xref: /freebsd/sys/dev/uart/uart_dev_ns8250.c (revision 22cf89c938886d14f5796fc49f9f020c23ea8eaf)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2003 Marcel Moolenaar
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include "opt_acpi.h"
30 #include "opt_platform.h"
31 #include "opt_uart.h"
32 
33 #include <sys/cdefs.h>
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/bus.h>
37 #include <sys/conf.h>
38 #include <sys/kernel.h>
39 #include <sys/sysctl.h>
40 #include <machine/bus.h>
41 
42 #ifdef FDT
43 #include <dev/fdt/fdt_common.h>
44 #include <dev/ofw/ofw_bus.h>
45 #include <dev/ofw/ofw_bus_subr.h>
46 #endif
47 
48 #include <dev/uart/uart.h>
49 #include <dev/uart/uart_cpu.h>
50 #ifdef FDT
51 #include <dev/uart/uart_cpu_fdt.h>
52 #endif
53 #include <dev/uart/uart_bus.h>
54 #include <dev/uart/uart_dev_ns8250.h>
55 #include <dev/uart/uart_ppstypes.h>
56 #ifdef DEV_ACPI
57 #include <dev/uart/uart_cpu_acpi.h>
58 #include <contrib/dev/acpica/include/acpi.h>
59 #endif
60 
61 #include <dev/ic/ns16550.h>
62 
63 #include "uart_if.h"
64 
65 #define	DEFAULT_RCLK	1843200
66 
67 /*
68  * Set the default baudrate tolerance to 3.0%.
69  *
70  * Some embedded boards have odd reference clocks (eg 25MHz)
71  * and we need to handle higher variances in the target baud rate.
72  */
73 #ifndef	UART_DEV_TOLERANCE_PCT
74 #define	UART_DEV_TOLERANCE_PCT	30
75 #endif	/* UART_DEV_TOLERANCE_PCT */
76 
77 static int broken_txfifo = 0;
78 SYSCTL_INT(_hw, OID_AUTO, broken_txfifo, CTLFLAG_RWTUN,
79 	&broken_txfifo, 0, "UART FIFO has QEMU emulation bug");
80 
81 /*
82  * Clear pending interrupts. THRE is cleared by reading IIR. Data
83  * that may have been received gets lost here.
84  */
85 static void
86 ns8250_clrint(struct uart_bas *bas)
87 {
88 	uint8_t iir, lsr;
89 
90 	iir = uart_getreg(bas, REG_IIR);
91 	while ((iir & IIR_NOPEND) == 0) {
92 		iir &= IIR_IMASK;
93 		if (iir == IIR_RLS) {
94 			lsr = uart_getreg(bas, REG_LSR);
95 			if (lsr & (LSR_BI|LSR_FE|LSR_PE))
96 				(void)uart_getreg(bas, REG_DATA);
97 		} else if (iir == IIR_RXRDY || iir == IIR_RXTOUT)
98 			(void)uart_getreg(bas, REG_DATA);
99 		else if (iir == IIR_MLSC)
100 			(void)uart_getreg(bas, REG_MSR);
101 		uart_barrier(bas);
102 		iir = uart_getreg(bas, REG_IIR);
103 	}
104 }
105 
106 static int
107 ns8250_delay(struct uart_bas *bas)
108 {
109 	int divisor;
110 	u_char lcr;
111 
112 	lcr = uart_getreg(bas, REG_LCR);
113 	uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
114 	uart_barrier(bas);
115 	divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8);
116 	uart_barrier(bas);
117 	uart_setreg(bas, REG_LCR, lcr);
118 	uart_barrier(bas);
119 
120 	/* 1/10th the time to transmit 1 character (estimate). */
121 	if (divisor <= 134)
122 		return (16000000 * divisor / bas->rclk);
123 	return (16000 * divisor / (bas->rclk / 1000));
124 }
125 
126 static int
127 ns8250_divisor(int rclk, int baudrate)
128 {
129 	int actual_baud, divisor;
130 	int error;
131 
132 	if (baudrate == 0)
133 		return (0);
134 
135 	divisor = (rclk / (baudrate << 3) + 1) >> 1;
136 	if (divisor == 0 || divisor >= 65536)
137 		return (0);
138 	actual_baud = rclk / (divisor << 4);
139 
140 	/* 10 times error in percent: */
141 	error = ((actual_baud - baudrate) * 2000 / baudrate + 1) / 2;
142 
143 	/* enforce maximum error tolerance: */
144 	if (error < -UART_DEV_TOLERANCE_PCT || error > UART_DEV_TOLERANCE_PCT)
145 		return (0);
146 
147 	return (divisor);
148 }
149 
150 static int
151 ns8250_drain(struct uart_bas *bas, int what)
152 {
153 	int delay, limit;
154 
155 	delay = ns8250_delay(bas);
156 
157 	if (what & UART_DRAIN_TRANSMITTER) {
158 		/*
159 		 * Pick an arbitrary high limit to avoid getting stuck in
160 		 * an infinite loop when the hardware is broken. Make the
161 		 * limit high enough to handle large FIFOs.
