xref: /freebsd/sys/dev/uart/uart_dev_ns8250.c (revision 0a10f22a30d61a6f32777a236a82d461129538cc)
1 /*-
2  * Copyright (c) 2003 Marcel Moolenaar
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include "opt_platform.h"
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/conf.h>
36 #include <sys/kernel.h>
37 #include <sys/sysctl.h>
38 #include <machine/bus.h>
39 
40 #ifdef FDT
41 #include <dev/fdt/fdt_common.h>
42 #include <dev/ofw/ofw_bus.h>
43 #include <dev/ofw/ofw_bus_subr.h>
44 #endif
45 
46 #include <dev/uart/uart.h>
47 #include <dev/uart/uart_cpu.h>
48 #include <dev/uart/uart_bus.h>
49 #include <dev/uart/uart_dev_ns8250.h>
50 
51 #include <dev/ic/ns16550.h>
52 
53 #include "uart_if.h"
54 
55 #define	DEFAULT_RCLK	1843200
56 
57 static int broken_txfifo = 0;
58 SYSCTL_INT(_hw, OID_AUTO, broken_txfifo, CTLFLAG_RW | CTLFLAG_TUN,
59 	&broken_txfifo, 0, "UART FIFO has QEMU emulation bug");
60 TUNABLE_INT("hw.broken_txfifo", &broken_txfifo);
61 
62 /*
63  * Clear pending interrupts. THRE is cleared by reading IIR. Data
64  * that may have been received gets lost here.
65  */
66 static void
67 ns8250_clrint(struct uart_bas *bas)
68 {
69 	uint8_t iir, lsr;
70 
71 	iir = uart_getreg(bas, REG_IIR);
72 	while ((iir & IIR_NOPEND) == 0) {
73 		iir &= IIR_IMASK;
74 		if (iir == IIR_RLS) {
75 			lsr = uart_getreg(bas, REG_LSR);
76 			if (lsr & (LSR_BI|LSR_FE|LSR_PE))
77 				(void)uart_getreg(bas, REG_DATA);
78 		} else if (iir == IIR_RXRDY || iir == IIR_RXTOUT)
79 			(void)uart_getreg(bas, REG_DATA);
80 		else if (iir == IIR_MLSC)
81 			(void)uart_getreg(bas, REG_MSR);
82 		uart_barrier(bas);
83 		iir = uart_getreg(bas, REG_IIR);
84 	}
85 }
86 
87 static int
88 ns8250_delay(struct uart_bas *bas)
89 {
90 	int divisor;
91 	u_char lcr;
92 
93 	lcr = uart_getreg(bas, REG_LCR);
94 	uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
95 	uart_barrier(bas);
96 	divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8);
97 	uart_barrier(bas);
98 	uart_setreg(bas, REG_LCR, lcr);
99 	uart_barrier(bas);
100 
101 	/* 1/10th the time to transmit 1 character (estimate). */
102 	if (divisor <= 134)
103 		return (16000000 * divisor / bas->rclk);
104 	return (16000 * divisor / (bas->rclk / 1000));
105 }
106 
107 static int
108 ns8250_divisor(int rclk, int baudrate)
109 {
110 	int actual_baud, divisor;
111 	int error;
112 
113 	if (baudrate == 0)
114 		return (0);
115 
116 	divisor = (rclk / (baudrate << 3) + 1) >> 1;
117 	if (divisor == 0 || divisor >= 65536)
118 		return (0);
119 	actual_baud = rclk / (divisor << 4);
120 
121 	/* 10 times error in percent: */
122 	error = ((actual_baud - baudrate) * 2000 / baudrate + 1) >> 1;
123 
124 	/* 3.0% maximum error tolerance: */
125 	if (error < -30 || error > 30)
126 		return (0);
127 
128 	return (divisor);
129 }
130 
131 static int
132 ns8250_drain(struct uart_bas *bas, int what)
133 {
134 	int delay, limit;
135 
136 	delay = ns8250_delay(bas);
137 
138 	if (what & UART_DRAIN_TRANSMITTER) {
139 		/*
140 		 * Pick an arbitrary high limit to avoid getting stuck in
141 		 * an infinite loop when the hardware is broken. Make the
142 		 * limit high enough to handle large FIFOs.
