xref: /freebsd/sys/dev/uart/uart_dev_ns8250.c (revision 59f5f100b774de8824fb2fc1a8a11a93bbc2dafd)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2003 Marcel Moolenaar
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include "opt_acpi.h"
30 #include "opt_platform.h"
31 #include "opt_uart.h"
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/conf.h>
37 #include <sys/kernel.h>
38 #include <sys/sysctl.h>
39 #include <machine/bus.h>
40 
41 #ifdef FDT
42 #include <dev/fdt/fdt_common.h>
43 #include <dev/ofw/ofw_bus.h>
44 #include <dev/ofw/ofw_bus_subr.h>
45 #endif
46 
47 #include <dev/uart/uart.h>
48 #include <dev/uart/uart_cpu.h>
49 #ifdef FDT
50 #include <dev/uart/uart_cpu_fdt.h>
51 #endif
52 #include <dev/uart/uart_bus.h>
53 #include <dev/uart/uart_dev_ns8250.h>
54 #include <dev/uart/uart_ppstypes.h>
55 #ifdef DEV_ACPI
56 #include <dev/uart/uart_cpu_acpi.h>
57 #include <contrib/dev/acpica/include/acpi.h>
58 #endif
59 
60 #include <dev/ic/ns16550.h>
61 
62 #include "uart_if.h"
63 
64 #define	DEFAULT_RCLK	1843200
65 
66 /*
67  * Set the default baudrate tolerance to 3.0%.
68  *
69  * Some embedded boards have odd reference clocks (eg 25MHz)
70  * and we need to handle higher variances in the target baud rate.
71  */
72 #ifndef	UART_DEV_TOLERANCE_PCT
73 #define	UART_DEV_TOLERANCE_PCT	30
74 #endif	/* UART_DEV_TOLERANCE_PCT */
75 
76 static int broken_txfifo = 0;
77 SYSCTL_INT(_hw, OID_AUTO, broken_txfifo, CTLFLAG_RWTUN,
78 	&broken_txfifo, 0, "UART FIFO has QEMU emulation bug");
79 
80 /*
81  * To use early printf on x86, add the following to your kernel config:
82  *
83  * options UART_NS8250_EARLY_PORT=0x3f8
84  * options EARLY_PRINTF=ns8250
85 */
86 #if CHECK_EARLY_PRINTF(ns8250)
87 #if !(defined(__amd64__) || defined(__i386__))
88 #error ns8250 early putc is x86 specific as it uses inb/outb
89 #endif
90 static void
91 uart_ns8250_early_putc(int c)
92 {
93 	u_int stat = UART_NS8250_EARLY_PORT + REG_LSR;
94 	u_int tx = UART_NS8250_EARLY_PORT + REG_DATA;
95 	int limit = 10000; /* 10ms is plenty of time */
96 
97 	while ((inb(stat) & LSR_THRE) == 0 && --limit > 0)
98 		continue;
99 	outb(tx, c);
100 }
101 early_putc_t *early_putc = uart_ns8250_early_putc;
102 #endif /* EARLY_PRINTF */
103 
104 /*
105  * Clear pending interrupts. THRE is cleared by reading IIR. Data
106  * that may have been received gets lost here.
107  */
108 static void
109 ns8250_clrint(struct uart_bas *bas)
110 {
111 	uint8_t iir, lsr;
112 
113 	iir = uart_getreg(bas, REG_IIR);
114 	while ((iir & IIR_NOPEND) == 0) {
115 		iir &= IIR_IMASK;
116 		if (iir == IIR_RLS) {
117 			lsr = uart_getreg(bas, REG_LSR);
118 			if (lsr & (LSR_BI|LSR_FE|LSR_PE))
119 				(void)uart_getreg(bas, REG_DATA);
120 		} else if (iir == IIR_RXRDY || iir == IIR_RXTOUT)
121 			(void)uart_getreg(bas, REG_DATA);
122 		else if (iir == IIR_MLSC)
123 			(void)uart_getreg(bas, REG_MSR);
124 		uart_barrier(bas);
125 		iir = uart_getreg(bas, REG_IIR);
126 	}
127 }
128 
129 static int
130 ns8250_delay(struct uart_bas *bas)
131 {
132 	int divisor;
133 	u_char lcr;
134 
135 	lcr = uart_getreg(bas, REG_LCR);
136 	uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
137 	uart_barrier(bas);
138 	divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8);
139 	uart_barrier(bas);
140 	uart_setreg(bas, REG_LCR, lcr);
141 	uart_barrier(bas);
142 
143 	/* 1/10th the time to transmit 1 character (estimate). */
144 	if (divisor <= 134)
145 		return (16000000 * divisor / bas->rclk);
146 	return (16000 * divisor / (bas->rclk / 1000));
147 }
148 
149 static int
150 ns8250_divisor(int rclk, int baudrate)
151 {
152 	int actual_baud, divisor;
153 	int error;
154 
155 	if (baudrate == 0)
156 		return (0);
157 
158 	divisor = (rclk / (baudrate << 3) + 1) >> 1;
159 	if (divisor == 0 || divisor >= 65536)
160 		return (0);
161 	actual_baud = rclk / (divisor << 4);
162 
163 	/* 10 times error in percent: */
164 	error = ((actual_baud - baudrate) * 2000 / baudrate + 1) / 2;
165 
166 	/* enforce maximum error tolerance: */
167 	if (error < -UART_DEV_TOLERANCE_PCT || error > UART_DEV_TOLERANCE_PCT)
168 		return (0);
169 
170 	return (divisor);
171 }
172 
173 static int
174 ns8250_drain(struct uart_bas *bas, int what)
175 {
176 	int delay, limit;
177 
178 	delay = ns8250_delay(bas);
179 
180 	if (what & UART_DRAIN_TRANSMITTER) {
181 		/*
182 		 * Pick an arbitrary high limit to avoid getting stuck in
183 		 * an infinite loop when the hardware is broken. Make the
184 		 * limit high enough to handle large FIFOs.