162 		 */
163 		limit = 10*1024;
164 		while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
165 			DELAY(delay);
166 		if (limit == 0) {
167 			/* printf("ns8250: transmitter appears stuck... "); */
168 			return (EIO);
169 		}
170 	}
171 
172 	if (what & UART_DRAIN_RECEIVER) {
173 		/*
174 		 * Pick an arbitrary high limit to avoid getting stuck in
175 		 * an infinite loop when the hardware is broken. Make the
176 		 * limit high enough to handle large FIFOs and integrated
177 		 * UARTs. The HP rx2600 for example has 3 UARTs on the
178 		 * management board that tend to get a lot of data send
179 		 * to it when the UART is first activated.  Assume that we
180 		 * have finished draining if LSR_RXRDY is not asserted both
181 		 * prior to and after a DELAY; but as long as LSR_RXRDY is
182 		 * asserted, read (and discard) characters as quickly as
183 		 * possible.
184 		 */
185 		limit=10*4096;
186 		while (limit && (uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) {
187 			do {
188 				(void)uart_getreg(bas, REG_DATA);
189 				uart_barrier(bas);
190 			} while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit);
191 			uart_barrier(bas);
192 			DELAY(delay << 2);
193 		}
194 		if (limit == 0) {
195 			/* printf("ns8250: receiver appears broken... "); */
196 			return (EIO);
197 		}
198 	}
199 
200 	return (0);
201 }
202 
203 /*
204  * We can only flush UARTs with FIFOs. UARTs without FIFOs should be
205  * drained. WARNING: this function clobbers the FIFO setting!
206  */
207 static void
208 ns8250_flush(struct uart_bas *bas, int what)
209 {
210 	uint8_t fcr;
211 	uint8_t lsr;
212 	int drain = 0;
213 
214 	fcr = FCR_ENABLE;
215 #ifdef CPU_XBURST
216 	fcr |= FCR_UART_ON;
217 #endif
218 	if (what & UART_FLUSH_TRANSMITTER)
219 		fcr |= FCR_XMT_RST;
220 	if (what & UART_FLUSH_RECEIVER)
221 		fcr |= FCR_RCV_RST;
222 	uart_setreg(bas, REG_FCR, fcr);
223 	uart_barrier(bas);
224 
225 	/*
226 	 * Detect and work around emulated UARTs which don't implement the
227 	 * FCR register; on these systems we need to drain the FIFO since
228 	 * the flush we request doesn't happen.  One such system is the
229 	 * Firecracker VMM, aka. the rust-vmm/vm-superio emulation code:
230 	 * https://github.com/rust-vmm/vm-superio/issues/83
231 	 */
232 	lsr = uart_getreg(bas, REG_LSR);
233 	if (((lsr & LSR_TEMT) == 0) && (what & UART_FLUSH_TRANSMITTER))
234 		drain |= UART_DRAIN_TRANSMITTER;
235 	if ((lsr & LSR_RXRDY) && (what & UART_FLUSH_RECEIVER))
236 		drain |= UART_DRAIN_RECEIVER;
237 	if (drain != 0) {
238 		printf("ns8250: UART FCR is broken\n");
239 		ns8250_drain(bas, drain);
240 	}
241 }
242 
243 static int
244 ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
245     int parity)
246 {
247 	int divisor;
248 	uint8_t lcr;
249 
250 	/* Don't change settings when running on Hyper-V */
251 	if (vm_guest == VM_GUEST_HV)
252 		return (0);
253 
254 	lcr = 0;
255 	if (databits >= 8)
256 		lcr |= LCR_8BITS;
257 	else if (databits == 7)
258 		lcr |= LCR_7BITS;
259 	else if (databits == 6)
260 		lcr |= LCR_6BITS;
261 	else
262 		lcr |= LCR_5BITS;
263 	if (stopbits > 1)
264 		lcr |= LCR_STOPB;
265 	lcr |= parity << 3;
266 
267 	/* Set baudrate. */
268 	if (baudrate > 0) {
269 		divisor = ns8250_divisor(bas->rclk, baudrate);
270 		if (divisor == 0)
271 			return (EINVAL);
272 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
273 		uart_barrier(bas);
274 		uart_setreg(bas, REG_DLL, divisor & 0xff);
275 		uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff);
276 		uart_barrier(bas);
277 	}
278 
279 	/* Set LCR and clear DLAB. */
280 	uart_setreg(bas, REG_LCR, lcr);
281 	uart_barrier(bas);
282 	return (0);
283 }
284 
285 /*
286  * Low-level UART interface.
287  */
288 static int ns8250_probe(struct uart_bas *bas);
289 static void ns8250_init(struct uart_bas *bas, int, int, int, int);
290 static void ns8250_term(struct uart_bas *bas);
291 static void ns8250_putc(struct uart_bas *bas, int);
292 static int ns8250_rxready(struct uart_bas *bas);
293 static int ns8250_getc(struct uart_bas *bas, struct mtx *);
294 
295 struct uart_ops uart_ns8250_ops = {
296 	.probe = ns8250_probe,
297 	.init = ns8250_init,
298 	.term = ns8250_term,
299 	.putc = ns8250_putc,
300 	.rxready = ns8250_rxready,
301 	.getc = ns8250_getc,
302 };
303 
304 static int
305 ns8250_probe(struct uart_bas *bas)
306 {
307 	u_char val;
308 
309 #ifdef CPU_XBURST
310 	uart_setreg(bas, REG_FCR, FCR_UART_ON);
311 #endif
312 
313 	/* Check known 0 bits that don't depend on DLAB. */
314 	val = uart_getreg(bas, REG_IIR);
315 	if (val & 0x30)
316 		return (ENXIO);
317 	/*
318 	 * Bit 6 of the MCR (= 0x40) appears to be 1 for the Sun1699
319 	 * chip, but otherwise doesn't seem to have a function. In
320 	 * other words, uart(4) works regardless. Ignore that bit so
321 	 * the probe succeeds.
