xref: /freebsd/sys/dev/uart/uart_dev_ns8250.c (revision 5686c6c38a3e1cc78804eaf5f880bda23dcf592f)
1 /*-
2  * Copyright (c) 2003 Marcel Moolenaar
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include "opt_platform.h"
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/conf.h>
36 #include <sys/kernel.h>
37 #include <sys/sysctl.h>
38 #include <machine/bus.h>
39 
40 #ifdef FDT
41 #include <dev/fdt/fdt_common.h>
42 #include <dev/ofw/ofw_bus.h>
43 #include <dev/ofw/ofw_bus_subr.h>
44 #endif
45 
46 #include <dev/uart/uart.h>
47 #include <dev/uart/uart_cpu.h>
48 #include <dev/uart/uart_bus.h>
49 
50 #include <dev/ic/ns16550.h>
51 
52 #include "uart_if.h"
53 
54 #define	DEFAULT_RCLK	1843200
55 
56 static int broken_txfifo = 0;
57 SYSCTL_INT(_hw, OID_AUTO, broken_txfifo, CTLFLAG_RW | CTLFLAG_TUN,
58 	&broken_txfifo, 0, "UART FIFO has QEMU emulation bug");
59 TUNABLE_INT("hw.broken_txfifo", &broken_txfifo);
60 
61 /*
62  * Clear pending interrupts. THRE is cleared by reading IIR. Data
63  * that may have been received gets lost here.
64  */
65 static void
66 ns8250_clrint(struct uart_bas *bas)
67 {
68 	uint8_t iir, lsr;
69 
70 	iir = uart_getreg(bas, REG_IIR);
71 	while ((iir & IIR_NOPEND) == 0) {
72 		iir &= IIR_IMASK;
73 		if (iir == IIR_RLS) {
74 			lsr = uart_getreg(bas, REG_LSR);
75 			if (lsr & (LSR_BI|LSR_FE|LSR_PE))
76 				(void)uart_getreg(bas, REG_DATA);
77 		} else if (iir == IIR_RXRDY || iir == IIR_RXTOUT)
78 			(void)uart_getreg(bas, REG_DATA);
79 		else if (iir == IIR_MLSC)
80 			(void)uart_getreg(bas, REG_MSR);
81 		uart_barrier(bas);
82 		iir = uart_getreg(bas, REG_IIR);
83 	}
84 }
85 
86 static int
87 ns8250_delay(struct uart_bas *bas)
88 {
89 	int divisor;
90 	u_char lcr;
91 
92 	lcr = uart_getreg(bas, REG_LCR);
93 	uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
94 	uart_barrier(bas);
95 	divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8);
96 	uart_barrier(bas);
97 	uart_setreg(bas, REG_LCR, lcr);
98 	uart_barrier(bas);
99 
100 	/* 1/10th the time to transmit 1 character (estimate). */
101 	if (divisor <= 134)
102 		return (16000000 * divisor / bas->rclk);
103 	return (16000 * divisor / (bas->rclk / 1000));
104 }
105 
106 static int
107 ns8250_divisor(int rclk, int baudrate)
108 {
109 	int actual_baud, divisor;
110 	int error;
111 
112 	if (baudrate == 0)
113 		return (0);
114 
115 	divisor = (rclk / (baudrate << 3) + 1) >> 1;
116 	if (divisor == 0 || divisor >= 65536)
117 		return (0);
118 	actual_baud = rclk / (divisor << 4);
119 
120 	/* 10 times error in percent: */
121 	error = ((actual_baud - baudrate) * 2000 / baudrate + 1) >> 1;
122 
123 	/* 3.0% maximum error tolerance: */
124 	if (error < -30 || error > 30)
125 		return (0);
126 
127 	return (divisor);
128 }
129 
130 static int
131 ns8250_drain(struct uart_bas *bas, int what)
132 {
133 	int delay, limit;
134 
135 	delay = ns8250_delay(bas);
136 
137 	if (what & UART_DRAIN_TRANSMITTER) {
138 		/*
139 		 * Pick an arbitrary high limit to avoid getting stuck in
140 		 * an infinite loop when the hardware is broken. Make the
141 		 * limit high enough to handle large FIFOs.
