xref: /freebsd/sys/dev/uart/uart_dev_ns8250.c (revision 1e413cf93298b5b97441a21d9a50fdcd0ee9945e)
1 /*-
2  * Copyright (c) 2003 Marcel Moolenaar
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/bus.h>
33 #include <sys/conf.h>
34 #include <machine/bus.h>
35 
36 #include <dev/uart/uart.h>
37 #include <dev/uart/uart_cpu.h>
38 #include <dev/uart/uart_bus.h>
39 
40 #include <dev/ic/ns16550.h>
41 
42 #include "uart_if.h"
43 
44 #define	DEFAULT_RCLK	1843200
45 
46 /*
47  * Clear pending interrupts. THRE is cleared by reading IIR. Data
48  * that may have been received gets lost here.
49  */
50 static void
51 ns8250_clrint(struct uart_bas *bas)
52 {
53 	uint8_t iir;
54 
55 	iir = uart_getreg(bas, REG_IIR);
56 	while ((iir & IIR_NOPEND) == 0) {
57 		iir &= IIR_IMASK;
58 		if (iir == IIR_RLS)
59 			(void)uart_getreg(bas, REG_LSR);
60 		else if (iir == IIR_RXRDY || iir == IIR_RXTOUT)
61 			(void)uart_getreg(bas, REG_DATA);
62 		else if (iir == IIR_MLSC)
63 			(void)uart_getreg(bas, REG_MSR);
64 		uart_barrier(bas);
65 		iir = uart_getreg(bas, REG_IIR);
66 	}
67 }
68 
69 static int
70 ns8250_delay(struct uart_bas *bas)
71 {
72 	int divisor;
73 	u_char lcr;
74 
75 	lcr = uart_getreg(bas, REG_LCR);
76 	uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
77 	uart_barrier(bas);
78 	divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8);
79 	uart_barrier(bas);
80 	uart_setreg(bas, REG_LCR, lcr);
81 	uart_barrier(bas);
82 
83 	/* 1/10th the time to transmit 1 character (estimate). */
84 	if (divisor <= 134)
85 		return (16000000 * divisor / bas->rclk);
86 	return (16000 * divisor / (bas->rclk / 1000));
87 }
88 
89 static int
90 ns8250_divisor(int rclk, int baudrate)
91 {
92 	int actual_baud, divisor;
93 	int error;
94 
95 	if (baudrate == 0)
96 		return (0);
97 
98 	divisor = (rclk / (baudrate << 3) + 1) >> 1;
99 	if (divisor == 0 || divisor >= 65536)
100 		return (0);
101 	actual_baud = rclk / (divisor << 4);
102 
103 	/* 10 times error in percent: */
104 	error = ((actual_baud - baudrate) * 2000 / baudrate + 1) >> 1;
105 
106 	/* 3.0% maximum error tolerance: */
107 	if (error < -30 || error > 30)
108 		return (0);
109 
110 	return (divisor);
111 }
112 
113 static int
114 ns8250_drain(struct uart_bas *bas, int what)
115 {
116 	int delay, limit;
117 
118 	delay = ns8250_delay(bas);
119 
120 	if (what & UART_DRAIN_TRANSMITTER) {
121 		/*
122 		 * Pick an arbitrary high limit to avoid getting stuck in
123 		 * an infinite loop when the hardware is broken. Make the
124 		 * limit high enough to handle large FIFOs.
125 		 */
126 		limit = 10*1024;
127 		while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
128 			DELAY(delay);
129 		if (limit == 0) {
130 			/* printf("ns8250: transmitter appears stuck... "); */
131 			return (EIO);
132 		}
133 	}
134 
135 	if (what & UART_DRAIN_RECEIVER) {
136 		/*
137 		 * Pick an arbitrary high limit to avoid getting stuck in
138 		 * an infinite loop when the hardware is broken. Make the
139 		 * limit high enough to handle large FIFOs and integrated
140 		 * UARTs. The HP rx2600 for example has 3 UARTs on the
141 		 * management board that tend to get a lot of data send
142 		 * to it when the UART is first activated.