143 		 */
144 		limit = 10*1024;
145 		while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
146 			DELAY(delay);
147 		if (limit == 0) {
148 			/* printf("ns8250: transmitter appears stuck... "); */
149 			return (EIO);
150 		}
151 	}
152 
153 	if (what & UART_DRAIN_RECEIVER) {
154 		/*
155 		 * Pick an arbitrary high limit to avoid getting stuck in
156 		 * an infinite loop when the hardware is broken. Make the
157 		 * limit high enough to handle large FIFOs and integrated
158 		 * UARTs. The HP rx2600 for example has 3 UARTs on the
159 		 * management board that tend to get a lot of data send
160 		 * to it when the UART is first activated.
161 		 */
162 		limit=10*4096;
163 		while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) {
164 			(void)uart_getreg(bas, REG_DATA);
165 			uart_barrier(bas);
166 			DELAY(delay << 2);
167 		}
168 		if (limit == 0) {
169 			/* printf("ns8250: receiver appears broken... "); */
170 			return (EIO);
171 		}
172 	}
173 
174 	return (0);
175 }
176 
177 /*
178  * We can only flush UARTs with FIFOs. UARTs without FIFOs should be
179  * drained. WARNING: this function clobbers the FIFO setting!
180  */
181 static void
182 ns8250_flush(struct uart_bas *bas, int what)
183 {
184 	uint8_t fcr;
185 
186 	fcr = FCR_ENABLE;
187 	if (what & UART_FLUSH_TRANSMITTER)
188 		fcr |= FCR_XMT_RST;
189 	if (what & UART_FLUSH_RECEIVER)
190 		fcr |= FCR_RCV_RST;
191 	uart_setreg(bas, REG_FCR, fcr);
192 	uart_barrier(bas);
193 }
194 
195 static int
196 ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
197     int parity)
198 {
199 	int divisor;
200 	uint8_t lcr;
201 
202 	lcr = 0;
203 	if (databits >= 8)
204 		lcr |= LCR_8BITS;
205 	else if (databits == 7)
206 		lcr |= LCR_7BITS;
207 	else if (databits == 6)
208 		lcr |= LCR_6BITS;
209 	else
210 		lcr |= LCR_5BITS;
211 	if (stopbits > 1)
212 		lcr |= LCR_STOPB;
213 	lcr |= parity << 3;
214 
215 	/* Set baudrate. */
216 	if (baudrate > 0) {
217 		divisor = ns8250_divisor(bas->rclk, baudrate);
218 		if (divisor == 0)
219 			return (EINVAL);
220 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
221 		uart_barrier(bas);
222 		uart_setreg(bas, REG_DLL, divisor & 0xff);
223 		uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff);
224 		uart_barrier(bas);
225 	}
226 
227 	/* Set LCR and clear DLAB. */
228 	uart_setreg(bas, REG_LCR, lcr);
229 	uart_barrier(bas);
230 	return (0);
231 }
232 
233 /*
234  * Low-level UART interface.
235  */
236 static int ns8250_probe(struct uart_bas *bas);
237 static void ns8250_init(struct uart_bas *bas, int, int, int, int);
238 static void ns8250_term(struct uart_bas *bas);
239 static void ns8250_putc(struct uart_bas *bas, int);
240 static int ns8250_rxready(struct uart_bas *bas);
241 static int ns8250_getc(struct uart_bas *bas, struct mtx *);
242 
243 struct uart_ops uart_ns8250_ops = {
244 	.probe = ns8250_probe,
245 	.init = ns8250_init,
246 	.term = ns8250_term,
247 	.putc = ns8250_putc,
248 	.rxready = ns8250_rxready,
249 	.getc = ns8250_getc,
250 };
251 
252 static int
253 ns8250_probe(struct uart_bas *bas)
254 {
255 	u_char val;
256 
257 	/* Check known 0 bits that don't depend on DLAB. */
258 	val = uart_getreg(bas, REG_IIR);
259 	if (val & 0x30)
260 		return (ENXIO);
261 	/*
262 	 * Bit 6 of the MCR (= 0x40) appears to be 1 for the Sun1699
263 	 * chip, but otherwise doesn't seem to have a function. In
264 	 * other words, uart(4) works regardless. Ignore that bit so
265 	 * the probe succeeds.