142 		 */
143 		limit = 10*1024;
144 		while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
145 			DELAY(delay);
146 		if (limit == 0) {
147 			/* printf("ns8250: transmitter appears stuck... "); */
148 			return (EIO);
149 		}
150 	}
151 
152 	if (what & UART_DRAIN_RECEIVER) {
153 		/*
154 		 * Pick an arbitrary high limit to avoid getting stuck in
155 		 * an infinite loop when the hardware is broken. Make the
156 		 * limit high enough to handle large FIFOs and integrated
157 		 * UARTs. The HP rx2600 for example has 3 UARTs on the
158 		 * management board that tend to get a lot of data send
159 		 * to it when the UART is first activated.
160 		 */
161 		limit=10*4096;
162 		while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) {
163 			(void)uart_getreg(bas, REG_DATA);
164 			uart_barrier(bas);
165 			DELAY(delay << 2);
166 		}
167 		if (limit == 0) {
168 			/* printf("ns8250: receiver appears broken... "); */
169 			return (EIO);
170 		}
171 	}
172 
173 	return (0);
174 }
175 
176 /*
177  * We can only flush UARTs with FIFOs. UARTs without FIFOs should be
178  * drained. WARNING: this function clobbers the FIFO setting!
179  */
180 static void
181 ns8250_flush(struct uart_bas *bas, int what)
182 {
183 	uint8_t fcr;
184 
185 	fcr = FCR_ENABLE;
186 	if (what & UART_FLUSH_TRANSMITTER)
187 		fcr |= FCR_XMT_RST;
188 	if (what & UART_FLUSH_RECEIVER)
189 		fcr |= FCR_RCV_RST;
190 	uart_setreg(bas, REG_FCR, fcr);
191 	uart_barrier(bas);
192 }
193 
194 static int
195 ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
196     int parity)
197 {
198 	int divisor;
199 	uint8_t lcr;
200 
201 	lcr = 0;
202 	if (databits >= 8)
203 		lcr |= LCR_8BITS;
204 	else if (databits == 7)
205 		lcr |= LCR_7BITS;
206 	else if (databits == 6)
207 		lcr |= LCR_6BITS;
208 	else
209 		lcr |= LCR_5BITS;
210 	if (stopbits > 1)
211 		lcr |= LCR_STOPB;
212 	lcr |= parity << 3;
213 
214 	/* Set baudrate. */
215 	if (baudrate > 0) {
216 		divisor = ns8250_divisor(bas->rclk, baudrate);
217 		if (divisor == 0)
218 			return (EINVAL);
219 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
220 		uart_barrier(bas);
221 		uart_setreg(bas, REG_DLL, divisor & 0xff);
222 		uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff);
223 		uart_barrier(bas);
224 	}
225 
226 	/* Set LCR and clear DLAB. */
227 	uart_setreg(bas, REG_LCR, lcr);
228 	uart_barrier(bas);
229 	return (0);
230 }
231 
232 /*
233  * Low-level UART interface.
234  */
235 static int ns8250_probe(struct uart_bas *bas);
236 static void ns8250_init(struct uart_bas *bas, int, int, int, int);
237 static void ns8250_term(struct uart_bas *bas);
238 static void ns8250_putc(struct uart_bas *bas, int);
239 static int ns8250_rxready(struct uart_bas *bas);
240 static int ns8250_getc(struct uart_bas *bas, struct mtx *);
241 
242 static struct uart_ops uart_ns8250_ops = {
243 	.probe = ns8250_probe,
244 	.init = ns8250_init,
245 	.term = ns8250_term,
246 	.putc = ns8250_putc,
247 	.rxready = ns8250_rxready,
248 	.getc = ns8250_getc,
249 };
250 
251 static int
252 ns8250_probe(struct uart_bas *bas)
253 {
254 	u_char val;
255 
256 	/* Check known 0 bits that don't depend on DLAB. */
257 	val = uart_getreg(bas, REG_IIR);
258 	if (val & 0x30)
259 		return (ENXIO);
260 	/*
261 	 * Bit 6 of the MCR (= 0x40) appears to be 1 for the Sun1699
262 	 * chip, but otherwise doesn't seem to have a function. In
263 	 * other words, uart(4) works regardless. Ignore that bit so
264 	 * the probe succeeds.
