1 /*- 2 * Copyright (c) 2003 Marcel Moolenaar 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/bus.h> 33 #include <sys/conf.h> 34 #include <machine/bus.h> 35 36 #include <dev/uart/uart.h> 37 #include <dev/uart/uart_cpu.h> 38 #include <dev/uart/uart_bus.h> 39 40 #include <dev/ic/ns16550.h> 41 42 #include "uart_if.h" 43 44 #define DEFAULT_RCLK 1843200 45 46 /* 47 * Clear pending interrupts. THRE is cleared by reading IIR. Data 48 * that may have been received gets lost here. 49 */ 50 static void 51 ns8250_clrint(struct uart_bas *bas) 52 { 53 uint8_t iir; 54 55 iir = uart_getreg(bas, REG_IIR); 56 while ((iir & IIR_NOPEND) == 0) { 57 iir &= IIR_IMASK; 58 if (iir == IIR_RLS) 59 (void)uart_getreg(bas, REG_LSR); 60 else if (iir == IIR_RXRDY || iir == IIR_RXTOUT) 61 (void)uart_getreg(bas, REG_DATA); 62 else if (iir == IIR_MLSC) 63 (void)uart_getreg(bas, REG_MSR); 64 uart_barrier(bas); 65 iir = uart_getreg(bas, REG_IIR); 66 } 67 } 68 69 static int 70 ns8250_delay(struct uart_bas *bas) 71 { 72 int divisor; 73 u_char lcr; 74 75 lcr = uart_getreg(bas, REG_LCR); 76 uart_setreg(bas, REG_LCR, lcr | LCR_DLAB); 77 uart_barrier(bas); 78 divisor = uart_getdreg(bas, REG_DL); 79 uart_barrier(bas); 80 uart_setreg(bas, REG_LCR, lcr); 81 uart_barrier(bas); 82 83 /* 1/10th the time to transmit 1 character (estimate). */ 84 return (16000000 * divisor / bas->rclk); 85 } 86 87 static int 88 ns8250_divisor(int rclk, int baudrate) 89 { 90 int actual_baud, divisor; 91 int error; 92 93 if (baudrate == 0) 94 return (0); 95 96 divisor = (rclk / (baudrate << 3) + 1) >> 1; 97 if (divisor == 0 || divisor >= 65536) 98 return (0); 99 actual_baud = rclk / (divisor << 4); 100 101 /* 10 times error in percent: */ 102 error = ((actual_baud - baudrate) * 2000 / baudrate + 1) >> 1; 103 104 /* 3.0% maximum error tolerance: */ 105 if (error < -30 || error > 30) 106 return (0); 107 108 return (divisor); 109 } 110 111 static int 112 ns8250_drain(struct uart_bas *bas, int what) 113 { 114 int delay, limit; 115 116 delay = ns8250_delay(bas); 117 118 if (what & UART_DRAIN_TRANSMITTER) { 119 /* 120 * Pick an arbitrary high limit to avoid getting stuck in 121 * an infinite loop when the hardware is broken. Make the 122 * limit high enough to handle large FIFOs. 123 */ 124 limit = 10*1024; 125 while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit) 126 DELAY(delay); 127 if (limit == 0) { 128 /* printf("ns8250: transmitter appears stuck... "); */ 129 return (EIO); 130 } 131 } 132 133 if (what & UART_DRAIN_RECEIVER) { 134 /* 135 * Pick an arbitrary high limit to avoid getting stuck in 136 * an infinite loop when the hardware is broken. Make the 137 * limit high enough to handle large FIFOs and integrated 138 * UARTs. The HP rx2600 for example has 3 UARTs on the 139 * management board that tend to get a lot of data send 140 * to it when the UART is first activated. 