xref: /freebsd/sys/dev/uart/uart_dev_ns8250.c (revision 25038e8de6b4e5f2ffca821565b50a633eea499a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2003 Marcel Moolenaar
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include "opt_acpi.h"
30 #include "opt_platform.h"
31 #include "opt_uart.h"
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/conf.h>
37 #include <sys/kernel.h>
38 #include <sys/sysctl.h>
39 #include <machine/bus.h>
40 
41 #ifdef FDT
42 #include <dev/fdt/fdt_common.h>
43 #include <dev/ofw/ofw_bus.h>
44 #include <dev/ofw/ofw_bus_subr.h>
45 #endif
46 
47 #include <dev/uart/uart.h>
48 #include <dev/uart/uart_cpu.h>
49 #ifdef FDT
50 #include <dev/uart/uart_cpu_fdt.h>
51 #endif
52 #include <dev/uart/uart_bus.h>
53 #include <dev/uart/uart_dev_ns8250.h>
54 #include <dev/uart/uart_ppstypes.h>
55 #ifdef DEV_ACPI
56 #include <dev/uart/uart_cpu_acpi.h>
57 #include <contrib/dev/acpica/include/acpi.h>
58 #endif
59 
60 #include <dev/ic/ns16550.h>
61 
62 #include "uart_if.h"
63 
64 #define	DEFAULT_RCLK	1843200
65 
66 /*
67  * Set the default baudrate tolerance to 3.0%.
68  *
69  * Some embedded boards have odd reference clocks (eg 25MHz)
70  * and we need to handle higher variances in the target baud rate.
71  */
72 #ifndef	UART_DEV_TOLERANCE_PCT
73 #define	UART_DEV_TOLERANCE_PCT	30
74 #endif	/* UART_DEV_TOLERANCE_PCT */
75 
76 static int broken_txfifo = 0;
77 SYSCTL_INT(_hw, OID_AUTO, broken_txfifo, CTLFLAG_RWTUN,
78 	&broken_txfifo, 0, "UART FIFO has QEMU emulation bug");
79 
80 /*
81  * To use early printf on x86, add the following to your kernel config:
82  *
83  * options UART_NS8250_EARLY_PORT=0x3f8
84  * options EARLY_PRINTF=ns8250
85 */
86 #if CHECK_EARLY_PRINTF(ns8250)
87 #if !(defined(__amd64__) || defined(__i386__))
88 #error ns8250 early putc is x86 specific as it uses inb/outb
89 #endif
90 static void
91 uart_ns8250_early_putc(int c)
92 {
93 	u_int stat = UART_NS8250_EARLY_PORT + REG_LSR;
94 	u_int tx = UART_NS8250_EARLY_PORT + REG_DATA;
95 	int limit = 10000; /* 10ms is plenty of time */
96 
97 	while ((inb(stat) & LSR_THRE) == 0 && --limit > 0)
98 		continue;
99 	outb(tx, c);
100 }
101 early_putc_t *early_putc = uart_ns8250_early_putc;
102 #endif /* EARLY_PRINTF */
103 
104 /*
105  * Clear pending interrupts. THRE is cleared by reading IIR. Data
106  * that may have been received gets lost here.
107  */
108 static void
109 ns8250_clrint(struct uart_bas *bas)
110 {
111 	uint8_t iir, lsr;
112 
113 	iir = uart_getreg(bas, REG_IIR);
114 	while ((iir & IIR_NOPEND) == 0) {
115 		iir &= IIR_IMASK;
116 		if (iir == IIR_RLS) {
117 			lsr = uart_getreg(bas, REG_LSR);
118 			if (lsr & (LSR_BI|LSR_FE|LSR_PE))
119 				(void)uart_getreg(bas, REG_DATA);
120 		} else if (iir == IIR_RXRDY || iir == IIR_RXTOUT)
121 			(void)uart_getreg(bas, REG_DATA);
122 		else if (iir == IIR_MLSC)
123 			(void)uart_getreg(bas, REG_MSR);
124 		uart_barrier(bas);
125 		iir = uart_getreg(bas, REG_IIR);
126 	}
127 }
128 
129 static int
130 ns8250_delay(struct uart_bas *bas)
131 {
132 	int divisor;
133 	u_char lcr;
134 
135 	lcr = uart_getreg(bas, REG_LCR);
136 	uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
137 	uart_barrier(bas);
138 	divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8);
139 	uart_barrier(bas);
140 	uart_setreg(bas, REG_LCR, lcr);
141 	uart_barrier(bas);
142 
143 	/* 1/10th the time to transmit 1 character (estimate). */
144 	if (divisor <= 134)
145 		return (16000000 * divisor / bas->rclk);
146 	return (16000 * divisor / (bas->rclk / 1000));
147 }
148 
149 static int
150 ns8250_divisor(int rclk, int baudrate)
151 {
152 	int actual_baud, divisor;
153 	int error;
154 
155 	if (baudrate == 0)
156 		return (0);
157 
158 	divisor = (rclk / (baudrate << 3) + 1) >> 1;
159 	if (divisor == 0 || divisor >= 65536)
160 		return (0);
161 	actual_baud = rclk / (divisor << 4);
162 
163 	/* 10 times error in percent: */
164 	error = ((actual_baud - baudrate) * 2000 / baudrate + 1) / 2;
165 
166 	/* enforce maximum error tolerance: */
167 	if (error < -UART_DEV_TOLERANCE_PCT || error > UART_DEV_TOLERANCE_PCT)
168 		return (0);
169 
170 	return (divisor);
171 }
172 
173 static int
174 ns8250_drain(struct uart_bas *bas, int what)
175 {
176 	int delay, limit;
177 
178 	delay = ns8250_delay(bas);
179 
180 	if (what & UART_DRAIN_TRANSMITTER) {
181 		/*
182 		 * Pick an arbitrary high limit to avoid getting stuck in
183 		 * an infinite loop when the hardware is broken. Make the
184 		 * limit high enough to handle large FIFOs.