265 	 */
266 	val = uart_getreg(bas, REG_MCR);
267 	if (val & 0xa0)
268 		return (ENXIO);
269 
270 	return (0);
271 }
272 
273 static void
274 ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
275     int parity)
276 {
277 	u_char	ier;
278 
279 	if (bas->rclk == 0)
280 		bas->rclk = DEFAULT_RCLK;
281 	ns8250_param(bas, baudrate, databits, stopbits, parity);
282 
283 	/* Disable all interrupt sources. */
284 	/*
285 	 * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA
286 	 * UARTs split the receive time-out interrupt bit out separately as
287 	 * 0x10.  This gets handled by ier_mask and ier_rxbits below.
288 	 */
289 	ier = uart_getreg(bas, REG_IER) & 0xe0;
290 	uart_setreg(bas, REG_IER, ier);
291 	uart_barrier(bas);
292 
293 	/* Disable the FIFO (if present). */
294 	uart_setreg(bas, REG_FCR, 0);
295 	uart_barrier(bas);
296 
297 	/* Set RTS & DTR. */
298 	uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR);
299 	uart_barrier(bas);
300 
301 	ns8250_clrint(bas);
302 }
303 
304 static void
305 ns8250_term(struct uart_bas *bas)
306 {
307 
308 	/* Clear RTS & DTR. */
309 	uart_setreg(bas, REG_MCR, MCR_IE);
310 	uart_barrier(bas);
311 }
312 
313 static void
314 ns8250_putc(struct uart_bas *bas, int c)
315 {
316 	int limit;
317 
318 	limit = 250000;
319 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit)
320 		DELAY(4);
321 	uart_setreg(bas, REG_DATA, c);
322 	uart_barrier(bas);
323 	limit = 250000;
324 	while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
325 		DELAY(4);
326 }
327 
328 static int
329 ns8250_rxready(struct uart_bas *bas)
330 {
331 
332 	return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0);
333 }
334 
335 static int
336 ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx)
337 {
338 	int c;
339 
340 	uart_lock(hwmtx);
341 
342 	while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) {
343 		uart_unlock(hwmtx);
344 		DELAY(4);
345 		uart_lock(hwmtx);
346 	}
347 
348 	c = uart_getreg(bas, REG_DATA);
349 
350 	uart_unlock(hwmtx);
351 
352 	return (c);
353 }
354 
355 /*
356  * High-level UART interface.