266 	 */
267 	val = uart_getreg(bas, REG_MCR);
268 	if (val & 0xa0)
269 		return (ENXIO);
270 
271 	return (0);
272 }
273 
274 static void
275 ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
276     int parity)
277 {
278 	u_char	ier;
279 
280 	if (bas->rclk == 0)
281 		bas->rclk = DEFAULT_RCLK;
282 	ns8250_param(bas, baudrate, databits, stopbits, parity);
283 
284 	/* Disable all interrupt sources. */
285 	/*
286 	 * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA
287 	 * UARTs split the receive time-out interrupt bit out separately as
288 	 * 0x10.  This gets handled by ier_mask and ier_rxbits below.
289 	 */
290 	ier = uart_getreg(bas, REG_IER) & 0xe0;
291 	uart_setreg(bas, REG_IER, ier);
292 	uart_barrier(bas);
293 
294 	/* Disable the FIFO (if present). */
295 	uart_setreg(bas, REG_FCR, 0);
296 	uart_barrier(bas);
297 
298 	/* Set RTS & DTR. */
299 	uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR);
300 	uart_barrier(bas);
301 
302 	ns8250_clrint(bas);
303 }
304 
305 static void
306 ns8250_term(struct uart_bas *bas)
307 {
308 
309 	/* Clear RTS & DTR. */
310 	uart_setreg(bas, REG_MCR, MCR_IE);
311 	uart_barrier(bas);
312 }
313 
314 static void
315 ns8250_putc(struct uart_bas *bas, int c)
316 {
317 	int limit;
318 
319 	limit = 250000;
320 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit)
321 		DELAY(4);
322 	uart_setreg(bas, REG_DATA, c);
323 	uart_barrier(bas);
324 	limit = 250000;
325 	while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
326 		DELAY(4);
327 }
328 
329 static int
330 ns8250_rxready(struct uart_bas *bas)
331 {
332 
333 	return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0);
334 }
335 
336 static int
337 ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx)
338 {
339 	int c;
340 
341 	uart_lock(hwmtx);
342 
343 	while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) {
344 		uart_unlock(hwmtx);
345 		DELAY(4);
346 		uart_lock(hwmtx);
347 	}
348 
349 	c = uart_getreg(bas, REG_DATA);
350 
351 	uart_unlock(hwmtx);
352 
353 	return (c);
354 }
355 
356 static kobj_method_t ns8250_methods[] = {
357 	KOBJMETHOD(uart_attach,		ns8250_bus_attach),
358 	KOBJMETHOD(uart_detach,		ns8250_bus_detach),
359 	KOBJMETHOD(uart_flush,		ns8250_bus_flush),
360 	KOBJMETHOD(uart_getsig,		ns8250_bus_getsig),
361 	KOBJMETHOD(uart_ioctl,		ns8250_bus_ioctl),
362 	KOBJMETHOD(uart_ipend,		ns8250_bus_ipend),
363 	KOBJMETHOD(uart_param,		ns8250_bus_param),
364 	KOBJMETHOD(uart_probe,		ns8250_bus_probe),
365 	KOBJMETHOD(uart_receive,	ns8250_bus_receive),
366 	KOBJMETHOD(uart_setsig,		ns8250_bus_setsig),
367 	KOBJMETHOD(uart_transmit,	ns8250_bus_transmit),
368 	{ 0, 0 }
369 };
370 
371 struct uart_class uart_ns8250_class = {
372 	"ns8250",
373 	ns8250_methods,
374 	sizeof(struct ns8250_softc),
375 	.uc_ops = &uart_ns8250_ops,
376 	.uc_range = 8,
377 	.uc_rclk = DEFAULT_RCLK
378 };
379 
380 #define	SIGCHG(c, i, s, d)				\
381 	if (c) {					\
382 		i |= (i & s) ? s : s | d;		\
383 	} else {					\
384 		i = (i & s) ? (i & ~s) | d : i;		\
385 	}
386 
387 int
388 ns8250_bus_attach(struct uart_softc *sc)
389 {
390 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
391 	struct uart_bas *bas;
392 	unsigned int ivar;
393 #ifdef FDT
394 	phandle_t node;
395 	pcell_t cell;
396 #endif
397 
398 	ns8250->busy_detect = 0;
399 
400 #ifdef FDT
401 	/*
402 	 * Check whether uart requires to read USR reg when IIR_BUSY and
403 	 * has broken txfifo.
