xref: /freebsd/sys/dev/uart/uart_dev_ns8250.c (revision 06c3fb2749bda94cb5201f81ffdb8fa6c3161b2e)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2003 Marcel Moolenaar
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include "opt_acpi.h"
30 #include "opt_platform.h"
31 #include "opt_uart.h"
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/conf.h>
37 #include <sys/kernel.h>
38 #include <sys/sysctl.h>
39 #include <machine/bus.h>
40 
41 #ifdef FDT
42 #include <dev/fdt/fdt_common.h>
43 #include <dev/ofw/ofw_bus.h>
44 #include <dev/ofw/ofw_bus_subr.h>
45 #endif
46 
47 #include <dev/uart/uart.h>
48 #include <dev/uart/uart_cpu.h>
49 #ifdef FDT
50 #include <dev/uart/uart_cpu_fdt.h>
51 #endif
52 #include <dev/uart/uart_bus.h>
53 #include <dev/uart/uart_dev_ns8250.h>
54 #include <dev/uart/uart_ppstypes.h>
55 #ifdef DEV_ACPI
56 #include <dev/uart/uart_cpu_acpi.h>
57 #include <contrib/dev/acpica/include/acpi.h>
58 #endif
59 
60 #include <dev/ic/ns16550.h>
61 
62 #include "uart_if.h"
63 
64 #define	DEFAULT_RCLK	1843200
65 
66 /*
67  * Set the default baudrate tolerance to 3.0%.
68  *
69  * Some embedded boards have odd reference clocks (eg 25MHz)
70  * and we need to handle higher variances in the target baud rate.
71  */
72 #ifndef	UART_DEV_TOLERANCE_PCT
73 #define	UART_DEV_TOLERANCE_PCT	30
74 #endif	/* UART_DEV_TOLERANCE_PCT */
75 
76 static int broken_txfifo = 0;
77 SYSCTL_INT(_hw, OID_AUTO, broken_txfifo, CTLFLAG_RWTUN,
78 	&broken_txfifo, 0, "UART FIFO has QEMU emulation bug");
79 
80 /*
81  * To use early printf on x86, add the following to your kernel config:
82  *
83  * options UART_NS8250_EARLY_PORT=0x3f8
84  * options EARLY_PRINTF
85 */
86 #if defined(EARLY_PRINTF) && (defined(__amd64__) || defined(__i386__))
87 static void
88 uart_ns8250_early_putc(int c)
89 {
90 	u_int stat = UART_NS8250_EARLY_PORT + REG_LSR;
91 	u_int tx = UART_NS8250_EARLY_PORT + REG_DATA;
92 	int limit = 10000; /* 10ms is plenty of time */
93 
94 	while ((inb(stat) & LSR_THRE) == 0 && --limit > 0)
95 		continue;
96 	outb(tx, c);
97 }
98 early_putc_t *early_putc = uart_ns8250_early_putc;
99 #endif /* EARLY_PRINTF */
100 
101 /*
102  * Clear pending interrupts. THRE is cleared by reading IIR. Data
103  * that may have been received gets lost here.
104  */
105 static void
106 ns8250_clrint(struct uart_bas *bas)
107 {
108 	uint8_t iir, lsr;
109 
110 	iir = uart_getreg(bas, REG_IIR);
111 	while ((iir & IIR_NOPEND) == 0) {
112 		iir &= IIR_IMASK;
113 		if (iir == IIR_RLS) {
114 			lsr = uart_getreg(bas, REG_LSR);
115 			if (lsr & (LSR_BI|LSR_FE|LSR_PE))
116 				(void)uart_getreg(bas, REG_DATA);
117 		} else if (iir == IIR_RXRDY || iir == IIR_RXTOUT)
118 			(void)uart_getreg(bas, REG_DATA);
119 		else if (iir == IIR_MLSC)
120 			(void)uart_getreg(bas, REG_MSR);
121 		uart_barrier(bas);
122 		iir = uart_getreg(bas, REG_IIR);
123 	}
124 }
125 
126 static int
127 ns8250_delay(struct uart_bas *bas)
128 {
129 	int divisor;
130 	u_char lcr;
131 
132 	lcr = uart_getreg(bas, REG_LCR);
133 	uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
134 	uart_barrier(bas);
135 	divisor = uart_getreg(bas, REG_DLL) | (uart_getreg(bas, REG_DLH) << 8);
136 	uart_barrier(bas);
137 	uart_setreg(bas, REG_LCR, lcr);
138 	uart_barrier(bas);
139 
140 	/* 1/10th the time to transmit 1 character (estimate). */
141 	if (divisor <= 134)
142 		return (16000000 * divisor / bas->rclk);
143 	return (16000 * divisor / (bas->rclk / 1000));
144 }
145 
146 static int
147 ns8250_divisor(int rclk, int baudrate)
148 {
149 	int actual_baud, divisor;
150 	int error;
151 
152 	if (baudrate == 0)
153 		return (0);
154 
155 	divisor = (rclk / (baudrate << 3) + 1) >> 1;
156 	if (divisor == 0 || divisor >= 65536)
157 		return (0);
158 	actual_baud = rclk / (divisor << 4);
159 
160 	/* 10 times error in percent: */
161 	error = ((actual_baud - baudrate) * 2000 / baudrate + 1) / 2;
162 
163 	/* enforce maximum error tolerance: */
164 	if (error < -UART_DEV_TOLERANCE_PCT || error > UART_DEV_TOLERANCE_PCT)
165 		return (0);
166 
167 	return (divisor);
168 }
169 
170 static int
171 ns8250_drain(struct uart_bas *bas, int what)
172 {
173 	int delay, limit;
174 
175 	delay = ns8250_delay(bas);
176 
177 	if (what & UART_DRAIN_TRANSMITTER) {
178 		/*
179 		 * Pick an arbitrary high limit to avoid getting stuck in
180 		 * an infinite loop when the hardware is broken. Make the
181 		 * limit high enough to handle large FIFOs.