141 */ 142 limit=10*4096; 143 while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) { 144 (void)uart_getreg(bas, REG_DATA); 145 uart_barrier(bas); 146 DELAY(delay << 2); 147 } 148 if (limit == 0) { 149 /* printf("ns8250: receiver appears broken... "); */ 150 return (EIO); 151 } 152 } 153 154 return (0); 155 } 156 157 /* 158 * We can only flush UARTs with FIFOs. UARTs without FIFOs should be 159 * drained. WARNING: this function clobbers the FIFO setting! 160 */ 161 static void 162 ns8250_flush(struct uart_bas *bas, int what) 163 { 164 uint8_t fcr; 165 166 fcr = FCR_ENABLE; 167 if (what & UART_FLUSH_TRANSMITTER) 168 fcr |= FCR_XMT_RST; 169 if (what & UART_FLUSH_RECEIVER) 170 fcr |= FCR_RCV_RST; 171 uart_setreg(bas, REG_FCR, fcr); 172 uart_barrier(bas); 173 } 174 175 static int 176 ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits, 177 int parity) 178 { 179 int divisor; 180 uint8_t lcr; 181 182 lcr = 0; 183 if (databits >= 8) 184 lcr |= LCR_8BITS; 185 else if (databits == 7) 186 lcr |= LCR_7BITS; 187 else if (databits == 6) 188 lcr |= LCR_6BITS; 189 else 190 lcr |= LCR_5BITS; 191 if (stopbits > 1) 192 lcr |= LCR_STOPB; 193 lcr |= parity << 3; 194 195 /* Set baudrate. */ 196 if (baudrate > 0) { 197 uart_setreg(bas, REG_LCR, lcr | LCR_DLAB); 198 uart_barrier(bas); 199 divisor = ns8250_divisor(bas->rclk, baudrate); 200 if (divisor == 0) 201 return (EINVAL); 202 uart_setdreg(bas, REG_DL, divisor); 203 uart_barrier(bas); 204 } 205 206 /* Set LCR and clear DLAB. */ 207 uart_setreg(bas, REG_LCR, lcr); 208 uart_barrier(bas); 209 return (0); 210 } 211 212 /* 213 * Low-level UART interface. 214 */ 215 static int ns8250_probe(struct uart_bas *bas); 216 static void ns8250_init(struct uart_bas *bas, int, int, int, int); 217 static void ns8250_term(struct uart_bas *bas); 218 static void ns8250_putc(struct uart_bas *bas, int); 219 static int ns8250_poll(struct uart_bas *bas); 220 static int ns8250_getc(struct uart_bas *bas); 221 222 struct uart_ops uart_ns8250_ops = { 223 .probe = ns8250_probe, 224 .init = ns8250_init, 225 .term = ns8250_term, 226 .putc = ns8250_putc, 227 .poll = ns8250_poll, 228 .getc = ns8250_getc, 229 }; 230 231 static int 232 ns8250_probe(struct uart_bas *bas) 233 { 234 u_char lcr, val; 235 236 /* Check known 0 bits that don't depend on DLAB. */ 237 val = uart_getreg(bas, REG_IIR); 238 if (val & 0x30) 239 return (ENXIO); 240 val = uart_getreg(bas, REG_MCR); 241 if (val & 0xe0) 242 return (ENXIO); 243 244 lcr = uart_getreg(bas, REG_LCR); 245 uart_setreg(bas, REG_LCR, lcr & ~LCR_DLAB); 246 uart_barrier(bas); 247 248 /* Check known 0 bits that depend on !DLAB. */ 249 val = uart_getreg(bas, REG_IER); 250 if (val & 0xf0) 251 goto fail; 252 253 uart_setreg(bas, REG_LCR, lcr); 254 uart_barrier(bas); 255 return (0); 256 257 fail: 258 uart_setreg(bas, REG_LCR, lcr); 259 uart_barrier(bas); 260 return (ENXIO); 261 } 262 263 static void 264 ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits, 265 int parity) 266 { 267 268 if (bas->rclk == 0) 269 