xref: /freebsd/sys/dev/uart/uart_dev_ns8250.c (revision 0761549550dad58bfcc0f227ba6ffa78b4d8c017)
1 /*-
2  * Copyright (c) 2003 Marcel Moolenaar
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include "opt_platform.h"
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/conf.h>
36 #include <sys/kernel.h>
37 #include <sys/sysctl.h>
38 #include <machine/bus.h>
39 
40 #ifdef FDT
41 #include <dev/fdt/fdt_common.h>
42 #include <dev/ofw/ofw_bus.h>
43 #include <dev/ofw/ofw_bus_subr.h>
44 #endif
45 
46 #include <dev/uart/uart.h>
47 #include <dev/uart/uart_cpu.h>
48 #include <dev/uart/uart_bus.h>
49 #include <dev/uart/uart_dev_ns8250.h>
50 
51 #include <dev/ic/ns16550.h>
52 
53 #include "uart_if.h"
54 
55 #define	DEFAULT_RCLK	1843200
56 
57 static int broken_txfifo = 0;
58 SYSCTL_INT(_hw, OID_AUTO, broken_txfifo, CTLFLAG_RWTUN,
59 	&broken_txfifo, 0, "UART FIFO has QEMU emulation bug");
60 
61 /*
62  * Clear pending interrupts. THRE is cleared by reading IIR. Data
63  * that may have been received gets lost here.
64  */
65 static void
66 ns8250_clrint(struct uart_bas *bas)
67 {
68 	uint8_t iir, lsr;
69 
70 	iir = uart_getreg(bas, REG_IIR);
71 	while ((iir & IIR_NOPEND) == 0) {
72 		iir &= IIR_IMASK;
73 		if (iir == IIR_RLS) {
74 			lsr = uart_getreg(bas, REG_LSR);
75 			if (lsr & (LSR_BI|LSR_FE|LSR_PE))
76 				(void)uart_getreg(bas, REG_DATA);
77 		} else if (iir == IIR_RXRDY || iir == IIR_RXTOUT)
78 			(void)uart_getreg(bas, REG_DATA);
79 		else if (iir == IIR_MLSC)
80 			(void)uart_getreg(bas, REG_MSR);
81 		uart_barrier(bas);
82 		iir = uart_getreg(bas, REG_IIR);
83 	}
84 }
85 
86 static int
87 ns8250_delay(struct uart_bas *bas)
88 {
89 	int divisor;
90 	u_char lcr;
91 
92 	lcr = uart_getreg(bas, REG_LCR);
93 	uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
94 	uart_barrier(bas);
95 	divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8);
96 	uart_barrier(bas);
97 	uart_setreg(bas, REG_LCR, lcr);
98 	uart_barrier(bas);
99 
100 	/* 1/10th the time to transmit 1 character (estimate). */
101 	if (divisor <= 134)
102 		return (16000000 * divisor / bas->rclk);
103 	return (16000 * divisor / (bas->rclk / 1000));
104 }
105 
106 static int
107 ns8250_divisor(int rclk, int baudrate)
108 {
109 	int actual_baud, divisor;
110 	int error;
111 
112 	if (baudrate == 0)
113 		return (0);
114 
115 	divisor = (rclk / (baudrate << 3) + 1) >> 1;
116 	if (divisor == 0 || divisor >= 65536)
117 		return (0);
118 	actual_baud = rclk / (divisor << 4);
119 
120 	/* 10 times error in percent: */
121 	error = ((actual_baud - baudrate) * 2000 / baudrate + 1) >> 1;
122 
123 	/* 3.0% maximum error tolerance: */
124 	if (error < -30 || error > 30)
125 		return (0);
126 
127 	return (divisor);
128 }
129 
130 static int
131 ns8250_drain(struct uart_bas *bas, int what)
132 {
133 	int delay, limit;
134 
135 	delay = ns8250_delay(bas);
136 
137 	if (what & UART_DRAIN_TRANSMITTER) {
138 		/*
139 		 * Pick an arbitrary high limit to avoid getting stuck in
140 		 * an infinite loop when the hardware is broken. Make the
141 		 * limit high enough to handle large FIFOs.