182 		 */
183 		limit = 10*1024;
184 		while ((uart_getreg(bas, REG_LSR) & LSR_TEMT) == 0 && --limit)
185 			DELAY(delay);
186 		if (limit == 0) {
187 			/* printf("ns8250: transmitter appears stuck... "); */
188 			return (EIO);
189 		}
190 	}
191 
192 	if (what & UART_DRAIN_RECEIVER) {
193 		/*
194 		 * Pick an arbitrary high limit to avoid getting stuck in
195 		 * an infinite loop when the hardware is broken. Make the
196 		 * limit high enough to handle large FIFOs and integrated
197 		 * UARTs. The HP rx2600 for example has 3 UARTs on the
198 		 * management board that tend to get a lot of data send
199 		 * to it when the UART is first activated.  Assume that we
200 		 * have finished draining if LSR_RXRDY is not asserted both
201 		 * prior to and after a DELAY; but as long as LSR_RXRDY is
202 		 * asserted, read (and discard) characters as quickly as
203 		 * possible.
204 		 */
205 		limit=10*4096;
206 		while (limit && (uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit) {
207 			do {
208 				(void)uart_getreg(bas, REG_DATA);
209 				uart_barrier(bas);
210 			} while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) && --limit);
211 			uart_barrier(bas);
212 			DELAY(delay << 2);
213 		}
214 		if (limit == 0) {
215 			/* printf("ns8250: receiver appears broken... "); */
216 			return (EIO);
217 		}
218 	}
219 
220 	return (0);
221 }
222 
223 /*
224  * We can only flush UARTs with FIFOs. UARTs without FIFOs should be
225  * drained. WARNING: this function clobbers the FIFO setting!
226  */
227 static void
228 ns8250_flush(struct uart_bas *bas, int what)
229 {
230 	uint8_t fcr;
231 	uint8_t lsr;
232 	int drain = 0;
233 
234 	fcr = FCR_ENABLE;
235 	if (what & UART_FLUSH_TRANSMITTER)
236 		fcr |= FCR_XMT_RST;
237 	if (what & UART_FLUSH_RECEIVER)
238 		fcr |= FCR_RCV_RST;
239 	uart_setreg(bas, REG_FCR, fcr);
240 	uart_barrier(bas);
241 
242 	/*
243 	 * Detect and work around emulated UARTs which don't implement the
244 	 * FCR register; on these systems we need to drain the FIFO since
245 	 * the flush we request doesn't happen.  One such system is the
246 	 * Firecracker VMM, aka. the rust-vmm/vm-superio emulation code:
247 	 * https://github.com/rust-vmm/vm-superio/issues/83
248 	 */
249 	lsr = uart_getreg(bas, REG_LSR);
250 	if (((lsr & LSR_TEMT) == 0) && (what & UART_FLUSH_TRANSMITTER))
251 		drain |= UART_DRAIN_TRANSMITTER;
252 	if ((lsr & LSR_RXRDY) && (what & UART_FLUSH_RECEIVER))
253 		drain |= UART_DRAIN_RECEIVER;
254 	if (drain != 0) {
255 		printf("ns8250: UART FCR is broken\n");
256 		ns8250_drain(bas, drain);
257 	}
258 }
259 
260 static int
261 ns8250_param(struct uart_bas *bas, int baudrate, int databits, int stopbits,
262     int parity)
263 {
264 	int divisor;
265 	uint8_t lcr;
266 
267 	/* Don't change settings when running on Hyper-V */
268 	if (vm_guest == VM_GUEST_HV)
269 		return (0);
270 
271 	lcr = 0;
272 	if (databits >= 8)
273 		lcr |= LCR_8BITS;
274 	else if (databits == 7)
275 		lcr |= LCR_7BITS;
276 	else if (databits == 6)
277 		lcr |= LCR_6BITS;
278 	else
279 		lcr |= LCR_5BITS;
280 	if (stopbits > 1)
281 		lcr |= LCR_STOPB;
282 	lcr |= parity << 3;
283 
284 	/* Set baudrate. */
285 	if (baudrate > 0) {
286 		divisor = ns8250_divisor(bas->rclk, baudrate);
287 		if (divisor == 0)
288 			return (EINVAL);
289 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
290 		uart_barrier(bas);
291 		uart_setreg(bas, REG_DLL, divisor & 0xff);
292 		uart_setreg(bas, REG_DLH, (divisor >> 8) & 0xff);
293 		uart_barrier(bas);
294 	}
295 
296 	/* Set LCR and clear DLAB. */
297 	uart_setreg(bas, REG_LCR, lcr);
298 	uart_barrier(bas);
299 	return (0);
300 }
301 
302 /*
303  * Low-level UART interface.