143 		 */
144 		limit=10*4096;
145 		while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) {
146 			(void)uart_getreg(bas, REG_DATA);
147 			uart_barrier(bas);
148 			DELAY(delay << 2);
149 		}
150 		if (limit == 0) {
151 			/* printf("ns8250: receiver appears broken... "); */
152 			return (EIO);
153 		}
154 	}
155 
156 	return (0);
157 }
158 
159 /*
160  * We can only flush UARTs with FIFOs. UARTs without FIFOs should be
161  * drained. WARNING: this function clobbers the FIFO setting!
162  */
163 static void
164 ns8250_flush(struct uart_bas *bas, int what)
165 {
166 	uint8_t fcr;
167 
168 	fcr = FCR_ENABLE;
169 	if (what & UART_FLUSH_TRANSMITTER)
170 		fcr |= FCR_XMT_RST;
171 	if (what & UART_FLUSH_RECEIVER)
172 		fcr |= FCR_RCV_RST;
173 	uart_setreg(bas, REG_FCR, fcr);
174 	uart_barrier(bas);
175 }
176 
177 static int
178 ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
179     int parity)
180 {
181 	int divisor;
182 	uint8_t lcr;
183 
184 	lcr = 0;
185 	if (databits >= 8)
186 		lcr |= LCR_8BITS;
187 	else if (databits == 7)
188 		lcr |= LCR_7BITS;
189 	else if (databits == 6)
190 		lcr |= LCR_6BITS;
191 	else
192 		lcr |= LCR_5BITS;
193 	if (stopbits > 1)
194 		lcr |= LCR_STOPB;
195 	lcr |= parity << 3;
196 
197 	/* Set baudrate. */
198 	if (baudrate > 0) {
199 		divisor = ns8250_divisor(bas->rclk, baudrate);
200 		if (divisor == 0)
201 			return (EINVAL);
202 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
203 		uart_barrier(bas);
204 		uart_setreg(bas, REG_DLL, divisor & 0xff);
205 		uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff);
206 		uart_barrier(bas);
207 	}
208 
209 	/* Set LCR and clear DLAB. */
210 	uart_setreg(bas, REG_LCR, lcr);
211 	uart_barrier(bas);
212 	return (0);
213 }
214 
215 /*
216  * Low-level UART interface.
217  */
218 static int ns8250_probe(struct uart_bas *bas);
219 static void ns8250_init(struct uart_bas *bas, int, int, int, int);
220 static void ns8250_term(struct uart_bas *bas);
221 static void ns8250_putc(struct uart_bas *bas, int);
222 static int ns8250_rxready(struct uart_bas *bas);
223 static int ns8250_getc(struct uart_bas *bas, struct mtx *);
224 
225 static struct uart_ops uart_ns8250_ops = {
226 	.probe = ns8250_probe,
227 	.init = ns8250_init,
228 	.term = ns8250_term,
229 	.putc = ns8250_putc,
230 	.rxready = ns8250_rxready,
231 	.getc = ns8250_getc,
232 };
233 
234 static int
235 ns8250_probe(struct uart_bas *bas)
236 {
237 	u_char val;
238 
239 	/* Check known 0 bits that don't depend on DLAB. */
240 	val = uart_getreg(bas, REG_IIR);
241 	if (val & 0x30)
242 		return (ENXIO);
243 	val = uart_getreg(bas, REG_MCR);
244 	if (val & 0xe0)
245 		return (ENXIO);
246 
247 	return (0);
248 }
249 
250 static void
251 ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
252     int parity)
253 {
254 	u_char	ier;
255 
256 	if (bas->rclk == 0)
257 		bas->rclk = DEFAULT_RCLK;
258 	ns8250_param(bas, baudrate, databits, stopbits, parity);
259 
260 	/* Disable all interrupt sources. */
261 	ier = uart_getreg(bas, REG_IER) & 0xf0;
262 	uart_setreg(bas, REG_IER, ier);