185 		 */
186 		limit = 10*1024;
187 		while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
188 			DELAY(delay);
189 		if (limit == 0) {
190 			/* printf("ns8250: transmitter appears stuck... "); */
191 			return (EIO);
192 		}
193 	}
194 
195 	if (what & UART_DRAIN_RECEIVER) {
196 		/*
197 		 * Pick an arbitrary high limit to avoid getting stuck in
198 		 * an infinite loop when the hardware is broken. Make the
199 		 * limit high enough to handle large FIFOs and integrated
200 		 * UARTs. The HP rx2600 for example has 3 UARTs on the
201 		 * management board that tend to get a lot of data send
202 		 * to it when the UART is first activated.  Assume that we
203 		 * have finished draining if LSR_RXRDY is not asserted both
204 		 * prior to and after a DELAY; but as long as LSR_RXRDY is
205 		 * asserted, read (and discard) characters as quickly as
206 		 * possible.
207 		 */
208 		limit=10*4096;
209 		while (limit && (uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) {
210 			do {
211 				(void)uart_getreg(bas, REG_DATA);
212 				uart_barrier(bas);
213 			} while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit);
214 			uart_barrier(bas);
215 			DELAY(delay << 2);
216 		}
217 		if (limit == 0) {
218 			/* printf("ns8250: receiver appears broken... "); */
219 			return (EIO);
220 		}
221 	}
222 
223 	return (0);
224 }
225 
226 /*
227  * We can only flush UARTs with FIFOs. UARTs without FIFOs should be
228  * drained. WARNING: this function clobbers the FIFO setting!
229  */
230 static void
231 ns8250_flush(struct uart_bas *bas, int what)
232 {
233 	uint8_t fcr;
234 	uint8_t lsr;
235 	int drain = 0;
236 
237 	fcr = FCR_ENABLE;
238 	if (what & UART_FLUSH_TRANSMITTER)
239 		fcr |= FCR_XMT_RST;
240 	if (what & UART_FLUSH_RECEIVER)
241 		fcr |= FCR_RCV_RST;
242 	uart_setreg(bas, REG_FCR, fcr);
243 	uart_barrier(bas);
244 
245 	/*
246 	 * Detect and work around emulated UARTs which don't implement the
247 	 * FCR register; on these systems we need to drain the FIFO since
248 	 * the flush we request doesn't happen.  One such system is the
249 	 * Firecracker VMM, aka. the rust-vmm/vm-superio emulation code:
250 	 * https://github.com/rust-vmm/vm-superio/issues/83
251 	 */
252 	lsr = uart_getreg(bas, REG_LSR);
253 	if (((lsr & LSR_TEMT) == 0) && (what & UART_FLUSH_TRANSMITTER))
254 		drain |= UART_DRAIN_TRANSMITTER;
255 	if ((lsr & LSR_RXRDY) && (what & UART_FLUSH_RECEIVER))
256 		drain |= UART_DRAIN_RECEIVER;
257 	if (drain != 0) {
258 		printf("ns8250: UART FCR is broken\n");
259 		ns8250_drain(bas, drain);
260 	}
261 }
262 
263 static int
264 ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
265     int parity)
266 {
267 	int divisor;
268 	uint8_t lcr;
269 
270 	/* Don't change settings when running on Hyper-V */
271 	if (vm_guest == VM_GUEST_HV)
272 		return (0);
273 
274 	lcr = 0;
275 	if (databits >= 8)
276 		lcr |= LCR_8BITS;
277 	else if (databits == 7)
278 		lcr |= LCR_7BITS;
279 	else if (databits == 6)
280 		lcr |= LCR_6BITS;
281 	else
282 		lcr |= LCR_5BITS;
283 	if (stopbits > 1)
284 		lcr |= LCR_STOPB;
285 	lcr |= parity << 3;
286 
287 	/* Set baudrate. */
288 	if (baudrate > 0) {
289 		divisor = ns8250_divisor(bas->rclk, baudrate);
290 		if (divisor == 0)
291 			return (EINVAL);
292 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
293 		uart_barrier(bas);
294 		uart_setreg(bas, REG_DLL, divisor & 0xff);
295 		uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff);
296 		uart_barrier(bas);
297 	}
298 
299 	/* Set LCR and clear DLAB. */
300 	uart_setreg(bas, REG_LCR, lcr);
301 	uart_barrier(bas);
302 	return (0);
303 }
304 
305 /*
306  * Low-level UART interface.