142 		 */
143 		limit = 10*1024;
144 		while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
145 			DELAY(delay);
146 		if (limit == 0) {
147 			/* printf("ns8250: transmitter appears stuck... "); */
148 			return (EIO);
149 		}
150 	}
151 
152 	if (what & UART_DRAIN_RECEIVER) {
153 		/*
154 		 * Pick an arbitrary high limit to avoid getting stuck in
155 		 * an infinite loop when the hardware is broken. Make the
156 		 * limit high enough to handle large FIFOs and integrated
157 		 * UARTs. The HP rx2600 for example has 3 UARTs on the
158 		 * management board that tend to get a lot of data send
159 		 * to it when the UART is first activated.
160 		 */
161 		limit=10*4096;
162 		while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) {
163 			(void)uart_getreg(bas, REG_DATA);
164 			uart_barrier(bas);
165 			DELAY(delay << 2);
166 		}
167 		if (limit == 0) {
168 			/* printf("ns8250: receiver appears broken... "); */
169 			return (EIO);
170 		}
171 	}
172 
173 	return (0);
174 }
175 
176 /*
177  * We can only flush UARTs with FIFOs. UARTs without FIFOs should be
178  * drained. WARNING: this function clobbers the FIFO setting!
179  */
180 static void
181 ns8250_flush(struct uart_bas *bas, int what)
182 {
183 	uint8_t fcr;
184 
185 	fcr = FCR_ENABLE;
186 	if (what & UART_FLUSH_TRANSMITTER)
187 		fcr |= FCR_XMT_RST;
188 	if (what & UART_FLUSH_RECEIVER)
189 		fcr |= FCR_RCV_RST;
190 	uart_setreg(bas, REG_FCR, fcr);
191 	uart_barrier(bas);
192 }
193 
194 static int
195 ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
196     int parity)
197 {
198 	int divisor;
199 	uint8_t lcr;
200 
201 	lcr = 0;
202 	if (databits >= 8)
203 		lcr |= LCR_8BITS;
204 	else if (databits == 7)
205 		lcr |= LCR_7BITS;
206 	else if (databits == 6)
207 		lcr |= LCR_6BITS;
208 	else
209 		lcr |= LCR_5BITS;
210 	if (stopbits > 1)
211 		lcr |= LCR_STOPB;
212 	lcr |= parity << 3;
213 
214 	/* Set baudrate. */
215 	if (baudrate > 0) {
216 		divisor = ns8250_divisor(bas->rclk, baudrate);
217 		if (divisor == 0)
218 			return (EINVAL);
219 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
220 		uart_barrier(bas);
221 		uart_setreg(bas, REG_DLL, divisor & 0xff);
222 		uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff);
223 		uart_barrier(bas);
224 	}
225 
226 	/* Set LCR and clear DLAB. */
227 	uart_setreg(bas, REG_LCR, lcr);
228 	uart_barrier(bas);
229 	return (0);
230 }
231 
232 /*
233  * Low-level UART interface.
234  */
235 static int ns8250_probe(struct uart_bas *bas);
236 static void ns8250_init(struct uart_bas *bas, int, int, int, int);
237 static void ns8250_term(struct uart_bas *bas);
238 static void ns8250_putc(struct uart_bas *bas, int);
239 static int ns8250_rxready(struct uart_bas *bas);
240 static int ns8250_getc(struct uart_bas *bas, struct mtx *);
241 
242 struct uart_ops uart_ns8250_ops = {
243 	.probe = ns8250_probe,
244 	.init = ns8250_init,
245 	.term = ns8250_term,
246 	.putc = ns8250_putc,
247 	.rxready = ns8250_rxready,
248 	.getc = ns8250_getc,
249 };
250 
251 static int
252 ns8250_probe(struct uart_bas *bas)
253 {
254 	u_char val;
255 
256 	/* Check known 0 bits that don't depend on DLAB. */
257 	val = uart_getreg(bas, REG_IIR);
258 	if (val & 0x30)
259 		return (ENXIO);
260 	/*
261 	 * Bit 6 of the MCR (= 0x40) appears to be 1 for the Sun1699
262 	 * chip, but otherwise doesn't seem to have a function. In
263 	 * other words, uart(4) works regardless. Ignore that bit so
264 	 * the probe succeeds.
