xref: /freebsd/sys/dev/uart/uart_core.c (revision cbd1e83154af8bae3daa3919bb2746d587436515)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2003 Marcel Moolenaar
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/conf.h>
36 #include <sys/cons.h>
37 #include <sys/fcntl.h>
38 #include <sys/interrupt.h>
39 #include <sys/kdb.h>
40 #include <sys/kernel.h>
41 #include <sys/malloc.h>
42 #include <sys/queue.h>
43 #include <sys/reboot.h>
44 #include <sys/sysctl.h>
45 #include <machine/bus.h>
46 #include <sys/rman.h>
47 #include <machine/resource.h>
48 #include <machine/stdarg.h>
49 
50 #include <dev/uart/uart.h>
51 #include <dev/uart/uart_bus.h>
52 #include <dev/uart/uart_cpu.h>
53 #include <dev/uart/uart_ppstypes.h>
54 
55 #include "uart_if.h"
56 
57 const char uart_driver_name[] = "uart";
58 
59 SLIST_HEAD(uart_devinfo_list, uart_devinfo) uart_sysdevs =
60     SLIST_HEAD_INITIALIZER(uart_sysdevs);
61 
62 static MALLOC_DEFINE(M_UART, "UART", "UART driver");
63 
64 #ifndef	UART_POLL_FREQ
65 #define	UART_POLL_FREQ		50
66 #endif
67 static int uart_poll_freq = UART_POLL_FREQ;
68 SYSCTL_INT(_debug, OID_AUTO, uart_poll_freq, CTLFLAG_RDTUN, &uart_poll_freq,
69     0, "UART poll frequency");
70 
71 static int uart_force_poll;
72 SYSCTL_INT(_debug, OID_AUTO, uart_force_poll, CTLFLAG_RDTUN, &uart_force_poll,
73     0, "Force UART polling");
74 
75 static inline int
76 uart_pps_mode_valid(int pps_mode)
77 {
78 	int opt;
79 
80 	switch(pps_mode & UART_PPS_SIGNAL_MASK) {
81 	case UART_PPS_DISABLED:
82 	case UART_PPS_CTS:
83 	case UART_PPS_DCD:
84 		break;
85 	default:
86 		return (false);
87 	}
88 
89 	opt = pps_mode & UART_PPS_OPTION_MASK;
90 	if ((opt & ~(UART_PPS_INVERT_PULSE | UART_PPS_NARROW_PULSE)) != 0)
91 		return (false);
92 
93 	return (true);
94 }
95 
96 static void
97 uart_pps_print_mode(struct uart_softc *sc)
98 {
99 
100 	device_printf(sc->sc_dev, "PPS capture mode: ");
101 	switch(sc->sc_pps_mode & UART_PPS_SIGNAL_MASK) {
102 	case UART_PPS_DISABLED:
103 		printf("disabled");
104 		break;
105 	case UART_PPS_CTS:
106 		printf("CTS");
107 		break;
108 	case UART_PPS_DCD:
109 		printf("DCD");
110 		break;
111 	default:
112 		printf("invalid");
113 		break;
114 	}
115 	if (sc->sc_pps_mode & UART_PPS_INVERT_PULSE)
116 		printf("-Inverted");
117 	if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE)
118 		printf("-NarrowPulse");
119 	printf("\n");
120 }
121 
122 static int
123 uart_pps_mode_sysctl(SYSCTL_HANDLER_ARGS)
124 {
125 	struct uart_softc *sc;
126 	int err, tmp;
127 
