1 /*- 2 * Copyright (c) 2003 Marcel Moolenaar 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include "opt_platform.h" 28 #include "opt_uart.h" 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/bus.h> 36 #include <sys/conf.h> 37 #include <sys/kernel.h> 38 #include <sys/sysctl.h> 39 #include <machine/bus.h> 40 41 #ifdef FDT 42 #include <dev/fdt/fdt_common.h> 43 #include <dev/ofw/ofw_bus.h> 44 #include <dev/ofw/ofw_bus_subr.h> 45 #endif 46 47 #include <dev/uart/uart.h> 48 #include <dev/uart/uart_cpu.h> 49 #ifdef FDT 50 #include <dev/uart/uart_cpu_fdt.h> 51 #endif 52 #include <dev/uart/uart_bus.h> 53 #include <dev/uart/uart_dev_ns8250.h> 54 #include <dev/uart/uart_ppstypes.h> 55 56 #include <dev/ic/ns16550.h> 57 58 #include "uart_if.h" 59 60 #define DEFAULT_RCLK 1843200 61 62 /* 63 * Set the default baudrate tolerance to 3.0%. 64 * 65 * Some embedded boards have odd reference clocks (eg 25MHz) 66 * and we need to handle higher variances in the target baud rate. 67 */ 68 #ifndef UART_DEV_TOLERANCE_PCT 69 #define UART_DEV_TOLERANCE_PCT 30 70 #endif /* UART_DEV_TOLERANCE_PCT */ 71 72 static int broken_txfifo = 0; 73 SYSCTL_INT(_hw, OID_AUTO, broken_txfifo, CTLFLAG_RWTUN, 74 &broken_txfifo, 0, "UART FIFO has QEMU emulation bug"); 75 76 /* 77 * Clear pending interrupts. THRE is cleared by reading IIR. Data 78 * that may have been received gets lost here. 79 */ 80 static void 81 ns8250_clrint(struct uart_bas *bas) 82 { 83 uint8_t iir, lsr; 84 85 iir = uart_getreg(bas, REG_IIR); 86 while ((iir & IIR_NOPEND) == 0) { 87 iir &= IIR_IMASK; 88 if (iir == IIR_RLS) { 89 lsr = uart_getreg(bas, REG_LSR); 90 if (lsr & (LSR_BI|LSR_FE|LSR_PE)) 91 (void)uart_getreg(bas, REG_DATA); 92 } else if (iir == IIR_RXRDY || iir == IIR_RXTOUT) 93 (void)uart_getreg(bas, REG_DATA); 94 else if (iir == IIR_MLSC) 95 (void)uart_getreg(bas, REG_MSR); 96 uart_barrier(bas); 97 iir = uart_getreg(bas, REG_IIR); 98 } 99 } 100 101 static int 102 ns8250_delay(struct uart_bas *bas) 103 { 104 int divisor; 105 u_char lcr; 106 107 lcr = uart_getreg(bas, REG_LCR); 108 uart_setreg(bas, REG_LCR, lcr | LCR_DLAB); 109 uart_barrier(bas); 110 divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8); 111 uart_barrier(bas); 112 uart_setreg(bas, REG_LCR, lcr); 113 uart_barrier(bas); 114 115 /* 1/10th the time to transmit 1 character (estimate). */ 116 if (divisor <= 134) 117 return (16000000 * divisor / bas->rclk); 118 return (16000 * divisor / (bas->rclk / 1000)); 119 } 120 121 static int 122 ns8250_divisor(int rclk, int baudrate) 123 { 124 int actual_baud, divisor; 125 int error; 126 127 if (baudrate == 0) 128 return (0); 129 130 divisor = (rclk / (baudrate << 3) + 1) >> 1; 131 if (divisor == 0 || divisor >= 65536) 132 return (0); 133 actual_baud = rclk / (divisor << 4); 134 135 /* 10 times error in percent: */ 136 error = ((actual_baud - baudrate) * 2000 / baudrate + 1) >> 1; 137 138 /* enforce maximum error tolerance: */ 139 if (error < -UART_DEV_TOLERANCE_PCT || error > UART_DEV_TOLERANCE_PCT) 140 return (0); 141 142 return (divisor); 143 } 144 145 static int 146 ns8250_drain(struct uart_bas *bas, int what) 147 { 148 int delay, limit; 149 150 delay = ns8250_delay(bas); 151 152 if (what & UART_DRAIN_TRANSMITTER) { 153 /* 154 * Pick an arbitrary high limit to avoid getting stuck in 155 * an infinite loop when the hardware is broken. Make the 156 * limit high enough to handle large FIFOs. 