bas->rclk = DEFAULT_RCLK; 270 ns8250_param(bas, baudrate, databits, stopbits, parity); 271 272 /* Disable all interrupt sources. */ 273 uart_setreg(bas, REG_IER, 0); 274 uart_barrier(bas); 275 276 /* Disable the FIFO (if present). */ 277 uart_setreg(bas, REG_FCR, 0); 278 uart_barrier(bas); 279 280 /* Set RTS & DTR. */ 281 uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR); 282 uart_barrier(bas); 283 284 ns8250_clrint(bas); 285 } 286 287 static void 288 ns8250_term(struct uart_bas *bas) 289 { 290 291 /* Clear RTS & DTR. */ 292 uart_setreg(bas, REG_MCR, MCR_IE); 293 uart_barrier(bas); 294 } 295 296 static void 297 ns8250_putc(struct uart_bas *bas, int c) 298 { 299 int delay, limit; 300 301 /* 1/10th the time to transmit 1 character (estimate). */ 302 delay = ns8250_delay(bas); 303 304 limit = 20; 305 while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit) 306 DELAY(delay); 307 uart_setreg(bas, REG_DATA, c); 308 uart_barrier(bas); 309 limit = 40; 310 while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit) 311 DELAY(delay); 312 } 313 314 static int 315 ns8250_poll(struct uart_bas *bas) 316 { 317 318 if (uart_getreg(bas, REG_LSR) & LSR_RXRDY) 319 return (uart_getreg(bas, REG_DATA)); 320 return (-1); 321 } 322 323 static int 324 ns8250_getc(struct uart_bas *bas) 325 { 326 int delay; 327 328 /* 1/10th the time to transmit 1 character (estimate). */ 329 delay = ns8250_delay(bas); 330 331 while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) 332 DELAY(delay); 333 return (uart_getreg(bas, REG_DATA)); 334 } 335 336 /* 337 * High-level UART interface. 338 */ 339 struct ns8250_softc { 340 struct uart_softc base; 341 uint8_t fcr; 342 uint8_t ier; 343 uint8_t mcr; 344 }; 345 346 static int ns8250_bus_attach(struct uart_softc *); 347 static int ns8250_bus_detach(struct uart_softc *); 348 static int ns8250_bus_flush(struct uart_softc *, int); 349 static int ns8250_bus_getsig(struct uart_softc *); 350 static int ns8250_bus_ioctl(struct uart_softc *, int, intptr_t); 351 static int ns8250_bus_ipend(struct uart_softc *); 352 static int ns8250_bus_param(struct uart_softc *, int, int, int, int); 353 static int ns8250_bus_probe(struct uart_softc *); 354 static int ns8250_bus_receive(struct uart_softc *); 355 static int ns8250_bus_setsig(struct uart_softc *, int); 356 static int ns8250_bus_transmit(struct uart_softc *); 357 358 static kobj_method_t ns8250_methods[] = { 359 KOBJMETHOD(uart_attach, ns8250_bus_attach), 360 KOBJMETHOD(uart_detach, ns8250_bus_detach), 361 KOBJMETHOD(uart_flush, ns8250_bus_flush), 362 KOBJMETHOD(uart_getsig, ns8250_bus_getsig), 363 KOBJMETHOD(uart_ioctl, ns8250_bus_ioctl), 364 KOBJMETHOD(uart_ipend, ns8250_bus_ipend), 365 KOBJMETHOD(uart_param, ns8250_bus_param), 366 KOBJMETHOD(uart_probe, ns8250_bus_probe), 367 KOBJMETHOD(uart_receive, ns8250_bus_receive), 368 KOBJMETHOD(uart_setsig, ns8250_bus_setsig), 369 KOBJMETHOD(uart_transmit, ns8250_bus_transmit), 370 { 