128 	sc = arg1;
129 	tmp = sc->sc_pps_mode;
130 	err = sysctl_handle_int(oidp, &tmp, 0, req);
131 	if (err != 0 || req->newptr == NULL)
132 		return (err);
133 	if (!uart_pps_mode_valid(tmp))
134 		return (EINVAL);
135 	sc->sc_pps_mode = tmp;
136 	return(0);
137 }
138 
139 static void
140 uart_pps_process(struct uart_softc *sc, int ser_sig)
141 {
142 	sbintime_t now;
143 	int is_assert, pps_sig;
144 
145 	/* Which signal is configured as PPS?  Early out if none. */
146 	switch(sc->sc_pps_mode & UART_PPS_SIGNAL_MASK) {
147 	case UART_PPS_CTS:
148 		pps_sig = SER_CTS;
149 		break;
150 	case UART_PPS_DCD:
151 		pps_sig = SER_DCD;
152 		break;
153 	default:
154 		return;
155 	}
156 
157 	/* Early out if there is no change in the signal configured as PPS. */
158 	if ((ser_sig & SER_DELTA(pps_sig)) == 0)
159 		return;
160 
161 	/*
162 	 * In narrow-pulse mode we need to synthesize both capture and clear
163 	 * events from a single "delta occurred" indication from the uart
164 	 * hardware because the pulse width is too narrow to reliably detect
165 	 * both edges.  However, when the pulse width is close to our interrupt
166 	 * processing latency we might intermittantly catch both edges.  To
167 	 * guard against generating spurious events when that happens, we use a
168 	 * separate timer to ensure at least half a second elapses before we
169 	 * generate another event.
170 	 */
171 	pps_capture(&sc->sc_pps);
172 	if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE) {
173 		now = getsbinuptime();
174 		if (now > sc->sc_pps_captime + 500 * SBT_1MS) {
175 			sc->sc_pps_captime = now;
176 			pps_event(&sc->sc_pps, PPS_CAPTUREASSERT);
177 			pps_event(&sc->sc_pps, PPS_CAPTURECLEAR);
178 		}
179 	} else  {
180 		is_assert = ser_sig & pps_sig;
181 		if (sc->sc_pps_mode & UART_PPS_INVERT_PULSE)
182 			is_assert = !is_assert;
183 		pps_event(&sc->sc_pps, is_assert ? PPS_CAPTUREASSERT :
184 		    PPS_CAPTURECLEAR);
185 	}
186 }
187 
188 static void
189 uart_pps_init(struct uart_softc *sc)
190 {
191 	struct sysctl_ctx_list *ctx;
192 	struct sysctl_oid *tree;
193 
194 	ctx = device_get_sysctl_ctx(sc->sc_dev);
195 	tree = device_get_sysctl_tree(sc->sc_dev);
196 
197 	/*
198 	 * The historical default for pps capture mode is either DCD or CTS,
199 	 * depending on the UART_PPS_ON_CTS kernel option.  Start with that,
200 	 * then try to fetch the tunable that overrides the mode for all uart
201 	 * devices, then try to fetch the sysctl-tunable that overrides the mode
202 	 * for one specific device.