307  */
308 static int ns8250_probe(struct uart_bas *bas);
309 static void ns8250_init(struct uart_bas *bas, int, int, int, int);
310 static void ns8250_term(struct uart_bas *bas);
311 static void ns8250_putc(struct uart_bas *bas, int);
312 static int ns8250_rxready(struct uart_bas *bas);
313 static int ns8250_getc(struct uart_bas *bas, struct mtx *);
314 
315 struct uart_ops uart_ns8250_ops = {
316 	.probe = ns8250_probe,
317 	.init = ns8250_init,
318 	.term = ns8250_term,
319 	.putc = ns8250_putc,
320 	.rxready = ns8250_rxready,
321 	.getc = ns8250_getc,
322 };
323 
324 static int
325 ns8250_probe(struct uart_bas *bas)
326 {
327 	u_char val;
328 
329 	/* Check known 0 bits that don't depend on DLAB. */
330 	val = uart_getreg(bas, REG_IIR);
331 	if (val & 0x30)
332 		return (ENXIO);
333 	/*
334 	 * Bit 6 of the MCR (= 0x40) appears to be 1 for the Sun1699
335 	 * chip, but otherwise doesn't seem to have a function. In
336 	 * other words, uart(4) works regardless. Ignore that bit so
337 	 * the probe succeeds.
338 	 */
339 	val = uart_getreg(bas, REG_MCR);
340 	if (val & 0xa0)
341 		return (ENXIO);
342 
343 	return (0);
344 }
345 
346 static void
347 ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
348     int parity)
349 {
350 	u_char ier;
351 
352 	if (bas->rclk == 0)
353 		bas->rclk = DEFAULT_RCLK;
354 	ns8250_param(bas, baudrate, databits, stopbits, parity);
355 
356 	/* Disable all interrupt sources. */
357 	/*
358 	 * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA
359 	 * UARTs split the receive time-out interrupt bit out separately as
360 	 * 0x10.  This gets handled by ier_mask and ier_rxbits below.
361 	 */
362 	ier = uart_getreg(bas, REG_IER) & 0xe0;
363 	uart_setreg(bas, REG_IER, ier);
364 	uart_barrier(bas);
365 
366 	/* Disable the FIFO (if present). */
367 	uart_setreg(bas, REG_FCR, 0);
368 	uart_barrier(bas);
369 
370 	/* Set RTS & DTR. */
371 	uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR);
372 	uart_barrier(bas);
373 
374 	ns8250_clrint(bas);
375 }
376 
377 static void
378 ns8250_term(struct uart_bas *bas)
379 {
380 
381 	/* Clear RTS & DTR. */
382 	uart_setreg(bas, REG_MCR, MCR_IE);
383 	uart_barrier(bas);
384 }
385 
386 static void
387 ns8250_putc(struct uart_bas *bas, int c)
388 {
389 	int limit;
390 
391 	if (vm_guest != VM_GUEST_HV) {
392 		limit = 250000;
393 		while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit)
394 			DELAY(4);
395 	}
396 	uart_setreg(bas, REG_DATA, c);
397 	uart_barrier(bas);
398 }
399 
400 static int
401 ns8250_rxready(struct uart_bas *bas)
402 {
403 
404 	return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0);
405 }
406 
407 static int
408 ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx)
409 {
410 	int c;
411 
412 	uart_lock(hwmtx);
413 
414 	while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) {
415 		uart_unlock(hwmtx);
416 		DELAY(4);
417 		uart_lock(hwmtx);
418 	}
419 
420 	c = uart_getreg(bas, REG_DATA);
421 
422 	uart_unlock(hwmtx);
423 
424 	return (c);
425 }
426 
427 static kobj_method_t ns8250_methods[] = {
428 	KOBJMETHOD(uart_attach,		ns8250_bus_attach),
429 	KOBJMETHOD(uart_detach,		ns8250_bus_detach),
430 	KOBJMETHOD(uart_flush,		ns8250_bus_flush),
431 	KOBJMETHOD(uart_getsig,		ns8250_bus_getsig),
432 	KOBJMETHOD(uart_ioctl,		ns8250_bus_ioctl),
433 	KOBJMETHOD(uart_ipend,		ns8250_bus_ipend),
434 	KOBJMETHOD(uart_param,		ns8250_bus_param),
435 	KOBJMETHOD(uart_probe,		ns8250_bus_probe),
436 	KOBJMETHOD(uart_receive,	ns8250_bus_receive),
437 	KOBJMETHOD(uart_setsig,		ns8250_bus_setsig),
438 	KOBJMETHOD(uart_transmit,	ns8250_bus_transmit),
439 	KOBJMETHOD(uart_txbusy,		ns8250_bus_txbusy),