265 	 */
266 	val = uart_getreg(bas, REG_MCR);
267 	if (val & 0xa0)
268 		return (ENXIO);
269 
270 	return (0);
271 }
272 
273 static void
274 ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
275     int parity)
276 {
277 	u_char	ier;
278 
279 	if (bas->rclk == 0)
280 		bas->rclk = DEFAULT_RCLK;
281 	ns8250_param(bas, baudrate, databits, stopbits, parity);
282 
283 	/* Disable all interrupt sources. */
284 	/*
285 	 * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA
286 	 * UARTs split the receive time-out interrupt bit out separately as
287 	 * 0x10.  This gets handled by ier_mask and ier_rxbits below.
288 	 */
289 	ier = uart_getreg(bas, REG_IER) & 0xe0;
290 	uart_setreg(bas, REG_IER, ier);
291 	uart_barrier(bas);
292 
293 	/* Disable the FIFO (if present). */
294 	uart_setreg(bas, REG_FCR, 0);
295 	uart_barrier(bas);
296 
297 	/* Set RTS & DTR. */
298 	uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR);
299 	uart_barrier(bas);
300 
301 	ns8250_clrint(bas);
302 }
303 
304 static void
305 ns8250_term(struct uart_bas *bas)
306 {
307 
308 	/* Clear RTS & DTR. */
309 	uart_setreg(bas, REG_MCR, MCR_IE);
310 	uart_barrier(bas);
311 }
312 
313 static void
314 ns8250_putc(struct uart_bas *bas, int c)
315 {
316 	int limit;
317 
318 	limit = 250000;
319 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit)
320 		DELAY(4);
321 	uart_setreg(bas, REG_DATA, c);
322 	uart_barrier(bas);
323 	limit = 250000;
324 	while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
325 		DELAY(4);
326 }
327 
328 static int
329 ns8250_rxready(struct uart_bas *bas)
330 {
331 
332 	return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0);
333 }
334 
335 static int
336 ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx)
337 {
338 	int c;
339 
340 	uart_lock(hwmtx);
341 
342 	while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) {
343 		uart_unlock(hwmtx);
344 		DELAY(4);
345 		uart_lock(hwmtx);
346 	}
347 
348 	c = uart_getreg(bas, REG_DATA);
349 
350 	uart_unlock(hwmtx);
351 
352 	return (c);
353 }
354 
355 static kobj_method_t ns8250_methods[] = {
356 	KOBJMETHOD(uart_attach,		ns8250_bus_attach),
357 	KOBJMETHOD(uart_detach,		ns8250_bus_detach),
358 	KOBJMETHOD(uart_flush,		ns8250_bus_flush),
359 	KOBJMETHOD(uart_getsig,		ns8250_bus_getsig),
360 	KOBJMETHOD(uart_ioctl,		ns8250_bus_ioctl),
361 	KOBJMETHOD(uart_ipend,		ns8250_bus_ipend),
362 	KOBJMETHOD(uart_param,		ns8250_bus_param),
363 	KOBJMETHOD(uart_probe,		ns8250_bus_probe),
364 	KOBJMETHOD(uart_receive,	ns8250_bus_receive),
365 	KOBJMETHOD(uart_setsig,		ns8250_bus_setsig),
366 	KOBJMETHOD(uart_transmit,	ns8250_bus_transmit),
367 	KOBJMETHOD(uart_grab,		ns8250_bus_grab),
368 	KOBJMETHOD(uart_ungrab,		ns8250_bus_ungrab),
369 	{ 0, 0 }
370 };
371 
372 struct uart_class uart_ns8250_class = {
373 	"ns8250",
374 	ns8250_methods,
375 	sizeof(struct ns8250_softc),
376 	.uc_ops = &uart_ns8250_ops,
377 	.uc_range = 8,
378 	.uc_rclk = DEFAULT_RCLK
379 };
380 
381 #define	SIGCHG(c, i, s, d)				\
382 	if (c) {					\
383 		i |= (i & s) ? s : s | d;		\
384 	} else {					\
385 		i = (i & s) ? (i & ~s) | d : i;		\
386 	}
387 
388 int
389 ns8250_bus_attach(struct uart_softc *sc)
390 {
391 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
392 	struct uart_bas *bas;
393 	unsigned int ivar;
394 #ifdef FDT
395 	phandle_t node;
396 	pcell_t cell;
397 #endif
398 
399 	ns8250->busy_detect = 0;
400 
401 #ifdef FDT
402 	/*
403 	 * Check whether uart requires to read USR reg when IIR_BUSY and
404 	 * has broken txfifo.