322 	 */
323 	val = uart_getreg(bas, REG_MCR);
324 	if (val & 0xa0)
325 		return (ENXIO);
326 
327 	return (0);
328 }
329 
330 static void
331 ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
332     int parity)
333 {
334 	u_char ier, val;
335 
336 	if (bas->rclk == 0)
337 		bas->rclk = DEFAULT_RCLK;
338 	ns8250_param(bas, baudrate, databits, stopbits, parity);
339 
340 	/* Disable all interrupt sources. */
341 	/*
342 	 * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA
343 	 * UARTs split the receive time-out interrupt bit out separately as
344 	 * 0x10.  This gets handled by ier_mask and ier_rxbits below.
345 	 */
346 	ier = uart_getreg(bas, REG_IER) & 0xe0;
347 	uart_setreg(bas, REG_IER, ier);
348 	uart_barrier(bas);
349 
350 	/* Disable the FIFO (if present). */
351 	val = 0;
352 #ifdef CPU_XBURST
353 	val |= FCR_UART_ON;
354 #endif
355 	uart_setreg(bas, REG_FCR, val);
356 	uart_barrier(bas);
357 
358 	/* Set RTS & DTR. */
359 	uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR);
360 	uart_barrier(bas);
361 
362 	ns8250_clrint(bas);
363 }
364 
365 static void
366 ns8250_term(struct uart_bas *bas)
367 {
368 
369 	/* Clear RTS & DTR. */
370 	uart_setreg(bas, REG_MCR, MCR_IE);
371 	uart_barrier(bas);
372 }
373 
374 static void
375 ns8250_putc(struct uart_bas *bas, int c)
376 {
377 	int limit;
378 
379 	if (vm_guest != VM_GUEST_HV) {
380 		limit = 250000;
381 		while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit)
382 			DELAY(4);
383 	}
384 	uart_setreg(bas, REG_DATA, c);
385 	uart_barrier(bas);
386 }
387 
388 static int
389 ns8250_rxready(struct uart_bas *bas)
390 {
391 
392 	return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0);
393 }
394 
395 static int
396 ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx)
397 {
398 	int c;
399 
400 	uart_lock(hwmtx);
401 
402 	while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) {
403 		uart_unlock(hwmtx);
404 		DELAY(4);
405 		uart_lock(hwmtx);
406 	}
407 
408 	c = uart_getreg(bas, REG_DATA);
409 
410 	uart_unlock(hwmtx);
411 
412 	return (c);
413 }
414 
415 static kobj_method_t ns8250_methods[] = {
416 	KOBJMETHOD(uart_attach,		ns8250_bus_attach),
417 	KOBJMETHOD(uart_detach,		ns8250_bus_detach),
418 	KOBJMETHOD(uart_flush,		ns8250_bus_flush),
419 	KOBJMETHOD(uart_getsig,		ns8250_bus_getsig),
420 	KOBJMETHOD(uart_ioctl,		ns8250_bus_ioctl),
421 	KOBJMETHOD(uart_ipend,		ns8250_bus_ipend),
422 	KOBJMETHOD(uart_param,		ns8250_bus_param),
423 	KOBJMETHOD(uart_probe,		ns8250_bus_probe),
424 	KOBJMETHOD(uart_receive,	ns8250_bus_receive),
425 	KOBJMETHOD(uart_setsig,		ns8250_bus_setsig),
426 	KOBJMETHOD(uart_transmit,	ns8250_bus_transmit),
427 	KOBJMETHOD(uart_grab,		ns8250_bus_grab),
428 	KOBJMETHOD(uart_ungrab,		ns8250_bus_ungrab),
429 	{ 0, 0 }
430 };
431 
432 struct uart_class uart_ns8250_class = {
433 	"ns8250",
434 	ns8250_methods,
435 	sizeof(struct ns8250_softc),
436 	.uc_ops = &uart_ns8250_ops,
437 	.uc_range = 8,
438 	.uc_rclk = DEFAULT_RCLK,
439 	.uc_rshift = 0
440 };
441 
442 /*
443  * XXX -- refactor out ACPI and FDT ifdefs
444  */
445 #ifdef DEV_ACPI
446 static struct acpi_uart_compat_data acpi_compat_data[] = {
447 	{"AMD0020",	&uart_ns8250_class, 0, 2, 0, 48000000, UART_F_BUSY_DETECT, "AMD / Synopsys Designware UART"},
448 	{"AMDI0020", &uart_ns8250_class, 0, 2, 0, 48000000, UART_F_BUSY_DETECT, "AMD / Synopsys Designware UART"},
449 	{"MRVL0001", &uart_ns8250_class, ACPI_DBG2_16550_SUBSET, 2, 0, 200000000, UART_F_BUSY_DETECT, "Marvell / Synopsys Designware UART"},
450 	{"SCX0006",  &uart_ns8250_class, 0, 2, 0, 62500000, UART_F_BUSY_DETECT, "SynQuacer / Synopsys Designware UART"},
451 	{"HISI0031", &uart_ns8250_class, 0, 2, 0, 200000000, UART_F_BUSY_DETECT, "HiSilicon / Synopsys Designware UART"},
452 	{"NXP0018", &uart_ns8250_class, 0, 0, 0, 350000000, UART_F_BUSY_DETECT, "NXP / Synopsys Designware UART"},
453 	{"PNP0500", &uart_ns8250_class, 0, 0, 0, 0, 0, "Standard PC COM port"},
454 	{"PNP0501", &uart_ns8250_class, 0, 0, 0, 0, 0, "16550A-compatible COM port"},
455 	{"PNP0502", &uart_ns8250_class, 0, 0, 0, 0, 0, "Multiport serial device (non-intelligent 16550)"},
456 	{"PNP0510", &uart_ns8250_class, 0, 0, 0, 0, 0, "Generic IRDA-compatible device"},
457 	{"PNP0511", &uart_ns8250_class, 0, 0, 0, 0, 0, "Generic IRDA-compatible device"},
458 	{"WACF004", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet PC Screen"},