203 	 */
204 #ifdef UART_PPS_ON_CTS
205 	sc->sc_pps_mode = UART_PPS_CTS;
206 #else
207 	sc->sc_pps_mode = UART_PPS_DCD;
208 #endif
209 	TUNABLE_INT_FETCH("hw.uart.pps_mode", &sc->sc_pps_mode);
210 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "pps_mode",
211 	    CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, sc, 0,
212 	    uart_pps_mode_sysctl, "I", "pulse mode: 0/1/2=disabled/CTS/DCD; "
213 	    "add 0x10 to invert, 0x20 for narrow pulse");
214 
215 	if (!uart_pps_mode_valid(sc->sc_pps_mode)) {
216 		device_printf(sc->sc_dev,
217 		    "Invalid pps_mode 0x%02x configured; disabling PPS capture\n",
218 		    sc->sc_pps_mode);
219 		sc->sc_pps_mode = UART_PPS_DISABLED;
220 	} else if (bootverbose) {
221 		uart_pps_print_mode(sc);
222 	}
223 
224 	sc->sc_pps.ppscap = PPS_CAPTUREBOTH;
225 	sc->sc_pps.driver_mtx = uart_tty_getlock(sc);
226 	sc->sc_pps.driver_abi = PPS_ABI_VERSION;
227 	pps_init_abi(&sc->sc_pps);
228 }
229 
230 void
231 uart_add_sysdev(struct uart_devinfo *di)
232 {
233 	SLIST_INSERT_HEAD(&uart_sysdevs, di, next);
234 }
235 
236 const char *
237 uart_getname(struct uart_class *uc)
238 {
239 	return ((uc != NULL) ? uc->name : NULL);
240 }
241 
242 struct uart_ops *
243 uart_getops(struct uart_class *uc)
244 {
245 	return ((uc != NULL) ? uc->uc_ops : NULL);
246 }
247 
248 int
249 uart_getrange(struct uart_class *uc)
250 {
251 	return ((uc != NULL) ? uc->uc_range : 0);
252 }
253 
254 u_int
255 uart_getregshift(struct uart_class *uc)
256 {
257 	return ((uc != NULL) ? uc->uc_rshift : 0);
258 }
259 
260 u_int
261 uart_getregiowidth(struct uart_class *uc)
262 {
263 	return ((uc != NULL) ? uc->uc_riowidth : 0);
264 }
265 
266 /*
267  * Schedule a soft interrupt. We do this on the 0 to !0 transition
268  * of the TTY pending interrupt status.
269  */
270 void
271 uart_sched_softih(struct uart_softc *sc, uint32_t ipend)
272 {
273 	uint32_t new, old;
274 
275 	do {
276 		old = sc->sc_ttypend;
277 		new = old | ipend;
278 	} while (!atomic_cmpset_32(&sc->sc_ttypend, old, new));
279 
280 	if ((old & SER_INT_MASK) == 0)
281 		swi_sched(sc->sc_softih, 0);
282 }
283 
284 /*
285  * A break condition has been detected. We treat the break condition as
286  * a special case that should not happen during normal operation. When
287  * the break condition is to be passed to higher levels in the form of
288  * a NUL character, we really want the break to be in the right place in
289  * the input stream. The overhead to achieve that is not in relation to
290  * the exceptional nature of the break condition, so we permit ourselves
291  * to be sloppy.
292  */
293 static __inline int
294 uart_intr_break(void *arg)
295 {
296 	struct uart_softc *sc = arg;
297 
298 #if defined(KDB)
299 	if (sc->sc_sysdev != NULL && sc->sc_sysdev->type == UART_DEV_CONSOLE) {
300 		if (kdb_break())
301 			return (0);
302 	}
303 #endif
304 	if (sc->sc_opened)
305 		uart_sched_softih(sc, SER_INT_BREAK);
306 	return (0);
307 }
308 
309 /*
310  * Handle a receiver overrun situation. We lost at least 1 byte in the
311  * input stream and it's our job to contain the situation. We grab as
312  * much of the data we can, but otherwise flush the receiver FIFO to
313  * create some breathing room. The net effect is that we avoid the
314  * overrun condition to happen for the next X characters, where X is
315  * related to the FIFO size at the cost of losing data right away.
316  * So, instead of having multiple overrun interrupts in close proximity
317  * to each other and possibly pessimizing UART interrupt latency for
318  * other UARTs in a multiport configuration, we create a longer segment
319  * of missing characters by freeing up the FIFO.
320  * Each overrun condition is marked in the input buffer by a token. The
321  * token represents the loss of at least one, but possible more bytes in
322  * the input stream.
323  */
324 static __inline int
325 uart_intr_overrun(void *arg)
326 {
327 	struct uart_softc *sc = arg;
328 
329 	if (sc->sc_opened) {
330 		UART_RECEIVE(sc);
331 		if (uart_rx_put(sc, UART_STAT_OVERRUN))
332 			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
333 		uart_sched_softih(sc, SER_INT_RXREADY);
334 	}
335 	sc->sc_rxoverruns++;
336 	UART_FLUSH(sc, UART_FLUSH_RECEIVER);
337 	return (0);
338 }
339 
340 /*
341  * Received data ready.