263 	uart_barrier(bas);
264 
265 	/* Disable the FIFO (if present). */
266 	uart_setreg(bas, REG_FCR, 0);
267 	uart_barrier(bas);
268 
269 	/* Set RTS & DTR. */
270 	uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR);
271 	uart_barrier(bas);
272 
273 	ns8250_clrint(bas);
274 }
275 
276 static void
277 ns8250_term(struct uart_bas *bas)
278 {
279 
280 	/* Clear RTS & DTR. */
281 	uart_setreg(bas, REG_MCR, MCR_IE);
282 	uart_barrier(bas);
283 }
284 
285 static void
286 ns8250_putc(struct uart_bas *bas, int c)
287 {
288 	int limit;
289 
290 	limit = 250000;
291 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit)
292 		DELAY(4);
293 	uart_setreg(bas, REG_DATA, c);
294 	uart_barrier(bas);
295 	limit = 250000;
296 	while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
297 		DELAY(4);
298 }
299 
300 static int
301 ns8250_rxready(struct uart_bas *bas)
302 {
303 
304 	return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0);
305 }
306 
307 static int
308 ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx)
309 {
310 	int c;
311 
312 	uart_lock(hwmtx);
313 
314 	while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) {
315 		uart_unlock(hwmtx);
316 		DELAY(4);
317 		uart_lock(hwmtx);
318 	}
319 
320 	c = uart_getreg(bas, REG_DATA);
321 
322 	uart_unlock(hwmtx);
323 
324 	return (c);
325 }
326 
327 /*
328  * High-level UART interface.
329  */
330 struct ns8250_softc {
331 	struct uart_softc base;
332 	uint8_t		fcr;
333 	uint8_t		ier;
334 	uint8_t		mcr;
335 };
336 
337 static int ns8250_bus_attach(struct uart_softc *);
338 static int ns8250_bus_detach(struct uart_softc *);
339 static int ns8250_bus_flush(struct uart_softc *, int);
340 static int ns8250_bus_getsig(struct uart_softc *);
341 static int ns8250_bus_ioctl(struct uart_softc *, int, intptr_t);
342 static int ns8250_bus_ipend(struct uart_softc *);
343 static int ns8250_bus_param(struct uart_softc *, int, int, int, int);
344 static int ns8250_bus_probe(struct uart_softc *);
345 static int ns8250_bus_receive(struct uart_softc *);
346 static int ns8250_bus_setsig(struct uart_softc *, int);
347 static int ns8250_bus_transmit(struct uart_softc *);
348 
349 static kobj_method_t ns8250_methods[] = {
350 	KOBJMETHOD(uart_attach,		ns8250_bus_attach),
351 	KOBJMETHOD(uart_detach,		ns8250_bus_detach),
352 	KOBJMETHOD(uart_flush,		ns8250_bus_flush),
353 	KOBJMETHOD(uart_getsig,		ns8250_bus_getsig),
354 	KOBJMETHOD(uart_ioctl,		ns8250_bus_ioctl),
355 	KOBJMETHOD(uart_ipend,		ns8250_bus_ipend),
356 	KOBJMETHOD(uart_param,		ns8250_bus_param),
357 	KOBJMETHOD(uart_probe,		ns8250_bus_probe),
358 	KOBJMETHOD(uart_receive,	ns8250_bus_receive),
359 	KOBJMETHOD(uart_setsig,		ns8250_bus_setsig),
360 	KOBJMETHOD(uart_transmit,	ns8250_bus_transmit),
361 	{ 0, 0 }
362 };
363 
364 struct uart_class uart_ns8250_class = {
365 	"ns8250",
366 	ns8250_methods,
367 	sizeof(struct ns8250_softc),
368 	.uc_ops = &uart_ns8250_ops,
369 	.uc_range = 8,
370 	.uc_rclk = DEFAULT_RCLK
371 };
372 
373 #define	SIGCHG(c, i, s, d)				\
374 	if (c) {					\
375 		i |= (i & s) ? s : s | d;		\
376 	} else {					\