357  */
358 struct ns8250_softc {
359 	struct uart_softc base;
360 	uint8_t		fcr;
361 	uint8_t		ier;
362 	uint8_t		mcr;
363 
364 	uint8_t		ier_mask;
365 	uint8_t		ier_rxbits;
366 	uint8_t		busy_detect;
367 };
368 
369 static int ns8250_bus_attach(struct uart_softc *);
370 static int ns8250_bus_detach(struct uart_softc *);
371 static int ns8250_bus_flush(struct uart_softc *, int);
372 static int ns8250_bus_getsig(struct uart_softc *);
373 static int ns8250_bus_ioctl(struct uart_softc *, int, intptr_t);
374 static int ns8250_bus_ipend(struct uart_softc *);
375 static int ns8250_bus_param(struct uart_softc *, int, int, int, int);
376 static int ns8250_bus_probe(struct uart_softc *);
377 static int ns8250_bus_receive(struct uart_softc *);
378 static int ns8250_bus_setsig(struct uart_softc *, int);
379 static int ns8250_bus_transmit(struct uart_softc *);
380 
381 static kobj_method_t ns8250_methods[] = {
382 	KOBJMETHOD(uart_attach,		ns8250_bus_attach),
383 	KOBJMETHOD(uart_detach,		ns8250_bus_detach),
384 	KOBJMETHOD(uart_flush,		ns8250_bus_flush),
385 	KOBJMETHOD(uart_getsig,		ns8250_bus_getsig),
386 	KOBJMETHOD(uart_ioctl,		ns8250_bus_ioctl),
387 	KOBJMETHOD(uart_ipend,		ns8250_bus_ipend),
388 	KOBJMETHOD(uart_param,		ns8250_bus_param),
389 	KOBJMETHOD(uart_probe,		ns8250_bus_probe),
390 	KOBJMETHOD(uart_receive,	ns8250_bus_receive),
391 	KOBJMETHOD(uart_setsig,		ns8250_bus_setsig),
392 	KOBJMETHOD(uart_transmit,	ns8250_bus_transmit),
393 	{ 0, 0 }
394 };
395 
396 struct uart_class uart_ns8250_class = {
397 	"ns8250",
398 	ns8250_methods,
399 	sizeof(struct ns8250_softc),
400 	.uc_ops = &uart_ns8250_ops,
401 	.uc_range = 8,
402 	.uc_rclk = DEFAULT_RCLK
403 };
404 
405 #define	SIGCHG(c, i, s, d)				\
406 	if (c) {					\
407 		i |= (i & s) ? s : s | d;		\
408 	} else {					\
409 		i = (i & s) ? (i & ~s) | d : i;		\
410 	}
411 
412 static int
413 ns8250_bus_attach(struct uart_softc *sc)
414 {
415 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
416 	struct uart_bas *bas;
417 	unsigned int ivar;
418 #ifdef FDT
419 	phandle_t node;
420 	pcell_t cell;
421 #endif
422 
423 	ns8250->busy_detect = 0;
424 
425 #ifdef FDT
426 	/*
427 	 * Check whether uart requires to read USR reg when IIR_BUSY and
428 	 * has broken txfifo.
429 	 */
430 	node = ofw_bus_get_node(sc->sc_dev);
431 	if ((OF_getprop(node, "busy-detect", &cell, sizeof(cell))) > 0)
432 		ns8250->busy_detect = 1;
433 	if ((OF_getprop(node, "broken-txfifo", &cell, sizeof(cell))) > 0)
434 		broken_txfifo = 1;
435 #endif
436 
437 	bas = &sc->sc_bas;
438 
439 	ns8250->mcr = uart_getreg(bas, REG_MCR);
440 	ns8250->fcr = FCR_ENABLE;
441 	if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags",
442 	    &ivar)) {
443 		if (UART_FLAGS_FCR_RX_LOW(ivar))
444 			ns8250->fcr |= FCR_RX_LOW;
445 		else if (UART_FLAGS_FCR_RX_MEDL(ivar))
446 			ns8250->fcr |= FCR_RX_MEDL;
447 		else if (UART_FLAGS_FCR_RX_HIGH(ivar))
448 			ns8250->fcr |= FCR_RX_HIGH;
449 		else
450 			ns8250->fcr |= FCR_RX_MEDH;
451 	} else
452 		ns8250->fcr |= FCR_RX_MEDH;
453 
454 	/* Get IER mask */
455 	ivar = 0xf0;
456 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask",
457 	    &ivar);
458 	ns8250->ier_mask = (uint8_t)(ivar & 0xff);
459 
460 	/* Get IER RX interrupt bits */