440 	KOBJMETHOD(uart_grab,		ns8250_bus_grab),
441 	KOBJMETHOD(uart_ungrab,		ns8250_bus_ungrab),
442 	KOBJMETHOD_END
443 };
444 
445 struct uart_class uart_ns8250_class = {
446 	"ns8250",
447 	ns8250_methods,
448 	sizeof(struct ns8250_softc),
449 	.uc_ops = &uart_ns8250_ops,
450 	.uc_range = 8,
451 	.uc_rclk = DEFAULT_RCLK,
452 	.uc_rshift = 0
453 };
454 UART_CLASS(uart_ns8250_class);
455 
456 /*
457  * XXX -- refactor out ACPI and FDT ifdefs
458  */
459 #ifdef DEV_ACPI
460 static struct acpi_uart_compat_data acpi_compat_data[] = {
461 	{"AMD0020",	&uart_ns8250_class, 0, 2, 0, 48000000, UART_F_BUSY_DETECT, "AMD / Synopsys Designware UART"},
462 	{"AMDI0020", &uart_ns8250_class, 0, 2, 0, 48000000, UART_F_BUSY_DETECT, "AMD / Synopsys Designware UART"},
463 	{"APMC0D08", &uart_ns8250_class, ACPI_DBG2_16550_COMPATIBLE, 2, 4, 0, 0, "APM compatible UART"},
464 	{"MRVL0001", &uart_ns8250_class, ACPI_DBG2_16550_SUBSET, 2, 0, 200000000, UART_F_BUSY_DETECT, "Marvell / Synopsys Designware UART"},
465 	{"SCX0006",  &uart_ns8250_class, 0, 2, 0, 62500000, UART_F_BUSY_DETECT, "SynQuacer / Synopsys Designware UART"},
466 	{"HISI0031", &uart_ns8250_class, 0, 2, 0, 200000000, UART_F_BUSY_DETECT, "HiSilicon / Synopsys Designware UART"},
467 	{"INTC1006", &uart_ns8250_class, 0, 2, 0, 25000000, 0, "Intel ARM64 UART"},
468 	{"NXP0018", &uart_ns8250_class, 0, 0, 0, 350000000, UART_F_BUSY_DETECT, "NXP / Synopsys Designware UART"},
469 	{"PNP0500", &uart_ns8250_class, 0, 0, 0, 0, 0, "Standard PC COM port"},
470 	{"PNP0501", &uart_ns8250_class, 0, 0, 0, 0, 0, "16550A-compatible COM port"},
471 	{"PNP0502", &uart_ns8250_class, 0, 0, 0, 0, 0, "Multiport serial device (non-intelligent 16550)"},
472 	{"PNP0510", &uart_ns8250_class, 0, 0, 0, 0, 0, "Generic IRDA-compatible device"},
473 	{"PNP0511", &uart_ns8250_class, 0, 0, 0, 0, 0, "Generic IRDA-compatible device"},
474 	{"WACF004", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet PC Screen"},
475 	{"WACF00E", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet PC Screen 00e"},
476 	{"FUJ02E5", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet at FuS Lifebook T"},
477 	{NULL, 			NULL, 0, 0 , 0, 0, 0, NULL},
478 };
479 UART_ACPI_CLASS_AND_DEVICE(acpi_compat_data);
480 #endif
481 
482 #ifdef FDT
483 static struct ofw_compat_data compat_data[] = {
484 	{"ns16550",		(uintptr_t)&uart_ns8250_class},
485 	{"ns16550a",		(uintptr_t)&uart_ns8250_class},
486 	{NULL,			(uintptr_t)NULL},
487 };
488 UART_FDT_CLASS_AND_DEVICE(compat_data);
489 #endif
490 
491 /* Use token-pasting to form SER_ and MSR_ named constants. */
492 #define	SER(sig)	SER_##sig
493 #define	SERD(sig)	SER_D##sig
494 #define	MSR(sig)	MSR_##sig
495 #define	MSRD(sig)	MSR_D##sig
496 
497 /*
498  * Detect signal changes using software delta detection.  The previous state of
499  * the signals is in 'var' the new hardware state is in 'msr', and 'sig' is the
500  * short name (DCD, CTS, etc) of the signal bit being processed; 'var' gets the
501  * new state of both the signal and the delta bits.
502  */
503 #define SIGCHGSW(var, msr, sig)					\
504 	if ((msr) & MSR(sig)) {					\
505 		if ((var & SER(sig)) == 0)			\
506 			var |= SERD(sig) | SER(sig);		\
507 	} else {						\
508 		if ((var & SER(sig)) != 0)			\
509 			var = SERD(sig) | (var & ~SER(sig));	\
510 	}
511 
512 /*
513  * Detect signal changes using the hardware msr delta bits.  This is currently
514  * used only when PPS timing information is being captured using the "narrow
515  * pulse" option.  With a narrow PPS pulse the signal may not still be asserted
516  * by time the interrupt handler is invoked.  The hardware will latch the fact
517  * that it changed in the delta bits.