377 		i = (i & s) ? (i & ~s) | d : i;		\
378 	}
379 
380 static int
381 ns8250_bus_attach(struct uart_softc *sc)
382 {
383 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
384 	struct uart_bas *bas;
385 
386 	bas = &sc->sc_bas;
387 
388 	ns8250->mcr = uart_getreg(bas, REG_MCR);
389 	ns8250->fcr = FCR_ENABLE | FCR_RX_MEDH;
390 	uart_setreg(bas, REG_FCR, ns8250->fcr);
391 	uart_barrier(bas);
392 	ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
393 
394 	if (ns8250->mcr & MCR_DTR)
395 		sc->sc_hwsig |= SER_DTR;
396 	if (ns8250->mcr & MCR_RTS)
397 		sc->sc_hwsig |= SER_RTS;
398 	ns8250_bus_getsig(sc);
399 
400 	ns8250_clrint(bas);
401 	ns8250->ier = uart_getreg(bas, REG_IER) & 0xf0;
402 	ns8250->ier |= IER_EMSC | IER_ERLS | IER_ERXRDY;
403 	uart_setreg(bas, REG_IER, ns8250->ier);
404 	uart_barrier(bas);
405 	return (0);
406 }
407 
408 static int
409 ns8250_bus_detach(struct uart_softc *sc)
410 {
411 	struct uart_bas *bas;
412 	u_char ier;
413 
414 	bas = &sc->sc_bas;
415 	ier = uart_getreg(bas, REG_IER) & 0xf0;
416 	uart_setreg(bas, REG_IER, ier);
417 	uart_barrier(bas);
418 	ns8250_clrint(bas);
419 	return (0);
420 }
421 
422 static int
423 ns8250_bus_flush(struct uart_softc *sc, int what)
424 {
425 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
426 	struct uart_bas *bas;
427 	int error;
428 
429 	bas = &sc->sc_bas;
430 	uart_lock(sc->sc_hwmtx);
431 	if (sc->sc_rxfifosz > 1) {
432 		ns8250_flush(bas, what);
433 		uart_setreg(bas, REG_FCR, ns8250->fcr);
434 		uart_barrier(bas);
435 		error = 0;
436 	} else
437 		error = ns8250_drain(bas, what);
438 	uart_unlock(sc->sc_hwmtx);
439 	return (error);
440 }
441 
442 static int
443 ns8250_bus_getsig(struct uart_softc *sc)
444 {
445 	uint32_t new, old, sig;
446 	uint8_t msr;
447 
448 	do {
449 		old = sc->sc_hwsig;
450 		sig = old;
451 		uart_lock(sc->sc_hwmtx);
452 		msr = uart_getreg(&sc->sc_bas, REG_MSR);
453 		uart_unlock(sc->sc_hwmtx);
454 		SIGCHG(msr & MSR_DSR, sig, SER_DSR, SER_DDSR);
455 		SIGCHG(msr & MSR_CTS, sig, SER_CTS, SER_DCTS);
456 		SIGCHG(msr & MSR_DCD, sig, SER_DCD, SER_DDCD);
457 		SIGCHG(msr & MSR_RI,  sig, SER_RI,  SER_DRI);
458 		new = sig & ~SER_MASK_DELTA;
459 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
460 	return (sig);
461 }
462 
463 static int
464 ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
465 {
466 	struct uart_bas *bas;
467 	int baudrate, divisor, error;
468 	uint8_t efr, lcr;
469 
470 	bas = &sc->sc_bas;
471 	error = 0;
472 	uart_lock(sc->sc_hwmtx);
473 	switch (request) {
474 	case UART_IOCTL_BREAK:
475 		lcr = uart_getreg(bas, REG_LCR);
476 		if (data)
477 			lcr |= LCR_SBREAK;
478 		else
479 			lcr &= ~LCR_SBREAK;
480 		uart_setreg(bas, REG_LCR, lcr);
481 		uart_barrier(bas);
482 		break;
483 	case UART_IOCTL_IFLOW:
484 		lcr = uart_getreg(bas, REG_LCR);
485 		uart_barrier(bas);
486 		uart_setreg(bas, REG_LCR, 0xbf);
487 		uart_barrier(bas);
488 		efr = uart_getreg(bas, REG_EFR);
489 		if (data)
490 			efr |= EFR_RTS;
491 		else
492 			efr &= ~EFR_RTS;
493 		uart_setreg(bas, REG_EFR, efr);
494 		uart_barrier(bas);