342  */
343 static __inline int
344 uart_intr_rxready(void *arg)
345 {
346 	struct uart_softc *sc = arg;
347 #if defined(KDB)
348 	int rxp;
349 
350 	rxp = sc->sc_rxput;
351 #endif
352 	UART_RECEIVE(sc);
353 #if defined(KDB)
354 	if (sc->sc_sysdev != NULL && sc->sc_sysdev->type == UART_DEV_CONSOLE) {
355 		while (rxp != sc->sc_rxput) {
356 			kdb_alt_break(sc->sc_rxbuf[rxp++], &sc->sc_altbrk);
357 			if (rxp == sc->sc_rxbufsz)
358 				rxp = 0;
359 		}
360 	}
361 #endif
362 	if (sc->sc_opened)
363 		uart_sched_softih(sc, SER_INT_RXREADY);
364 	else
365 		sc->sc_rxput = sc->sc_rxget;	/* Ignore received data. */
366 	return (1);
367 }
368 
369 /*
370  * Line or modem status change (OOB signalling).
371  * We pass the signals to the software interrupt handler for further
372  * processing. Note that we merge the delta bits, but set the state
373  * bits. This is to avoid losing state transitions due to having more
374  * than 1 hardware interrupt between software interrupts.
375  */
376 static __inline int
377 uart_intr_sigchg(void *arg)
378 {
379 	struct uart_softc *sc = arg;
380 	int new, old, sig;
381 
382 	sig = UART_GETSIG(sc);
383 
384 	/*
385 	 * Time pulse counting support, invoked whenever the PPS parameters are
386 	 * currently set to capture either edge of the signal.
387 	 */
388 	if (sc->sc_pps.ppsparam.mode & PPS_CAPTUREBOTH) {
389 		uart_pps_process(sc, sig);
390 	}
391 
392 	/*
393 	 * Keep track of signal changes, even when the device is not
394 	 * opened. This allows us to inform upper layers about a
395 	 * possible loss of DCD and thus the existence of a (possibly)
396 	 * different connection when we have DCD back, during the time
397 	 * that the device was closed.
398 	 */
399 	do {
400 		old = sc->sc_ttypend;
401 		new = old & ~SER_MASK_STATE;
402 		new |= sig & SER_INT_SIGMASK;
403 	} while (!atomic_cmpset_32(&sc->sc_ttypend, old, new));
404 
405 	if (sc->sc_opened)
406 		uart_sched_softih(sc, SER_INT_SIGCHG);
407 	return (1);
408 }
409 
410 /*
411  * The transmitter can accept more data.