461 	ivar = IER_EMSC | IER_ERLS | IER_ERXRDY;
462 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits",
463 	    &ivar);
464 	ns8250->ier_rxbits = (uint8_t)(ivar & 0xff);
465 
466 	uart_setreg(bas, REG_FCR, ns8250->fcr);
467 	uart_barrier(bas);
468 	ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
469 
470 	if (ns8250->mcr & MCR_DTR)
471 		sc->sc_hwsig |= SER_DTR;
472 	if (ns8250->mcr & MCR_RTS)
473 		sc->sc_hwsig |= SER_RTS;
474 	ns8250_bus_getsig(sc);
475 
476 	ns8250_clrint(bas);
477 	ns8250->ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
478 	ns8250->ier |= ns8250->ier_rxbits;
479 	uart_setreg(bas, REG_IER, ns8250->ier);
480 	uart_barrier(bas);
481 
482 	return (0);
483 }
484 
485 static int
486 ns8250_bus_detach(struct uart_softc *sc)
487 {
488 	struct ns8250_softc *ns8250;
489 	struct uart_bas *bas;
490 	u_char ier;
491 
492 	ns8250 = (struct ns8250_softc *)sc;
493 	bas = &sc->sc_bas;
494 	ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
495 	uart_setreg(bas, REG_IER, ier);
496 	uart_barrier(bas);
497 	ns8250_clrint(bas);
498 	return (0);
499 }
500 
501 static int
502 ns8250_bus_flush(struct uart_softc *sc, int what)
503 {
504 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
505 	struct uart_bas *bas;
506 	int error;
507 
508 	bas = &sc->sc_bas;
509 	uart_lock(sc->sc_hwmtx);
510 	if (sc->sc_rxfifosz > 1) {
511 		ns8250_flush(bas, what);
512 		uart_setreg(bas, REG_FCR, ns8250->fcr);
513 		uart_barrier(bas);
514 		error = 0;
515 	} else
516 		error = ns8250_drain(bas, what);
517 	uart_unlock(sc->sc_hwmtx);
518 	return (error);
519 }
520 
521 static int
522 ns8250_bus_getsig(struct uart_softc *sc)
523 {
524 	uint32_t new, old, sig;
525 	uint8_t msr;
526 
527 	do {
528 		old = sc->sc_hwsig;
529 		sig = old;
530 		uart_lock(sc->sc_hwmtx);
531 		msr = uart_getreg(&sc->sc_bas, REG_MSR);
532 		uart_unlock(sc->sc_hwmtx);
533 		SIGCHG(msr & MSR_DSR, sig, SER_DSR, SER_DDSR);
534 		SIGCHG(msr & MSR_CTS, sig, SER_CTS, SER_DCTS);
535 		SIGCHG(msr & MSR_DCD, sig, SER_DCD, SER_DDCD);
536 		SIGCHG(msr & MSR_RI,  sig, SER_RI,  SER_DRI);
537 		new = sig & ~SER_MASK_DELTA;
538 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
539 	return (sig);
540 }
541 
542 static int
543 ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
544 {
545 	struct uart_bas *bas;
546 	int baudrate, divisor, error;
547 	uint8_t efr, lcr;
548 
549 	bas = &sc->sc_bas;
550 	error = 0;
551 	uart_lock(sc->sc_hwmtx);
552 	switch (request) {
553 	case UART_IOCTL_BREAK:
554 		lcr = uart_getreg(bas, REG_LCR);
555 		if (data)
556 			lcr |= LCR_SBREAK;
557 		else
558 			lcr &= ~LCR_SBREAK;
559 		uart_setreg(bas, REG_LCR, lcr);
560 		uart_barrier(bas);
561 		break;
562 	case UART_IOCTL_IFLOW:
563 		lcr = uart_getreg(bas, REG_LCR);
564 		uart_barrier(bas);
565 		uart_setreg(bas, REG_LCR, 0xbf);
566 		uart_barrier(bas);
567 		efr = uart_getreg(bas, REG_EFR);
568 		if (data)
569 			efr |= EFR_RTS;
570 		else
571 			efr &= ~EFR_RTS;
572 		uart_setreg(bas, REG_EFR, efr);
573 		uart_barrier(bas);
574 		uart_setreg(bas, REG_LCR, lcr);
575 		uart_barrier(bas);
576 		break;
577 	case UART_IOCTL_OFLOW:
578 		lcr = uart_getreg(bas, REG_LCR);
579 		uart_barrier(bas);
580 		uart_setreg(bas, REG_LCR, 0xbf);