405 	 */
406 	node = ofw_bus_get_node(sc->sc_dev);
407 	if ((OF_getprop(node, "busy-detect", &cell, sizeof(cell))) > 0)
408 		ns8250->busy_detect = 1;
409 	if ((OF_getprop(node, "broken-txfifo", &cell, sizeof(cell))) > 0)
410 		broken_txfifo = 1;
411 #endif
412 
413 	bas = &sc->sc_bas;
414 
415 	ns8250->mcr = uart_getreg(bas, REG_MCR);
416 	ns8250->fcr = FCR_ENABLE;
417 	if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags",
418 	    &ivar)) {
419 		if (UART_FLAGS_FCR_RX_LOW(ivar))
420 			ns8250->fcr |= FCR_RX_LOW;
421 		else if (UART_FLAGS_FCR_RX_MEDL(ivar))
422 			ns8250->fcr |= FCR_RX_MEDL;
423 		else if (UART_FLAGS_FCR_RX_HIGH(ivar))
424 			ns8250->fcr |= FCR_RX_HIGH;
425 		else
426 			ns8250->fcr |= FCR_RX_MEDH;
427 	} else
428 		ns8250->fcr |= FCR_RX_MEDH;
429 
430 	/* Get IER mask */
431 	ivar = 0xf0;
432 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask",
433 	    &ivar);
434 	ns8250->ier_mask = (uint8_t)(ivar & 0xff);
435 
436 	/* Get IER RX interrupt bits */
437 	ivar = IER_EMSC | IER_ERLS | IER_ERXRDY;
438 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits",
439 	    &ivar);
440 	ns8250->ier_rxbits = (uint8_t)(ivar & 0xff);
441 
442 	uart_setreg(bas, REG_FCR, ns8250->fcr);
443 	uart_barrier(bas);
444 	ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
445 
446 	if (ns8250->mcr & MCR_DTR)
447 		sc->sc_hwsig |= SER_DTR;
448 	if (ns8250->mcr & MCR_RTS)
449 		sc->sc_hwsig |= SER_RTS;
450 	ns8250_bus_getsig(sc);
451 
452 	ns8250_clrint(bas);
453 	ns8250->ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
454 	ns8250->ier |= ns8250->ier_rxbits;
455 	uart_setreg(bas, REG_IER, ns8250->ier);
456 	uart_barrier(bas);
457 
458 	/*
459 	 * Timing of the H/W access was changed with r253161 of uart_core.c
460 	 * It has been observed that an ITE IT8513E would signal a break
461 	 * condition with pretty much every character it received, unless
462 	 * it had enough time to settle between ns8250_bus_attach() and
463 	 * ns8250_bus_ipend() -- which it accidentally had before r253161.
464 	 * It's not understood why the UART chip behaves this way and it
465 	 * could very well be that the DELAY make the H/W work in the same
466 	 * accidental manner as before. More analysis is warranted, but
467 	 * at least now we fixed a known regression.