157 */ 158 limit = 10*1024; 159 while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit) 160 DELAY(delay); 161 if (limit == 0) { 162 /* printf("ns8250: transmitter appears stuck... "); */ 163 return (EIO); 164 } 165 } 166 167 if (what & UART_DRAIN_RECEIVER) { 168 /* 169 * Pick an arbitrary high limit to avoid getting stuck in 170 * an infinite loop when the hardware is broken. Make the 171 * limit high enough to handle large FIFOs and integrated 172 * UARTs. The HP rx2600 for example has 3 UARTs on the 173 * management board that tend to get a lot of data send 174 * to it when the UART is first activated. 175 */ 176 limit=10*4096; 177 while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) { 178 (void)uart_getreg(bas, REG_DATA); 179 uart_barrier(bas); 180 DELAY(delay << 2); 181 } 182 if (limit == 0) { 183 /* printf("ns8250: receiver appears broken... "); */ 184 return (EIO); 185 } 186 } 187 188 return (0); 189 } 190 191 /* 192 * We can only flush UARTs with FIFOs. UARTs without FIFOs should be 193 * drained. WARNING: this function clobbers the FIFO setting! 194 */ 195 static void 196 ns8250_flush(struct uart_bas *bas, int what) 197 { 198 uint8_t fcr; 199 200 fcr = FCR_ENABLE; 201 if (what & UART_FLUSH_TRANSMITTER) 202 fcr |= FCR_XMT_RST; 203 if (what & UART_FLUSH_RECEIVER) 204 fcr |= FCR_RCV_RST; 205 uart_setreg(bas, REG_FCR, fcr); 206 uart_barrier(bas); 207 } 208 209 static int 210 ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits, 211 int parity) 212 { 213 int divisor; 214 uint8_t lcr; 215 216 lcr = 0; 217 if (databits >= 8) 218 lcr |= LCR_8BITS; 219 else if (databits == 7) 220 lcr |= LCR_7BITS; 221 else if (databits == 6) 222 lcr |= LCR_6BITS; 223 else 224 lcr |= LCR_5BITS; 225 if (stopbits > 1) 226 lcr |= LCR_STOPB; 227 lcr |= parity << 3; 228 229 /* Set baudrate. */ 230 if (baudrate > 0) { 231 divisor = ns8250_divisor(bas->rclk, baudrate); 232 if (divisor == 0) 233 return (EINVAL); 234 uart_setreg(bas, REG_LCR, lcr | LCR_DLAB); 235 uart_barrier(bas); 236 uart_setreg(bas, REG_DLL, divisor & 0xff); 237 uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff); 238 uart_barrier(bas); 239 } 240 241 /* Set LCR and clear DLAB. */ 242 uart_setreg(bas, REG_LCR, lcr); 243 uart_barrier(bas); 244 return (0); 245 } 246 247 /* 248 * Low-level UART interface. 249 */ 250 static int ns8250_probe(struct uart_bas *bas); 251 static void ns8250_init(struct uart_bas *bas, int, int, int, int); 252 static void ns8250_term(struct uart_bas *bas); 253 static void ns8250_putc(struct uart_bas *bas, int); 254 static int ns8250_rxready(struct uart_bas *bas); 255 static int ns8250_getc(struct uart_bas *bas, struct mtx *); 256 257 struct uart_ops uart_ns8250_ops = { 258 .probe = ns8250_probe, 259 .init = ns8250_init, 260 .term = ns8250_term, 261 .putc = ns8250_putc, 262 .rxready = ns8250_rxready, 263 .getc = ns8250_getc, 264 }; 265 266 static int 267 ns8250_probe(struct uart_bas *bas) 268 { 269 u_char val; 270 271 /* Check known 0 bits that don't depend on DLAB. */ 272 val = uart_getreg(bas, REG_IIR); 273 if (val & 0x30) 274 return (ENXIO); 275 /* 276 * Bit 6 of the MCR (= 0x40) appears to be 1 for the Sun1699 277 * chip, but otherwise doesn't seem to have a function. In 278 * other words, uart(4) works regardless. Ignore that bit so 279 * the probe succeeds. 