412  */
413 static __inline int
414 uart_intr_txidle(void *arg)
415 {
416 	struct uart_softc *sc = arg;
417 
418 	if (sc->sc_txbusy) {
419 		sc->sc_txbusy = 0;
420 		uart_sched_softih(sc, SER_INT_TXIDLE);
421 	}
422 	return (0);
423 }
424 
425 static int
426 uart_intr(void *arg)
427 {
428 	struct uart_softc *sc = arg;
429 	int cnt, ipend, testintr;
430 
431 	if (sc->sc_leaving)
432 		return (FILTER_STRAY);
433 
434 	cnt = 0;
435 	testintr = sc->sc_testintr;
436 	while ((!testintr || cnt < 20) && (ipend = UART_IPEND(sc)) != 0) {
437 		cnt++;
438 		if (ipend & SER_INT_OVERRUN)
439 			uart_intr_overrun(sc);
440 		if (ipend & SER_INT_BREAK)
441 			uart_intr_break(sc);
442 		if (ipend & SER_INT_RXREADY)
443 			uart_intr_rxready(sc);
444 		if (ipend & SER_INT_SIGCHG)
445 			uart_intr_sigchg(sc);
446 		if (ipend & SER_INT_TXIDLE)
447 			uart_intr_txidle(sc);
448 	}
449 
450 	if (sc->sc_polled) {
451 		callout_reset(&sc->sc_timer, hz / uart_poll_freq,
452 		    (callout_func_t *)uart_intr, sc);
453 	}
454 
455 	return ((cnt == 0) ? FILTER_STRAY :
456 	    ((testintr && cnt == 20) ? FILTER_SCHEDULE_THREAD :
457 	    FILTER_HANDLED));
458 }
459 
460 serdev_intr_t *
461 uart_bus_ihand(device_t dev, int ipend)
462 {
463 
464 	switch (ipend) {
465 	case SER_INT_BREAK:
466 		return (uart_intr_break);
467 	case SER_INT_OVERRUN:
468 		return (uart_intr_overrun);
469 	case SER_INT_RXREADY:
470 		return (uart_intr_rxready);
471 	case SER_INT_SIGCHG:
472 		return (uart_intr_sigchg);
473 	case SER_INT_TXIDLE:
474 		return (uart_intr_txidle);
475 	}
476 	return (NULL);
477 }
478 
479 int
480 uart_bus_ipend(device_t dev)
481 {
482 	struct uart_softc *sc;
483 
484 	sc = device_get_softc(dev);
485 	return (UART_IPEND(sc));
486 }
487 
488 int
489 uart_bus_sysdev(device_t dev)
490 {
491 	struct uart_softc *sc;
492 
493 	sc = device_get_softc(dev);
494 	return ((sc->sc_sysdev != NULL) ? 1 : 0);
495 }
496 
497 int
498 uart_bus_probe(device_t dev, int regshft, int regiowidth, int rclk, int rid, int chan, int quirks)
499 {
500 	struct uart_softc *sc;
501 	struct uart_devinfo *sysdev;
502 	int error;
503 
504 	sc = device_get_softc(dev);
505 
506 	/*
507 	 * All uart_class references are weak. Check that the needed
508 	 * class has been compiled-in. Fail if not.
509 	 */
510 	if (sc->sc_class == NULL)
511 		return (ENXIO);
512 
513 	/*
514 	 * Initialize the instance. Note that the instance (=softc) does
515 	 * not necessarily match the hardware specific softc. We can't do
516 	 * anything about it now, because we may not attach to the device.
517 	 * Hardware drivers cannot use any of the class specific fields
518 	 * while probing.
519 	 */
520 	kobj_init((kobj_t)sc, (kobj_class_t)sc->sc_class);
521 	sc->sc_dev = dev;
522 	if (device_get_desc(dev) == NULL)
523 		device_set_desc(dev, uart_getname(sc->sc_class));
524 
525 	/*
526 	 * Allocate the register resource. We assume that all UARTs have
527 	 * a single register window in either I/O port space or memory
528 	 * mapped I/O space. Any UART that needs multiple windows will
529 	 * consequently not be supported by this driver as-is. We try I/O
530 	 * port space first because that's the common case.
531 	 */
532 	sc->sc_rrid = rid;
533 	sc->sc_rtype = SYS_RES_IOPORT;
534 	sc->sc_rres = bus_alloc_resource_any(dev, sc->sc_rtype, &sc->sc_rrid,
535 	    RF_ACTIVE);
536 	if (sc->sc_rres == NULL) {
537 		sc->sc_rrid = rid;
538 		sc->sc_rtype = SYS_RES_MEMORY;
539 		sc->sc_rres = bus_alloc_resource_any(dev, sc->sc_rtype,
540 		    &sc->sc_rrid, RF_ACTIVE);
541 		if (sc->sc_rres == NULL)
542 			return (ENXIO);
543 	}
544 
545 	/*
546 	 * Fill in the bus access structure and compare this device with
547 	 * a possible console device and/or a debug port. We set the flags
548 	 * in the softc so that the hardware dependent probe can adjust
549 	 * accordingly. In general, you don't want to permanently disrupt
550 	 * console I/O.