468 	 */
469 	DELAY(200);
470 	return (0);
471 }
472 
473 int
474 ns8250_bus_detach(struct uart_softc *sc)
475 {
476 	struct ns8250_softc *ns8250;
477 	struct uart_bas *bas;
478 	u_char ier;
479 
480 	ns8250 = (struct ns8250_softc *)sc;
481 	bas = &sc->sc_bas;
482 	ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
483 	uart_setreg(bas, REG_IER, ier);
484 	uart_barrier(bas);
485 	ns8250_clrint(bas);
486 	return (0);
487 }
488 
489 int
490 ns8250_bus_flush(struct uart_softc *sc, int what)
491 {
492 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
493 	struct uart_bas *bas;
494 	int error;
495 
496 	bas = &sc->sc_bas;
497 	uart_lock(sc->sc_hwmtx);
498 	if (sc->sc_rxfifosz > 1) {
499 		ns8250_flush(bas, what);
500 		uart_setreg(bas, REG_FCR, ns8250->fcr);
501 		uart_barrier(bas);
502 		error = 0;
503 	} else
504 		error = ns8250_drain(bas, what);
505 	uart_unlock(sc->sc_hwmtx);
506 	return (error);
507 }
508 
509 int
510 ns8250_bus_getsig(struct uart_softc *sc)
511 {
512 	uint32_t new, old, sig;
513 	uint8_t msr;
514 
515 	do {
516 		old = sc->sc_hwsig;
517 		sig = old;
518 		uart_lock(sc->sc_hwmtx);
519 		msr = uart_getreg(&sc->sc_bas, REG_MSR);
520 		uart_unlock(sc->sc_hwmtx);
521 		SIGCHG(msr & MSR_DSR, sig, SER_DSR, SER_DDSR);
522 		SIGCHG(msr & MSR_CTS, sig, SER_CTS, SER_DCTS);
523 		SIGCHG(msr & MSR_DCD, sig, SER_DCD, SER_DDCD);
524 		SIGCHG(msr & MSR_RI,  sig, SER_RI,  SER_DRI);
525 		new = sig & ~SER_MASK_DELTA;
526 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
527 	return (sig);
528 }
529 
530 int
531 ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
532 {
533 	struct uart_bas *bas;
534 	int baudrate, divisor, error;
535 	uint8_t efr, lcr;
536 
537 	bas = &sc->sc_bas;
538 	error = 0;
539 	uart_lock(sc->sc_hwmtx);
540 	switch (request) {
541 	case UART_IOCTL_BREAK:
542 		lcr = uart_getreg(bas, REG_LCR);
543 		if (data)
544 			lcr |= LCR_SBREAK;
545 		else
546 			lcr &= ~LCR_SBREAK;
547 		uart_setreg(bas, REG_LCR, lcr);
548 		uart_barrier(bas);
549 		break;
550 	case UART_IOCTL_IFLOW:
551 		lcr = uart_getreg(bas, REG_LCR);
552 		uart_barrier(bas);
553 		uart_setreg(bas, REG_LCR, 0xbf);
554 		uart_barrier(bas);
555 		efr = uart_getreg(bas, REG_EFR);
556 		if (data)
557 			efr |= EFR_RTS;
558 		else
559 			efr &= ~EFR_RTS;
560 		uart_setreg(bas, REG_EFR, efr);
561 		uart_barrier(bas);
562 		uart_setreg(bas, REG_LCR, lcr);
563 		uart_barrier(bas);
564 		break;
565 	case UART_IOCTL_OFLOW:
566 		lcr = uart_getreg(bas, REG_LCR);
567 		uart_barrier(bas);
568 		uart_setreg(bas, REG_LCR, 0xbf);
569 		uart_barrier(bas);
570 		efr = uart_getreg(bas, REG_EFR);
571 		if (data)
572 			efr |= EFR_CTS;
573 		else
574 			efr &= ~EFR_CTS;
575 		uart_setreg(bas, REG_EFR, efr);
576 		uart_barrier(bas);
577 		uart_setreg(bas, REG_LCR, lcr);
578 		uart_barrier(bas);
579 		break;
580 	case UART_IOCTL_BAUD:
581 		lcr = uart_getreg(bas, REG_LCR);
582 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
583 		uart_barrier(bas);
584 		divisor = uart_getreg(bas, REG_DLL) |
585 		    (uart_getreg(bas, REG_DLH) << 8);
586 		uart_barrier(bas);
587 		uart_setreg(bas, REG_LCR, lcr);
588 		uart_barrier(bas);
589 		baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0;
590 		if (baudrate > 0)
591 			*(int*)data = baudrate;
592 		else
593 			error = ENXIO;
594 		break;
595 	default:
596 		error = EINVAL;
597 		break;
598 	}
599 	uart_unlock(sc->sc_hwmtx);
600 	return (error);
601 }
602 
603 int
604 ns8250_bus_ipend(struct uart_softc *sc)
605 {
606 	struct uart_bas *bas;