280 */ 281 val = uart_getreg(bas, REG_MCR); 282 if (val & 0xa0) 283 return (ENXIO); 284 285 return (0); 286 } 287 288 static void 289 ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits, 290 int parity) 291 { 292 u_char ier; 293 294 if (bas->rclk == 0) 295 bas->rclk = DEFAULT_RCLK; 296 ns8250_param(bas, baudrate, databits, stopbits, parity); 297 298 /* Disable all interrupt sources. */ 299 /* 300 * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA 301 * UARTs split the receive time-out interrupt bit out separately as 302 * 0x10. This gets handled by ier_mask and ier_rxbits below. 303 */ 304 ier = uart_getreg(bas, REG_IER) & 0xe0; 305 uart_setreg(bas, REG_IER, ier); 306 uart_barrier(bas); 307 308 /* Disable the FIFO (if present). */ 309 uart_setreg(bas, REG_FCR, 0); 310 uart_barrier(bas); 311 312 /* Set RTS & DTR. */ 313 uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR); 314 uart_barrier(bas); 315 316 ns8250_clrint(bas); 317 } 318 319 static void 320 ns8250_term(struct uart_bas *bas) 321 { 322 323 /* Clear RTS & DTR. */ 324 uart_setreg(bas, REG_MCR, MCR_IE); 325 uart_barrier(bas); 326 } 327 328 static void 329 ns8250_putc(struct uart_bas *bas, int c) 330 { 331 int limit; 332 333 limit = 250000; 334 while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit) 335 DELAY(4); 336 uart_setreg(bas, REG_DATA, c); 337 uart_barrier(bas); 338 limit = 250000; 339 while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit) 340 DELAY(4); 341 } 342 343 static int 344 ns8250_rxready(struct uart_bas *bas) 345 { 346 347 return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0); 348 } 349 350 static int 351 ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx) 352 { 353 int c; 354 355 uart_lock(hwmtx); 356 357 while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) { 358 uart_unlock(hwmtx); 359 DELAY(4); 360 uart_lock(hwmtx); 361 } 362 363 c = uart_getreg(bas, REG_DATA); 364 365 uart_unlock(hwmtx); 366 367 return (c); 368 } 369 370 static kobj_method_t ns8250_methods[] = { 371 KOBJMETHOD(uart_attach, ns8250_bus_attach), 372 KOBJMETHOD(uart_detach, ns8250_bus_detach), 373 KOBJMETHOD(uart_flush, ns8250_bus_flush), 374 KOBJMETHOD(uart_getsig, ns8250_bus_getsig), 375 KOBJMETHOD(uart_ioctl, ns8250_bus_ioctl), 376 KOBJMETHOD(uart_ipend, ns8250_bus_ipend), 377 KOBJMETHOD(uart_param, ns8250_bus_param), 378 KOBJMETHOD(uart_probe, ns8250_bus_probe), 379 KOBJMETHOD(uart_receive, ns8250_bus_receive), 380 KOBJMETHOD(uart_setsig, ns8250_bus_setsig), 381 KOBJMETHOD(uart_transmit, ns8250_bus_transmit), 382 KOBJMETHOD(uart_grab, ns8250_bus_grab), 383 KOBJMETHOD(uart_ungrab, ns8250_bus_ungrab), 384 { 0, 0 } 385 }; 386 387 struct uart_class uart_ns8250_class = { 388 "ns8250", 389 ns8250_methods, 390 sizeof(struct ns8250_softc), 391 .uc_ops = &uart_ns8250_ops, 392 .uc_range = 8, 393 .uc_rclk = DEFAULT_RCLK, 394 .uc_rshift = 0 395 }; 396 397 #ifdef FDT 398 static struct ofw_compat_data compat_data[] = { 399 {"ns16550", (uintptr_t)&uart_ns8250_class}, 400 {"ns16550a", (uintptr_t)&uart_ns8250_class}, 401 {"snps,dw-apb-uart", (uintptr_t)&uart_ns8250_class}, 402 {NULL, (uintptr_t)NULL}, 403 }; 404 UART_FDT_CLASS_AND_DEVICE(compat_data); 405 #endif 406 407 /* Use token-pasting to form SER_ and MSR_ named constants. */ 408 #define SER(sig) SER_##sig 409 #define SERD(sig) SER_D##sig 410 #define MSR(sig) MSR_##sig 411 #define MSRD(sig) MSR_D##sig 412 413 /* 414 * Detect signal changes using software delta detection. The previous state of 415 * the signals is in 'var' the new hardware state is in 'msr', and 'sig' is the 416 * short name (DCD, CTS, etc) of the signal bit being processed; 'var' gets the 417 * new state of both the signal and the delta bits. 418 */ 419 #define SIGCHGSW(var, msr, sig) \ 420 if ((msr) & MSR(sig)) { \ 421 if ((var & SER(sig)) == 0) \ 422 var |= SERD(sig) | SER(sig); \ 423 } else { \ 424 if ((var & SER(sig)) != 0) \ 425 var = SERD(sig) | (var & ~SER(sig)); \ 426 } 427 428 /* 429 * Detect signal changes using the hardware msr delta bits. This is currently 430 * used only when PPS timing information is being captured using the "narrow 431 * pulse" option. With a narrow PPS pulse the signal may not still be asserted 432 * by time the interrupt handler is invoked. The hardware will latch the fact 433 * that it changed in the delta bits. 434 */ 435 #define SIGCHGHW(var, msr, sig) \ 436 if ((msr) & MSRD(sig)) { \ 437 if (((msr) & MSR(sig)) != 0) \ 438 var |= SERD(sig) | SER(sig); \ 439 else \ 440 var = SERD(sig) | (var & ~SER(sig)); \ 441 } 442 443 int 444 ns8250_bus_attach(struct uart_softc *sc) 445 { 446 struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc; 447 struct uart_bas *bas; 448 unsigned int ivar; 449 #ifdef FDT 450 phandle_t node; 451 pcell_t cell; 452 #endif 453 454 ns8250->busy_detect = 0; 455 456 #ifdef FDT 457 /* 458 * Check whether uart requires to read USR reg when IIR_BUSY and 459 * has broken txfifo. 460 */ 461 ns8250->busy_detect = ofw_bus_is_compatible(sc->sc_dev, "snps,dw-apb-uart"); 462 node = ofw_bus_get_node(sc->sc_dev); 463 /* XXX: This is kept for a short time for compatibility with older device trees */ 464 if ((OF_getencprop(node, "busy-detect", &cell, sizeof(cell))) > 0 465 && cell != 0) 466 ns8250->busy_detect = 1; 467 if ((OF_getencprop(node, "broken-txfifo", &cell, sizeof(cell))) > 0) 468 broken_txfifo = cell ? 1 : 0; 469 #endif 470 471 bas = &sc->sc_bas; 472 473 ns8250->mcr = uart_getreg(bas, REG_MCR); 474 ns8250->fcr = FCR_ENABLE; 475 if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags", 476 &ivar)) { 477 if (UART_FLAGS_FCR_RX_LOW(ivar)) 478 ns8250->fcr |= FCR_RX_LOW; 479 else if (UART_FLAGS_FCR_RX_MEDL(ivar)) 480 ns8250->fcr |= FCR_RX_MEDL; 481 else if (UART_FLAGS_FCR_RX_HIGH(ivar)) 482 ns8250->fcr |= FCR_RX_HIGH; 483 else 484 ns8250->fcr |= FCR_RX_MEDH; 485 } else 486 ns8250->fcr |= FCR_RX_MEDH; 487 488 /* Get IER mask */ 489 ivar = 0xf0; 490 resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask", 491 &ivar); 492 ns8250->ier_mask = (uint8_t)(ivar & 0xff); 493 494 /* Get IER RX interrupt bits */ 495 ivar = IER_EMSC | IER_ERLS | IER_ERXRDY; 496 resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits", 497 &ivar); 498 ns8250->ier_rxbits = (uint8_t)(ivar & 0xff); 499 500 uart_setreg(bas, REG_FCR, ns8250->fcr); 501 uart_barrier(bas); 502 ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER); 503 504 if (ns8250->mcr & MCR_DTR) 505 sc->sc_hwsig |= SER_DTR; 506 if (ns8250->mcr & MCR_RTS) 507 sc->sc_hwsig |= SER_RTS; 508 ns8250_bus_getsig(sc); 509 510 ns8250_clrint(bas); 511 ns8250->ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask; 512 ns8250->ier |= ns8250->ier_rxbits; 513 uart_setreg(bas, REG_IER, ns8250->ier); 514 uart_barrier(bas); 515 516 /* 517 * Timing of the H/W access was changed with r253161 of uart_core.c 518 * It has been observed that an ITE IT8513E would signal a break 519 * condition with pretty much every character it received, unless 520 * it had enough time to settle between ns8250_bus_attach() and 521 * ns8250_bus_ipend() -- which it accidentally had before r253161. 