304  */
305 static int ns8250_probe(struct uart_bas *bas);
306 static void ns8250_init(struct uart_bas *bas, int, int, int, int);
307 static void ns8250_term(struct uart_bas *bas);
308 static void ns8250_putc(struct uart_bas *bas, int);
309 static int ns8250_rxready(struct uart_bas *bas);
310 static int ns8250_getc(struct uart_bas *bas, struct mtx *);
311 
312 struct uart_ops uart_ns8250_ops = {
313 	.probe = ns8250_probe,
314 	.init = ns8250_init,
315 	.term = ns8250_term,
316 	.putc = ns8250_putc,
317 	.rxready = ns8250_rxready,
318 	.getc = ns8250_getc,
319 };
320 
321 static int
322 ns8250_probe(struct uart_bas *bas)
323 {
324 	u_char val;
325 
326 	/* Check known 0 bits that don't depend on DLAB. */
327 	val = uart_getreg(bas, REG_IIR);
328 	if (val & 0x30)
329 		return (ENXIO);
330 	/*
331 	 * Bit 6 of the MCR (= 0x40) appears to be 1 for the Sun1699
332 	 * chip, but otherwise doesn't seem to have a function. In
333 	 * other words, uart(4) works regardless. Ignore that bit so
334 	 * the probe succeeds.
335 	 */
336 	val = uart_getreg(bas, REG_MCR);
337 	if (val & 0xa0)
338 		return (ENXIO);
339 
340 	return (0);
341 }
342 
343 static void
344 ns8250_init(struct uart_bas *bas, int baudrate, int databits, int stopbits,
345     int parity)
346 {
347 	u_char ier;
348 
349 	if (bas->rclk == 0)
350 		bas->rclk = DEFAULT_RCLK;
351 	ns8250_param(bas, baudrate, databits, stopbits, parity);
352 
353 	/* Disable all interrupt sources. */
354 	/*
355 	 * We use 0xe0 instead of 0xf0 as the mask because the XScale PXA
356 	 * UARTs split the receive time-out interrupt bit out separately as
357 	 * 0x10.  This gets handled by ier_mask and ier_rxbits below.
358 	 */
359 	ier = uart_getreg(bas, REG_IER) & 0xe0;
360 	uart_setreg(bas, REG_IER, ier);
361 	uart_barrier(bas);
362 
363 	/* Disable the FIFO (if present). */
364 	uart_setreg(bas, REG_FCR, 0);
365 	uart_barrier(bas);
366 
367 	/* Set RTS & DTR. */
368 	uart_setreg(bas, REG_MCR, MCR_IE | MCR_RTS | MCR_DTR);
369 	uart_barrier(bas);
370 
371 	ns8250_clrint(bas);
372 }
373 
374 static void
375 ns8250_term(struct uart_bas *bas)
376 {
377 
378 	/* Clear RTS & DTR. */
379 	uart_setreg(bas, REG_MCR, MCR_IE);
380 	uart_barrier(bas);
381 }
382 
383 static void
384 ns8250_putc(struct uart_bas *bas, int c)
385 {
386 	int limit;
387 
388 	if (vm_guest != VM_GUEST_HV) {
389 		limit = 250000;
390 		while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0 && --limit)
391 			DELAY(4);
392 	}
393 	uart_setreg(bas, REG_DATA, c);
394 	uart_barrier(bas);
395 }
396 
397 static int
398 ns8250_rxready(struct uart_bas *bas)
399 {
400 
401 	return ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) != 0 ? 1 : 0);
402 }
403 
404 static int
405 ns8250_getc(struct uart_bas *bas, struct mtx *hwmtx)
406 {
407 	int c;
408 
409 	uart_lock(hwmtx);
410 
411 	while ((uart_getreg(bas, REG_LSR) & LSR_RXRDY) == 0) {
412 		uart_unlock(hwmtx);
413 		DELAY(4);
414 		uart_lock(hwmtx);
415 	}
416 
417 	c = uart_getreg(bas, REG_DATA);
418 
419 	uart_unlock(hwmtx);
420 
421 	return (c);
422 }
423 
424 static kobj_method_t ns8250_methods[] = {
425 	KOBJMETHOD(uart_attach,		ns8250_bus_attach),
426 	KOBJMETHOD(uart_detach,		ns8250_bus_detach),
427 	KOBJMETHOD(uart_flush,		ns8250_bus_flush),
428 	KOBJMETHOD(uart_getsig,		ns8250_bus_getsig),
429 	KOBJMETHOD(uart_ioctl,		ns8250_bus_ioctl),
430 	KOBJMETHOD(uart_ipend,		ns8250_bus_ipend),
431 	KOBJMETHOD(uart_param,		ns8250_bus_param),
432 	KOBJMETHOD(uart_probe,		ns8250_bus_probe),
433 	KOBJMETHOD(uart_receive,	ns8250_bus_receive),
434 	KOBJMETHOD(uart_setsig,		ns8250_bus_setsig),
435 	KOBJMETHOD(uart_transmit,	ns8250_bus_transmit),
436 	KOBJMETHOD(uart_grab,		ns8250_bus_grab),
437 	KOBJMETHOD(uart_ungrab,		ns8250_bus_ungrab),
438 	{ 0, 0 }
439 };
440 
441 struct uart_class uart_ns8250_class = {
442 	"ns8250",
443 	ns8250_methods,
444 	sizeof(struct ns8250_softc),
445 	.uc_ops = &uart_ns8250_ops,
446 	.uc_range = 8,
447 	.uc_rclk = DEFAULT_RCLK,
448 	.uc_rshift = 0
449 };
450 
451 /*
452  * XXX -- refactor out ACPI and FDT ifdefs
453  */
454 #ifdef DEV_ACPI
455 static struct acpi_uart_compat_data acpi_compat_data[] = {
456 	{"AMD0020",	&uart_ns8250_class, 0, 2, 0, 48000000, UART_F_BUSY_DETECT, "AMD / Synopsys Designware UART"},
457 	{"AMDI0020", &uart_ns8250_class, 0, 2, 0, 48000000, UART_F_BUSY_DETECT, "AMD / Synopsys Designware UART"},
458 	{"MRVL0001", &uart_ns8250_class, ACPI_DBG2_16550_SUBSET, 2, 0, 200000000, UART_F_BUSY_DETECT, "Marvell / Synopsys Designware UART"},
459 	{"SCX0006",  &uart_ns8250_class, 0, 2, 0, 62500000, UART_F_BUSY_DETECT, "SynQuacer / Synopsys Designware UART"},
460 	{"HISI0031", &uart_ns8250_class, 0, 2, 0, 200000000, UART_F_BUSY_DETECT, "HiSilicon / Synopsys Designware UART"},
461 	{"NXP0018", &uart_ns8250_class, 0, 0, 0, 350000000, UART_F_BUSY_DETECT, "NXP / Synopsys Designware UART"},