495 		uart_setreg(bas, REG_LCR, lcr);
496 		uart_barrier(bas);
497 		break;
498 	case UART_IOCTL_OFLOW:
499 		lcr = uart_getreg(bas, REG_LCR);
500 		uart_barrier(bas);
501 		uart_setreg(bas, REG_LCR, 0xbf);
502 		uart_barrier(bas);
503 		efr = uart_getreg(bas, REG_EFR);
504 		if (data)
505 			efr |= EFR_CTS;
506 		else
507 			efr &= ~EFR_CTS;
508 		uart_setreg(bas, REG_EFR, efr);
509 		uart_barrier(bas);
510 		uart_setreg(bas, REG_LCR, lcr);
511 		uart_barrier(bas);
512 		break;
513 	case UART_IOCTL_BAUD:
514 		lcr = uart_getreg(bas, REG_LCR);
515 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
516 		uart_barrier(bas);
517 		divisor = uart_getreg(bas, REG_DLL) |
518 		    (uart_getreg(bas, REG_DLH) << 8);
519 		uart_barrier(bas);
520 		uart_setreg(bas, REG_LCR, lcr);
521 		uart_barrier(bas);
522 		baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0;
523 		if (baudrate > 0)
524 			*(int*)data = baudrate;
525 		else
526 			error = ENXIO;
527 		break;
528 	default:
529 		error = EINVAL;
530 		break;
531 	}
532 	uart_unlock(sc->sc_hwmtx);
533 	return (error);
534 }
535 
536 static int
537 ns8250_bus_ipend(struct uart_softc *sc)
538 {
539 	struct uart_bas *bas;
540 	int ipend;
541 	uint8_t iir, lsr;
542 
543 	bas = &sc->sc_bas;
544 	uart_lock(sc->sc_hwmtx);
545 	iir = uart_getreg(bas, REG_IIR);
546 	if (iir & IIR_NOPEND) {
547 		uart_unlock(sc->sc_hwmtx);
548 		return (0);
549 	}
550 	ipend = 0;
551 	if (iir & IIR_RXRDY) {
552 		lsr = uart_getreg(bas, REG_LSR);
553 		uart_unlock(sc->sc_hwmtx);
554 		if (lsr & LSR_OE)
555 			ipend |= SER_INT_OVERRUN;
556 		if (lsr & LSR_BI)
557 			ipend |= SER_INT_BREAK;
558 		if (lsr & LSR_RXRDY)
559 			ipend |= SER_INT_RXREADY;
560 	} else {
561 		uart_unlock(sc->sc_hwmtx);
562 		if (iir & IIR_TXRDY)
563 			ipend |= SER_INT_TXIDLE;
564 		else
565 			ipend |= SER_INT_SIGCHG;
566 	}
567 	return ((sc->sc_leaving) ? 0 : ipend);
568 }
569 
570 static int
571 ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits,
572     int stopbits, int parity)
573 {
574 	struct uart_bas *bas;
575 	int error;
576 
577 	bas = &sc->sc_bas;
578 	uart_lock(sc->sc_hwmtx);
579 	error = ns8250_param(bas, baudrate, databits, stopbits, parity);
580 	uart_unlock(sc->sc_hwmtx);
581 	return (error);
582 }
583 
584 static int
585 ns8250_bus_probe(struct uart_softc *sc)
586 {
587 	struct uart_bas *bas;
588 	int count, delay, error, limit;
589 	uint8_t lsr, mcr, ier;
590 
591 	bas = &sc->sc_bas;
592 
593 	error = ns8250_probe(bas);
594 	if (error)
595 		return (error);
596 
597 	mcr = MCR_IE;
598 	if (sc->sc_sysdev == NULL) {
599 		/* By using ns8250_init() we also set DTR and RTS. */
600 		ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE);
601 	} else
602 		mcr |= MCR_DTR | MCR_RTS;
603 
604 	error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
605 	if (error)
606 		return (error);
607 
608 	/*
609 	 * Set loopback mode. This avoids having garbage on the wire and
610 	 * also allows us send and receive data. We set DTR and RTS to
611 	 * avoid the possibility that automatic flow-control prevents
612 	 * any data from being sent.