522 * It's not understood why the UART chip behaves this way and it 523 * could very well be that the DELAY make the H/W work in the same 524 * accidental manner as before. More analysis is warranted, but 525 * at least now we fixed a known regression. 526 */ 527 DELAY(200); 528 return (0); 529 } 530 531 int 532 ns8250_bus_detach(struct uart_softc *sc) 533 { 534 struct ns8250_softc *ns8250; 535 struct uart_bas *bas; 536 u_char ier; 537 538 ns8250 = (struct ns8250_softc *)sc; 539 bas = &sc->sc_bas; 540 ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask; 541 uart_setreg(bas, REG_IER, ier); 542 uart_barrier(bas); 543 ns8250_clrint(bas); 544 return (0); 545 } 546 547 int 548 ns8250_bus_flush(struct uart_softc *sc, int what) 549 { 550 struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc; 551 struct uart_bas *bas; 552 int error; 553 554 bas = &sc->sc_bas; 555 uart_lock(sc->sc_hwmtx); 556 if (sc->sc_rxfifosz > 1) { 557 ns8250_flush(bas, what); 558 uart_setreg(bas, REG_FCR, ns8250->fcr); 559 uart_barrier(bas); 560 error = 0; 561 } else 562 error = ns8250_drain(bas, what); 563 uart_unlock(sc->sc_hwmtx); 564 return (error); 565 } 566 567 int 568 ns8250_bus_getsig(struct uart_softc *sc) 569 { 570 uint32_t old, sig; 571 uint8_t msr; 572 573 /* 574 * The delta bits are reputed to be broken on some hardware, so use 575 * software delta detection by default. Use the hardware delta bits 576 * when capturing PPS pulses which are too narrow for software detection 577 * to see the edges. Hardware delta for RI doesn't work like the 578 * others, so always use software for it. Other threads may be changing 579 * other (non-MSR) bits in sc_hwsig, so loop until it can succesfully 580 * update without other changes happening. Note that the SIGCHGxx() 581 * macros carefully preserve the delta bits when we have to loop several 582 * times and a signal transitions between iterations. 583 */ 584 do { 585 old = sc->sc_hwsig; 586 sig = old; 587 uart_lock(sc->sc_hwmtx); 588 msr = uart_getreg(&sc->sc_bas, REG_MSR); 589 uart_unlock(sc->sc_hwmtx); 590 if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE) { 591 SIGCHGHW(sig, msr, DSR); 592 SIGCHGHW(sig, msr, CTS); 593 SIGCHGHW(sig, msr, DCD); 594 } else { 595 SIGCHGSW(sig, msr, DSR); 596 SIGCHGSW(sig, msr, CTS); 597 SIGCHGSW(sig, msr, DCD); 598 } 599 SIGCHGSW(sig, msr, RI); 600 } while (!atomic_cmpset_32(&sc->sc_hwsig, old, sig & ~SER_MASK_DELTA)); 601 return (sig); 602 } 603 604 int 605 ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data) 606 { 607 struct uart_bas *bas; 608 int baudrate, divisor, error; 609 uint8_t efr, lcr; 610 611 bas = &sc->sc_bas; 612 error = 0; 613 uart_lock(sc->sc_hwmtx); 614 switch (request) { 615 case UART_IOCTL_BREAK: 616 lcr = uart_getreg(bas, REG_LCR); 617 if (data) 618 lcr |= LCR_SBREAK; 619 else 620 lcr &= ~LCR_SBREAK; 621 uart_setreg(bas, REG_LCR, lcr); 622 uart_barrier(bas); 623 break; 624 case UART_IOCTL_IFLOW: 625 lcr = uart_getreg(bas, REG_LCR); 626 uart_barrier(bas); 627 uart_setreg(bas, REG_LCR, 0xbf); 628 uart_barrier(bas); 629 efr = uart_getreg(bas, REG_EFR); 630 if (data) 631 efr |= EFR_RTS; 632 else 633 efr &= ~EFR_RTS; 634 uart_setreg(bas, REG_EFR, efr); 635 uart_barrier(bas); 636 uart_setreg(bas, REG_LCR, lcr); 637 uart_barrier(bas); 638 break; 639 case UART_IOCTL_OFLOW: 640 lcr = uart_getreg(bas, REG_LCR); 641 uart_barrier(bas); 642 uart_setreg(bas, REG_LCR, 0xbf); 643 uart_barrier(bas); 644 efr = uart_getreg(bas, REG_EFR); 645 if (data) 646 efr |= EFR_CTS; 647 else 648 efr &= ~EFR_CTS; 649 uart_setreg(bas, REG_EFR, efr); 650 