0, 0 } 371 }; 372 373 struct uart_class uart_ns8250_class = { 374 "ns8250 class", 375 ns8250_methods, 376 sizeof(struct ns8250_softc), 377 .uc_range = 8, 378 .uc_rclk = DEFAULT_RCLK 379 }; 380 381 #define SIGCHG(c, i, s, d) \ 382 if (c) { \ 383 i |= (i & s) ? s : s | d; \ 384 } else { \ 385 i = (i & s) ? (i & ~s) | d : i; \ 386 } 387 388 static int 389 ns8250_bus_attach(struct uart_softc *sc) 390 { 391 struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc; 392 struct uart_bas *bas; 393 394 bas = &sc->sc_bas; 395 396 ns8250->mcr = uart_getreg(bas, REG_MCR); 397 ns8250->fcr = FCR_ENABLE | FCR_RX_MEDH; 398 uart_setreg(bas, REG_FCR, ns8250->fcr); 399 uart_barrier(bas); 400 ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER); 401 402 if (ns8250->mcr & MCR_DTR) 403 sc->sc_hwsig |= SER_DTR; 404 if (ns8250->mcr & MCR_RTS) 405 sc->sc_hwsig |= SER_RTS; 406 ns8250_bus_getsig(sc); 407 408 ns8250_clrint(bas); 409 ns8250->ier = IER_EMSC | IER_ERLS | IER_ERXRDY; 410 uart_setreg(bas, REG_IER, ns8250->ier); 411 uart_barrier(bas); 412 return (0); 413 } 414 415 static int 416 ns8250_bus_detach(struct uart_softc *sc) 417 { 418 struct uart_bas *bas; 419 420 bas = &sc->sc_bas; 421 uart_setreg(bas, REG_IER, 0); 422 uart_barrier(bas); 423 ns8250_clrint(bas); 424 return (0); 425 } 426 427 static int 428 ns8250_bus_flush(struct uart_softc *sc, int what) 429 { 430 struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc; 431 struct uart_bas *bas; 432 int error; 433 434 bas = &sc->sc_bas; 435 mtx_lock_spin(&sc->sc_hwmtx); 436 if (sc->sc_hasfifo) { 437 ns8250_flush(bas, what); 438 uart_setreg(bas, REG_FCR, ns8250->fcr); 439 uart_barrier(bas); 440 error = 0; 441 } else 442 error = ns8250_drain(bas, what); 443 mtx_unlock_spin(&sc->sc_hwmtx); 444 return (error); 445 } 446 447 static int 448 ns8250_bus_getsig(struct uart_softc *sc) 449 { 450 uint32_t new, old, sig; 451 uint8_t msr; 452 453 do { 454 old = sc->sc_hwsig; 455 sig = old; 456 mtx_lock_spin(&sc->sc_hwmtx); 457 msr = uart_getreg(&sc->sc_bas, REG_MSR); 458 mtx_unlock_spin(&sc->sc_hwmtx); 459 SIGCHG(msr & MSR_DSR, sig, SER_DSR, SER_DDSR); 460 SIGCHG(msr & MSR_CTS, sig, SER_CTS, SER_DCTS); 461 SIGCHG(msr & MSR_DCD, sig, SER_DCD, SER_DDCD); 462 SIGCHG(msr & MSR_RI, sig, SER_RI, SER_DRI); 463 new = sig & ~UART_SIGMASK_DELTA; 464 } while (!atomic_cmpset_32(&sc->sc_hwsig, old, new)); 465 return (sig); 466 } 467 468 static int 469 ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data) 470 { 471 struct uart_bas *bas; 472 int baudrate, divisor, error; 473 uint8_t efr, lcr; 474 475 bas = &sc->sc_bas; 476 error = 0; 477 mtx_lock_spin(&sc->sc_hwmtx); 478 switch (request) { 479 case UART_IOCTL_BREAK: 480 lcr = uart_getreg(bas, REG_LCR); 481 if (data) 482 lcr |= LCR_SBREAK; 483 else 484 lcr &= ~LCR_SBREAK; 485 uart_setreg(bas, REG_LCR, lcr); 486 uart_barrier(bas); 487 break; 488 case UART_IOCTL_IFLOW: 489 lcr = uart_getreg(bas, REG_LCR); 490 uart_barrier(bas); 