459 	{"WACF00E", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet PC Screen 00e"},
460 	{"FUJ02E5", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet at FuS Lifebook T"},
461 	{NULL, 			NULL, 0, 0 , 0, 0, 0, NULL},
462 };
463 UART_ACPI_CLASS_AND_DEVICE(acpi_compat_data);
464 #endif
465 
466 #ifdef FDT
467 static struct ofw_compat_data compat_data[] = {
468 	{"ns16550",		(uintptr_t)&uart_ns8250_class},
469 	{"ns16550a",		(uintptr_t)&uart_ns8250_class},
470 	{NULL,			(uintptr_t)NULL},
471 };
472 UART_FDT_CLASS_AND_DEVICE(compat_data);
473 #endif
474 
475 /* Use token-pasting to form SER_ and MSR_ named constants. */
476 #define	SER(sig)	SER_##sig
477 #define	SERD(sig)	SER_D##sig
478 #define	MSR(sig)	MSR_##sig
479 #define	MSRD(sig)	MSR_D##sig
480 
481 /*
482  * Detect signal changes using software delta detection.  The previous state of
483  * the signals is in 'var' the new hardware state is in 'msr', and 'sig' is the
484  * short name (DCD, CTS, etc) of the signal bit being processed; 'var' gets the
485  * new state of both the signal and the delta bits.
486  */
487 #define SIGCHGSW(var, msr, sig)					\
488 	if ((msr) & MSR(sig)) {					\
489 		if ((var & SER(sig)) == 0)			\
490 			var |= SERD(sig) | SER(sig);		\
491 	} else {						\
492 		if ((var & SER(sig)) != 0)			\
493 			var = SERD(sig) | (var & ~SER(sig));	\
494 	}
495 
496 /*
497  * Detect signal changes using the hardware msr delta bits.  This is currently
498  * used only when PPS timing information is being captured using the "narrow
499  * pulse" option.  With a narrow PPS pulse the signal may not still be asserted
500  * by time the interrupt handler is invoked.  The hardware will latch the fact
501  * that it changed in the delta bits.
502  */
503 #define SIGCHGHW(var, msr, sig)					\
504 	if ((msr) & MSRD(sig)) {				\
505 		if (((msr) & MSR(sig)) != 0)			\
506 			var |= SERD(sig) | SER(sig);		\
507 		else						\
508 			var = SERD(sig) | (var & ~SER(sig));	\
509 	}
510 
511 int
512 ns8250_bus_attach(struct uart_softc *sc)
513 {
514 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
515 	struct uart_bas *bas;
516 	unsigned int ivar;
517 #ifdef FDT
518 	phandle_t node;
519 	pcell_t cell;
520 #endif
521 
522 #ifdef FDT
523 	/* Check whether uart has a broken txfifo. */
524 	node = ofw_bus_get_node(sc->sc_dev);
525 	if ((OF_getencprop(node, "broken-txfifo", &cell, sizeof(cell))) > 0)
526 		broken_txfifo =  cell ? 1 : 0;
527 #endif
528 
529 	bas = &sc->sc_bas;
530 
531 	ns8250->busy_detect = bas->busy_detect;
532 	ns8250->mcr = uart_getreg(bas, REG_MCR);
533 	ns8250->fcr = FCR_ENABLE;
534 #ifdef CPU_XBURST
535 	ns8250->fcr |= FCR_UART_ON;
536 #endif
537 	if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags",
538 	    &ivar)) {
539 		if (UART_FLAGS_FCR_RX_LOW(ivar))
540 			ns8250->fcr |= FCR_RX_LOW;
541 		else if (UART_FLAGS_FCR_RX_MEDL(ivar))
542 			ns8250->fcr |= FCR_RX_MEDL;
543 		else if (UART_FLAGS_FCR_RX_HIGH(ivar))
544 			ns8250->fcr |= FCR_RX_HIGH;
545 		else
546 			ns8250->fcr |= FCR_RX_MEDH;
547 	} else
548 		ns8250->fcr |= FCR_RX_MEDH;
549 
550 	/* Get IER mask */
551 	ivar = 0xf0;
552 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask",
553 	    &ivar);
554 	ns8250->ier_mask = (uint8_t)(ivar & 0xff);
555 
556 	/* Get IER RX interrupt bits */
557 	ivar = IER_EMSC | IER_ERLS | IER_ERXRDY;
558 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits",
559 	    &ivar);
560 	ns8250->ier_rxbits = (uint8_t)(ivar & 0xff);
561 
562 	uart_setreg(bas, REG_FCR, ns8250->fcr);
563 	uart_barrier(bas);
564 	ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
565 
566 	if (ns8250->mcr & MCR_DTR)
567 		sc->sc_hwsig |= SER_DTR;
568 	if (ns8250->mcr & MCR_RTS)
569 		sc->sc_hwsig |= SER_RTS;
570 	ns8250_bus_getsig(sc);
571 
572 	ns8250_clrint(bas);
573 	ns8250->ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
574 	ns8250->ier |= ns8250->ier_rxbits;
575 	uart_setreg(bas, REG_IER, ns8250->ier);
576 	uart_barrier(bas);
577 
578 	/*
579 	 * Timing of the H/W access was changed with r253161 of uart_core.c
580 	 * It has been observed that an ITE IT8513E would signal a break
581 	 * condition with pretty much every character it received, unless
582 	 * it had enough time to settle between ns8250_bus_attach() and
583 	 * ns8250_bus_ipend() -- which it accidentally had before r253161.