462 	{"PNP0500", &uart_ns8250_class, 0, 0, 0, 0, 0, "Standard PC COM port"},
463 	{"PNP0501", &uart_ns8250_class, 0, 0, 0, 0, 0, "16550A-compatible COM port"},
464 	{"PNP0502", &uart_ns8250_class, 0, 0, 0, 0, 0, "Multiport serial device (non-intelligent 16550)"},
465 	{"PNP0510", &uart_ns8250_class, 0, 0, 0, 0, 0, "Generic IRDA-compatible device"},
466 	{"PNP0511", &uart_ns8250_class, 0, 0, 0, 0, 0, "Generic IRDA-compatible device"},
467 	{"WACF004", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet PC Screen"},
468 	{"WACF00E", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet PC Screen 00e"},
469 	{"FUJ02E5", &uart_ns8250_class, 0, 0, 0, 0, 0, "Wacom Tablet at FuS Lifebook T"},
470 	{NULL, 			NULL, 0, 0 , 0, 0, 0, NULL},
471 };
472 UART_ACPI_CLASS_AND_DEVICE(acpi_compat_data);
473 #endif
474 
475 #ifdef FDT
476 static struct ofw_compat_data compat_data[] = {
477 	{"ns16550",		(uintptr_t)&uart_ns8250_class},
478 	{"ns16550a",		(uintptr_t)&uart_ns8250_class},
479 	{NULL,			(uintptr_t)NULL},
480 };
481 UART_FDT_CLASS_AND_DEVICE(compat_data);
482 #endif
483 
484 /* Use token-pasting to form SER_ and MSR_ named constants. */
485 #define	SER(sig)	SER_##sig
486 #define	SERD(sig)	SER_D##sig
487 #define	MSR(sig)	MSR_##sig
488 #define	MSRD(sig)	MSR_D##sig
489 
490 /*
491  * Detect signal changes using software delta detection.  The previous state of
492  * the signals is in 'var' the new hardware state is in 'msr', and 'sig' is the
493  * short name (DCD, CTS, etc) of the signal bit being processed; 'var' gets the
494  * new state of both the signal and the delta bits.
495  */
496 #define SIGCHGSW(var, msr, sig)					\
497 	if ((msr) & MSR(sig)) {					\
498 		if ((var & SER(sig)) == 0)			\
499 			var |= SERD(sig) | SER(sig);		\
500 	} else {						\
501 		if ((var & SER(sig)) != 0)			\
502 			var = SERD(sig) | (var & ~SER(sig));	\
503 	}
504 
505 /*
506  * Detect signal changes using the hardware msr delta bits.  This is currently
507  * used only when PPS timing information is being captured using the "narrow
508  * pulse" option.  With a narrow PPS pulse the signal may not still be asserted
509  * by time the interrupt handler is invoked.  The hardware will latch the fact
510  * that it changed in the delta bits.
511  */
512 #define SIGCHGHW(var, msr, sig)					\
513 	if ((msr) & MSRD(sig)) {				\
514 		if (((msr) & MSR(sig)) != 0)			\
515 			var |= SERD(sig) | SER(sig);		\
516 		else						\
517 			var = SERD(sig) | (var & ~SER(sig));	\
518 	}
519 
520 int
521 ns8250_bus_attach(struct uart_softc *sc)
522 {
523 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
524 	struct uart_bas *bas;
525 	unsigned int ivar;
526 #ifdef FDT
527 	phandle_t node;
528 	pcell_t cell;
529 #endif
530 
531 #ifdef FDT
532 	/* Check whether uart has a broken txfifo. */
533 	node = ofw_bus_get_node(sc->sc_dev);
534 	if ((OF_getencprop(node, "broken-txfifo", &cell, sizeof(cell))) > 0)
535 		broken_txfifo =  cell ? 1 : 0;
536 #endif
537 
538 	bas = &sc->sc_bas;
539 
540 	ns8250->busy_detect = bas->busy_detect;
541 	ns8250->mcr = uart_getreg(bas, REG_MCR);
542 	ns8250->fcr = FCR_ENABLE;
543 	if (!resource_int_value("uart", device_get_unit(sc->sc_dev), "flags",
544 	    &ivar)) {
545 		if (UART_FLAGS_FCR_RX_LOW(ivar))
546 			ns8250->fcr |= FCR_RX_LOW;
547 		else if (UART_FLAGS_FCR_RX_MEDL(ivar))
548 			ns8250->fcr |= FCR_RX_MEDL;
549 		else if (UART_FLAGS_FCR_RX_HIGH(ivar))
550 			ns8250->fcr |= FCR_RX_HIGH;
551 		else
552 			ns8250->fcr |= FCR_RX_MEDH;
553 	} else
554 		ns8250->fcr |= FCR_RX_MEDH;
555 
556 	/* Get IER mask */
557 	ivar = 0xf0;
558 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_mask",
559 	    &ivar);
560 	ns8250->ier_mask = (uint8_t)(ivar & 0xff);
561 
562 	/* Get IER RX interrupt bits */
563 	ivar = IER_EMSC | IER_ERLS | IER_ERXRDY;
564 	resource_int_value("uart", device_get_unit(sc->sc_dev), "ier_rxbits",
565 	    &ivar);
566 	ns8250->ier_rxbits = (uint8_t)(ivar & 0xff);
567 
568 	uart_setreg(bas, REG_FCR, ns8250->fcr);
569 	uart_barrier(bas);
570 	ns8250_bus_flush(sc, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
571 
572 	if (ns8250->mcr & MCR_DTR)
573 		sc->sc_hwsig |= SER_DTR;
574 	if (ns8250->mcr & MCR_RTS)
575 		sc->sc_hwsig |= SER_RTS;
576 	ns8250_bus_getsig(sc);
577 
578 	ns8250_clrint(bas);
579 	ns8250->ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
580 	ns8250->ier |= ns8250->ier_rxbits;
581 	uart_setreg(bas, REG_IER, ns8250->ier);
582 	uart_barrier(bas);
583 
584 	/*
585 	 * Timing of the H/W access was changed with r253161 of uart_core.c
586 	 * It has been observed that an ITE IT8513E would signal a break
587 	 * condition with pretty much every character it received, unless
588 	 * it had enough time to settle between ns8250_bus_attach() and
589 	 * ns8250_bus_ipend() -- which it accidentally had before r253161.