404 	 */
405 	node = ofw_bus_get_node(sc->sc_dev);
406 	if ((OF_getprop(node, "busy-detect", &cell, sizeof(cell))) > 0)
407 		ns8250->busy_detect = 1;
408 	if ((OF_getprop(node, "broken-txfifo", &cell, sizeof(cell))) > 0)
409 		broken_txfifo = 1;
410 #endif
411 
412 	bas = &sc->sc_bas;
413 
414 	ns8250->mcr = uart_getreg(bas, REG_MCR);
415 	ns8250->fcr = FCR_ENABLE;
416 	if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags",
417 	    &ivar)) {
418 		if (UART_FLAGS_FCR_RX_LOW(ivar))
419 			ns8250->fcr |= FCR_RX_LOW;
420 		else if (UART_FLAGS_FCR_RX_MEDL(ivar))
421 			ns8250->fcr |= FCR_RX_MEDL;
422 		else if (UART_FLAGS_FCR_RX_HIGH(ivar))
423 			ns8250->fcr |= FCR_RX_HIGH;
424 		else
425 			ns8250->fcr |= FCR_RX_MEDH;
426 	} else
427 		ns8250->fcr |= FCR_RX_MEDH;
428 
429 	/* Get IER mask */
430 	ivar = 0xf0;
431 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask",
432 	    &ivar);
433 	ns8250->ier_mask = (uint8_t)(ivar & 0xff);
434 
435 	/* Get IER RX interrupt bits */
436 	ivar = IER_EMSC | IER_ERLS | IER_ERXRDY;
437 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits",
438 	    &ivar);
439 	ns8250->ier_rxbits = (uint8_t)(ivar & 0xff);
440 
441 	uart_setreg(bas, REG_FCR, ns8250->fcr);
442 	uart_barrier(bas);
443 	ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
444 
445 	if (ns8250->mcr & MCR_DTR)
446 		sc->sc_hwsig |= SER_DTR;
447 	if (ns8250->mcr & MCR_RTS)
448 		sc->sc_hwsig |= SER_RTS;
449 	ns8250_bus_getsig(sc);
450 
451 	ns8250_clrint(bas);
452 	ns8250->ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
453 	ns8250->ier |= ns8250->ier_rxbits;
454 	uart_setreg(bas, REG_IER, ns8250->ier);
455 	uart_barrier(bas);
456 
457 	/*
458 	 * Timing of the H/W access was changed with r253161 of uart_core.c
459 	 * It has been observed that an ITE IT8513E would signal a break
460 	 * condition with pretty much every character it received, unless
461 	 * it had enough time to settle between ns8250_bus_attach() and
462 	 * ns8250_bus_ipend() -- which it accidentally had before r253161.
463 	 * It's not understood why the UART chip behaves this way and it
464 	 * could very well be that the DELAY make the H/W work in the same
465 	 * accidental manner as before. More analysis is warranted, but
466 	 * at least now we fixed a known regression.