185 		 */
186 		limit = 10*1024;
187 		while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
188 			DELAY(delay);
189 		if (limit == 0) {
190 			/* printf("ns8250: transmitter appears stuck... "); */
191 			return (EIO);
192 		}
193 	}
194 
195 	if (what & UART_DRAIN_RECEIVER) {
196 		/*
197 		 * Pick an arbitrary high limit to avoid getting stuck in
198 		 * an infinite loop when the hardware is broken. Make the
199 		 * limit high enough to handle large FIFOs and integrated
200 		 * UARTs. The HP rx2600 for example has 3 UARTs on the
201 		 * management board that tend to get a lot of data send
202 		 * to it when the UART is first activated.  Assume that we
203 		 * have finished draining if LSR_RXRDY is not asserted both
204 		 * prior to and after a DELAY; but as long as LSR_RXRDY is
205 		 * asserted, read (and discard) characters as quickly as
206 		 * possible.
207 		 */
208 		limit=10*4096;
209 		while (limit && (uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) {
210 			do {
211 				(void)uart_getreg(bas, REG_DATA);
212 				uart_barrier(bas);
213 			} while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit);
214 			uart_barrier(bas);
215 			DELAY(delay << 2);
216 		}
217 		if (limit == 0) {
218 			/* printf("ns8250: receiver appears broken... "); */
219 			return (EIO);
220 		}
221 	}
222 
223 	return (0);
224 }
225 
226 /*
227  * We can only flush UARTs with FIFOs. UARTs without FIFOs should be
228  * drained. WARNING: this function clobbers the FIFO setting!
229  */
230 static void
231 ns8250_flush(struct uart_bas *bas, int what)
232 {
233 	uint8_t fcr;
234 	uint8_t lsr;
235 	int drain = 0;
236 
237 	fcr = FCR_ENABLE;
238 	if (what & UART_FLUSH_TRANSMITTER)
239 		fcr |= FCR_XMT_RST;
240 	if (what & UART_FLUSH_RECEIVER)
241 		fcr |= FCR_RCV_RST;
242 	uart_setreg(bas, REG_FCR, fcr);
243 	uart_barrier(bas);
244 
245 	/*
246 	 * Detect and work around emulated UARTs which don't implement the
247 	 * FCR register; on these systems we need to drain the FIFO since
248 	 * the flush we request doesn't happen.  One such system is the
249 	 * Firecracker VMM, aka. the rust-vmm/vm-superio emulation code:
250 	 * https://github.com/rust-vmm/vm-superio/issues/83
251 	 */
252 	lsr = uart_getreg(bas, REG_LSR);
253 	if (((lsr & LSR_TEMT) == 0) && (what & UART_FLUSH_TRANSMITTER))
254 		drain |= UART_DRAIN_TRANSMITTER;
255 	if ((lsr & LSR_RXRDY) && (what & UART_FLUSH_RECEIVER))
256 		drain |= UART_DRAIN_RECEIVER;
257 	if (drain != 0) {
258 		printf("ns8250: UART FCR is broken\n");
259 		ns8250_drain(bas, drain);
260 	}
261 }
262 
263 static int
264 ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
265     int parity)
266 {
267 	int divisor;
268 	uint8_t lcr;
269 
270 	/* Don't change settings when running on Hyper-V */
271 	if (vm_guest == VM_GUEST_HV)
272 		return (0);
273 
274 	lcr = 0;
275 	if (databits >= 8)
276 		lcr |= LCR_8BITS;
277 	else if (databits == 7)
278 		lcr |= LCR_7BITS;
279 	else if (databits == 6)
280 		lcr |= LCR_6BITS;
281 	else
282 		lcr |= LCR_5BITS;
283 	if (stopbits > 1)
284 		lcr |= LCR_STOPB;
285 	lcr |= parity << 3;
286 
287 	/* Set baudrate. */
288 	if (baudrate > 0) {
289 		divisor = ns8250_divisor(bas->rclk, baudrate);
290 		if (divisor == 0)
291 			return (EINVAL);
292 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
293 		uart_barrier(bas);
294 		uart_setreg(bas, REG_DLL, divisor & 0xff);
295 		uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff);
296 		uart_barrier(bas);
297 	}
298 
299 	/* Set LCR and clear DLAB. */
300 	uart_setreg(bas, REG_LCR, lcr);
301 	uart_barrier(bas);
302 	return (0);
303 }
304 
305 /*
306  * Low-level UART interface.