581 		uart_barrier(bas);
582 		efr = uart_getreg(bas, REG_EFR);
583 		if (data)
584 			efr |= EFR_CTS;
585 		else
586 			efr &= ~EFR_CTS;
587 		uart_setreg(bas, REG_EFR, efr);
588 		uart_barrier(bas);
589 		uart_setreg(bas, REG_LCR, lcr);
590 		uart_barrier(bas);
591 		break;
592 	case UART_IOCTL_BAUD:
593 		lcr = uart_getreg(bas, REG_LCR);
594 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
595 		uart_barrier(bas);
596 		divisor = uart_getreg(bas, REG_DLL) |
597 		    (uart_getreg(bas, REG_DLH) << 8);
598 		uart_barrier(bas);
599 		uart_setreg(bas, REG_LCR, lcr);
600 		uart_barrier(bas);
601 		baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0;
602 		if (baudrate > 0)
603 			*(int*)data = baudrate;
604 		else
605 			error = ENXIO;
606 		break;
607 	default:
608 		error = EINVAL;
609 		break;
610 	}
611 	uart_unlock(sc->sc_hwmtx);
612 	return (error);
613 }
614 
615 static int
616 ns8250_bus_ipend(struct uart_softc *sc)
617 {
618 	struct uart_bas *bas;
619 	struct ns8250_softc *ns8250;
620 	int ipend;
621 	uint8_t iir, lsr;
622 
623 	ns8250 = (struct ns8250_softc *)sc;
624 	bas = &sc->sc_bas;
625 	uart_lock(sc->sc_hwmtx);
626 	iir = uart_getreg(bas, REG_IIR);
627 
628 	if (ns8250->busy_detect && (iir & IIR_BUSY) == IIR_BUSY) {
629 		(void)uart_getreg(bas, DW_REG_USR);
630 		uart_unlock(sc->sc_hwmtx);
631 		return (0);
632 	}
633 	if (iir & IIR_NOPEND) {
634 		uart_unlock(sc->sc_hwmtx);
635 		return (0);
636 	}
637 	ipend = 0;
638 	if (iir & IIR_RXRDY) {
639 		lsr = uart_getreg(bas, REG_LSR);
640 		if (lsr & LSR_OE)
641 			ipend |= SER_INT_OVERRUN;
642 		if (lsr & LSR_BI)
643 			ipend |= SER_INT_BREAK;
644 		if (lsr & LSR_RXRDY)
645 			ipend |= SER_INT_RXREADY;
646 	} else {
647 		if (iir & IIR_TXRDY) {
648 			ipend |= SER_INT_TXIDLE;
649 			uart_setreg(bas, REG_IER, ns8250->ier);
650 		} else
651 			ipend |= SER_INT_SIGCHG;
652 	}
653 	if (ipend == 0)
654 		ns8250_clrint(bas);
655 	uart_unlock(sc->sc_hwmtx);
656 	return (ipend);
657 }
658 
659 static int
660 ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits,
661     int stopbits, int parity)
662 {
663 	struct uart_bas *bas;
664 	int error;
665 
666 	bas = &sc->sc_bas;
667 	uart_lock(sc->sc_hwmtx);
668 	error = ns8250_param(bas, baudrate, databits, stopbits, parity);
669 	uart_unlock(sc->sc_hwmtx);
670 	return (error);
671 }
672 
673 static int
674 ns8250_bus_probe(struct uart_softc *sc)
675 {
676 	struct ns8250_softc *ns8250;
677 	struct uart_bas *bas;
678 	int count, delay, error, limit;
679 	uint8_t lsr, mcr, ier;
680 
681 	ns8250 = (struct ns8250_softc *)sc;
682 	bas = &sc->sc_bas;
683 
684 	error = ns8250_probe(bas);
685 	if (error)
686 		return (error);
687 
688 	mcr = MCR_IE;
689 	if (sc->sc_sysdev == NULL) {
690 		/* By using ns8250_init() we also set DTR and RTS. */
691 		ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE);
692 	} else
693 		mcr |= MCR_DTR | MCR_RTS;
694 
695 	error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
696 	if (error)
697 		return (error);
698 
699 	/*
700 	 * Set loopback mode. This avoids having garbage on the wire and
701 	 * also allows us send and receive data. We set DTR and RTS to
702 	 * avoid the possibility that automatic flow-control prevents
703 	 * any data from being sent.