467 	 */
468 	DELAY(200);
469 	return (0);
470 }
471 
472 int
473 ns8250_bus_detach(struct uart_softc *sc)
474 {
475 	struct ns8250_softc *ns8250;
476 	struct uart_bas *bas;
477 	u_char ier;
478 
479 	ns8250 = (struct ns8250_softc *)sc;
480 	bas = &sc->sc_bas;
481 	ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
482 	uart_setreg(bas, REG_IER, ier);
483 	uart_barrier(bas);
484 	ns8250_clrint(bas);
485 	return (0);
486 }
487 
488 int
489 ns8250_bus_flush(struct uart_softc *sc, int what)
490 {
491 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
492 	struct uart_bas *bas;
493 	int error;
494 
495 	bas = &sc->sc_bas;
496 	uart_lock(sc->sc_hwmtx);
497 	if (sc->sc_rxfifosz > 1) {
498 		ns8250_flush(bas, what);
499 		uart_setreg(bas, REG_FCR, ns8250->fcr);
500 		uart_barrier(bas);
501 		error = 0;
502 	} else
503 		error = ns8250_drain(bas, what);
504 	uart_unlock(sc->sc_hwmtx);
505 	return (error);
506 }
507 
508 int
509 ns8250_bus_getsig(struct uart_softc *sc)
510 {
511 	uint32_t new, old, sig;
512 	uint8_t msr;
513 
514 	do {
515 		old = sc->sc_hwsig;
516 		sig = old;
517 		uart_lock(sc->sc_hwmtx);
518 		msr = uart_getreg(&sc->sc_bas, REG_MSR);
519 		uart_unlock(sc->sc_hwmtx);
520 		SIGCHG(msr & MSR_DSR, sig, SER_DSR, SER_DDSR);
521 		SIGCHG(msr & MSR_CTS, sig, SER_CTS, SER_DCTS);
522 		SIGCHG(msr & MSR_DCD, sig, SER_DCD, SER_DDCD);
523 		SIGCHG(msr & MSR_RI,  sig, SER_RI,  SER_DRI);
524 		new = sig & ~SER_MASK_DELTA;
525 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
526 	return (sig);
527 }
528 
529 int
530 ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
531 {
532 	struct uart_bas *bas;
533 	int baudrate, divisor, error;
534 	uint8_t efr, lcr;
535 
536 	bas = &sc->sc_bas;
537 	error = 0;
538 	uart_lock(sc->sc_hwmtx);
539 	switch (request) {
540 	case UART_IOCTL_BREAK:
541 		lcr = uart_getreg(bas, REG_LCR);
542 		if (data)
543 			lcr |= LCR_SBREAK;
544 		else
545 			lcr &= ~LCR_SBREAK;
546 		uart_setreg(bas, REG_LCR, lcr);
547 		uart_barrier(bas);
548 		break;
549 	case UART_IOCTL_IFLOW:
550 		lcr = uart_getreg(bas, REG_LCR);
551 		uart_barrier(bas);
552 		uart_setreg(bas, REG_LCR, 0xbf);
553 		uart_barrier(bas);
554 		efr = uart_getreg(bas, REG_EFR);
555 		if (data)
556 			efr |= EFR_RTS;
557 		else
558 			efr &= ~EFR_RTS;
559 		uart_setreg(bas, REG_EFR, efr);
560 		uart_barrier(bas);
561 		uart_setreg(bas, REG_LCR, lcr);
562 		uart_barrier(bas);
563 		break;
564 	case UART_IOCTL_OFLOW:
565 		lcr = uart_getreg(bas, REG_LCR);
566 		uart_barrier(bas);
567 		uart_setreg(bas, REG_LCR, 0xbf);
568 		uart_barrier(bas);
569 		efr = uart_getreg(bas, REG_EFR);
570 		if (data)
571 			efr |= EFR_CTS;
572 		else
573 			efr &= ~EFR_CTS;
574 		uart_setreg(bas, REG_EFR, efr);
575 		uart_barrier(bas);
576 		uart_setreg(bas, REG_LCR, lcr);
577 		uart_barrier(bas);
578 		break;
579 	case UART_IOCTL_BAUD:
580 		lcr = uart_getreg(bas, REG_LCR);