584 	 * It's not understood why the UART chip behaves this way and it
585 	 * could very well be that the DELAY make the H/W work in the same
586 	 * accidental manner as before. More analysis is warranted, but
587 	 * at least now we fixed a known regression.
588 	 */
589 	DELAY(200);
590 	return (0);
591 }
592 
593 int
594 ns8250_bus_detach(struct uart_softc *sc)
595 {
596 	struct ns8250_softc *ns8250;
597 	struct uart_bas *bas;
598 	u_char ier;
599 
600 	ns8250 = (struct ns8250_softc *)sc;
601 	bas = &sc->sc_bas;
602 	ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
603 	uart_setreg(bas, REG_IER, ier);
604 	uart_barrier(bas);
605 	ns8250_clrint(bas);
606 	return (0);
607 }
608 
609 int
610 ns8250_bus_flush(struct uart_softc *sc, int what)
611 {
612 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
613 	struct uart_bas *bas;
614 	int error;
615 
616 	bas = &sc->sc_bas;
617 	uart_lock(sc->sc_hwmtx);
618 	if (sc->sc_rxfifosz > 1) {
619 		ns8250_flush(bas, what);
620 		uart_setreg(bas, REG_FCR, ns8250->fcr);
621 		uart_barrier(bas);
622 		error = 0;
623 	} else
624 		error = ns8250_drain(bas, what);
625 	uart_unlock(sc->sc_hwmtx);
626 	return (error);
627 }
628 
629 int
630 ns8250_bus_getsig(struct uart_softc *sc)
631 {
632 	uint32_t old, sig;
633 	uint8_t msr;
634 
635 	/*
636 	 * The delta bits are reputed to be broken on some hardware, so use
637 	 * software delta detection by default.  Use the hardware delta bits
638 	 * when capturing PPS pulses which are too narrow for software detection
639 	 * to see the edges.  Hardware delta for RI doesn't work like the
640 	 * others, so always use software for it.  Other threads may be changing
641 	 * other (non-MSR) bits in sc_hwsig, so loop until it can successfully
642 	 * update without other changes happening.  Note that the SIGCHGxx()
643 	 * macros carefully preserve the delta bits when we have to loop several
644 	 * times and a signal transitions between iterations.
645 	 */
646 	do {
647 		old = sc->sc_hwsig;
648 		sig = old;
649 		uart_lock(sc->sc_hwmtx);
650 		msr = uart_getreg(&sc->sc_bas, REG_MSR);
651 		uart_unlock(sc->sc_hwmtx);
652 		if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE) {
653 			SIGCHGHW(sig, msr, DSR);
654 			SIGCHGHW(sig, msr, CTS);
655 			SIGCHGHW(sig, msr, DCD);
656 		} else {
657 			SIGCHGSW(sig, msr, DSR);
658 			SIGCHGSW(sig, msr, CTS);
659 			SIGCHGSW(sig, msr, DCD);
660 		}
661 		SIGCHGSW(sig, msr, RI);
662 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, sig & ~SER_MASK_DELTA));
663 	return (sig);
664 }
665 
666 int
667 ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
668 {
669 	struct uart_bas *bas;
670 	int baudrate, divisor, error;
671 	uint8_t efr, lcr;
672 
673 	bas = &sc->sc_bas;
674 	error = 0;
675 	uart_lock(sc->sc_hwmtx);
676 	switch (request) {
677 	case UART_IOCTL_BREAK:
678 		lcr = uart_getreg(bas, REG_LCR);
679 		if (data)
680 			lcr |= LCR_SBREAK;
681 		else
682 			lcr &= ~LCR_SBREAK;
683 		uart_setreg(bas, REG_LCR, lcr);
684 		uart_barrier(bas);
685 		break;
686 	case UART_IOCTL_IFLOW:
687 		lcr = uart_getreg(bas, REG_LCR);
688 		uart_barrier(bas);
689 		uart_setreg(bas, REG_LCR, 0xbf);
690 		uart_barrier(bas);
691 		efr = uart_getreg(bas, REG_EFR);
692 		if (data)
693 			efr |= EFR_RTS;
694 		else
695 			efr &= ~EFR_RTS;
696 		uart_setreg(bas, REG_EFR, efr);
697 		uart_barrier(bas);
698 		uart_setreg(bas, REG_LCR, lcr);
699 		uart_barrier(bas);
700 		break;
701 	case UART_IOCTL_OFLOW:
702 		lcr = uart_getreg(bas, REG_LCR);
703 		uart_barrier(bas);
704 		uart_setreg(bas, REG_LCR, 0xbf);
705 		uart_barrier(bas);
706 		efr = uart_getreg(bas, REG_EFR);
707 		if (data)
708 			efr |= EFR_CTS;
709 		else
710 			efr &= ~EFR_CTS;
711 		uart_setreg(bas, REG_EFR, efr);
712 		uart_barrier(bas);