307  */
308 static int ns8250_probe(struct uart_bas *bas);
309 static void ns8250_init(struct uart_bas *bas, int, int, int, int);
310 static void ns8250_term(struct uart_bas *bas);
311 static void ns8250_putc(struct uart_bas *bas, int);
312 static int ns8250_rxready(struct uart_bas *bas);
313 static int ns8250_getc(struct uart_bas *bas, struct mtx *);
314 
315 struct uart_ops uart_ns8250_ops = {
316 	.probe = ns8250_probe,
317 	.init = ns8250_init,
318 	.term = ns8250_term,
319 	.putc = ns8250_putc,
320 	.rxready = ns8250_rxready,
321 	.getc = ns8250_getc,
322 };
323 
324 static int
325 ns8250_probe(struct uart_bas *bas)
326 {
327 	u_char val;
328 
329 	/* Check known 0 bits that don't depend on DLAB. */
330 	val = uart_getreg(bas, REG_IIR);
331 	if (val & 0x30)
332 		return (ENXIO);
333 	/*
334 	 * Bit 6 of the MCR (= 0x40) appears to be 1 for the Sun1699
335 	 * chip, but otherwise doesn't seem to have a function. In
336 	 * other words, uart(4) works regardless. Ignore that bit so
337 	 * the probe succeeds.
338 	 */
339 	val = uart_getreg(bas, REG_MCR);
340 	if (val & 0xa0)
341 		return (ENXIO);
342 
343 	return (0);
344 }
345 
346 static void
347 ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
348     int parity)
349 {
350 	u_char ier;
351 
352 	if (bas->rclk == 0)
353 		bas->rclk = DEFAULT_RCLK;
354 	ns8250_param(bas, baudrate, databits, stopbits, parity);
355 
356 	/* Disable all interrupt sources. */
357 	/*
358 	 * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA
359 	 * UARTs split the receive time-out interrupt bit out separately as
360 	 * 0x10.  This gets handled by ier_mask and ier_rxbits below.
361 	 */
362 	ier = uart_getreg(bas, REG_IER) & 0xe0;
363 	uart_setreg(bas, REG_IER, ier);
364 	uart_barrier(bas);
365 
366 	/* Disable the FIFO (if present). */
367 	uart_setreg(bas, REG_FCR, 0);
368 	uart_barrier(bas);
369 
370 	/* Set RTS & DTR. */
371 	uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR);
372 	uart_barrier(bas);
373 
374 	ns8250_clrint(bas);
375 }
376 
377 static void
378 ns8250_term(struct uart_bas *bas)
379 {
380 
381 	/* Clear RTS & DTR. */
382 	uart_setreg(bas, REG_MCR, MCR_IE);
383 	uart_barrier(bas);
384 }
385 
386 static void
387 ns8250_putc(struct uart_bas *bas, int c)
388 {
389 	int limit;
390 
391 	if (vm_guest != VM_GUEST_HV) {
392 		limit = 250000;
393 		while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit)
394 			DELAY(4);
395 	}
396 	uart_setreg(bas, REG_DATA, c);
397 	uart_barrier(bas);
398 }
399 
400 static int
401 ns8250_rxready(struct uart_bas *bas)
402 {
403 
404 	return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0);
405 }
406 
407 static int
408 ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx)
409 {
410 	int c;
411 
412 	uart_lock(hwmtx);
413 
414 	while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) {
415 		uart_unlock(hwmtx);
416 		DELAY(4);
417 		uart_lock(hwmtx);
418 	}
419 
420 	c = uart_getreg(bas, REG_DATA);
421 
422 	uart_unlock(hwmtx);
423 
424 	return (c);
425 }
426 
427 static kobj_method_t ns8250_methods[] = {
428 	KOBJMETHOD(uart_attach,		ns8250_bus_attach),
429 	KOBJMETHOD(uart_detach,		ns8250_bus_detach),
430 	KOBJMETHOD(uart_flush,		ns8250_bus_flush),
431 	KOBJMETHOD(uart_getsig,		ns8250_bus_getsig),
432 	KOBJMETHOD(uart_ioctl,		ns8250_bus_ioctl),
433 	KOBJMETHOD(uart_ipend,		ns8250_bus_ipend),
434 	KOBJMETHOD(uart_param,		ns8250_bus_param),
435 	KOBJMETHOD(uart_probe,		ns8250_bus_probe),
436 	KOBJMETHOD(uart_receive,	ns8250_bus_receive),
437 	KOBJMETHOD(uart_setsig,		ns8250_bus_setsig),
438 	KOBJMETHOD(uart_transmit,	ns8250_bus_transmit),
439 	KOBJMETHOD(uart_txbusy,		ns8250_bus_txbusy),
440 	KOBJMETHOD(uart_grab,		ns8250_bus_grab),
441 	KOBJMETHOD(uart_ungrab,		ns8250_bus_ungrab),
442 	KOBJMETHOD_END
443 };
444 
445 struct uart_class uart_ns8250_class = {
446 	"ns8250",
447 	ns8250_methods,
448 	sizeof(struct ns8250_softc),