704 	 */
705 	uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS);
706 	uart_barrier(bas);
707 
708 	/*
709 	 * Enable FIFOs. And check that the UART has them. If not, we're
710 	 * done. Since this is the first time we enable the FIFOs, we reset
711 	 * them.
712 	 */
713 	uart_setreg(bas, REG_FCR, FCR_ENABLE);
714 	uart_barrier(bas);
715 	if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) {
716 		/*
717 		 * NS16450 or INS8250. We don't bother to differentiate
718 		 * between them. They're too old to be interesting.
719 		 */
720 		uart_setreg(bas, REG_MCR, mcr);
721 		uart_barrier(bas);
722 		sc->sc_rxfifosz = sc->sc_txfifosz = 1;
723 		device_set_desc(sc->sc_dev, "8250 or 16450 or compatible");
724 		return (0);
725 	}
726 
727 	uart_setreg(bas, REG_FCR, FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST);
728 	uart_barrier(bas);
729 
730 	count = 0;
731 	delay = ns8250_delay(bas);
732 
733 	/* We have FIFOs. Drain the transmitter and receiver. */
734 	error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER);
735 	if (error) {
736 		uart_setreg(bas, REG_MCR, mcr);
737 		uart_setreg(bas, REG_FCR, 0);
738 		uart_barrier(bas);
739 		goto describe;
740 	}
741 
742 	/*
743 	 * We should have a sufficiently clean "pipe" to determine the
744 	 * size of the FIFOs. We send as much characters as is reasonable
745 	 * and wait for the overflow bit in the LSR register to be
746 	 * asserted, counting the characters as we send them. Based on
747 	 * that count we know the FIFO size.
748 	 */
749 	do {
750 		uart_setreg(bas, REG_DATA, 0);
751 		uart_barrier(bas);
752 		count++;
753 
754 		limit = 30;
755 		lsr = 0;
756 		/*
757 		 * LSR bits are cleared upon read, so we must accumulate
758 		 * them to be able to test LSR_OE below.
759 		 */
760 		while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 &&
761 		    --limit)
762 			DELAY(delay);
763 		if (limit == 0) {
764 			ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
765 			uart_setreg(bas, REG_IER, ier);
766 			uart_setreg(bas, REG_MCR, mcr);
767 			uart_setreg(bas, REG_FCR, 0);
768 			uart_barrier(bas);
769 			count = 0;
770 			goto describe;
771 		}
772 	} while ((lsr & LSR_OE) == 0 && count < 130);
773 	count--;
774 
775 	uart_setreg(bas, REG_MCR, mcr);
776 
777 	/* Reset FIFOs. */
778 	ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
779 
780  describe:
781 	if (count >= 14 && count <= 16) {
782 		sc->sc_rxfifosz = 16;
783 		device_set_desc(sc->sc_dev, "16550 or compatible");
784 	} else if (count >= 28 && count <= 32) {
785 		sc->sc_rxfifosz = 32;
786 		device_set_desc(sc->sc_dev, "16650 or compatible");
787 	} else if (count >= 56 && count <= 64) {
788 		sc->sc_rxfifosz = 64;
789 		device_set_desc(sc->sc_dev, "16750 or compatible");
790 	} else if (count >= 112 && count <= 128) {
791 		sc->sc_rxfifosz = 128;
792 		device_set_desc(sc->sc_dev, "16950 or compatible");
793 	} else {
794 		sc->sc_rxfifosz = 16;
795 		device_set_desc(sc->sc_dev,
796 		    "Non-standard ns8250 class UART with FIFOs");
797 	}
798 
799 	/*
800 	 * Force the Tx FIFO size to 16 bytes for now. We don't program the
801 	 * Tx trigger. Also, we assume that all data has been sent when the
802 	 * interrupt happens.