713 		uart_setreg(bas, REG_LCR, lcr);
714 		uart_barrier(bas);
715 		break;
716 	case UART_IOCTL_BAUD:
717 		lcr = uart_getreg(bas, REG_LCR);
718 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
719 		uart_barrier(bas);
720 		divisor = uart_getreg(bas, REG_DLL) |
721 		    (uart_getreg(bas, REG_DLH) << 8);
722 		uart_barrier(bas);
723 		uart_setreg(bas, REG_LCR, lcr);
724 		uart_barrier(bas);
725 		baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0;
726 		if (baudrate > 0)
727 			*(int*)data = baudrate;
728 		else
729 			error = ENXIO;
730 		break;
731 	default:
732 		error = EINVAL;
733 		break;
734 	}
735 	uart_unlock(sc->sc_hwmtx);
736 	return (error);
737 }
738 
739 int
740 ns8250_bus_ipend(struct uart_softc *sc)
741 {
742 	struct uart_bas *bas;
743 	struct ns8250_softc *ns8250;
744 	int ipend;
745 	uint8_t iir, lsr;
746 
747 	ns8250 = (struct ns8250_softc *)sc;
748 	bas = &sc->sc_bas;
749 	uart_lock(sc->sc_hwmtx);
750 	iir = uart_getreg(bas, REG_IIR);
751 
752 	if (ns8250->busy_detect && (iir & IIR_BUSY) == IIR_BUSY) {
753 		(void)uart_getreg(bas, DW_REG_USR);
754 		uart_unlock(sc->sc_hwmtx);
755 		return (0);
756 	}
757 	if (iir & IIR_NOPEND) {
758 		uart_unlock(sc->sc_hwmtx);
759 		return (0);
760 	}
761 	ipend = 0;
762 	if (iir & IIR_RXRDY) {
763 		lsr = uart_getreg(bas, REG_LSR);
764 		if (lsr & LSR_OE)
765 			ipend |= SER_INT_OVERRUN;
766 		if (lsr & LSR_BI)
767 			ipend |= SER_INT_BREAK;
768 		if (lsr & LSR_RXRDY)
769 			ipend |= SER_INT_RXREADY;
770 	} else {
771 		if (iir & IIR_TXRDY) {
772 			ipend |= SER_INT_TXIDLE;
773 			ns8250->ier &= ~IER_ETXRDY;
774 			uart_setreg(bas, REG_IER, ns8250->ier);
775 			uart_barrier(bas);
776 		} else
777 			ipend |= SER_INT_SIGCHG;
778 	}
779 	if (ipend == 0)
780 		ns8250_clrint(bas);
781 	uart_unlock(sc->sc_hwmtx);
782 	return (ipend);
783 }
784 
785 int
786 ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits,
787     int stopbits, int parity)
788 {
789 	struct ns8250_softc *ns8250;
790 	struct uart_bas *bas;
791 	int error, limit;
792 
793 	ns8250 = (struct ns8250_softc*)sc;
794 	bas = &sc->sc_bas;
795 	uart_lock(sc->sc_hwmtx);
796 	/*
797 	 * When using DW UART with BUSY detection it is necessary to wait
798 	 * until all serial transfers are finished before manipulating the
799 	 * line control. LCR will not be affected when UART is busy.
800 	 */
801 	if (ns8250->busy_detect != 0) {
802 		/*
803 		 * Pick an arbitrary high limit to avoid getting stuck in
804 		 * an infinite loop in case when the hardware is broken.
805 		 */
806 		limit = 10 * 1024;
807 		while (((uart_getreg(bas, DW_REG_USR) & USR_BUSY) != 0) &&
808 		    --limit)
809 			DELAY(4);
810 
811 		if (limit <= 0) {
812 			/* UART appears to be stuck */
813 			uart_unlock(sc->sc_hwmtx);
814 			return (EIO);
815 		}
816 	}
817 
818 	error = ns8250_param(bas, baudrate, databits, stopbits, parity);
819 	uart_unlock(sc->sc_hwmtx);
820 	return (error);
821 }
822 
823 int
824 ns8250_bus_probe(struct uart_softc *sc)
825 {
826 	struct uart_bas *bas;
827 	int count, delay, error, limit;
828 	uint8_t lsr, mcr, ier;
829 	uint8_t val;
830 
831 	bas = &sc->sc_bas;
832 
833 	error = ns8250_probe(bas);
834 	if (error)
835 		return (error);
836 
837 	mcr = MCR_IE;
838 	if (sc->sc_sysdev == NULL) {
839 		/* By using ns8250_init() we also set DTR and RTS. */
840 		ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE);
841 	} else
842 		mcr |= MCR_DTR | MCR_RTS;
843 
844 	error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
845 	if (error)
846 		return (error);
847 
848 	/*
849 	 * Set loopback mode. This avoids having garbage on the wire and
850 	 * also allows us send and receive data. We set DTR and RTS to
851 	 * avoid the possibility that automatic flow-control prevents
852 	 * any data from being sent.