449 	.uc_ops = &uart_ns8250_ops,
450 	.uc_range = 8,
451 	.uc_rclk = DEFAULT_RCLK,
452 	.uc_rshift = 0
453 };
454 UART_CLASS(uart_ns8250_class);
455 
456 /*
457  * XXX -- refactor out ACPI and FDT ifdefs
458  */
459 #ifdef DEV_ACPI
460 static struct acpi_uart_compat_data acpi_compat_data[] = {
461 	{"AMD0020",	&uart_ns8250_class, 0, 2, 0, 48000000, UART_F_BUSY_DETECT, "AMD / Synopsys Designware UART"},
462 	{"AMDI0020", &uart_ns8250_class, 0, 2, 0, 48000000, UART_F_BUSY_DETECT, "AMD / Synopsys Designware UART"},
463 	{"MRVL0001", &uart_ns8250_class, ACPI_DBG2_16550_SUBSET, 2, 0, 200000000, UART_F_BUSY_DETECT, "Marvell / Synopsys Designware UART"},
464 	{"SCX0006",  &uart_ns8250_class, 0, 2, 0, 62500000, UART_F_BUSY_DETECT, "SynQuacer / Synopsys Designware UART"},
465 	{"HISI0031", &uart_ns8250_class, 0, 2, 0, 200000000, UART_F_BUSY_DETECT, "HiSilicon / Synopsys Designware UART"},
466 	{"NXP0018", &uart_ns8250_class, 0, 0, 0, 350000000, UART_F_BUSY_DETECT, "NXP / Synopsys Designware UART"},
467 	{"PNP0500", &uart_ns8250_class, 0, 0, 0, 0, 0, "Standard PC COM port"},
468 	{"PNP0501", &uart_ns8250_class, 0, 0, 0, 0, 0, "16550A-compatible COM port"},
469 	{"PNP0502", &uart_ns8250_class, 0, 0, 0, 0, 0, "Multiport serial device (non-intelligent 16550)"},
470 	{"PNP0510", &uart_ns8250_class, 0, 0, 0, 0, 0, "Generic IRDA-compatible device"},
471 	{"PNP0511", &uart_ns8250_class, 0, 0, 0, 0, 0, "Generic IRDA-compatible device"},
472 	{"WACF004", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet PC Screen"},
473 	{"WACF00E", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet PC Screen 00e"},
474 	{"FUJ02E5", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet at FuS Lifebook T"},
475 	{NULL, 			NULL, 0, 0 , 0, 0, 0, NULL},
476 };
477 UART_ACPI_CLASS_AND_DEVICE(acpi_compat_data);
478 #endif
479 
480 #ifdef FDT
481 static struct ofw_compat_data compat_data[] = {
482 	{"ns16550",		(uintptr_t)&uart_ns8250_class},
483 	{"ns16550a",		(uintptr_t)&uart_ns8250_class},
484 	{NULL,			(uintptr_t)NULL},
485 };
486 UART_FDT_CLASS_AND_DEVICE(compat_data);
487 #endif
488 
489 /* Use token-pasting to form SER_ and MSR_ named constants. */
490 #define	SER(sig)	SER_##sig
491 #define	SERD(sig)	SER_D##sig
492 #define	MSR(sig)	MSR_##sig
493 #define	MSRD(sig)	MSR_D##sig
494 
495 /*
496  * Detect signal changes using software delta detection.  The previous state of
497  * the signals is in 'var' the new hardware state is in 'msr', and 'sig' is the
498  * short name (DCD, CTS, etc) of the signal bit being processed; 'var' gets the
499  * new state of both the signal and the delta bits.
500  */
501 #define SIGCHGSW(var, msr, sig)					\
502 	if ((msr) & MSR(sig)) {					\
503 		if ((var & SER(sig)) == 0)			\
504 			var |= SERD(sig) | SER(sig);		\
505 	} else {						\
506 		if ((var & SER(sig)) != 0)			\
507 			var = SERD(sig) | (var & ~SER(sig));	\
508 	}
509 
510 /*
511  * Detect signal changes using the hardware msr delta bits.  This is currently
512  * used only when PPS timing information is being captured using the "narrow
513  * pulse" option.  With a narrow PPS pulse the signal may not still be asserted
514  * by time the interrupt handler is invoked.  The hardware will latch the fact
515  * that it changed in the delta bits.
516  */
517 #define SIGCHGHW(var, msr, sig)					\
518 	if ((msr) & MSRD(sig)) {				\
519 		if (((msr) & MSR(sig)) != 0)			\
520 			var |= SERD(sig) | SER(sig);		\
521 		else						\
522 			var = SERD(sig) | (var & ~SER(sig));	\
523 	}
524 
525 int
526 ns8250_bus_attach(struct uart_softc *sc)
527 {
528 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
529 	struct uart_bas *bas;
530 	unsigned int ivar;
531 #ifdef FDT
532 	phandle_t node;
533 	pcell_t cell;
534 #endif
535 
536 #ifdef FDT
537 	/* Check whether uart has a broken txfifo. */
538 	node = ofw_bus_get_node(sc->sc_dev);