581 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
582 		uart_barrier(bas);
583 		divisor = uart_getreg(bas, REG_DLL) |
584 		    (uart_getreg(bas, REG_DLH) << 8);
585 		uart_barrier(bas);
586 		uart_setreg(bas, REG_LCR, lcr);
587 		uart_barrier(bas);
588 		baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0;
589 		if (baudrate > 0)
590 			*(int*)data = baudrate;
591 		else
592 			error = ENXIO;
593 		break;
594 	default:
595 		error = EINVAL;
596 		break;
597 	}
598 	uart_unlock(sc->sc_hwmtx);
599 	return (error);
600 }
601 
602 int
603 ns8250_bus_ipend(struct uart_softc *sc)
604 {
605 	struct uart_bas *bas;
606 	struct ns8250_softc *ns8250;
607 	int ipend;
608 	uint8_t iir, lsr;
609 
610 	ns8250 = (struct ns8250_softc *)sc;
611 	bas = &sc->sc_bas;
612 	uart_lock(sc->sc_hwmtx);
613 	iir = uart_getreg(bas, REG_IIR);
614 
615 	if (ns8250->busy_detect && (iir & IIR_BUSY) == IIR_BUSY) {
616 		(void)uart_getreg(bas, DW_REG_USR);
617 		uart_unlock(sc->sc_hwmtx);
618 		return (0);
619 	}
620 	if (iir & IIR_NOPEND) {
621 		uart_unlock(sc->sc_hwmtx);
622 		return (0);
623 	}
624 	ipend = 0;
625 	if (iir & IIR_RXRDY) {
626 		lsr = uart_getreg(bas, REG_LSR);
627 		if (lsr & LSR_OE)
628 			ipend |= SER_INT_OVERRUN;
629 		if (lsr & LSR_BI)
630 			ipend |= SER_INT_BREAK;
631 		if (lsr & LSR_RXRDY)
632 			ipend |= SER_INT_RXREADY;
633 	} else {
634 		if (iir & IIR_TXRDY) {
635 			ipend |= SER_INT_TXIDLE;
636 			uart_setreg(bas, REG_IER, ns8250->ier);
637 		} else
638 			ipend |= SER_INT_SIGCHG;
639 	}
640 	if (ipend == 0)
641 		ns8250_clrint(bas);
642 	uart_unlock(sc->sc_hwmtx);
643 	return (ipend);
644 }
645 
646 int
647 ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits,
648     int stopbits, int parity)
649 {
650 	struct uart_bas *bas;
651 	int error;
652 
653 	bas = &sc->sc_bas;
654 	uart_lock(sc->sc_hwmtx);
655 	error = ns8250_param(bas, baudrate, databits, stopbits, parity);
656 	uart_unlock(sc->sc_hwmtx);
657 	return (error);
658 }
659 
660 int
661 ns8250_bus_probe(struct uart_softc *sc)
662 {
663 	struct ns8250_softc *ns8250;
664 	struct uart_bas *bas;
665 	int count, delay, error, limit;
666 	uint8_t lsr, mcr, ier;
667 
668 	ns8250 = (struct ns8250_softc *)sc;
669 	bas = &sc->sc_bas;
670 
671 	error = ns8250_probe(bas);
672 	if (error)
673 		return (error);
674 
675 	mcr = MCR_IE;
676 	if (sc->sc_sysdev == NULL) {
677 		/* By using ns8250_init() we also set DTR and RTS. */
678 		ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE);
679 	} else
680 		mcr |= MCR_DTR | MCR_RTS;
681 
682 	error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
683 	if (error)
684 		return (error);
685 
686 	/*
687 	 * Set loopback mode. This avoids having garbage on the wire and
688 	 * also allows us send and receive data. We set DTR and RTS to
689 	 * avoid the possibility that automatic flow-control prevents
690 	 * any data from being sent.