853 	 */
854 	uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS);
855 	uart_barrier(bas);
856 
857 	/*
858 	 * Enable FIFOs. And check that the UART has them. If not, we're
859 	 * done. Since this is the first time we enable the FIFOs, we reset
860 	 * them.
861 	 */
862 	val = FCR_ENABLE;
863 #ifdef CPU_XBURST
864 	val |= FCR_UART_ON;
865 #endif
866 	uart_setreg(bas, REG_FCR, val);
867 	uart_barrier(bas);
868 	if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) {
869 		/*
870 		 * NS16450 or INS8250. We don't bother to differentiate
871 		 * between them. They're too old to be interesting.
872 		 */
873 		uart_setreg(bas, REG_MCR, mcr);
874 		uart_barrier(bas);
875 		sc->sc_rxfifosz = sc->sc_txfifosz = 1;
876 		device_set_desc(sc->sc_dev, "8250 or 16450 or compatible");
877 		return (0);
878 	}
879 
880 	val = FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST;
881 #ifdef CPU_XBURST
882 	val |= FCR_UART_ON;
883 #endif
884 	uart_setreg(bas, REG_FCR, val);
885 	uart_barrier(bas);
886 
887 	count = 0;
888 	delay = ns8250_delay(bas);
889 
890 	/* We have FIFOs. Drain the transmitter and receiver. */
891 	error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER);
892 	if (error) {
893 		uart_setreg(bas, REG_MCR, mcr);
894 		val = 0;
895 #ifdef CPU_XBURST
896 		val |= FCR_UART_ON;
897 #endif
898 		uart_setreg(bas, REG_FCR, val);
899 		uart_barrier(bas);
900 		goto describe;
901 	}
902 
903 	/*
904 	 * We should have a sufficiently clean "pipe" to determine the
905 	 * size of the FIFOs. We send as much characters as is reasonable
906 	 * and wait for the overflow bit in the LSR register to be
907 	 * asserted, counting the characters as we send them. Based on
908 	 * that count we know the FIFO size.
909 	 */
910 	do {
911 		uart_setreg(bas, REG_DATA, 0);
912 		uart_barrier(bas);
913 		count++;
914 
915 		limit = 30;
916 		lsr = 0;
917 		/*
918 		 * LSR bits are cleared upon read, so we must accumulate
919 		 * them to be able to test LSR_OE below.
920 		 */
921 		while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 &&
922 		    --limit)
923 			DELAY(delay);
924 		if (limit == 0) {
925 			/* See the comment in ns8250_init(). */
926 			ier = uart_getreg(bas, REG_IER) & 0xe0;
927 			uart_setreg(bas, REG_IER, ier);
928 			uart_setreg(bas, REG_MCR, mcr);
929 			val = 0;
930 #ifdef CPU_XBURST
931 			val |= FCR_UART_ON;
932 #endif
933 			uart_setreg(bas, REG_FCR, val);
934 			uart_barrier(bas);
935 			count = 0;
936 			goto describe;
937 		}
938 	} while ((lsr & LSR_OE) == 0 && count < 260);
939 	count--;
940 
941 	uart_setreg(bas, REG_MCR, mcr);
942 
943 	/* Reset FIFOs. */
944 	ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
945 
946  describe:
947 	if (count >= 14 && count <= 16) {
948 		sc->sc_rxfifosz = 16;
949 		device_set_desc(sc->sc_dev, "16550 or compatible");
950 	} else if (count >= 28 && count <= 32) {
951 		sc->sc_rxfifosz = 32;
952 		device_set_desc(sc->sc_dev, "16650 or compatible");
953 	} else if (count >= 56 && count <= 64) {
954 		sc->sc_rxfifosz = 64;
955 		device_set_desc(sc->sc_dev, "16750 or compatible");
956 	} else if (count >= 112 && count <= 128) {
957 		sc->sc_rxfifosz = 128;
958 		device_set_desc(sc->sc_dev, "16950 or compatible");
959 	} else if (count >= 224 && count <= 256) {
960 		sc->sc_rxfifosz = 256;
961 		device_set_desc(sc->sc_dev, "16x50 with 256 byte FIFO");
962 	} else {
963 		sc->sc_rxfifosz = 16;
964 		device_set_desc(sc->sc_dev,
965 		    "Non-standard ns8250 class UART with FIFOs");
966 	}
967 
968 	/*
969 	 * Force the Tx FIFO size to 16 bytes for now. We don't program the
970 	 * Tx trigger. Also, we assume that all data has been sent when the
971 	 * interrupt happens.