551 	 */
552 	sc->sc_bas.bsh = rman_get_bushandle(sc->sc_rres);
553 	sc->sc_bas.bst = rman_get_bustag(sc->sc_rres);
554 	sc->sc_bas.chan = chan;
555 	sc->sc_bas.regshft = regshft;
556 	sc->sc_bas.regiowidth = regiowidth;
557 	sc->sc_bas.rclk = (rclk == 0) ? sc->sc_class->uc_rclk : rclk;
558 	sc->sc_bas.busy_detect = !!(quirks & UART_F_BUSY_DETECT);
559 
560 	SLIST_FOREACH(sysdev, &uart_sysdevs, next) {
561 		if (chan == sysdev->bas.chan &&
562 		    uart_cpu_eqres(&sc->sc_bas, &sysdev->bas)) {
563 			/* XXX check if ops matches class. */
564 			sc->sc_sysdev = sysdev;
565 			sysdev->bas.rclk = sc->sc_bas.rclk;
566 		}
567 	}
568 
569 	error = UART_PROBE(sc);
570 	bus_release_resource(dev, sc->sc_rtype, sc->sc_rrid, sc->sc_rres);
571 	return ((error) ? error : BUS_PROBE_DEFAULT);
572 }
573 
574 int
575 uart_bus_attach(device_t dev)
576 {
577 	struct uart_softc *sc, *sc0;
578 	const char *sep;
579 	int error, filt;
580 
581 	/*
582 	 * The sc_class field defines the type of UART we're going to work
583 	 * with and thus the size of the softc. Replace the generic softc
584 	 * with one that matches the UART now that we're certain we handle
585 	 * the device.
586 	 */
587 	sc0 = device_get_softc(dev);
588 	if (sc0->sc_class->size > device_get_driver(dev)->size) {
589 		sc = malloc(sc0->sc_class->size, M_UART, M_WAITOK|M_ZERO);
590 		bcopy(sc0, sc, sizeof(*sc));
591 		device_set_softc(dev, sc);
592 	} else
593 		sc = sc0;
594 
595 	/*
596 	 * Now that we know the softc for this device, connect the back
597 	 * pointer from the sysdev for this device, if any
598 	 */
599 	if (sc->sc_sysdev != NULL)
600 		sc->sc_sysdev->sc = sc;
601 
602 	/*
603 	 * Protect ourselves against interrupts while we're not completely
604 	 * finished attaching and initializing. We don't expect interrupts
605 	 * until after UART_ATTACH(), though.
606 	 */
607 	sc->sc_leaving = 1;
608 
609 	mtx_init(&sc->sc_hwmtx_s, "uart_hwmtx", NULL, MTX_SPIN);
610 	if (sc->sc_hwmtx == NULL)
611 		sc->sc_hwmtx = &sc->sc_hwmtx_s;
612 
613 	/*
614 	 * Re-allocate. We expect that the softc contains the information
615 	 * collected by uart_bus_probe() intact.
616 	 */
617 	sc->sc_rres = bus_alloc_resource_any(dev, sc->sc_rtype, &sc->sc_rrid,
618 	    RF_ACTIVE);
619 	if (sc->sc_rres == NULL) {
620 		mtx_destroy(&sc->sc_hwmtx_s);
621 		return (ENXIO);
622 	}
623 	sc->sc_bas.bsh = rman_get_bushandle(sc->sc_rres);
624 	sc->sc_bas.bst = rman_get_bustag(sc->sc_rres);
625 
626 	/*
627 	 * Ensure there is room for at least three full FIFOs of data in the
628 	 * receive buffer (handles the case of low-level drivers with huge
629 	 * FIFOs), and also ensure that there is no less than the historical
630 	 * size of 384 bytes (handles the typical small-FIFO case).