691 	 */
692 	uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS);
693 	uart_barrier(bas);
694 
695 	/*
696 	 * Enable FIFOs. And check that the UART has them. If not, we're
697 	 * done. Since this is the first time we enable the FIFOs, we reset
698 	 * them.
699 	 */
700 	uart_setreg(bas, REG_FCR, FCR_ENABLE);
701 	uart_barrier(bas);
702 	if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) {
703 		/*
704 		 * NS16450 or INS8250. We don't bother to differentiate
705 		 * between them. They're too old to be interesting.
706 		 */
707 		uart_setreg(bas, REG_MCR, mcr);
708 		uart_barrier(bas);
709 		sc->sc_rxfifosz = sc->sc_txfifosz = 1;
710 		device_set_desc(sc->sc_dev, "8250 or 16450 or compatible");
711 		return (0);
712 	}
713 
714 	uart_setreg(bas, REG_FCR, FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST);
715 	uart_barrier(bas);
716 
717 	count = 0;
718 	delay = ns8250_delay(bas);
719 
720 	/* We have FIFOs. Drain the transmitter and receiver. */
721 	error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER);
722 	if (error) {
723 		uart_setreg(bas, REG_MCR, mcr);
724 		uart_setreg(bas, REG_FCR, 0);
725 		uart_barrier(bas);
726 		goto describe;
727 	}
728 
729 	/*
730 	 * We should have a sufficiently clean "pipe" to determine the
731 	 * size of the FIFOs. We send as much characters as is reasonable
732 	 * and wait for the overflow bit in the LSR register to be
733 	 * asserted, counting the characters as we send them. Based on
734 	 * that count we know the FIFO size.
735 	 */
736 	do {
737 		uart_setreg(bas, REG_DATA, 0);
738 		uart_barrier(bas);
739 		count++;
740 
741 		limit = 30;
742 		lsr = 0;
743 		/*
744 		 * LSR bits are cleared upon read, so we must accumulate
745 		 * them to be able to test LSR_OE below.
746 		 */
747 		while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 &&
748 		    --limit)
749 			DELAY(delay);
750 		if (limit == 0) {
751 			ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
752 			uart_setreg(bas, REG_IER, ier);
753 			uart_setreg(bas, REG_MCR, mcr);
754 			uart_setreg(bas, REG_FCR, 0);
755 			uart_barrier(bas);
756 			count = 0;
757 			goto describe;
758 		}
759 	} while ((lsr & LSR_OE) == 0 && count < 130);
760 	count--;
761 
762 	uart_setreg(bas, REG_MCR, mcr);
763 
764 	/* Reset FIFOs. */
765 	ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
766 
767  describe:
768 	if (count >= 14 && count <= 16) {
769 		sc->sc_rxfifosz = 16;
770 		device_set_desc(sc->sc_dev, "16550 or compatible");
771 	} else if (count >= 28 && count <= 32) {
772 		sc->sc_rxfifosz = 32;
773 		device_set_desc(sc->sc_dev, "16650 or compatible");
774 	} else if (count >= 56 && count <= 64) {
775 		sc->sc_rxfifosz = 64;
776 		device_set_desc(sc->sc_dev, "16750 or compatible");
777 	} else if (count >= 112 && count <= 128) {
778 		sc->sc_rxfifosz = 128;
779 		device_set_desc(sc->sc_dev, "16950 or compatible");
780 	} else {
781 		sc->sc_rxfifosz = 16;
782 		device_set_desc(sc->sc_dev,
783 		    "Non-standard ns8250 class UART with FIFOs");
784 	}
785 
786 	/*
787 	 * Force the Tx FIFO size to 16 bytes for now. We don't program the
788 	 * Tx trigger. Also, we assume that all data has been sent when the
789 	 * interrupt happens.