uart_barrier(bas); 651 uart_setreg(bas, REG_LCR, lcr); 652 uart_barrier(bas); 653 break; 654 case UART_IOCTL_BAUD: 655 lcr = uart_getreg(bas, REG_LCR); 656 uart_setreg(bas, REG_LCR, lcr | LCR_DLAB); 657 uart_barrier(bas); 658 divisor = uart_getreg(bas, REG_DLL) | 659 (uart_getreg(bas, REG_DLH) << 8); 660 uart_barrier(bas); 661 uart_setreg(bas, REG_LCR, lcr); 662 uart_barrier(bas); 663 baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0; 664 if (baudrate > 0) 665 *(int*)data = baudrate; 666 else 667 error = ENXIO; 668 break; 669 default: 670 error = EINVAL; 671 break; 672 } 673 uart_unlock(sc->sc_hwmtx); 674 return (error); 675 } 676 677 int 678 ns8250_bus_ipend(struct uart_softc *sc) 679 { 680 struct uart_bas *bas; 681 struct ns8250_softc *ns8250; 682 int ipend; 683 uint8_t iir, lsr; 684 685 ns8250 = (struct ns8250_softc *)sc; 686 bas = &sc->sc_bas; 687 uart_lock(sc->sc_hwmtx); 688 iir = uart_getreg(bas, REG_IIR); 689 690 if (ns8250->busy_detect && (iir & IIR_BUSY) == IIR_BUSY) { 691 (void)uart_getreg(bas, DW_REG_USR); 692 uart_unlock(sc->sc_hwmtx); 693 return (0); 694 } 695 if (iir & IIR_NOPEND) { 696 uart_unlock(sc->sc_hwmtx); 697 return (0); 698 } 699 ipend = 0; 700 if (iir & IIR_RXRDY) { 701 lsr = uart_getreg(bas, REG_LSR); 702 if (lsr & LSR_OE) 703 ipend |= SER_INT_OVERRUN; 704 if (lsr & LSR_BI) 705 ipend |= SER_INT_BREAK; 706 if (lsr & LSR_RXRDY) 707 ipend |= SER_INT_RXREADY; 708 } else { 709 if (iir & IIR_TXRDY) { 710 ipend |= SER_INT_TXIDLE; 711 uart_setreg(bas, REG_IER, ns8250->ier); 712 uart_barrier(bas); 713 } else 714 ipend |= SER_INT_SIGCHG; 715 } 716 if (ipend == 0) 717 ns8250_clrint(bas); 718 uart_unlock(sc->sc_hwmtx); 719 return (ipend); 720 } 721 722 int 723 ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits, 724 int stopbits, int parity) 725 { 726 struct ns8250_softc *ns8250; 727 struct uart_bas *bas; 728 int error, limit; 729 730 ns8250 = (struct ns8250_softc*)sc; 731 bas = &sc->sc_bas; 732 uart_lock(sc->sc_hwmtx); 733 /* 734 * When using DW UART with BUSY detection it is necessary to wait 735 * until all serial transfers are finished before manipulating the 736 * line control. LCR will not be affected when UART is busy. 737 */ 738 if (ns8250->busy_detect != 0) { 739 /* 740 * Pick an arbitrary high limit to avoid getting stuck in 741 * an infinite loop in case when the hardware is broken. 742 */ 743 limit = 10 * 1024; 744 while (((uart_getreg(bas, DW_REG_USR) & USR_BUSY) != 0) && 745 --limit) 746 DELAY(4); 747 748 if (limit <= 0) { 749 /* UART appears to be stuck */ 750 uart_unlock(sc->sc_hwmtx); 751 return (EIO); 752 } 753 } 754 755 error = ns8250_param(bas, baudrate, databits, stopbits, parity); 756 uart_unlock(sc->sc_hwmtx); 757 return (error); 758 } 759 760 int 761 ns8250_bus_probe(struct uart_softc *sc) 762 { 763 struct ns8250_softc *ns8250; 764 struct uart_bas *bas; 765 int count, delay, error, limit; 766 uint8_t lsr, mcr, ier; 767 768 ns8250 = (struct ns8250_softc *)sc; 769 bas = &sc->sc_bas; 770 771 error = ns8250_probe(bas); 772 if (error) 773 return (error); 774 775 mcr = MCR_IE; 776 if (sc->sc_sysdev == NULL) { 777 /* By using ns8250_init() we also set DTR and RTS. */ 778 ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE); 779 } else 780 mcr |= MCR_DTR | MCR_RTS; 781 782 error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER); 783 if (error) 784 return (error); 785 786 /* 787 * Set loopback mode. This avoids having garbage on the wire and 788 * also allows