539 	if ((OF_getencprop(node, "broken-txfifo", &cell, sizeof(cell))) > 0)
540 		broken_txfifo =  cell ? 1 : 0;
541 #endif
542 
543 	bas = &sc->sc_bas;
544 
545 	ns8250->busy_detect = bas->busy_detect;
546 	ns8250->mcr = uart_getreg(bas, REG_MCR);
547 	ns8250->fcr = FCR_ENABLE;
548 	if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags",
549 	    &ivar)) {
550 		if (UART_FLAGS_FCR_RX_LOW(ivar))
551 			ns8250->fcr |= FCR_RX_LOW;
552 		else if (UART_FLAGS_FCR_RX_MEDL(ivar))
553 			ns8250->fcr |= FCR_RX_MEDL;
554 		else if (UART_FLAGS_FCR_RX_HIGH(ivar))
555 			ns8250->fcr |= FCR_RX_HIGH;
556 		else
557 			ns8250->fcr |= FCR_RX_MEDH;
558 	} else
559 		ns8250->fcr |= FCR_RX_MEDH;
560 
561 	/* Get IER mask */
562 	ivar = 0xf0;
563 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask",
564 	    &ivar);
565 	ns8250->ier_mask = (uint8_t)(ivar & 0xff);
566 
567 	/* Get IER RX interrupt bits */
568 	ivar = IER_EMSC | IER_ERLS | IER_ERXRDY;
569 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits",
570 	    &ivar);
571 	ns8250->ier_rxbits = (uint8_t)(ivar & 0xff);
572 
573 	uart_setreg(bas, REG_FCR, ns8250->fcr);
574 	uart_barrier(bas);
575 	ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
576 
577 	if (ns8250->mcr & MCR_DTR)
578 		sc->sc_hwsig |= SER_DTR;
579 	if (ns8250->mcr & MCR_RTS)
580 		sc->sc_hwsig |= SER_RTS;
581 	ns8250_bus_getsig(sc);
582 
583 	ns8250_clrint(bas);
584 	ns8250->ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
585 	ns8250->ier |= ns8250->ier_rxbits;
586 	uart_setreg(bas, REG_IER, ns8250->ier);
587 	uart_barrier(bas);
588 
589 	/*
590 	 * Timing of the H/W access was changed with r253161 of uart_core.c
591 	 * It has been observed that an ITE IT8513E would signal a break
592 	 * condition with pretty much every character it received, unless
593 	 * it had enough time to settle between ns8250_bus_attach() and
594 	 * ns8250_bus_ipend() -- which it accidentally had before r253161.
595 	 * It's not understood why the UART chip behaves this way and it
596 	 * could very well be that the DELAY make the H/W work in the same
597 	 * accidental manner as before. More analysis is warranted, but
598 	 * at least now we fixed a known regression.
599 	 */
600 	DELAY(200);
601 	return (0);
602 }
603 
604 int
605 ns8250_bus_detach(struct uart_softc *sc)
606 {
607 	struct ns8250_softc *ns8250;
608 	struct uart_bas *bas;
609 	u_char ier;
610 
611 	ns8250 = (struct ns8250_softc *)sc;
612 	bas = &sc->sc_bas;
613 	ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
614 	uart_setreg(bas, REG_IER, ier);
615 	uart_barrier(bas);
616 	ns8250_clrint(bas);
617 	return (0);
618 }
619 
620 int
621 ns8250_bus_flush(struct uart_softc *sc, int what)
622 {
623 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
624 	struct uart_bas *bas;
625 	int error;
626 
627 	bas = &sc->sc_bas;
628 	uart_lock(sc->sc_hwmtx);
629 	if (sc->sc_rxfifosz > 1) {
630 		ns8250_flush(bas, what);
631 		uart_setreg(bas, REG_FCR, ns8250->fcr);
632 		uart_barrier(bas);
633 		error = 0;
634 	} else
635 		error = ns8250_drain(bas, what);
636 	uart_unlock(sc->sc_hwmtx);
637 	return (error);
638 }
639 
640 int
641 ns8250_bus_getsig(struct uart_softc *sc)
642 {
643 	uint32_t old, sig;
644 	uint8_t msr;
645 
646 	/*
647 	 * The delta bits are reputed to be broken on some hardware, so use
648 	 * software delta detection by default.  Use the hardware delta bits
649 	 * when capturing PPS pulses which are too narrow for software detection
650 	 * to see the edges.  Hardware delta for RI doesn't work like the
651 	 * others, so always use software for it.  Other threads may be changing
652 	 * other (non-MSR) bits in sc_hwsig, so loop until it can successfully
653 	 * update without other changes happening.  Note that the SIGCHGxx()
654 	 * macros carefully preserve the delta bits when we have to loop several
655 	 * times and a signal transitions between iterations.
