 713 ns8250_bus_receive(struct uart_softc *sc) 714 { 715 struct uart_bas *bas; 716 int xc; 717 uint8_t lsr; 718 719 bas = &sc->sc_bas; 720 mtx_lock_spin(&sc->sc_hwmtx); 721 lsr = uart_getreg(bas, REG_LSR); 722 while (lsr & LSR_RXRDY) { 723 if (uart_rx_full(sc)) { 724 sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN; 725 break; 726 } 727 xc = uart_getreg(bas, REG_DATA); 728 if (lsr & LSR_FE) 729 xc |= UART_STAT_FRAMERR; 730 if (lsr & LSR_PE) 731 xc |= UART_STAT_PARERR; 732 uart_rx_put(sc, xc); 733 lsr = uart_getreg(bas, REG_LSR); 734 } 735 /* Discard everything left in the Rx FIFO. */ 736 while (lsr & LSR_RXRDY) { 737 (void)uart_getreg(bas, REG_DATA); 738 uart_barrier(bas); 739 lsr = uart_getreg(bas, REG_LSR); 740 } 741 mtx_unlock_spin(&sc->sc_hwmtx); 742 return (0); 743 } 744 745 static int 746 ns8250_bus_setsig(struct uart_softc *sc, int sig) 747 { 748 struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc; 749 struct uart_bas *bas; 750 uint32_t new, old; 751 752 bas = &sc->sc_bas; 753 do { 754 old = sc->sc_hwsig; 755 new = old; 756 if (sig & SER_DDTR) { 757 SIGCHG(sig & SER_DTR, new, SER_DTR, 758 SER_DDTR); 759 } 760 if (sig & SER_DRTS) { 761 SIGCHG(sig & SER_RTS, new, SER_RTS, 762 SER_DRTS); 763 } 764 } while (!atomic_cmpset_32(&sc->sc_hwsig, old, new)); 765 mtx_lock_spin(&sc->sc_hwmtx); 766 ns8250->mcr &= ~(MCR_DTR|MCR_RTS); 767 if (new & SER_DTR) 768 ns8250->mcr |= MCR_DTR; 769 if (new & SER_RTS) 770 ns8250->mcr |= MCR_RTS; 771 uart_setreg(bas, REG_MCR, ns8250->mcr); 772 uart_barrier(bas); 773 mtx_unlock_spin(&sc->sc_hwmtx); 774 return (0); 775 } 776 777 static int 778 ns8250_bus_transmit(struct uart_softc *sc) 779 { 780 struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc; 781 struct uart_bas *bas; 782 int i; 783 784 bas = &sc->sc_bas; 785 mtx_lock_spin(&sc->sc_hwmtx); 786 while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0) 787 ; 788 uart_setreg(bas, REG_IER, ns8250->ier | IER_ETXRDY); 789 uart_barrier(bas); 790 for (i = 0; i < sc->sc_txdatasz; i++) { 791 uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]); 792 uart_barrier(bas); 793 } 794 sc->sc_txbusy = 1; 795 mtx_unlock_spin(&sc->sc_hwmtx); 796 return (0); 797 } 798