us send and receive data. We set DTR and RTS to 789 * avoid the possibility that automatic flow-control prevents 790 * any data from being sent. 791 */ 792 uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS); 793 uart_barrier(bas); 794 795 /* 796 * Enable FIFOs. And check that the UART has them. If not, we're 797 * done. Since this is the first time we enable the FIFOs, we reset 798 * them. 799 */ 800 uart_setreg(bas, REG_FCR, FCR_ENABLE); 801 uart_barrier(bas); 802 if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) { 803 /* 804 * NS16450 or INS8250. We don't bother to differentiate 805 * between them. They're too old to be interesting. 806 */ 807 uart_setreg(bas, REG_MCR, mcr); 808 uart_barrier(bas); 809 sc->sc_rxfifosz = sc->sc_txfifosz = 1; 810 device_set_desc(sc->sc_dev, "8250 or 16450 or compatible"); 811 return (0); 812 } 813 814 uart_setreg(bas, REG_FCR, FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST); 815 uart_barrier(bas); 816 817 count = 0; 818 delay = ns8250_delay(bas); 819 820 /* We have FIFOs. Drain the transmitter and receiver. */ 821 error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER); 822 if (error) { 823 uart_setreg(bas, REG_MCR, mcr); 824 uart_setreg(bas, REG_FCR, 0); 825 uart_barrier(bas); 826 goto describe; 827 } 828 829 /* 830 * We should have a sufficiently clean "pipe" to determine the 831 * size of the FIFOs. We send as much characters as is reasonable 832 * and wait for the overflow bit in the LSR register to be 833 * asserted, counting the characters as we send them. Based on 834 * that count we know the FIFO size. 835 */ 836 do { 837 uart_setreg(bas, REG_DATA, 0); 838 uart_barrier(bas); 839 count++; 840 841 limit = 30; 842 lsr = 0; 843 /* 844 * LSR bits are cleared upon read, so we must accumulate 845 * them to be able to test LSR_OE below. 846 */ 847 while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 && 848 --limit) 849 DELAY(delay); 850 if (limit == 0) { 851 ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask; 852 uart_setreg(bas, REG_IER, ier); 853 uart_setreg(bas, REG_MCR, mcr); 854 uart_setreg(bas, REG_FCR, 0); 855 uart_barrier(bas); 856 count = 0; 857 goto describe; 858 } 859 } while ((lsr & LSR_OE) == 0 && count < 130); 860 count--; 861 862 uart_setreg(bas, REG_MCR, mcr); 863 864 /* Reset FIFOs. */ 865 ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER); 866 867 describe: 868 if (count >= 14 && count <= 16) { 869 sc->sc_rxfifosz = 16; 870 device_set_desc(sc->sc_dev, "16550 or compatible"); 871 } else if (count >= 28 && count <= 32) { 872 sc->sc_rxfifosz = 32; 873 device_set_desc(sc->sc_dev, "16650 or compatible"); 874 } else if (count >= 56 && count <= 64) { 875 sc->sc_rxfifosz = 64; 876 device_set_desc(sc->sc_dev, "16750 or compatible"); 877 } else if (count >= 112 && count <= 128) { 878 sc->sc_rxfifosz = 128; 879 device_set_desc(sc->sc_dev, "16950 or compatible"); 880 } else { 881 sc->sc_rxfifosz = 16; 882 device_set_desc(sc->sc_dev, 883 "Non-standard ns8250 class UART with FIFOs"); 884 } 885 886 /* 887 * Force the Tx FIFO size to 16 bytes for now. We don't program the 888 * Tx trigger. Also, we assume that all data has been sent when the 889 * interrupt happens. 