656 	 */
657 	do {
658 		old = sc->sc_hwsig;
659 		sig = old;
660 		uart_lock(sc->sc_hwmtx);
661 		msr = uart_getreg(&sc->sc_bas, REG_MSR);
662 		uart_unlock(sc->sc_hwmtx);
663 		if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE) {
664 			SIGCHGHW(sig, msr, DSR);
665 			SIGCHGHW(sig, msr, CTS);
666 			SIGCHGHW(sig, msr, DCD);
667 		} else {
668 			SIGCHGSW(sig, msr, DSR);
669 			SIGCHGSW(sig, msr, CTS);
670 			SIGCHGSW(sig, msr, DCD);
671 		}
672 		SIGCHGSW(sig, msr, RI);
673 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, sig & ~SER_MASK_DELTA));
674 	return (sig);
675 }
676 
677 int
678 ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
679 {
680 	struct uart_bas *bas;
681 	int baudrate, divisor, error;
682 	uint8_t efr, lcr;
683 
684 	bas = &sc->sc_bas;
685 	error = 0;
686 	uart_lock(sc->sc_hwmtx);
687 	switch (request) {
688 	case UART_IOCTL_BREAK:
689 		lcr = uart_getreg(bas, REG_LCR);
690 		if (data)
691 			lcr |= LCR_SBREAK;
692 		else
693 			lcr &= ~LCR_SBREAK;
694 		uart_setreg(bas, REG_LCR, lcr);
695 		uart_barrier(bas);
696 		break;
697 	case UART_IOCTL_IFLOW:
698 		lcr = uart_getreg(bas, REG_LCR);
699 		uart_barrier(bas);
700 		uart_setreg(bas, REG_LCR, 0xbf);
701 		uart_barrier(bas);
702 		efr = uart_getreg(bas, REG_EFR);
703 		if (data)
704 			efr |= EFR_RTS;
705 		else
706 			efr &= ~EFR_RTS;
707 		uart_setreg(bas, REG_EFR, efr);
708 		uart_barrier(bas);
709 		uart_setreg(bas, REG_LCR, lcr);
710 		uart_barrier(bas);
711 		break;
712 	case UART_IOCTL_OFLOW:
713 		lcr = uart_getreg(bas, REG_LCR);
714 		uart_barrier(bas);
715 		uart_setreg(bas, REG_LCR, 0xbf);
716 		uart_barrier(bas);
717 		efr = uart_getreg(bas, REG_EFR);
718 		if (data)
719 			efr |= EFR_CTS;
720 		else
721 			efr &= ~EFR_CTS;
722 		uart_setreg(bas, REG_EFR, efr);
723 		uart_barrier(bas);
724 		uart_setreg(bas, REG_LCR, lcr);
725 		uart_barrier(bas);
726 		break;
727 	case UART_IOCTL_BAUD:
728 		lcr = uart_getreg(bas, REG_LCR);
729 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
730 		uart_barrier(bas);
731 		divisor = uart_getreg(bas, REG_DLL) |
732 		    (uart_getreg(bas, REG_DLH) << 8);
733 		uart_barrier(bas);
734 		uart_setreg(bas, REG_LCR, lcr);
735 		uart_barrier(bas);
736 		baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0;
737 		if (baudrate > 0)
738 			*(int*)data = baudrate;
739 		else
740 			error = ENXIO;
741 		break;
742 	default:
743 		error = EINVAL;
744 		break;
745 	}
746 	uart_unlock(sc->sc_hwmtx);
747 	return (error);
748 }
749 
750 int
751 ns8250_bus_ipend(struct uart_softc *sc)
752 {
753 	struct uart_bas *bas;
754 	struct ns8250_softc *ns8250;
755 	int ipend;
756 	uint8_t iir, lsr;
757 
758 	ns8250 = (struct ns8250_softc *)sc;
759 	bas = &sc->sc_bas;
760 	uart_lock(sc->sc_hwmtx);
761 	iir = uart_getreg(bas, REG_IIR);
762 
763 	if (ns8250->busy_detect && (iir & IIR_BUSY) == IIR_BUSY) {
764 		(void)uart_getreg(bas, DW_REG_USR);
765 		uart_unlock(sc->sc_hwmtx);
766 		return (0);
767 	}
768 	if (iir & IIR_NOPEND) {
769 		uart_unlock(sc->sc_hwmtx);
770 		return (0);
771 	}
772 	ipend = 0;
773 	if (iir & IIR_RXRDY) {
774 		lsr = uart_getreg(bas, REG_LSR);
775 		if (lsr & LSR_OE)
776 			ipend |= SER_INT_OVERRUN;
777 		if (lsr & LSR_BI)
778 			ipend |= SER_INT_BREAK;
779 		if (lsr & LSR_RXRDY)
780 			ipend |= SER_INT_RXREADY;
781 	} else {
782 		if (iir & IIR_TXRDY) {
783 			ipend |= SER_INT_TXIDLE;
784 			ns8250->ier &= ~IER_ETXRDY;
785 			uart_setreg(bas, REG_IER, ns8250->ier);
786 			uart_barrier(bas);
787 		} else
788 			ipend |= SER_INT_SIGCHG;
789 	}
790 	if (ipend == 0)
791 		ns8250_clrint(bas);
792 	uart_unlock(sc->sc_hwmtx);
793 	return (ipend);
794 }
795 
796 int
797 ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits,
798     int stopbits, int parity)
799 {
800 	struct ns8250_softc *ns8250;
801 	struct uart_bas *bas;
802 	int error, limit;
803 
804 	ns8250 = (struct ns8250_softc*)sc;
805 	bas = &sc->sc_bas;
806 	uart_lock(sc->sc_hwmtx);
807 	/*
808 	 * When using DW UART with BUSY detection it is necessary to wait
809 	 * until all serial transfers are finished before manipulating the
810 	 * line control. LCR will not be affected when UART is busy.
811 	 */
812 	if (ns8250->busy_detect != 0) {
813 		/*
814 		 * Pick an arbitrary high limit to avoid getting stuck in
815 		 * an infinite loop in case when the hardware is broken.