607 	struct ns8250_softc *ns8250;
608 	int ipend;
609 	uint8_t iir, lsr;
610 
611 	ns8250 = (struct ns8250_softc *)sc;
612 	bas = &sc->sc_bas;
613 	uart_lock(sc->sc_hwmtx);
614 	iir = uart_getreg(bas, REG_IIR);
615 
616 	if (ns8250->busy_detect && (iir & IIR_BUSY) == IIR_BUSY) {
617 		(void)uart_getreg(bas, DW_REG_USR);
618 		uart_unlock(sc->sc_hwmtx);
619 		return (0);
620 	}
621 	if (iir & IIR_NOPEND) {
622 		uart_unlock(sc->sc_hwmtx);
623 		return (0);
624 	}
625 	ipend = 0;
626 	if (iir & IIR_RXRDY) {
627 		lsr = uart_getreg(bas, REG_LSR);
628 		if (lsr & LSR_OE)
629 			ipend |= SER_INT_OVERRUN;
630 		if (lsr & LSR_BI)
631 			ipend |= SER_INT_BREAK;
632 		if (lsr & LSR_RXRDY)
633 			ipend |= SER_INT_RXREADY;
634 	} else {
635 		if (iir & IIR_TXRDY) {
636 			ipend |= SER_INT_TXIDLE;
637 			uart_setreg(bas, REG_IER, ns8250->ier);
638 		} else
639 			ipend |= SER_INT_SIGCHG;
640 	}
641 	if (ipend == 0)
642 		ns8250_clrint(bas);
643 	uart_unlock(sc->sc_hwmtx);
644 	return (ipend);
645 }
646 
647 int
648 ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits,
649     int stopbits, int parity)
650 {
651 	struct ns8250_softc *ns8250;
652 	struct uart_bas *bas;
653 	int error, limit;
654 
655 	ns8250 = (struct ns8250_softc*)sc;
656 	bas = &sc->sc_bas;
657 	uart_lock(sc->sc_hwmtx);
658 	/*
659 	 * When using DW UART with BUSY detection it is necessary to wait
660 	 * until all serial transfers are finished before manipulating the
661 	 * line control. LCR will not be affected when UART is busy.
662 	 */
663 	if (ns8250->busy_detect != 0) {
664 		/*
665 		 * Pick an arbitrary high limit to avoid getting stuck in
666 		 * an infinite loop in case when the hardware is broken.
667 		 */
668 		limit = 10 * 1024;
669 		while (((uart_getreg(bas, DW_REG_USR) & USR_BUSY) != 0) &&
670 		    --limit)
671 			DELAY(4);
672 
673 		if (limit <= 0) {
674 			/* UART appears to be stuck */
675 			uart_unlock(sc->sc_hwmtx);
676 			return (EIO);
677 		}
678 	}
679 
680 	error = ns8250_param(bas, baudrate, databits, stopbits, parity);
681 	uart_unlock(sc->sc_hwmtx);
682 	return (error);
683 }
684 
685 int
686 ns8250_bus_probe(struct uart_softc *sc)
687 {
688 	struct ns8250_softc *ns8250;
689 	struct uart_bas *bas;
690 	int count, delay, error, limit;
691 	uint8_t lsr, mcr, ier;
692 
693 	ns8250 = (struct ns8250_softc *)sc;
694 	bas = &sc->sc_bas;
695 
696 	error = ns8250_probe(bas);
697 	if (error)
698 		return (error);
699 
700 	mcr = MCR_IE;
701 	if (sc->sc_sysdev == NULL) {
702 		/* By using ns8250_init() we also set DTR and RTS. */
703 		ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE);
704 	} else
705 		mcr |= MCR_DTR | MCR_RTS;
706 
707 	error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
708 	if (error)
709 		return (error);
710 
711 	/*
712 	 * Set loopback mode. This avoids having garbage on the wire and
713 	 * also allows us send and receive data. We set DTR and RTS to
714 	 * avoid the possibility that automatic flow-control prevents
715 	 * any data from being sent.
716 	 */
717 	uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS);
718 	uart_barrier(bas);
719 
720 	/*
721 	 * Enable FIFOs. And check that the UART has them. If not, we're
722 	 * done. Since this is the first time we enable the FIFOs, we reset
723 	 * them.
724 	 */
725 	uart_setreg(bas, REG_FCR, FCR_ENABLE);
726 	uart_barrier(bas);
727 	if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) {
728 		/*
729 		 * NS16450 or INS8250. We don't bother to differentiate
730 		 * between them. They're too old to be interesting.