518  */
519 #define SIGCHGHW(var, msr, sig)					\
520 	if ((msr) & MSRD(sig)) {				\
521 		if (((msr) & MSR(sig)) != 0)			\
522 			var |= SERD(sig) | SER(sig);		\
523 		else						\
524 			var = SERD(sig) | (var & ~SER(sig));	\
525 	}
526 
527 int
528 ns8250_bus_attach(struct uart_softc *sc)
529 {
530 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
531 	struct uart_bas *bas;
532 	unsigned int ivar;
533 #ifdef FDT
534 	phandle_t node;
535 	pcell_t cell;
536 #endif
537 
538 #ifdef FDT
539 	/* Check whether uart has a broken txfifo. */
540 	node = ofw_bus_get_node(sc->sc_dev);
541 	if ((OF_getencprop(node, "broken-txfifo", &cell, sizeof(cell))) > 0)
542 		broken_txfifo =  cell ? 1 : 0;
543 #endif
544 
545 	bas = &sc->sc_bas;
546 
547 	ns8250->busy_detect = bas->busy_detect;
548 	ns8250->mcr = uart_getreg(bas, REG_MCR);
549 	ns8250->fcr = FCR_ENABLE;
550 	if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags",
551 	    &ivar)) {
552 		if (UART_FLAGS_FCR_RX_LOW(ivar))
553 			ns8250->fcr |= FCR_RX_LOW;
554 		else if (UART_FLAGS_FCR_RX_MEDL(ivar))
555 			ns8250->fcr |= FCR_RX_MEDL;
556 		else if (UART_FLAGS_FCR_RX_HIGH(ivar))
557 			ns8250->fcr |= FCR_RX_HIGH;
558 		else
559 			ns8250->fcr |= FCR_RX_MEDH;
560 	} else
561 		ns8250->fcr |= FCR_RX_MEDH;
562 
563 	/* Get IER mask */
564 	ivar = 0xf0;
565 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask",
566 	    &ivar);
567 	ns8250->ier_mask = (uint8_t)(ivar & 0xff);
568 
569 	/* Get IER RX interrupt bits */
570 	ivar = IER_EMSC | IER_ERLS | IER_ERXRDY;
571 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits",
572 	    &ivar);
573 	ns8250->ier_rxbits = (uint8_t)(ivar & 0xff);
574 
575 	uart_setreg(bas, REG_FCR, ns8250->fcr);
576 	uart_barrier(bas);
577 	ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
578 
579 	if (ns8250->mcr & MCR_DTR)
580 		sc->sc_hwsig |= SER_DTR;
581 	if (ns8250->mcr & MCR_RTS)
582 		sc->sc_hwsig |= SER_RTS;
583 	ns8250_bus_getsig(sc);
584 
585 	ns8250_clrint(bas);
586 	ns8250->ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
587 	ns8250->ier |= ns8250->ier_rxbits;
588 	uart_setreg(bas, REG_IER, ns8250->ier);
589 	uart_barrier(bas);
590 
591 	/*
592 	 * Timing of the H/W access was changed with r253161 of uart_core.c
593 	 * It has been observed that an ITE IT8513E would signal a break
594 	 * condition with pretty much every character it received, unless
595 	 * it had enough time to settle between ns8250_bus_attach() and
596 	 * ns8250_bus_ipend() -- which it accidentally had before r253161.
597 	 * It's not understood why the UART chip behaves this way and it
598 	 * could very well be that the DELAY make the H/W work in the same
599 	 * accidental manner as before. More analysis is warranted, but
600 	 * at least now we fixed a known regression.
601 	 */
602 	DELAY(200);
603 	return (0);
604 }
605 
606 int
607 ns8250_bus_detach(struct uart_softc *sc)
608 {
609 	struct ns8250_softc *ns8250;
610 	struct uart_bas *bas;
611 	u_char ier;
612 
613 	ns8250 = (struct ns8250_softc *)sc;
614 	bas = &sc->sc_bas;
615 	ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
616 	uart_setreg(bas, REG_IER, ier);
617 	uart_barrier(bas);
618 	ns8250_clrint(bas);
619 	return (0);
620 }
621 
622 int
623 ns8250_bus_flush(struct uart_softc *sc, int what)
624 {
625 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
626 	struct uart_bas *bas;
627 	int error;
628 
629 	bas = &sc->sc_bas;
630 	uart_lock(sc->sc_hwmtx);
631 	if (sc->sc_rxfifosz > 1) {
632 		ns8250_flush(bas, what);
633 		uart_setreg(bas, REG_FCR, ns8250->fcr);
634 		uart_barrier(bas);
635 		error = 0;
636 	} else
637 		error = ns8250_drain(bas, what);
638 	uart_unlock(sc->sc_hwmtx);
639 	return (error);
640 }
641 
642 int
643 ns8250_bus_getsig(struct uart_softc *sc)
644 {
645 	uint32_t old, sig;
646 	uint8_t msr;
647 
648 	/*
649 	 * The delta bits are reputed to be broken on some hardware, so use
650 	 * software delta detection by default.  Use the hardware delta bits
651 	 * when capturing PPS pulses which are too narrow for software detection
652 	 * to see the edges.  Hardware delta for RI doesn't work like the
653 	 * others, so always use software for it.  Other threads may be changing
654 	 * other (non-MSR) bits in sc_hwsig, so loop until it can successfully
655 	 * update without other changes happening.  Note that the SIGCHGxx()
656 	 * macros carefully preserve the delta bits when we have to loop several
657 	 * times and a signal transitions between iterations.