613 	 */
614 	uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS);
615 	uart_barrier(bas);
616 
617 	/*
618 	 * Enable FIFOs. And check that the UART has them. If not, we're
619 	 * done. Since this is the first time we enable the FIFOs, we reset
620 	 * them.
621 	 */
622 	uart_setreg(bas, REG_FCR, FCR_ENABLE);
623 	uart_barrier(bas);
624 	if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) {
625 		/*
626 		 * NS16450 or INS8250. We don't bother to differentiate
627 		 * between them. They're too old to be interesting.
628 		 */
629 		uart_setreg(bas, REG_MCR, mcr);
630 		uart_barrier(bas);
631 		sc->sc_rxfifosz = sc->sc_txfifosz = 1;
632 		device_set_desc(sc->sc_dev, "8250 or 16450 or compatible");
633 		return (0);
634 	}
635 
636 	uart_setreg(bas, REG_FCR, FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST);
637 	uart_barrier(bas);
638 
639 	count = 0;
640 	delay = ns8250_delay(bas);
641 
642 	/* We have FIFOs. Drain the transmitter and receiver. */
643 	error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER);
644 	if (error) {
645 		uart_setreg(bas, REG_MCR, mcr);
646 		uart_setreg(bas, REG_FCR, 0);
647 		uart_barrier(bas);
648 		goto describe;
649 	}
650 
651 	/*
652 	 * We should have a sufficiently clean "pipe" to determine the
653 	 * size of the FIFOs. We send as much characters as is reasonable
654 	 * and wait for the the overflow bit in the LSR register to be
655 	 * asserted, counting the characters as we send them. Based on
656 	 * that count we know the FIFO size.
657 	 */
658 	do {
659 		uart_setreg(bas, REG_DATA, 0);
660 		uart_barrier(bas);
661 		count++;
662 
663 		limit = 30;
664 		lsr = 0;
665 		/*
666 		 * LSR bits are cleared upon read, so we must accumulate
667 		 * them to be able to test LSR_OE below.
668 		 */
669 		while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 &&
670 		    --limit)
671 			DELAY(delay);
672 		if (limit == 0) {
673 			ier = uart_getreg(bas, REG_IER) & 0xf0;
674 			uart_setreg(bas, REG_IER, ier);
675 			uart_setreg(bas, REG_MCR, mcr);
676 			uart_setreg(bas, REG_FCR, 0);
677 			uart_barrier(bas);
678 			count = 0;
679 			goto describe;
680 		}
681 	} while ((lsr & LSR_OE) == 0 && count < 130);
682 	count--;
683 
684 	uart_setreg(bas, REG_MCR, mcr);
685 
686 	/* Reset FIFOs. */
687 	ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
688 
689  describe:
690 	if (count >= 14 && count <= 16) {
691 		sc->sc_rxfifosz = 16;
692 		device_set_desc(sc->sc_dev, "16550 or compatible");
693 	} else if (count >= 28 && count <= 32) {
694 		sc->sc_rxfifosz = 32;
695 		device_set_desc(sc->sc_dev, "16650 or compatible");
696 	} else if (count >= 56 && count <= 64) {
697 		sc->sc_rxfifosz = 64;
698 		device_set_desc(sc->sc_dev, "16750 or compatible");
699 	} else if (count >= 112 && count <= 128) {
700 		sc->sc_rxfifosz = 128;
701 		device_set_desc(sc->sc_dev, "16950 or compatible");
702 	} else {
703 		sc->sc_rxfifosz = 16;
704 		device_set_desc(sc->sc_dev,
705 		    "Non-standard ns8250 class UART with FIFOs");
706 	}
707 
708 	/*
709 	 * Force the Tx FIFO size to 16 bytes for now. We don't program the
710 	 * Tx trigger. Also, we assume that all data has been sent when the
711 	 * interrupt happens.