491 uart_setreg(bas, REG_LCR, 0xbf); 492 uart_barrier(bas); 493 efr = uart_getreg(bas, REG_EFR); 494 if (data) 495 efr |= EFR_RTS; 496 else 497 efr &= ~EFR_RTS; 498 uart_setreg(bas, REG_EFR, efr); 499 uart_barrier(bas); 500 uart_setreg(bas, REG_LCR, lcr); 501 uart_barrier(bas); 502 break; 503 case UART_IOCTL_OFLOW: 504 lcr = uart_getreg(bas, REG_LCR); 505 uart_barrier(bas); 506 uart_setreg(bas, REG_LCR, 0xbf); 507 uart_barrier(bas); 508 efr = uart_getreg(bas, REG_EFR); 509 if (data) 510 efr |= EFR_CTS; 511 else 512 efr &= ~EFR_CTS; 513 uart_setreg(bas, REG_EFR, efr); 514 uart_barrier(bas); 515 uart_setreg(bas, REG_LCR, lcr); 516 uart_barrier(bas); 517 break; 518 case UART_IOCTL_BAUD: 519 lcr = uart_getreg(bas, REG_LCR); 520 uart_setreg(bas, REG_LCR, lcr | LCR_DLAB); 521 uart_barrier(bas); 522 divisor = uart_getdreg(bas, REG_DL); 523 uart_barrier(bas); 524 uart_setreg(bas, REG_LCR, lcr); 525 uart_barrier(bas); 526 baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0; 527 if (baudrate > 0) 528 *(int*)data = baudrate; 529 else 530 error = ENXIO; 531 break; 532 default: 533 error = EINVAL; 534 break; 535 } 536 mtx_unlock_spin(&sc->sc_hwmtx); 537 return (error); 538 } 539 540 static int 541 ns8250_bus_ipend(struct uart_softc *sc) 542 { 543 struct uart_bas *bas; 544 int ipend; 545 uint8_t iir, lsr; 546 547 bas = &sc->sc_bas; 548 mtx_lock_spin(&sc->sc_hwmtx); 549 iir = uart_getreg(bas, REG_IIR); 550 if (iir & IIR_NOPEND) { 551 mtx_unlock_spin(&sc->sc_hwmtx); 552 return (0); 553 } 554 ipend = 0; 555 if (iir & IIR_RXRDY) { 556 lsr = uart_getreg(bas, REG_LSR); 557 mtx_unlock_spin(&sc->sc_hwmtx); 558 if (lsr & LSR_OE) 559 ipend |= UART_IPEND_OVERRUN; 560 if (lsr & LSR_BI) 561 ipend |= UART_IPEND_BREAK; 562 if (lsr & LSR_RXRDY) 563 ipend |= UART_IPEND_RXREADY; 564 } else { 565 mtx_unlock_spin(&sc->sc_hwmtx); 566 if (iir & IIR_TXRDY) 567 ipend |= UART_IPEND_TXIDLE; 568 else 569 ipend |= UART_IPEND_SIGCHG; 570 } 571 return ((sc->sc_leaving) ? 0 : ipend); 572 } 573 574 static int 575 ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits, 576 int stopbits, int parity) 577 { 578 struct uart_bas *bas; 579 int error; 580 581 bas = &sc->sc_bas; 582 mtx_lock_spin(&sc->sc_hwmtx); 583 error = ns8250_param(bas, baudrate, databits, stopbits, parity); 584 mtx_unlock_spin(&sc->sc_hwmtx); 585 return (error); 586 } 587 588 static int 589 ns8250_bus_probe(struct uart_softc *sc) 590 { 591 struct uart_bas *bas; 592 int count, delay, error, limit; 593 uint8_t lsr, mcr; 594 595 bas = &sc->sc_bas; 596 597 error = ns8250_probe(bas); 598 if (error) 599 return (error); 600 601 mcr = MCR_IE; 602 if (sc->sc_sysdev == NULL) { 603 /* By using ns8250_init() we also set DTR and RTS. */ 604 ns8250_init(bas, 9600, 8, 1, UART_PARITY_NONE); 605 } else 606 mcr |= MCR_DTR | MCR_RTS; 607 608 error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER); 609 if (error) 610 return (error); 611 612 /* 613 * Set loopback mode. This