590 	 * It's not understood why the UART chip behaves this way and it
591 	 * could very well be that the DELAY make the H/W work in the same
592 	 * accidental manner as before. More analysis is warranted, but
593 	 * at least now we fixed a known regression.
594 	 */
595 	DELAY(200);
596 	return (0);
597 }
598 
599 int
600 ns8250_bus_detach(struct uart_softc *sc)
601 {
602 	struct ns8250_softc *ns8250;
603 	struct uart_bas *bas;
604 	u_char ier;
605 
606 	ns8250 = (struct ns8250_softc *)sc;
607 	bas = &sc->sc_bas;
608 	ier = uart_getreg(bas, REG_IER) & ns8250->ier_mask;
609 	uart_setreg(bas, REG_IER, ier);
610 	uart_barrier(bas);
611 	ns8250_clrint(bas);
612 	return (0);
613 }
614 
615 int
616 ns8250_bus_flush(struct uart_softc *sc, int what)
617 {
618 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
619 	struct uart_bas *bas;
620 	int error;
621 
622 	bas = &sc->sc_bas;
623 	uart_lock(sc->sc_hwmtx);
624 	if (sc->sc_rxfifosz > 1) {
625 		ns8250_flush(bas, what);
626 		uart_setreg(bas, REG_FCR, ns8250->fcr);
627 		uart_barrier(bas);
628 		error = 0;
629 	} else
630 		error = ns8250_drain(bas, what);
631 	uart_unlock(sc->sc_hwmtx);
632 	return (error);
633 }
634 
635 int
636 ns8250_bus_getsig(struct uart_softc *sc)
637 {
638 	uint32_t old, sig;
639 	uint8_t msr;
640 
641 	/*
642 	 * The delta bits are reputed to be broken on some hardware, so use
643 	 * software delta detection by default.  Use the hardware delta bits
644 	 * when capturing PPS pulses which are too narrow for software detection
645 	 * to see the edges.  Hardware delta for RI doesn't work like the
646 	 * others, so always use software for it.  Other threads may be changing
647 	 * other (non-MSR) bits in sc_hwsig, so loop until it can successfully
648 	 * update without other changes happening.  Note that the SIGCHGxx()
649 	 * macros carefully preserve the delta bits when we have to loop several
650 	 * times and a signal transitions between iterations.