890 */ 891 sc->sc_txfifosz = 16; 892 893 #if 0 894 /* 895 * XXX there are some issues related to hardware flow control and 896 * it's likely that uart(4) is the cause. This basicly needs more 897 * investigation, but we avoid using for hardware flow control 898 * until then. 899 */ 900 /* 16650s or higher have automatic flow control. */ 901 if (sc->sc_rxfifosz > 16) { 902 sc->sc_hwiflow = 1; 903 sc->sc_hwoflow = 1; 904 } 905 #endif 906 907 return (0); 908 } 909 910 int 911 ns8250_bus_receive(struct uart_softc *sc) 912 { 913 struct uart_bas *bas; 914 int xc; 915 uint8_t lsr; 916 917 bas = &sc->sc_bas; 918 uart_lock(sc->sc_hwmtx); 919 lsr = uart_getreg(bas, REG_LSR); 920 while (lsr & LSR_RXRDY) { 921 if (uart_rx_full(sc)) { 922 sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN; 923 break; 924 } 925 xc = uart_getreg(bas, REG_DATA); 926 if (lsr & LSR_FE) 927 xc |= UART_STAT_FRAMERR; 928 if (lsr & LSR_PE) 929 xc |= UART_STAT_PARERR; 930 uart_rx_put(sc, xc); 931 lsr = uart_getreg(bas, REG_LSR); 932 } 933 /* Discard everything left in the Rx FIFO. */ 934 while (lsr & LSR_RXRDY) { 935 (void)uart_getreg(bas, REG_DATA); 936 uart_barrier(bas); 937 lsr = uart_getreg(bas, REG_LSR); 938 } 939 uart_unlock(sc->sc_hwmtx); 940 return (0); 941 } 942 943 int 944 ns8250_bus_setsig(struct uart_softc *sc, int sig) 945 { 946 struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc; 947 struct uart_bas *bas; 948 uint32_t new, old; 949 950 bas = &sc->sc_bas; 951 do { 952 old = sc->sc_hwsig; 953 new = old; 954 if (sig & SER_DDTR) { 955 new = (new & ~SER_DTR) | (sig & (SER_DTR | SER_DDTR)); 956 } 957 if (sig & SER_DRTS) { 958 new = (new & ~SER_RTS) | (sig & (SER_RTS | SER_DRTS)); 959 } 960 } while (!atomic_cmpset_32(&sc->sc_hwsig, old, new)); 961 uart_lock(sc->sc_hwmtx); 962 ns8250->mcr &= ~(MCR_DTR|MCR_RTS); 963 if (new & SER_DTR) 964 ns8250->mcr |= MCR_DTR; 965 if (new & SER_RTS) 966 ns8250->mcr |= MCR_RTS; 967 uart_setreg(bas, REG_MCR, ns8250->mcr); 968 uart_barrier(bas); 969 uart_unlock(sc->sc_hwmtx); 970 return (0); 971 } 972 973 int 974 ns8250_bus_transmit(struct uart_softc *sc) 975 { 976 struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc; 977 struct uart_bas *bas; 978 int i; 979 980 bas = &sc->sc_bas; 981 uart_lock(sc->sc_hwmtx); 982 while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0) 983 ; 984 for (i = 0; i < sc->sc_txdatasz; i++) { 985 uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]); 986 uart_barrier(bas); 987 } 988 uart_setreg(bas, REG_IER, ns8250->ier | IER_ETXRDY); 989 uart_barrier(bas); 990 if (broken_txfifo) 991 ns8250_drain(bas, UART_DRAIN_TRANSMITTER); 992 else 993 sc->sc_txbusy = 1; 994 uart_unlock(sc->sc_hwmtx); 995 if (broken_txfifo) 996 uart_sched_softih(sc, SER_INT_TXIDLE); 997 return (0); 998 } 999 1000 void 1001 ns8250_bus_grab(struct uart_softc *sc) 1002 { 1003 struct uart_bas *bas = &sc->sc_bas; 1004 struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc; 1005 u_char ier; 1006 1007 /* 1008 * turn off all interrupts to enter polling mode. Leave the 1009 * saved mask alone. We'll restore whatever it was in ungrab. 1010 * All pending interupt signals are reset when IER is set to 0. 1011 */ 1012 uart_lock(sc->sc_hwmtx); 1013 ier = uart_getreg(bas, REG_IER); 1014 uart_setreg(bas, REG_IER, ier & ns8250->ier_mask); 1015 uart_barrier(bas); 1016 uart_unlock(sc->sc_hwmtx); 1017 } 1018 1019 void 1020 ns8250_bus_ungrab(struct uart_softc *sc) 1021 { 1022 struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc; 1023 struct uart_bas *bas = &sc->sc_bas; 1024 1025 /* 1026 * Restore previous interrupt mask 1027 */ 1028 uart_lock(sc->sc_hwmtx); 1029 uart_setreg(bas, REG_IER, ns8250->ier); 1030 uart_barrier(bas); 1031 uart_unlock(sc->sc_hwmtx); 1032 } 1033