avoids having garbage on the wire and 614 * also allows us send and receive data. We set DTR and RTS to 615 * avoid the possibility that automatic flow-control prevents 616 * any data from being sent. 617 */ 618 uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS); 619 uart_barrier(bas); 620 621 /* 622 * Enable FIFOs. And check that the UART has them. If not, we're 623 * done. Since this is the first time we enable the FIFOs, we reset 624 * them. 625 */ 626 uart_setreg(bas, REG_FCR, FCR_ENABLE); 627 uart_barrier(bas); 628 sc->sc_hasfifo = (uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK) ? 1 : 0; 629 if (!sc->sc_hasfifo) { 630 /* 631 * NS16450 or INS8250. We don't bother to differentiate 632 * between them. They're too old to be interesting. 633 */ 634 uart_setreg(bas, REG_MCR, mcr); 635 uart_barrier(bas); 636 device_set_desc(sc->sc_dev, "8250 or 16450 or compatible"); 637 return (0); 638 } 639 640 uart_setreg(bas, REG_FCR, FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST); 641 uart_barrier(bas); 642 643 count = 0; 644 delay = ns8250_delay(bas); 645 646 /* We have FIFOs. Drain the transmitter and receiver. */ 647 error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER); 648 if (error) { 649 uart_setreg(bas, REG_MCR, mcr); 650 uart_setreg(bas, REG_FCR, 0); 651 uart_barrier(bas); 652 goto describe; 653 } 654 655 /* 656 * We should have a sufficiently clean "pipe" to determine the 657 * size of the FIFOs. We send as much characters as is reasonable 658 * and wait for the the overflow bit in the LSR register to be 659 * asserted, counting the characters as we send them. Based on 660 * that count we know the FIFO size. 661 */ 662 do { 663 uart_setreg(bas, REG_DATA, 0); 664 uart_barrier(bas); 665 count++; 666 667 limit = 30; 668 lsr = 0; 669 /* 670 * LSR bits are cleared upon read, so we must accumulate 671 * them to be able to test LSR_OE below. 672 */ 673 while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 && 674 --limit) 675 DELAY(delay); 676 if (limit == 0) { 677 uart_setreg(bas, REG_IER, 0); 678 uart_setreg(bas, REG_MCR, mcr); 679 uart_setreg(bas, REG_FCR, 0); 680 uart_barrier(bas); 681 count = 0; 682 goto describe; 683 } 684 } while ((lsr & LSR_OE) == 0 && count < 130); 685 count--; 686 687 uart_setreg(bas, REG_MCR, mcr); 688 689 /* Reset FIFOs. */ 690 ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER); 691 692 describe: 693 if (count >= 14 && count <= 16) { 694 sc->sc_rxfifosz = 16; 695 device_set_desc(sc->sc_dev, "16550 or compatible"); 696 } else if (count >= 28 && count <= 32) { 697 sc->sc_rxfifosz = 32; 698 device_set_desc(sc->sc_dev, "16650 or compatible"); 699 } else if (count >= 56 && count <= 64) { 700 sc->sc_rxfifosz = 64; 701 device_set_desc(sc->sc_dev, "16750 or compatible"); 702 } else if (count >= 112 && count <= 128) { 703 sc->sc_rxfifosz = 128; 704 device_set_desc(sc->sc_dev, "16950 or compatible"); 705 } else { 706 sc->sc_rxfifosz = 16; 707 device_set_desc(sc->sc_dev, 708 "Non-standard ns8250 class UART with FIFOs"); 709 } 710 711 /* 712 * Force the Tx FIFO size to 16 bytes for now. We don't program the 713 * Tx trigger. Also, we assume that all data has been sent when the 714 * interrupt happens. 