631 	 */
632 	sc->sc_rxbufsz = MAX(384, sc->sc_rxfifosz * 3);
633 	sc->sc_rxbuf = malloc(sc->sc_rxbufsz * sizeof(*sc->sc_rxbuf),
634 	    M_UART, M_WAITOK);
635 	sc->sc_txbuf = malloc(sc->sc_txfifosz * sizeof(*sc->sc_txbuf),
636 	    M_UART, M_WAITOK);
637 
638 	error = UART_ATTACH(sc);
639 	if (error)
640 		goto fail;
641 
642 	if (sc->sc_hwiflow || sc->sc_hwoflow) {
643 		sep = "";
644 		device_print_prettyname(dev);
645 		if (sc->sc_hwiflow) {
646 			printf("%sRTS iflow", sep);
647 			sep = ", ";
648 		}
649 		if (sc->sc_hwoflow) {
650 			printf("%sCTS oflow", sep);
651 			sep = ", ";
652 		}
653 		printf("\n");
654 	}
655 
656 	if (sc->sc_sysdev != NULL) {
657 		if (sc->sc_sysdev->baudrate == 0) {
658 			if (UART_IOCTL(sc, UART_IOCTL_BAUD,
659 			    (intptr_t)&sc->sc_sysdev->baudrate) != 0)
660 				sc->sc_sysdev->baudrate = -1;
661 		}
662 		switch (sc->sc_sysdev->type) {
663 		case UART_DEV_CONSOLE:
664 			device_printf(dev, "console");
665 			break;
666 		case UART_DEV_DBGPORT:
667 			device_printf(dev, "debug port");
668 			break;
669 		case UART_DEV_KEYBOARD:
670 			device_printf(dev, "keyboard");
671 			break;
672 		default:
673 			device_printf(dev, "unknown system device");
674 			break;
675 		}
676 		printf(" (%d,%c,%d,%d)\n", sc->sc_sysdev->baudrate,
677 		    "noems"[sc->sc_sysdev->parity], sc->sc_sysdev->databits,
678 		    sc->sc_sysdev->stopbits);
679 	}
680 
681 	sc->sc_leaving = 0;
682 	sc->sc_testintr = 1;
683 	filt = uart_intr(sc);
684 	sc->sc_testintr = 0;
685 
686 	/*
687 	 * Don't use interrupts if we couldn't clear any pending interrupt
688 	 * conditions. We may have broken H/W and polling is probably the
689 	 * safest thing to do.
690 	 */
691 	if (filt != FILTER_SCHEDULE_THREAD && !uart_force_poll) {
692 		sc->sc_ires = bus_alloc_resource_any(dev, SYS_RES_IRQ,
693 		    &sc->sc_irid, RF_ACTIVE | RF_SHAREABLE);
694 	}
695 	if (sc->sc_ires != NULL) {
696 		error = bus_setup_intr(dev, sc->sc_ires, INTR_TYPE_TTY,
697 		    uart_intr, NULL, sc, &sc->sc_icookie);
698 		sc->sc_fastintr = (error == 0) ? 1 : 0;
699 
700 		if (!sc->sc_fastintr)
701 			error = bus_setup_intr(dev, sc->sc_ires,
702 			    INTR_TYPE_TTY | INTR_MPSAFE, NULL,
703 			    (driver_intr_t *)uart_intr, sc, &sc->sc_icookie);
704 
705 		if (error) {
706 			device_printf(dev, "could not activate interrupt\n");
707 			bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irid,
708 			    sc->sc_ires);
709 			sc->sc_ires = NULL;
710 		}
711 	}
712 	if (sc->sc_ires == NULL) {
713 		/* No interrupt resource. Force polled mode. */
714 		sc->sc_polled = 1;
715 		callout_init(&sc->sc_timer, 1);
716 		callout_reset(&sc->sc_timer, hz / uart_poll_freq,
717 		    (callout_func_t *)uart_intr, sc);