790 	 */
791 	sc->sc_txfifosz = 16;
792 
793 #if 0
794 	/*
795 	 * XXX there are some issues related to hardware flow control and
796 	 * it's likely that uart(4) is the cause. This basicly needs more
797 	 * investigation, but we avoid using for hardware flow control
798 	 * until then.
799 	 */
800 	/* 16650s or higher have automatic flow control. */
801 	if (sc->sc_rxfifosz > 16) {
802 		sc->sc_hwiflow = 1;
803 		sc->sc_hwoflow = 1;
804 	}
805 #endif
806 
807 	return (0);
808 }
809 
810 int
811 ns8250_bus_receive(struct uart_softc *sc)
812 {
813 	struct uart_bas *bas;
814 	int xc;
815 	uint8_t lsr;
816 
817 	bas = &sc->sc_bas;
818 	uart_lock(sc->sc_hwmtx);
819 	lsr = uart_getreg(bas, REG_LSR);
820 	while (lsr & LSR_RXRDY) {
821 		if (uart_rx_full(sc)) {
822 			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
823 			break;
824 		}
825 		xc = uart_getreg(bas, REG_DATA);
826 		if (lsr & LSR_FE)
827 			xc |= UART_STAT_FRAMERR;
828 		if (lsr & LSR_PE)
829 			xc |= UART_STAT_PARERR;
830 		uart_rx_put(sc, xc);
831 		lsr = uart_getreg(bas, REG_LSR);
832 	}
833 	/* Discard everything left in the Rx FIFO. */
834 	while (lsr & LSR_RXRDY) {
835 		(void)uart_getreg(bas, REG_DATA);
836 		uart_barrier(bas);
837 		lsr = uart_getreg(bas, REG_LSR);
838 	}
839 	uart_unlock(sc->sc_hwmtx);
840  	return (0);
841 }
842 
843 int
844 ns8250_bus_setsig(struct uart_softc *sc, int sig)
845 {
846 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
847 	struct uart_bas *bas;
848 	uint32_t new, old;
849 
850 	bas = &sc->sc_bas;
851 	do {
852 		old = sc->sc_hwsig;
853 		new = old;
854 		if (sig & SER_DDTR) {
855 			SIGCHG(sig & SER_DTR, new, SER_DTR,
856 			    SER_DDTR);
857 		}
858 		if (sig & SER_DRTS) {
859 			SIGCHG(sig & SER_RTS, new, SER_RTS,
860 			    SER_DRTS);
861 		}
862 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
863 	uart_lock(sc->sc_hwmtx);
864 	ns8250->mcr &= ~(MCR_DTR|MCR_RTS);
865 	if (new & SER_DTR)
866 		ns8250->mcr |= MCR_DTR;
867 	if (new & SER_RTS)
868 		ns8250->mcr |= MCR_RTS;
869 	uart_setreg(bas, REG_MCR, ns8250->mcr);
870 	uart_barrier(bas);
871 	uart_unlock(sc->sc_hwmtx);
872 	return (0);
873 }
874 
875 int
876 ns8250_bus_transmit(struct uart_softc *sc)
877 {
878 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
879 	struct uart_bas *bas;
880 	int i;
881 
882 	bas = &sc->sc_bas;
883 	uart_lock(sc->sc_hwmtx);
884 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0)
885 		;
886 	uart_setreg(bas, REG_IER, ns8250->ier | IER_ETXRDY);
887 	uart_barrier(bas);
888 	for (i = 0; i < sc->sc_txdatasz; i++) {
889 		uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]);
890 		uart_barrier(bas);
891 	}
892 	if (broken_txfifo)
893 		ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
894 	else
895 		sc->sc_txbusy = 1;
896 	uart_unlock(sc->sc_hwmtx);
897 	if (broken_txfifo)
898 		uart_sched_softih(sc, SER_INT_TXIDLE);
899 	return (0);
900 }
901