731 		 */
732 		uart_setreg(bas, REG_MCR, mcr);
733 		uart_barrier(bas);
734 		sc->sc_rxfifosz = sc->sc_txfifosz = 1;
735 		device_set_desc(sc->sc_dev, "8250 or 16450 or compatible");
736 		return (0);
737 	}
738 
739 	uart_setreg(bas, REG_FCR, FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST);
740 	uart_barrier(bas);
741 
742 	count = 0;
743 	delay = ns8250_delay(bas);
744 
745 	/* We have FIFOs. Drain the transmitter and receiver. */
746 	error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER);
747 	if (error) {
748 		uart_setreg(bas, REG_MCR, mcr);
749 		uart_setreg(bas, REG_FCR, 0);
750 		uart_barrier(bas);
751 		goto describe;
752 	}
753 
754 	/*
755 	 * We should have a sufficiently clean "pipe" to determine the
756 	 * size of the FIFOs. We send as much characters as is reasonable
757 	 * and wait for the overflow bit in the LSR register to be
758 	 * asserted, counting the characters as we send them. Based on
759 	 * that count we know the FIFO size.
760 	 */
761 	do {
762 		uart_setreg(bas, REG_DATA, 0);
763 		uart_barrier(bas);
764 		count++;
765 
766 		limit = 30;
767 		lsr = 0;
768 		/*
769 		 * LSR bits are cleared upon read, so we must accumulate
770 		 * them to be able to test LSR_OE below.
771 		 */
772 		while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 &&
773 		    --limit)
774 			DELAY(delay);
775 		if (limit == 0) {
776 			ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
777 			uart_setreg(bas, REG_IER, ier);
778 			uart_setreg(bas, REG_MCR, mcr);
779 			uart_setreg(bas, REG_FCR, 0);
780 			uart_barrier(bas);
781 			count = 0;
782 			goto describe;
783 		}
784 	} while ((lsr & LSR_OE) == 0 && count < 130);
785 	count--;
786 
787 	uart_setreg(bas, REG_MCR, mcr);
788 
789 	/* Reset FIFOs. */
790 	ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
791 
792  describe:
793 	if (count >= 14 && count <= 16) {
794 		sc->sc_rxfifosz = 16;
795 		device_set_desc(sc->sc_dev, "16550 or compatible");
796 	} else if (count >= 28 && count <= 32) {
797 		sc->sc_rxfifosz = 32;
798 		device_set_desc(sc->sc_dev, "16650 or compatible");
799 	} else if (count >= 56 && count <= 64) {
800 		sc->sc_rxfifosz = 64;
801 		device_set_desc(sc->sc_dev, "16750 or compatible");
802 	} else if (count >= 112 && count <= 128) {
803 		sc->sc_rxfifosz = 128;
804 		device_set_desc(sc->sc_dev, "16950 or compatible");
805 	} else {
806 		sc->sc_rxfifosz = 16;
807 		device_set_desc(sc->sc_dev,
808 		    "Non-standard ns8250 class UART with FIFOs");
809 	}
810 
811 	/*
812 	 * Force the Tx FIFO size to 16 bytes for now. We don't program the
813 	 * Tx trigger. Also, we assume that all data has been sent when the
814 	 * interrupt happens.
815 	 */
816 	sc->sc_txfifosz = 16;
817 
818 #if 0
819 	/*
820 	 * XXX there are some issues related to hardware flow control and
821 	 * it's likely that uart(4) is the cause. This basicly needs more
822 	 * investigation, but we avoid using for hardware flow control
823 	 * until then.