816 		 */
817 		limit = 10 * 1024;
818 		while (((uart_getreg(bas, DW_REG_USR) & USR_BUSY) != 0) &&
819 		    --limit)
820 			DELAY(4);
821 
822 		if (limit <= 0) {
823 			/* UART appears to be stuck */
824 			uart_unlock(sc->sc_hwmtx);
825 			return (EIO);
826 		}
827 	}
828 
829 	error = ns8250_param(bas, baudrate, databits, stopbits, parity);
830 	uart_unlock(sc->sc_hwmtx);
831 	return (error);
832 }
833 
834 int
835 ns8250_bus_probe(struct uart_softc *sc)
836 {
837 	struct uart_bas *bas;
838 	int count, delay, error, limit;
839 	uint8_t lsr, mcr, ier;
840 
841 	bas = &sc->sc_bas;
842 
843 	error = ns8250_probe(bas);
844 	if (error)
845 		return (error);
846 
847 	mcr = MCR_IE;
848 	if (sc->sc_sysdev == NULL) {
849 		/* By using ns8250_init() we also set DTR and RTS. */
850 		ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE);
851 	} else
852 		mcr |= MCR_DTR | MCR_RTS;
853 
854 	error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
855 	if (error)
856 		return (error);
857 
858 	/*
859 	 * Set loopback mode. This avoids having garbage on the wire and
860 	 * also allows us send and receive data. We set DTR and RTS to
861 	 * avoid the possibility that automatic flow-control prevents
862 	 * any data from being sent.
863 	 */
864 	uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS);
865 	uart_barrier(bas);
866 
867 	/*
868 	 * Enable FIFOs. And check that the UART has them. If not, we're
869 	 * done. Since this is the first time we enable the FIFOs, we reset
870 	 * them.
871 	 */
872 	uart_setreg(bas, REG_FCR, FCR_ENABLE);
873 	uart_barrier(bas);
874 	if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) {
875 		/*
876 		 * NS16450 or INS8250. We don't bother to differentiate
877 		 * between them. They're too old to be interesting.
878 		 */
879 		uart_setreg(bas, REG_MCR, mcr);
880 		uart_barrier(bas);
881 		sc->sc_rxfifosz = sc->sc_txfifosz = 1;
882 		device_set_desc(sc->sc_dev, "8250 or 16450 or compatible");
883 		return (0);
884 	}
885 
886 	uart_setreg(bas, REG_FCR, FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST);
887 	uart_barrier(bas);
888 
889 	count = 0;
890 	delay = ns8250_delay(bas);
891 
892 	/* We have FIFOs. Drain the transmitter and receiver. */
893 	error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER);
894 	if (error) {
895 		uart_setreg(bas, REG_MCR, mcr);
896 		uart_setreg(bas, REG_FCR, 0);
897 		uart_barrier(bas);
898 		goto describe;
899 	}
900 
901 	/*
902 	 * We should have a sufficiently clean "pipe" to determine the
903 	 * size of the FIFOs. We send as much characters as is reasonable
904 	 * and wait for the overflow bit in the LSR register to be
905 	 * asserted, counting the characters as we send them. Based on
906 	 * that count we know the FIFO size.
907 	 */
908 	do {
909 		uart_setreg(bas, REG_DATA, 0);
910 		uart_barrier(bas);
911 		count++;
912 
913 		limit = 30;
914 		lsr = 0;
915 		/*
916 		 * LSR bits are cleared upon read, so we must accumulate
917 		 * them to be able to test LSR_OE below.
918 		 */
919 		while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 &&
920 		    --limit)
921 			DELAY(delay);
922 		if (limit == 0) {
923 			/* See the comment in ns8250_init(). */
924 			ier = uart_getreg(bas, REG_IER) & 0xe0;
925 			uart_setreg(bas, REG_IER, ier);
926 			uart_setreg(bas, REG_MCR, mcr);
927 			uart_setreg(bas, REG_FCR, 0);
928 			uart_barrier(bas);
929 			count = 0;
930 			goto describe;
931 		}
932 	} while ((lsr & LSR_OE) == 0 && count < 260);
933 	count--;
934 
935 	uart_setreg(bas, REG_MCR, mcr);
936 
937 	/* Reset FIFOs. */
938 	ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
939 
940  describe:
941 	if (count >= 14 && count <= 16) {
942 		sc->sc_rxfifosz = 16;
943 		device_set_desc(sc->sc_dev, "16550 or compatible");
944 	} else if (count >= 28 && count <= 32) {
945 		sc->sc_rxfifosz = 32;
946 		device_set_desc(sc->sc_dev, "16650 or compatible");
947 	} else if (count >= 56 && count <= 64) {
948 		sc->sc_rxfifosz = 64;
949 		device_set_desc(sc->sc_dev, "16750 or compatible");
950 	} else if (count >= 112 && count <= 128) {
951 		sc->sc_rxfifosz = 128;
952 		device_set_desc(sc->sc_dev, "16950 or compatible");
953 	} else if (count >= 224 && count <= 256) {
954 		sc->sc_rxfifosz = 256;
955 		device_set_desc(sc->sc_dev, "16x50 with 256 byte FIFO");
956 	} else {
957 		sc->sc_rxfifosz = 16;
958 		device_set_desc(sc->sc_dev,
959 		    "Non-standard ns8250 class UART with FIFOs");
960 	}
961 
962 	/*
963 	 * Force the Tx FIFO size to 16 bytes for now. We don't program the
964 	 * Tx trigger. Also, we assume that all data has been sent when the
965 	 * interrupt happens.
966 	 */
967 	sc->sc_txfifosz = 16;
968 
969 #if 0
970 	/*
971 	 * XXX there are some issues related to hardware flow control and
972 	 * it's likely that uart(4) is the cause. This basically needs more
973 	 * investigation, but we avoid using for hardware flow control
974 	 * until then.