651 	 */
652 	do {
653 		old = sc->sc_hwsig;
654 		sig = old;
655 		uart_lock(sc->sc_hwmtx);
656 		msr = uart_getreg(&sc->sc_bas, REG_MSR);
657 		uart_unlock(sc->sc_hwmtx);
658 		if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE) {
659 			SIGCHGHW(sig, msr, DSR);
660 			SIGCHGHW(sig, msr, CTS);
661 			SIGCHGHW(sig, msr, DCD);
662 		} else {
663 			SIGCHGSW(sig, msr, DSR);
664 			SIGCHGSW(sig, msr, CTS);
665 			SIGCHGSW(sig, msr, DCD);
666 		}
667 		SIGCHGSW(sig, msr, RI);
668 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, sig & ~SER_MASK_DELTA));
669 	return (sig);
670 }
671 
672 int
673 ns8250_bus_ioctl(struct uart_softc *sc, int request, intptr_t data)
674 {
675 	struct uart_bas *bas;
676 	int baudrate, divisor, error;
677 	uint8_t efr, lcr;
678 
679 	bas = &sc->sc_bas;
680 	error = 0;
681 	uart_lock(sc->sc_hwmtx);
682 	switch (request) {
683 	case UART_IOCTL_BREAK:
684 		lcr = uart_getreg(bas, REG_LCR);
685 		if (data)
686 			lcr |= LCR_SBREAK;
687 		else
688 			lcr &= ~LCR_SBREAK;
689 		uart_setreg(bas, REG_LCR, lcr);
690 		uart_barrier(bas);
691 		break;
692 	case UART_IOCTL_IFLOW:
693 		lcr = uart_getreg(bas, REG_LCR);
694 		uart_barrier(bas);
695 		uart_setreg(bas, REG_LCR, 0xbf);
696 		uart_barrier(bas);
697 		efr = uart_getreg(bas, REG_EFR);
698 		if (data)
699 			efr |= EFR_RTS;
700 		else
701 			efr &= ~EFR_RTS;
702 		uart_setreg(bas, REG_EFR, efr);
703 		uart_barrier(bas);
704 		uart_setreg(bas, REG_LCR, lcr);
705 		uart_barrier(bas);
706 		break;
707 	case UART_IOCTL_OFLOW:
708 		lcr = uart_getreg(bas, REG_LCR);
709 		uart_barrier(bas);
710 		uart_setreg(bas, REG_LCR, 0xbf);
711 		uart_barrier(bas);
712 		efr = uart_getreg(bas, REG_EFR);
713 		if (data)
714 			efr |= EFR_CTS;
715 		else
716 			efr &= ~EFR_CTS;
717 		uart_setreg(bas, REG_EFR, efr);
718 		uart_barrier(bas);
719 		uart_setreg(bas, REG_LCR, lcr);
720 		uart_barrier(bas);
721 		break;
722 	case UART_IOCTL_BAUD:
723 		lcr = uart_getreg(bas, REG_LCR);
724 		uart_setreg(bas, REG_LCR, lcr | LCR_DLAB);
725 		uart_barrier(bas);
726 		divisor = uart_getreg(bas, REG_DLL) |
727 		    (uart_getreg(bas, REG_DLH) << 8);
728 		uart_barrier(bas);
729 		uart_setreg(bas, REG_LCR, lcr);
730 		uart_barrier(bas);
731 		baudrate = (divisor > 0) ? bas->rclk / divisor / 16 : 0;
732 		if (baudrate > 0)
733 			*(int*)data = baudrate;
734 		else
735 			error = ENXIO;
736 		break;
737 	default:
738 		error = EINVAL;
739 		break;
740 	}
741 	uart_unlock(sc->sc_hwmtx);
742 	return (error);
743 }
744 
745 int
746 ns8250_bus_ipend(struct uart_softc *sc)
747 {
748 	struct uart_bas *bas;
749 	struct ns8250_softc *ns8250;
750 	int ipend;
751 	uint8_t iir, lsr;
752 
753 	ns8250 = (struct ns8250_softc *)sc;
754 	bas = &sc->sc_bas;
755 	uart_lock(sc->sc_hwmtx);
756 	iir = uart_getreg(bas, REG_IIR);
757 
758 	if (ns8250->busy_detect && (iir & IIR_BUSY) == IIR_BUSY) {
759 		(void)uart_getreg(bas, DW_REG_USR);
760 		uart_unlock(sc->sc_hwmtx);
761 		return (0);
762 	}
763 	if (iir & IIR_NOPEND) {
764 		uart_unlock(sc->sc_hwmtx);
765 		return (0);
766 	}
767 	ipend = 0;
768 	if (iir & IIR_RXRDY) {
769 		lsr = uart_getreg(bas, REG_LSR);
770 		if (lsr & LSR_OE)
771 			ipend |= SER_INT_OVERRUN;
772 		if (lsr & LSR_BI)
773 			ipend |= SER_INT_BREAK;
774 		if (lsr & LSR_RXRDY)
775 			ipend |= SER_INT_RXREADY;
776 	} else {
777 		if (iir & IIR_TXRDY) {
778 			ipend |= SER_INT_TXIDLE;
779 			ns8250->ier &= ~IER_ETXRDY;
780 			uart_setreg(bas, REG_IER, ns8250->ier);
781 			uart_barrier(bas);
782 		} else
783 			ipend |= SER_INT_SIGCHG;
784 	}
785 	if (ipend == 0)
786 		ns8250_clrint(bas);
787 	uart_unlock(sc->sc_hwmtx);
788 	return (ipend);
789 }
790 
791 int
792 ns8250_bus_param(struct uart_softc *sc, int baudrate, int databits,
793     int stopbits, int parity)
794 {
795 	struct ns8250_softc *ns8250;
796 	struct uart_bas *bas;
797 	int error, limit;
798 
799 	ns8250 = (struct ns8250_softc*)sc;
800 	bas = &sc->sc_bas;
801 	uart_lock(sc->sc_hwmtx);
802 	/*
803 	 * When using DW UART with BUSY detection it is necessary to wait
804 	 * until all serial transfers are finished before manipulating the
805 	 * line control. LCR will not be affected when UART is busy.
806 	 */
807 	if (ns8250->busy_detect != 0) {
808 		/*
809 		 * Pick an arbitrary high limit to avoid getting stuck in
810 		 * an infinite loop in case when the hardware is broken.
811 		 */
812 		limit = 10 * 1024;
813 		while (((uart_getreg(bas, DW_REG_USR) & USR_BUSY) != 0) &&
814 		    --limit)
815 			DELAY(4);
816 
817 		if (limit <= 0) {
818 			/* UART appears to be stuck */
819 			uart_unlock(sc->sc_hwmtx);
820 			return (EIO);
821 		}
822 	}
823 
824 	error = ns8250_param(bas, baudrate, databits, stopbits, parity);
825 	uart_unlock(sc->sc_hwmtx);
826 	return (error);
827 }
828 
829 int
830 ns8250_bus_probe(struct uart_softc *sc)
831 {
832 	struct uart_bas *bas;
833 	int count, delay, error, limit;
834 	uint8_t lsr, mcr, ier;
835 
836 	bas = &sc->sc_bas;
837 
838 	error = ns8250_probe(bas);
839 	if (error)
840 		return (error);
841 
842 	mcr = MCR_IE;
843 	if (sc->sc_sysdev == NULL) {
844 		/* By using ns8250_init() we also set DTR and RTS. */
845 		ns8250_init(bas, 115200, 8, 1, UART_PARITY_NONE);
846 	} else
847 		mcr |= MCR_DTR | MCR_RTS;
848 
849 	error = ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
850 	if (error)
851 		return (error);
852 
853 	/*
854 	 * Set loopback mode. This avoids having garbage on the wire and
855 	 * also allows us send and receive data. We set DTR and RTS to
856 	 * avoid the possibility that automatic flow-control prevents
857 	 * any data from being sent.