824 	 */
825 	/* 16650s or higher have automatic flow control. */
826 	if (sc->sc_rxfifosz > 16) {
827 		sc->sc_hwiflow = 1;
828 		sc->sc_hwoflow = 1;
829 	}
830 #endif
831 
832 	return (0);
833 }
834 
835 int
836 ns8250_bus_receive(struct uart_softc *sc)
837 {
838 	struct uart_bas *bas;
839 	int xc;
840 	uint8_t lsr;
841 
842 	bas = &sc->sc_bas;
843 	uart_lock(sc->sc_hwmtx);
844 	lsr = uart_getreg(bas, REG_LSR);
845 	while (lsr & LSR_RXRDY) {
846 		if (uart_rx_full(sc)) {
847 			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
848 			break;
849 		}
850 		xc = uart_getreg(bas, REG_DATA);
851 		if (lsr & LSR_FE)
852 			xc |= UART_STAT_FRAMERR;
853 		if (lsr & LSR_PE)
854 			xc |= UART_STAT_PARERR;
855 		uart_rx_put(sc, xc);
856 		lsr = uart_getreg(bas, REG_LSR);
857 	}
858 	/* Discard everything left in the Rx FIFO. */
859 	while (lsr & LSR_RXRDY) {
860 		(void)uart_getreg(bas, REG_DATA);
861 		uart_barrier(bas);
862 		lsr = uart_getreg(bas, REG_LSR);
863 	}
864 	uart_unlock(sc->sc_hwmtx);
865  	return (0);
866 }
867 
868 int
869 ns8250_bus_setsig(struct uart_softc *sc, int sig)
870 {
871 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
872 	struct uart_bas *bas;
873 	uint32_t new, old;
874 
875 	bas = &sc->sc_bas;
876 	do {
877 		old = sc->sc_hwsig;
878 		new = old;
879 		if (sig & SER_DDTR) {
880 			SIGCHG(sig & SER_DTR, new, SER_DTR,
881 			    SER_DDTR);
882 		}
883 		if (sig & SER_DRTS) {
884 			SIGCHG(sig & SER_RTS, new, SER_RTS,
885 			    SER_DRTS);
886 		}
887 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
888 	uart_lock(sc->sc_hwmtx);
889 	ns8250->mcr &= ~(MCR_DTR|MCR_RTS);
890 	if (new & SER_DTR)
891 		ns8250->mcr |= MCR_DTR;
892 	if (new & SER_RTS)
893 		ns8250->mcr |= MCR_RTS;
894 	uart_setreg(bas, REG_MCR, ns8250->mcr);
895 	uart_barrier(bas);
896 	uart_unlock(sc->sc_hwmtx);
897 	return (0);
898 }
899 
900 int
901 ns8250_bus_transmit(struct uart_softc *sc)
902 {
903 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
904 	struct uart_bas *bas;
905 	int i;
906 
907 	bas = &sc->sc_bas;
908 	uart_lock(sc->sc_hwmtx);
909 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0)
910 		;
911 	uart_setreg(bas, REG_IER, ns8250->ier | IER_ETXRDY);
912 	uart_barrier(bas);
913 	for (i = 0; i < sc->sc_txdatasz; i++) {
914 		uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]);
915 		uart_barrier(bas);
916 	}
917 	if (broken_txfifo)
918 		ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
919 	else
920 		sc->sc_txbusy = 1;
921 	uart_unlock(sc->sc_hwmtx);
922 	if (broken_txfifo)
923 		uart_sched_softih(sc, SER_INT_TXIDLE);
924 	return (0);
925 }
926 
927 void
928 ns8250_bus_grab(struct uart_softc *sc)
929 {
930 	struct uart_bas *bas = &sc->sc_bas;
931 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
932 	u_char ier;
933 
934 	/*
935 	 * turn off all interrupts to enter polling mode. Leave the
936 	 * saved mask alone. We'll restore whatever it was in ungrab.
937 	 * All pending interupt signals are reset when IER is set to 0.
938 	 */
939 	uart_lock(sc->sc_hwmtx);
940 	ier = uart_getreg(bas, REG_IER);
941 	uart_setreg(bas, REG_IER, ier & ns8250->ier_mask);
942 	uart_barrier(bas);
943 	uart_unlock(sc->sc_hwmtx);
944 }
945 
946 void
947 ns8250_bus_ungrab(struct uart_softc *sc)
948 {
949 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
950 	struct uart_bas *bas = &sc->sc_bas;
951 
952 	/*
953 	 * Restore previous interrupt mask
954 	 */
955 	uart_lock(sc->sc_hwmtx);
956 	uart_setreg(bas, REG_IER, ns8250->ier);
957 	uart_barrier(bas);
958 	uart_unlock(sc->sc_hwmtx);
959 }
960