658 	 */
659 	do {
660 		old = sc->sc_hwsig;
661 		sig = old;
662 		uart_lock(sc->sc_hwmtx);
663 		msr = uart_getreg(&sc->sc_bas, REG_MSR);
664 		uart_unlock(sc->sc_hwmtx);
665 		if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE) {
666 			SIGCHGHW(sig, msr, DSR);
667 			SIGCHGHW(sig, msr, CTS);
668 			SIGCHGHW(sig, msr, DCD);
669 		} else {
670 			SIGCHGSW(sig, msr, DSR);
671 			SIGCHGSW(sig, msr, CTS);
672 			SIGCHGSW(sig, msr, DCD);
673 		}
674 		SIGCHGSW(sig, msr, RI);
675 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, sig & ~SER_MASK_DELTA));
676 	return (sig);
677 }
678 
679 int
680 ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
681 {
682 	struct uart_bas *bas;
683 	int baudrate, divisor, error;
684 	uint8_t efr, lcr;
685 
686 	bas = &sc->sc_bas;
687 	error = 0;
688 	uart_lock(sc->sc_hwmtx);
689 	switch (request) {
690 	case UART_IOCTL_BREAK:
691 		lcr = uart_getreg(bas, REG_LCR);
692 		if (data)
693 			lcr |= LCR_SBREAK;
694 		else
695 			lcr &= ~LCR_SBREAK;
696 		uart_setreg(bas, REG_LCR, lcr);
697 		uart_barrier(bas);
698 		break;
699 	case UART_IOCTL_IFLOW:
700 		lcr = uart_getreg(bas, REG_LCR);
701 		uart_barrier(bas);
702 		uart_setreg(bas, REG_LCR, 0xbf);
703 		uart_barrier(bas);
704 		efr = uart_getreg(bas, REG_EFR);
705 		if (data)
706 			efr |= EFR_RTS;
707 		else
708 			efr &= ~EFR_RTS;
709 		uart_setreg(bas, REG_EFR, efr);
710 		uart_barrier(bas);
711 		uart_setreg(bas, REG_LCR, lcr);
712 		uart_barrier(bas);
713 		break;
714 	case UART_IOCTL_OFLOW:
715 		lcr = uart_getreg(bas, REG_LCR);
716 		uart_barrier(bas);
717 		uart_setreg(bas, REG_LCR, 0xbf);
718 		uart_barrier(bas);
719 		efr = uart_getreg(bas, REG_EFR);
720 		if (data)
721 			efr |= EFR_CTS;
722 		else
723 			efr &= ~EFR_CTS;
724 		uart_setreg(bas, REG_EFR, efr);
725 		uart_barrier(bas);
726 		uart_setreg(bas, REG_LCR, lcr);
727 		uart_barrier(bas);
728 		break;
729 	case UART_IOCTL_BAUD:
730 		lcr = uart_getreg(bas, REG_LCR);
731 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
732 		uart_barrier(bas);
733 		divisor = uart_getreg(bas, REG_DLL) |
734 		    (uart_getreg(bas, REG_DLH) << 8);
735 		uart_barrier(bas);
736 		uart_setreg(bas, REG_LCR, lcr);
737 		uart_barrier(bas);
738 		baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0;
739 		if (baudrate > 0)
740 			*(int*)data = baudrate;
741 		else
742 			error = ENXIO;
743 		break;
744 	default:
745 		error = EINVAL;
746 		break;
747 	}
748 	uart_unlock(sc->sc_hwmtx);
749 	return (error);
750 }
751 
752 int
753 ns8250_bus_ipend(struct uart_softc *sc)
754 {
755 	struct uart_bas *bas;
756 	struct ns8250_softc *ns8250;
757 	int ipend;
758 	uint8_t iir, lsr;
759 
760 	ns8250 = (struct ns8250_softc *)sc;
761 	bas = &sc->sc_bas;
762 	uart_lock(sc->sc_hwmtx);
763 	iir = uart_getreg(bas, REG_IIR);
764 
765 	if (ns8250->busy_detect && (iir & IIR_BUSY) == IIR_BUSY) {
766 		(void)uart_getreg(bas, DW_REG_USR);
767 		uart_unlock(sc->sc_hwmtx);
768 		return (0);
769 	}
770 	if (iir & IIR_NOPEND) {
771 		uart_unlock(sc->sc_hwmtx);
772 		return (0);
773 	}
774 	ipend = 0;
775 	if (iir & IIR_RXRDY) {
776 		lsr = uart_getreg(bas, REG_LSR);
777 		if (lsr & LSR_OE)
778 			ipend |= SER_INT_OVERRUN;
779 		if (lsr & LSR_BI)
780 			ipend |= SER_INT_BREAK;
781 		if (lsr & LSR_RXRDY)
782 			ipend |= SER_INT_RXREADY;
783 	} else {
784 		if (iir & IIR_TXRDY) {
785 			ipend |= SER_INT_TXIDLE;
786 			ns8250->ier &= ~IER_ETXRDY;
787 			uart_setreg(bas, REG_IER, ns8250->ier);
788 			uart_barrier(bas);
789 		} else
790 			ipend |= SER_INT_SIGCHG;
791 	}
792 	if (ipend == 0)
793 		ns8250_clrint(bas);
794 	uart_unlock(sc->sc_hwmtx);
795 	return (ipend);
796 }
797 
798 int
799 ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits,
800     int stopbits, int parity)
801 {
802 	struct ns8250_softc *ns8250;
803 	struct uart_bas *bas;
804 	int error, limit;
805 
806 	ns8250 = (struct ns8250_softc*)sc;
807 	bas = &sc->sc_bas;
808 	uart_lock(sc->sc_hwmtx);
809 	/*
810 	 * When using DW UART with BUSY detection it is necessary to wait
811 	 * until all serial transfers are finished before manipulating the
812 	 * line control. LCR will not be affected when UART is busy.
813 	 */
814 	if (ns8250->busy_detect != 0) {
815 		/*
816 		 * Pick an arbitrary high limit to avoid getting stuck in
817 		 * an infinite loop in case when the hardware is broken.