858 	 */
859 	uart_setreg(bas, REG_MCR, MCR_LOOPBACK | MCR_IE | MCR_DTR | MCR_RTS);
860 	uart_barrier(bas);
861 
862 	/*
863 	 * Enable FIFOs. And check that the UART has them. If not, we're
864 	 * done. Since this is the first time we enable the FIFOs, we reset
865 	 * them.
866 	 */
867 	uart_setreg(bas, REG_FCR, FCR_ENABLE);
868 	uart_barrier(bas);
869 	if (!(uart_getreg(bas, REG_IIR) & IIR_FIFO_MASK)) {
870 		/*
871 		 * NS16450 or INS8250. We don't bother to differentiate
872 		 * between them. They're too old to be interesting.
873 		 */
874 		uart_setreg(bas, REG_MCR, mcr);
875 		uart_barrier(bas);
876 		sc->sc_rxfifosz = sc->sc_txfifosz = 1;
877 		device_set_desc(sc->sc_dev, "8250 or 16450 or compatible");
878 		return (0);
879 	}
880 
881 	uart_setreg(bas, REG_FCR, FCR_ENABLE | FCR_XMT_RST | FCR_RCV_RST);
882 	uart_barrier(bas);
883 
884 	count = 0;
885 	delay = ns8250_delay(bas);
886 
887 	/* We have FIFOs. Drain the transmitter and receiver. */
888 	error = ns8250_drain(bas, UART_DRAIN_RECEIVER|UART_DRAIN_TRANSMITTER);
889 	if (error) {
890 		uart_setreg(bas, REG_MCR, mcr);
891 		uart_setreg(bas, REG_FCR, 0);
892 		uart_barrier(bas);
893 		goto describe;
894 	}
895 
896 	/*
897 	 * We should have a sufficiently clean "pipe" to determine the
898 	 * size of the FIFOs. We send as much characters as is reasonable
899 	 * and wait for the overflow bit in the LSR register to be
900 	 * asserted, counting the characters as we send them. Based on
901 	 * that count we know the FIFO size.
902 	 */
903 	do {
904 		uart_setreg(bas, REG_DATA, 0);
905 		uart_barrier(bas);
906 		count++;
907 
908 		limit = 30;
909 		lsr = 0;
910 		/*
911 		 * LSR bits are cleared upon read, so we must accumulate
912 		 * them to be able to test LSR_OE below.
913 		 */
914 		while (((lsr |= uart_getreg(bas, REG_LSR)) & LSR_TEMT) == 0 &&
915 		    --limit)
916 			DELAY(delay);
917 		if (limit == 0) {
918 			/* See the comment in ns8250_init(). */
919 			ier = uart_getreg(bas, REG_IER) & 0xe0;
920 			uart_setreg(bas, REG_IER, ier);
921 			uart_setreg(bas, REG_MCR, mcr);
922 			uart_setreg(bas, REG_FCR, 0);
923 			uart_barrier(bas);
924 			count = 0;
925 			goto describe;
926 		}
927 	} while ((lsr & LSR_OE) == 0 && count < 260);
928 	count--;
929 
930 	uart_setreg(bas, REG_MCR, mcr);
931 
932 	/* Reset FIFOs. */
933 	ns8250_flush(bas, UART_FLUSH_RECEIVER|UART_FLUSH_TRANSMITTER);
934 
935  describe:
936 	if (count >= 14 && count <= 16) {
937 		sc->sc_rxfifosz = 16;
938 		device_set_desc(sc->sc_dev, "16550 or compatible");
939 	} else if (count >= 28 && count <= 32) {
940 		sc->sc_rxfifosz = 32;
941 		device_set_desc(sc->sc_dev, "16650 or compatible");
942 	} else if (count >= 56 && count <= 64) {
943 		sc->sc_rxfifosz = 64;
944 		device_set_desc(sc->sc_dev, "16750 or compatible");
945 	} else if (count >= 112 && count <= 128) {
946 		sc->sc_rxfifosz = 128;
947 		device_set_desc(sc->sc_dev, "16950 or compatible");
948 	} else if (count >= 224 && count <= 256) {
949 		sc->sc_rxfifosz = 256;
950 		device_set_desc(sc->sc_dev, "16x50 with 256 byte FIFO");
951 	} else {
952 		sc->sc_rxfifosz = 16;
953 		device_set_desc(sc->sc_dev,
954 		    "Non-standard ns8250 class UART with FIFOs");
955 	}
956 
957 	/*
958 	 * Force the Tx FIFO size to 16 bytes for now. We don't program the
959 	 * Tx trigger. Also, we assume that all data has been sent when the
960 	 * interrupt happens.
961 	 */
962 	sc->sc_txfifosz = 16;
963 
964 #if 0
965 	/*
966 	 * XXX there are some issues related to hardware flow control and
967 	 * it's likely that uart(4) is the cause. This basically needs more
968 	 * investigation, but we avoid using for hardware flow control
969 	 * until then.