715 */ 716 sc->sc_txfifosz = 16; 717 718 #if 0 719 /* 720 * XXX there are some issues related to hardware flow control and 721 * it's likely that uart(4) is the cause. This basicly needs more 722 * investigation, but we avoid using for hardware flow control 723 * until then. 724 */ 725 /* 16650s or higher have automatic flow control. */ 726 if (sc->sc_rxfifosz > 16) { 727 sc->sc_hwiflow = 1; 728 sc->sc_hwoflow = 1; 729 } 730 #endif 731 732 return (0); 733 } 734 735 static int 736 ns8250_bus_receive(struct uart_softc *sc) 737 { 738 struct uart_bas *bas; 739 int xc; 740 uint8_t lsr; 741 742 bas = &sc->sc_bas; 743 mtx_lock_spin(&sc->sc_hwmtx); 744 lsr = uart_getreg(bas, REG_LSR); 745 while (lsr & LSR_RXRDY) { 746 if (uart_rx_full(sc)) { 747 sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN; 748 break; 749 } 750 xc = uart_getreg(bas, REG_DATA); 751 if (lsr & LSR_FE) 752 xc |= UART_STAT_FRAMERR; 753 if (lsr & LSR_PE) 754 xc |= UART_STAT_PARERR; 755 uart_rx_put(sc, xc); 756 lsr = uart_getreg(bas, REG_LSR); 757 } 758 /* Discard everything left in the Rx FIFO. */ 759 while (lsr & LSR_RXRDY) { 760 (void)uart_getreg(bas, REG_DATA); 761 uart_barrier(bas); 762 lsr = uart_getreg(bas, REG_LSR); 763 } 764 mtx_unlock_spin(&sc->sc_hwmtx); 765 return (0); 766 } 767 768 static int 769 ns8250_bus_setsig(struct uart_softc *sc, int sig) 770 { 771 struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc; 772 struct uart_bas *bas; 773 uint32_t new, old; 774 775 bas = &sc->sc_bas; 776 do { 777 old = sc->sc_hwsig; 778 new = old; 779 if (sig & SER_DDTR) { 780 SIGCHG(sig & SER_DTR, new, SER_DTR, 781 SER_DDTR); 782 } 783 if (sig & SER_DRTS) { 784 SIGCHG(sig & SER_RTS, new, SER_RTS, 785 SER_DRTS); 786 } 787 } while (!atomic_cmpset_32(&sc->sc_hwsig, old, new)); 788 mtx_lock_spin(&sc->sc_hwmtx); 789 ns8250->mcr &= ~(MCR_DTR|MCR_RTS); 790 if (new & SER_DTR) 791 ns8250->mcr |= MCR_DTR; 792 if (new & SER_RTS) 793 ns8250->mcr |= MCR_RTS; 794 uart_setreg(bas, REG_MCR, ns8250->mcr); 795 uart_barrier(bas); 796 mtx_unlock_spin(&sc->sc_hwmtx); 797 return (0); 798 } 799 800 static int 801 ns8250_bus_transmit(struct uart_softc *sc) 802 { 803 struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc; 804 struct uart_bas *bas; 805 int i; 806 807 bas = &sc->sc_bas; 808 mtx_lock_spin(&sc->sc_hwmtx); 809 while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0) 810 ; 811 uart_setreg(bas, REG_IER, ns8250->ier | IER_ETXRDY); 812 uart_barrier(bas); 813 for (i = 0; i < sc->sc_txdatasz; i++) { 814 uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]); 815 uart_barrier(bas); 816 } 817 sc->sc_txbusy = 1; 818 mtx_unlock_spin(&sc->sc_hwmtx); 819 return (0); 820 } 821