975 	 */
976 	/* 16650s or higher have automatic flow control. */
977 	if (sc->sc_rxfifosz > 16) {
978 		sc->sc_hwiflow = 1;
979 		sc->sc_hwoflow = 1;
980 	}
981 #endif
982 
983 	return (0);
984 }
985 
986 int
987 ns8250_bus_receive(struct uart_softc *sc)
988 {
989 	struct uart_bas *bas;
990 	int xc;
991 	uint8_t lsr;
992 
993 	bas = &sc->sc_bas;
994 	uart_lock(sc->sc_hwmtx);
995 	lsr = uart_getreg(bas, REG_LSR);
996 	while (lsr & LSR_RXRDY) {
997 		if (uart_rx_full(sc)) {
998 			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
999 			break;
1000 		}
1001 		xc = uart_getreg(bas, REG_DATA);
1002 		if (lsr & LSR_FE)
1003 			xc |= UART_STAT_FRAMERR;
1004 		if (lsr & LSR_PE)
1005 			xc |= UART_STAT_PARERR;
1006 		uart_rx_put(sc, xc);
1007 		lsr = uart_getreg(bas, REG_LSR);
1008 	}
1009 	/* Discard everything left in the Rx FIFO. */
1010 	while (lsr & LSR_RXRDY) {
1011 		(void)uart_getreg(bas, REG_DATA);
1012 		uart_barrier(bas);
1013 		lsr = uart_getreg(bas, REG_LSR);
1014 	}
1015 	uart_unlock(sc->sc_hwmtx);
1016  	return (0);
1017 }
1018 
1019 int
1020 ns8250_bus_setsig(struct uart_softc *sc, int sig)
1021 {
1022 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1023 	struct uart_bas *bas;
1024 	uint32_t new, old;
1025 
1026 	bas = &sc->sc_bas;
1027 	do {
1028 		old = sc->sc_hwsig;
1029 		new = old;
1030 		if (sig & SER_DDTR) {
1031 			new = (new & ~SER_DTR) | (sig & (SER_DTR | SER_DDTR));
1032 		}
1033 		if (sig & SER_DRTS) {
1034 			new = (new & ~SER_RTS) | (sig & (SER_RTS | SER_DRTS));
1035 		}
1036 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
1037 	uart_lock(sc->sc_hwmtx);
1038 	ns8250->mcr &= ~(MCR_DTR|MCR_RTS);
1039 	if (new & SER_DTR)
1040 		ns8250->mcr |= MCR_DTR;
1041 	if (new & SER_RTS)
1042 		ns8250->mcr |= MCR_RTS;
1043 	uart_setreg(bas, REG_MCR, ns8250->mcr);
1044 	uart_barrier(bas);
1045 	uart_unlock(sc->sc_hwmtx);
1046 	return (0);
1047 }
1048 
1049 int
1050 ns8250_bus_transmit(struct uart_softc *sc)
1051 {
1052 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1053 	struct uart_bas *bas;
1054 	int i;
1055 
1056 	bas = &sc->sc_bas;
1057 	uart_lock(sc->sc_hwmtx);
1058 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0)
1059 		DELAY(4);
1060 	for (i = 0; i < sc->sc_txdatasz; i++) {
1061 		uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]);
1062 		uart_barrier(bas);
1063 	}
1064 	if (!broken_txfifo)
1065 		ns8250->ier |= IER_ETXRDY;
1066 	uart_setreg(bas, REG_IER, ns8250->ier);
1067 	uart_barrier(bas);
1068 	if (broken_txfifo)
1069 		ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
1070 	else
1071 		sc->sc_txbusy = 1;
1072 	uart_unlock(sc->sc_hwmtx);
1073 	if (broken_txfifo)
1074 		uart_sched_softih(sc, SER_INT_TXIDLE);
1075 	return (0);
1076 }
1077 
1078 bool
1079 ns8250_bus_txbusy(struct uart_softc *sc)
1080 {
1081 	struct uart_bas *bas = &sc->sc_bas;
1082 
1083 	if ((uart_getreg(bas, REG_LSR) & (LSR_TEMT | LSR_THRE)) !=
1084 	    (LSR_TEMT | LSR_THRE))
1085 		return (true);
1086 	return (false);
1087 }
1088 
1089 void
1090 ns8250_bus_grab(struct uart_softc *sc)
1091 {
1092 	struct uart_bas *bas = &sc->sc_bas;
1093 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1094 	u_char ier;
1095 
1096 	/*
1097 	 * turn off all interrupts to enter polling mode. Leave the
1098 	 * saved mask alone. We'll restore whatever it was in ungrab.
1099 	 * All pending interrupt signals are reset when IER is set to 0.
1100 	 */
1101 	uart_lock(sc->sc_hwmtx);
1102 	ier = uart_getreg(bas, REG_IER);
1103 	uart_setreg(bas, REG_IER, ier & ns8250->ier_mask);
1104 	uart_barrier(bas);
1105 	uart_unlock(sc->sc_hwmtx);
1106 }
1107 
1108 void
1109 ns8250_bus_ungrab(struct uart_softc *sc)
1110 {
1111 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1112 	struct uart_bas *bas = &sc->sc_bas;
1113 
1114 	/*
1115 	 * Restore previous interrupt mask
1116 	 */
1117 	uart_lock(sc->sc_hwmtx);
1118 	uart_setreg(bas, REG_IER, ns8250->ier);
1119 	uart_barrier(bas);
1120 	uart_unlock(sc->sc_hwmtx);
1121 }
1122