970 	 */
971 	/* 16650s or higher have automatic flow control. */
972 	if (sc->sc_rxfifosz > 16) {
973 		sc->sc_hwiflow = 1;
974 		sc->sc_hwoflow = 1;
975 	}
976 #endif
977 
978 	return (0);
979 }
980 
981 int
982 ns8250_bus_receive(struct uart_softc *sc)
983 {
984 	struct uart_bas *bas;
985 	int xc;
986 	uint8_t lsr;
987 
988 	bas = &sc->sc_bas;
989 	uart_lock(sc->sc_hwmtx);
990 	lsr = uart_getreg(bas, REG_LSR);
991 	while (lsr & LSR_RXRDY) {
992 		if (uart_rx_full(sc)) {
993 			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
994 			break;
995 		}
996 		xc = uart_getreg(bas, REG_DATA);
997 		if (lsr & LSR_FE)
998 			xc |= UART_STAT_FRAMERR;
999 		if (lsr & LSR_PE)
1000 			xc |= UART_STAT_PARERR;
1001 		uart_rx_put(sc, xc);
1002 		lsr = uart_getreg(bas, REG_LSR);
1003 	}
1004 	/* Discard everything left in the Rx FIFO. */
1005 	while (lsr & LSR_RXRDY) {
1006 		(void)uart_getreg(bas, REG_DATA);
1007 		uart_barrier(bas);
1008 		lsr = uart_getreg(bas, REG_LSR);
1009 	}
1010 	uart_unlock(sc->sc_hwmtx);
1011  	return (0);
1012 }
1013 
1014 int
1015 ns8250_bus_setsig(struct uart_softc *sc, int sig)
1016 {
1017 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1018 	struct uart_bas *bas;
1019 	uint32_t new, old;
1020 
1021 	bas = &sc->sc_bas;
1022 	do {
1023 		old = sc->sc_hwsig;
1024 		new = old;
1025 		if (sig & SER_DDTR) {
1026 			new = (new & ~SER_DTR) | (sig & (SER_DTR | SER_DDTR));
1027 		}
1028 		if (sig & SER_DRTS) {
1029 			new = (new & ~SER_RTS) | (sig & (SER_RTS | SER_DRTS));
1030 		}
1031 	} while (!atomic_cmpset_32(&sc->sc_hwsig, old, new));
1032 	uart_lock(sc->sc_hwmtx);
1033 	ns8250->mcr &= ~(MCR_DTR|MCR_RTS);
1034 	if (new & SER_DTR)
1035 		ns8250->mcr |= MCR_DTR;
1036 	if (new & SER_RTS)
1037 		ns8250->mcr |= MCR_RTS;
1038 	uart_setreg(bas, REG_MCR, ns8250->mcr);
1039 	uart_barrier(bas);
1040 	uart_unlock(sc->sc_hwmtx);
1041 	return (0);
1042 }
1043 
1044 int
1045 ns8250_bus_transmit(struct uart_softc *sc)
1046 {
1047 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1048 	struct uart_bas *bas;
1049 	int i;
1050 
1051 	bas = &sc->sc_bas;
1052 	uart_lock(sc->sc_hwmtx);
1053 	while ((uart_getreg(bas, REG_LSR) & LSR_THRE) == 0)
1054 		DELAY(4);
1055 	for (i = 0; i < sc->sc_txdatasz; i++) {
1056 		uart_setreg(bas, REG_DATA, sc->sc_txbuf[i]);
1057 		uart_barrier(bas);
1058 	}
1059 	if (!broken_txfifo)
1060 		ns8250->ier |= IER_ETXRDY;
1061 	uart_setreg(bas, REG_IER, ns8250->ier);
1062 	uart_barrier(bas);
1063 	if (broken_txfifo)
1064 		ns8250_drain(bas, UART_DRAIN_TRANSMITTER);
1065 	else
1066 		sc->sc_txbusy = 1;
1067 	uart_unlock(sc->sc_hwmtx);
1068 	if (broken_txfifo)
1069 		uart_sched_softih(sc, SER_INT_TXIDLE);
1070 	return (0);
1071 }
1072 
1073 void
1074 ns8250_bus_grab(struct uart_softc *sc)
1075 {
1076 	struct uart_bas *bas = &sc->sc_bas;
1077 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1078 	u_char ier;
1079 
1080 	/*
1081 	 * turn off all interrupts to enter polling mode. Leave the
1082 	 * saved mask alone. We'll restore whatever it was in ungrab.
1083 	 * All pending interrupt signals are reset when IER is set to 0.
1084 	 */
1085 	uart_lock(sc->sc_hwmtx);
1086 	ier = uart_getreg(bas, REG_IER);
1087 	uart_setreg(bas, REG_IER, ier & ns8250->ier_mask);
1088 	uart_barrier(bas);
1089 	uart_unlock(sc->sc_hwmtx);
1090 }
1091 
1092 void
1093 ns8250_bus_ungrab(struct uart_softc *sc)
1094 {
1095 	struct ns8250_softc *ns8250 = (struct ns8250_softc*)sc;
1096 	struct uart_bas *bas = &sc->sc_bas;
1097 
1098 	/*
1099 	 * Restore previous interrupt mask
1100 	 */
1101 	uart_lock(sc->sc_hwmtx);
1102 	uart_setreg(bas, REG_IER, ns8250->ier);
1103 	uart_barrier(bas);
1104 	uart_unlock(sc->sc_hwmtx);
1105 }
1106