712 	 */
713 	sc->sc_txfifosz = 16;
714 
715 #if 0
716 	/*
717 	 * XXX there are some issues related to hardware flow control and
718 	 * it's likely that uart(4) is the cause. This basicly needs more
719 	 * investigation, but we avoid using for hardware flow control
720 	 * until then.
721 	 */
722 	/* 16650s or higher have automatic flow control. */
723 	if (sc->sc_rxfifosz > 16) {
724 		sc->sc_hwiflow = 1;
725 		sc->sc_hwoflow = 1;
726 	}
727 #endif
728 
729 	return (0);
730 }
731 
732 static int
733 ns8250_bus_receive(struct uart_softc *sc)
734 {
735 	struct uart_bas *bas;
736 	int xc;
737 	uint8_t lsr;
738 
739 	bas = &sc->sc_bas;
740 	uart_lock(sc->sc_hwmtx);
741 	lsr = uart_getreg(bas, REG_LSR);
742 	while (lsr & LSR_RXRDY) {
743 		if (uart_rx_full(sc)) {
744 			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
745 			break;
746 		}
747 		xc = uart_getreg(bas, REG_DATA);
748 		if (lsr & LSR_FE)
749 			xc |= UART_STAT_FRAMERR;
750 		if (lsr & LSR_PE)
751 			xc |= UART_STAT_PARERR;
752 		uart_rx_put(sc, xc);
753 		lsr = uart_getreg(bas, REG_LSR);
754 	}
755 	/* Discard everything left in the Rx FIFO. */
756 	while (lsr & LSR_RXRDY) {
757 		(void)uart_getreg(bas, REG_DATA);
758 		uart_barrier(bas);
759 		lsr = uart_getreg(bas, REG_LSR);
760 	}
761 	uart_unlock(sc->sc_hwmtx);
762  	return (0);
763 }
764 
765 static int
766 ns8250_bus_setsig(struct uart_softc *sc, int sig)
767 {
768 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
769 	struct uart_bas *bas;
770 	uint32_t new, old;
771 
772 	bas = &sc->sc_bas;
773 	do {
774 		old = sc->sc_hwsig;
775 		new = old;
776 		if (sig & SER_DDTR) {
777 			SIGCHG(sig & SER_DTR, new, SER_DTR,
778 			    SER_DDTR);
779 		}
780 		if (sig & SER_DRTS) {
781 			SIGCHG(sig & SER_RTS, new, SER_RTS,
782 			    SER_DRTS);
783 		}
784 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
785 	uart_lock(sc->sc_hwmtx);
786 	ns8250->mcr &= ~(MCR_DTR|MCR_RTS);
787 	if (new & SER_DTR)
788 		ns8250->mcr |= MCR_DTR;
789 	if (new & SER_RTS)
790 		ns8250->mcr |= MCR_RTS;
791 	uart_setreg(bas, REG_MCR, ns8250->mcr);
792 	uart_barrier(bas);
793 	uart_unlock(sc->sc_hwmtx);
794 	return (0);
795 }
796 
797 static int
798 ns8250_bus_transmit(struct uart_softc *sc)
799 {
800 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
801 	struct uart_bas *bas;
802 	int i;
803 
804 	bas = &sc->sc_bas;
805 	uart_lock(sc->sc_hwmtx);
806 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0)
807 		;
808 	uart_setreg(bas, REG_IER, ns8250->ier | IER_ETXRDY);
809 	uart_barrier(bas);
810 	for (i = 0; i < sc->sc_txdatasz; i++) {
811 		uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]);
812 		uart_barrier(bas);
813 	}
814 	sc->sc_txbusy = 1;
815 	uart_unlock(sc->sc_hwmtx);
816 	return (0);
817 }
818