718 	}
719 
720 	if (bootverbose && (sc->sc_fastintr || sc->sc_polled)) {
721 		sep = "";
722 		device_print_prettyname(dev);
723 		if (sc->sc_fastintr) {
724 			printf("%sfast interrupt", sep);
725 			sep = ", ";
726 		}
727 		if (sc->sc_polled) {
728 			printf("%spolled mode (%dHz)", sep, uart_poll_freq);
729 			sep = ", ";
730 		}
731 		printf("\n");
732 	}
733 
734 	if (sc->sc_sysdev != NULL && sc->sc_sysdev->attach != NULL) {
735 		if ((error = sc->sc_sysdev->attach(sc)) != 0)
736 			goto fail;
737 	} else {
738 		if ((error = uart_tty_attach(sc)) != 0)
739 			goto fail;
740 		uart_pps_init(sc);
741 	}
742 
743 	if (sc->sc_sysdev != NULL)
744 		sc->sc_sysdev->hwmtx = sc->sc_hwmtx;
745 
746 	if (sc->sc_rxfifosz > 1)
747 		SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
748 		    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
749 		    "rx_overruns", CTLFLAG_RD, &sc->sc_rxoverruns, 0,
750 		    "Receive overruns");
751 
752 	return (0);
753 
754  fail:
755 	free(sc->sc_txbuf, M_UART);
756 	free(sc->sc_rxbuf, M_UART);
757 
758 	if (sc->sc_ires != NULL) {
759 		bus_teardown_intr(dev, sc->sc_ires, sc->sc_icookie);
760 		bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irid,
761 		    sc->sc_ires);
762 	}
763 	bus_release_resource(dev, sc->sc_rtype, sc->sc_rrid, sc->sc_rres);
764 
765 	mtx_destroy(&sc->sc_hwmtx_s);
766 
767 	return (error);
768 }
769 
770 int
771 uart_bus_detach(device_t dev)
772 {
773 	struct uart_softc *sc;
774 
775 	sc = device_get_softc(dev);
776 
777 	sc->sc_leaving = 1;
778 
779 	if (sc->sc_sysdev != NULL)
780 		sc->sc_sysdev->hwmtx = NULL;
781 
782 	UART_DETACH(sc);
783 
784 	if (sc->sc_sysdev != NULL && sc->sc_sysdev->detach != NULL)
785 		(*sc->sc_sysdev->detach)(sc);
786 	else
787 		uart_tty_detach(sc);
788 
789 	free(sc->sc_txbuf, M_UART);
790 	free(sc->sc_rxbuf, M_UART);
791 
792 	if (sc->sc_ires != NULL) {
793 		bus_teardown_intr(dev, sc->sc_ires, sc->sc_icookie);
794 		bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irid,
795 		    sc->sc_ires);
796 	}
797 	bus_release_resource(dev, sc->sc_rtype, sc->sc_rrid, sc->sc_rres);
798 
799 	mtx_destroy(&sc->sc_hwmtx_s);
800 
801 	if (sc->sc_class->size > device_get_driver(dev)->size) {
802 		device_set_softc(dev, NULL);
803 		free(sc, M_UART);
804 	}
805 
806 	return (0);
807 }
808 
809 int
810 uart_bus_resume(device_t dev)
811 {
812 	struct uart_softc *sc;
813 
814 	sc = device_get_softc(dev);
815 	return (UART_ATTACH(sc));
816 }
817 
818 void
819 uart_grab(struct uart_devinfo *di)
820 {
821 
822 	if (di->sc)
823 		UART_GRAB(di->sc);
824 }
825 
826 void
827 uart_ungrab(struct uart_devinfo *di)
828 {
829 
830 	if (di->sc)
831 		UART_UNGRAB(di->sc);
832 }
833