818 		 */
819 		limit = 10 * 1024;
820 		while (((uart_getreg(bas, DW_REG_USR) & USR_BUSY) != 0) &&
821 		    --limit)
822 			DELAY(4);
823 
824 		if (limit <= 0) {
825 			/* UART appears to be stuck */
826 			uart_unlock(sc->sc_hwmtx);
827 			return (EIO);
828 		}
829 	}
830 
831 	error = ns8250_param(bas, baudrate, databits, stopbits, parity);
832 	uart_unlock(sc->sc_hwmtx);
833 	return (error);
834 }
835 
836 int
837 ns8250_bus_probe(struct uart_softc *sc)
838 {
839 	struct uart_bas *bas;
840 	int count, delay, error, limit;
841 	uint8_t lsr, mcr, ier;
842 
843 	bas = &sc->sc_bas;
844 
845 	error = ns8250_probe(bas);
846 	if (error)
847 		return (error);
848 
849 	mcr = MCR_IE;
850 	if (sc->sc_sysdev == NULL) {
851 		/* By using ns8250_init() we also set DTR and RTS. */
852 		ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE);
853 	} else
854 		mcr |= MCR_DTR | MCR_RTS;
855 
856 	error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
857 	if (error)
858 		return (error);
859 
860 	/*
861 	 * Set loopback mode. This avoids having garbage on the wire and
862 	 * also allows us send and receive data. We set DTR and RTS to
863 	 * avoid the possibility that automatic flow-control prevents
864 	 * any data from being sent.
865 	 */
866 	uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS);
867 	uart_barrier(bas);
868 
869 	/*
870 	 * Enable FIFOs. And check that the UART has them. If not, we're
871 	 * done. Since this is the first time we enable the FIFOs, we reset
872 	 * them.
873 	 */
874 	uart_setreg(bas, REG_FCR, FCR_ENABLE);
875 	uart_barrier(bas);
876 	if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) {
877 		/*
878 		 * NS16450 or INS8250. We don't bother to differentiate
879 		 * between them. They're too old to be interesting.
880 		 */
881 		uart_setreg(bas, REG_MCR, mcr);
882 		uart_barrier(bas);
883 		sc->sc_rxfifosz = sc->sc_txfifosz = 1;
884 		device_set_desc(sc->sc_dev, "8250 or 16450 or compatible");
885 		return (0);
886 	}
887 
888 	uart_setreg(bas, REG_FCR, FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST);
889 	uart_barrier(bas);
890 
891 	count = 0;
892 	delay = ns8250_delay(bas);
893 
894 	/* We have FIFOs. Drain the transmitter and receiver. */
895 	error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER);
896 	if (error) {
897 		uart_setreg(bas, REG_MCR, mcr);
898 		uart_setreg(bas, REG_FCR, 0);
899 		uart_barrier(bas);
900 		goto describe;
901 	}
902 
903 	/*
904 	 * We should have a sufficiently clean "pipe" to determine the
905 	 * size of the FIFOs. We send as much characters as is reasonable
906 	 * and wait for the overflow bit in the LSR register to be
907 	 * asserted, counting the characters as we send them. Based on
908 	 * that count we know the FIFO size.
909 	 */
910 	do {
911 		uart_setreg(bas, REG_DATA, 0);
912 		uart_barrier(bas);
913 		count++;
914 
915 		limit = 30;
916 		lsr = 0;
917 		/*
918 		 * LSR bits are cleared upon read, so we must accumulate
919 		 * them to be able to test LSR_OE below.
920 		 */
921 		while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 &&
922 		    --limit)
923 			DELAY(delay);
924 		if (limit == 0) {
925 			/* See the comment in ns8250_init(). */
926 			ier = uart_getreg(bas, REG_IER) & 0xe0;
927 			uart_setreg(bas, REG_IER, ier);
928 			uart_setreg(bas, REG_MCR, mcr);
929 			uart_setreg(bas, REG_FCR, 0);
930 			uart_barrier(bas);
931 			count = 0;
932 			goto describe;
933 		}
934 	} while ((lsr & LSR_OE) == 0 && count < 260);
935 	count--;
936 
937 	uart_setreg(bas, REG_MCR, mcr);
938 
939 	/* Reset FIFOs. */
940 	ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
941 
942  describe:
943 	if (count >= 14 && count <= 16) {
944 		sc->sc_rxfifosz = 16;
945 		device_set_desc(sc->sc_dev, "16550 or compatible");
946 	} else if (count >= 28 && count <= 32) {
947 		sc->sc_rxfifosz = 32;
948 		device_set_desc(sc->sc_dev, "16650 or compatible");
949 	} else if (count >= 56 && count <= 64) {
950 		sc->sc_rxfifosz = 64;
951 		device_set_desc(sc->sc_dev, "16750 or compatible");
952 	} else if (count >= 112 && count <= 128) {
953 		sc->sc_rxfifosz = 128;
954 		device_set_desc(sc->sc_dev, "16950 or compatible");
955 	} else if (count >= 224 && count <= 256) {
956 		sc->sc_rxfifosz = 256;
957 		device_set_desc(sc->sc_dev, "16x50 with 256 byte FIFO");
958 	} else {
959 		sc->sc_rxfifosz = 16;
960 		device_set_desc(sc->sc_dev,
961 		    "Non-standard ns8250 class UART with FIFOs");
962 	}
963 
964 	/*
965 	 * Force the Tx FIFO size to 16 bytes for now. We don't program the
966 	 * Tx trigger. Also, we assume that all data has been sent when the
967 	 * interrupt happens.
968 	 */
969 	sc->sc_txfifosz = 16;
970 
971 #if 0
972 	/*
973 	 * XXX there are some issues related to hardware flow control and
974 	 * it's likely that uart(4) is the cause. This basically needs more
975 	 * investigation, but we avoid using for hardware flow control
976 	 * until then.