803 	 */
804 	sc->sc_txfifosz = 16;
805 
806 #if 0
807 	/*
808 	 * XXX there are some issues related to hardware flow control and
809 	 * it's likely that uart(4) is the cause. This basicly needs more
810 	 * investigation, but we avoid using for hardware flow control
811 	 * until then.
812 	 */
813 	/* 16650s or higher have automatic flow control. */
814 	if (sc->sc_rxfifosz > 16) {
815 		sc->sc_hwiflow = 1;
816 		sc->sc_hwoflow = 1;
817 	}
818 #endif
819 
820 	return (0);
821 }
822 
823 static int
824 ns8250_bus_receive(struct uart_softc *sc)
825 {
826 	struct uart_bas *bas;
827 	int xc;
828 	uint8_t lsr;
829 
830 	bas = &sc->sc_bas;
831 	uart_lock(sc->sc_hwmtx);
832 	lsr = uart_getreg(bas, REG_LSR);
833 	while (lsr & LSR_RXRDY) {
834 		if (uart_rx_full(sc)) {
835 			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
836 			break;
837 		}
838 		xc = uart_getreg(bas, REG_DATA);
839 		if (lsr & LSR_FE)
840 			xc |= UART_STAT_FRAMERR;
841 		if (lsr & LSR_PE)
842 			xc |= UART_STAT_PARERR;
843 		uart_rx_put(sc, xc);
844 		lsr = uart_getreg(bas, REG_LSR);
845 	}
846 	/* Discard everything left in the Rx FIFO. */
847 	while (lsr & LSR_RXRDY) {
848 		(void)uart_getreg(bas, REG_DATA);
849 		uart_barrier(bas);
850 		lsr = uart_getreg(bas, REG_LSR);
851 	}
852 	uart_unlock(sc->sc_hwmtx);
853  	return (0);
854 }
855 
856 static int
857 ns8250_bus_setsig(struct uart_softc *sc, int sig)
858 {
859 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
860 	struct uart_bas *bas;
861 	uint32_t new, old;
862 
863 	bas = &sc->sc_bas;
864 	do {
865 		old = sc->sc_hwsig;
866 		new = old;
867 		if (sig & SER_DDTR) {
868 			SIGCHG(sig & SER_DTR, new, SER_DTR,
869 			    SER_DDTR);
870 		}
871 		if (sig & SER_DRTS) {
872 			SIGCHG(sig & SER_RTS, new, SER_RTS,
873 			    SER_DRTS);
874 		}
875 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
876 	uart_lock(sc->sc_hwmtx);
877 	ns8250->mcr &= ~(MCR_DTR|MCR_RTS);
878 	if (new & SER_DTR)
879 		ns8250->mcr |= MCR_DTR;
880 	if (new & SER_RTS)
881 		ns8250->mcr |= MCR_RTS;
882 	uart_setreg(bas, REG_MCR, ns8250->mcr);
883 	uart_barrier(bas);
884 	uart_unlock(sc->sc_hwmtx);
885 	return (0);
886 }
887 
888 static int
889 ns8250_bus_transmit(struct uart_softc *sc)
890 {
891 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
892 	struct uart_bas *bas;
893 	int i;
894 
895 	bas = &sc->sc_bas;
896 	uart_lock(sc->sc_hwmtx);
897 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0)
898 		;
899 	uart_setreg(bas, REG_IER, ns8250->ier | IER_ETXRDY);
900 	uart_barrier(bas);
901 	for (i = 0; i < sc->sc_txdatasz; i++) {
902 		uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]);
903 		uart_barrier(bas);
904 	}
905 	if (broken_txfifo)
906 		ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
907 	else
908 		sc->sc_txbusy = 1;
909 	uart_unlock(sc->sc_hwmtx);
910 	if (broken_txfifo)
911 		uart_sched_softih(sc, SER_INT_TXIDLE);
912 	return (0);
913 }
914