972 	 */
973 	sc->sc_txfifosz = 16;
974 
975 #if 0
976 	/*
977 	 * XXX there are some issues related to hardware flow control and
978 	 * it's likely that uart(4) is the cause. This basically needs more
979 	 * investigation, but we avoid using for hardware flow control
980 	 * until then.
981 	 */
982 	/* 16650s or higher have automatic flow control. */
983 	if (sc->sc_rxfifosz > 16) {
984 		sc->sc_hwiflow = 1;
985 		sc->sc_hwoflow = 1;
986 	}
987 #endif
988 
989 	return (0);
990 }
991 
992 int
993 ns8250_bus_receive(struct uart_softc *sc)
994 {
995 	struct uart_bas *bas;
996 	int xc;
997 	uint8_t lsr;
998 
999 	bas = &sc->sc_bas;
1000 	uart_lock(sc->sc_hwmtx);
1001 	lsr = uart_getreg(bas, REG_LSR);
1002 	while (lsr & LSR_RXRDY) {
1003 		if (uart_rx_full(sc)) {
1004 			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
1005 			break;
1006 		}
1007 		xc = uart_getreg(bas, REG_DATA);
1008 		if (lsr & LSR_FE)
1009 			xc |= UART_STAT_FRAMERR;
1010 		if (lsr & LSR_PE)
1011 			xc |= UART_STAT_PARERR;
1012 		uart_rx_put(sc, xc);
1013 		lsr = uart_getreg(bas, REG_LSR);
1014 	}
1015 	/* Discard everything left in the Rx FIFO. */
1016 	while (lsr & LSR_RXRDY) {
1017 		(void)uart_getreg(bas, REG_DATA);
1018 		uart_barrier(bas);
1019 		lsr = uart_getreg(bas, REG_LSR);
1020 	}
1021 	uart_unlock(sc->sc_hwmtx);
1022  	return (0);
1023 }
1024 
1025 int
1026 ns8250_bus_setsig(struct uart_softc *sc, int sig)
1027 {
1028 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1029 	struct uart_bas *bas;
1030 	uint32_t new, old;
1031 
1032 	bas = &sc->sc_bas;
1033 	do {
1034 		old = sc->sc_hwsig;
1035 		new = old;
1036 		if (sig & SER_DDTR) {
1037 			new = (new & ~SER_DTR) | (sig & (SER_DTR | SER_DDTR));
1038 		}
1039 		if (sig & SER_DRTS) {
1040 			new = (new & ~SER_RTS) | (sig & (SER_RTS | SER_DRTS));
1041 		}
1042 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
1043 	uart_lock(sc->sc_hwmtx);
1044 	ns8250->mcr &= ~(MCR_DTR|MCR_RTS);
1045 	if (new & SER_DTR)
1046 		ns8250->mcr |= MCR_DTR;
1047 	if (new & SER_RTS)
1048 		ns8250->mcr |= MCR_RTS;
1049 	uart_setreg(bas, REG_MCR, ns8250->mcr);
1050 	uart_barrier(bas);
1051 	uart_unlock(sc->sc_hwmtx);
1052 	return (0);
1053 }
1054 
1055 int
1056 ns8250_bus_transmit(struct uart_softc *sc)
1057 {
1058 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1059 	struct uart_bas *bas;
1060 	int i;
1061 
1062 	bas = &sc->sc_bas;
1063 	uart_lock(sc->sc_hwmtx);
1064 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0)
1065 		DELAY(4);
1066 	for (i = 0; i < sc->sc_txdatasz; i++) {
1067 		uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]);
1068 		uart_barrier(bas);
1069 	}
1070 	if (!broken_txfifo)
1071 		ns8250->ier |= IER_ETXRDY;
1072 	uart_setreg(bas, REG_IER, ns8250->ier);
1073 	uart_barrier(bas);
1074 	if (broken_txfifo)
1075 		ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
1076 	else
1077 		sc->sc_txbusy = 1;
1078 	uart_unlock(sc->sc_hwmtx);
1079 	if (broken_txfifo)
1080 		uart_sched_softih(sc, SER_INT_TXIDLE);
1081 	return (0);
1082 }
1083 
1084 void
1085 ns8250_bus_grab(struct uart_softc *sc)
1086 {
1087 	struct uart_bas *bas = &sc->sc_bas;
1088 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1089 	u_char ier;
1090 
1091 	/*
1092 	 * turn off all interrupts to enter polling mode. Leave the
1093 	 * saved mask alone. We'll restore whatever it was in ungrab.
1094 	 * All pending interrupt signals are reset when IER is set to 0.
1095 	 */
1096 	uart_lock(sc->sc_hwmtx);
1097 	ier = uart_getreg(bas, REG_IER);
1098 	uart_setreg(bas, REG_IER, ier & ns8250->ier_mask);
1099 	uart_barrier(bas);
1100 	uart_unlock(sc->sc_hwmtx);
1101 }
1102 
1103 void
1104 ns8250_bus_ungrab(struct uart_softc *sc)
1105 {
1106 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1107 	struct uart_bas *bas = &sc->sc_bas;
1108 
1109 	/*
1110 	 * Restore previous interrupt mask
1111 	 */
1112 	uart_lock(sc->sc_hwmtx);
1113 	uart_setreg(bas, REG_IER, ns8250->ier);
1114 	uart_barrier(bas);
1115 	uart_unlock(sc->sc_hwmtx);
1116 }
1117