977 	 */
978 	/* 16650s or higher have automatic flow control. */
979 	if (sc->sc_rxfifosz > 16) {
980 		sc->sc_hwiflow = 1;
981 		sc->sc_hwoflow = 1;
982 	}
983 #endif
984 
985 	return (0);
986 }
987 
988 int
989 ns8250_bus_receive(struct uart_softc *sc)
990 {
991 	struct uart_bas *bas;
992 	int xc;
993 	uint8_t lsr;
994 
995 	bas = &sc->sc_bas;
996 	uart_lock(sc->sc_hwmtx);
997 	lsr = uart_getreg(bas, REG_LSR);
998 	while (lsr & LSR_RXRDY) {
999 		if (uart_rx_full(sc)) {
1000 			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
1001 			break;
1002 		}
1003 		xc = uart_getreg(bas, REG_DATA);
1004 		if (lsr & LSR_FE)
1005 			xc |= UART_STAT_FRAMERR;
1006 		if (lsr & LSR_PE)
1007 			xc |= UART_STAT_PARERR;
1008 		uart_rx_put(sc, xc);
1009 		lsr = uart_getreg(bas, REG_LSR);
1010 	}
1011 	/* Discard everything left in the Rx FIFO. */
1012 	while (lsr & LSR_RXRDY) {
1013 		(void)uart_getreg(bas, REG_DATA);
1014 		uart_barrier(bas);
1015 		lsr = uart_getreg(bas, REG_LSR);
1016 	}
1017 	uart_unlock(sc->sc_hwmtx);
1018  	return (0);
1019 }
1020 
1021 int
1022 ns8250_bus_setsig(struct uart_softc *sc, int sig)
1023 {
1024 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1025 	struct uart_bas *bas;
1026 	uint32_t new, old;
1027 
1028 	bas = &sc->sc_bas;
1029 	do {
1030 		old = sc->sc_hwsig;
1031 		new = old;
1032 		if (sig & SER_DDTR) {
1033 			new = (new & ~SER_DTR) | (sig & (SER_DTR | SER_DDTR));
1034 		}
1035 		if (sig & SER_DRTS) {
1036 			new = (new & ~SER_RTS) | (sig & (SER_RTS | SER_DRTS));
1037 		}
1038 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
1039 	uart_lock(sc->sc_hwmtx);
1040 	ns8250->mcr &= ~(MCR_DTR|MCR_RTS);
1041 	if (new & SER_DTR)
1042 		ns8250->mcr |= MCR_DTR;
1043 	if (new & SER_RTS)
1044 		ns8250->mcr |= MCR_RTS;
1045 	uart_setreg(bas, REG_MCR, ns8250->mcr);
1046 	uart_barrier(bas);
1047 	uart_unlock(sc->sc_hwmtx);
1048 	return (0);
1049 }
1050 
1051 int
1052 ns8250_bus_transmit(struct uart_softc *sc)
1053 {
1054 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1055 	struct uart_bas *bas;
1056 	int i;
1057 
1058 	bas = &sc->sc_bas;
1059 	uart_lock(sc->sc_hwmtx);
1060 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0)
1061 		DELAY(4);
1062 	for (i = 0; i < sc->sc_txdatasz; i++) {
1063 		uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]);
1064 		uart_barrier(bas);
1065 	}
1066 	if (!broken_txfifo)
1067 		ns8250->ier |= IER_ETXRDY;
1068 	uart_setreg(bas, REG_IER, ns8250->ier);
1069 	uart_barrier(bas);
1070 	if (broken_txfifo)
1071 		ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
1072 	else
1073 		sc->sc_txbusy = 1;
1074 	uart_unlock(sc->sc_hwmtx);
1075 	if (broken_txfifo)
1076 		uart_sched_softih(sc, SER_INT_TXIDLE);
1077 	return (0);
1078 }
1079 
1080 bool
1081 ns8250_bus_txbusy(struct uart_softc *sc)
1082 {
1083 	struct uart_bas *bas = &sc->sc_bas;
1084 
1085 	if ((uart_getreg(bas, REG_LSR) & (LSR_TEMT | LSR_THRE)) !=
1086 	    (LSR_TEMT | LSR_THRE))
1087 		return (true);
1088 	return (false);
1089 }
1090 
1091 void
1092 ns8250_bus_grab(struct uart_softc *sc)
1093 {
1094 	struct uart_bas *bas = &sc->sc_bas;
1095 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1096 	u_char ier;
1097 
1098 	/*
1099 	 * turn off all interrupts to enter polling mode. Leave the
1100 	 * saved mask alone. We'll restore whatever it was in ungrab.
1101 	 * All pending interrupt signals are reset when IER is set to 0.
1102 	 */
1103 	uart_lock(sc->sc_hwmtx);
1104 	ier = uart_getreg(bas, REG_IER);
1105 	uart_setreg(bas, REG_IER, ier & ns8250->ier_mask);
1106 	uart_barrier(bas);
1107 	uart_unlock(sc->sc_hwmtx);
1108 }
1109 
1110 void
1111 ns8250_bus_ungrab(struct uart_softc *sc)
1112 {
1113 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1114 	struct uart_bas *bas = &sc->sc_bas;
1115 
1116 	/*
1117 	 * Restore previous interrupt mask
1118 	 */
1119 	uart_lock(sc->sc_hwmtx);
1120 	uart_setreg(bas, REG_IER, ns8250->ier);
1121 	uart_barrier(bas);
1122 	uart_unlock(sc->sc_hwmtx);
1123 }
1124