xref: /freebsd/sys/dev/uart/uart_core.c (revision 5ca34122ecdd5abc62bdae39663fec9ac8523d87)
1 /*-
2  * Copyright (c) 2003 Marcel Moolenaar
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/bus.h>
33 #include <sys/conf.h>
34 #include <sys/cons.h>
35 #include <sys/fcntl.h>
36 #include <sys/interrupt.h>
37 #include <sys/kdb.h>
38 #include <sys/kernel.h>
39 #include <sys/malloc.h>
40 #include <sys/queue.h>
41 #include <sys/reboot.h>
42 #include <sys/sysctl.h>
43 #include <machine/bus.h>
44 #include <sys/rman.h>
45 #include <machine/resource.h>
46 #include <machine/stdarg.h>
47 
48 #include <dev/uart/uart.h>
49 #include <dev/uart/uart_bus.h>
50 #include <dev/uart/uart_cpu.h>
51 
52 #include "uart_if.h"
53 
54 devclass_t uart_devclass;
55 const char uart_driver_name[] = "uart";
56 
57 SLIST_HEAD(uart_devinfo_list, uart_devinfo) uart_sysdevs =
58     SLIST_HEAD_INITIALIZER(uart_sysdevs);
59 
60 static MALLOC_DEFINE(M_UART, "UART", "UART driver");
61 
62 #ifndef	UART_POLL_FREQ
63 #define	UART_POLL_FREQ		50
64 #endif
65 static int uart_poll_freq = UART_POLL_FREQ;
66 SYSCTL_INT(_debug, OID_AUTO, uart_poll_freq, CTLFLAG_RDTUN, &uart_poll_freq,
67     0, "UART poll frequency");
68 
69 static int uart_force_poll;
70 SYSCTL_INT(_debug, OID_AUTO, uart_force_poll, CTLFLAG_RDTUN, &uart_force_poll,
71     0, "Force UART polling");
72 
73 #define	PPS_MODE_DISABLED	0
74 #define	PPS_MODE_CTS		1
75 #define	PPS_MODE_DCD		2
76 
77 static inline int
78 uart_pps_signal(int pps_mode)
79 {
80 
81 	switch(pps_mode) {
82 	case PPS_MODE_CTS:
83 		return (SER_CTS);
84 	case PPS_MODE_DCD:
85 		return (SER_DCD);
86 	}
87 	return (0);
88 }
89 static inline int
90 uart_pps_mode_valid(int pps_mode)
91 {
92 
93 	switch(pps_mode) {
94 	case PPS_MODE_DISABLED:
95 	case PPS_MODE_CTS:
96 	case PPS_MODE_DCD:
97 		return (true);
98 	}
99 	return (false);
100 }
101 
102 static const char *
103 uart_pps_mode_name(int pps_mode)
104 {
105 	switch(pps_mode) {
106 	case PPS_MODE_DISABLED:
107 		return ("disabled");
108 	case PPS_MODE_CTS:
109 		return ("CTS");
110 	case PPS_MODE_DCD:
111 		return ("DCD");
112 	}
113 	return ("invalid");
114 }
115 
116 static int
117 uart_pps_mode_sysctl(SYSCTL_HANDLER_ARGS)
118 {
119 	struct uart_softc *sc;
120 	int err, tmp;
121 
122 	sc = arg1;
123 	tmp = sc->sc_pps_mode;
124 	err = sysctl_handle_int(oidp, &tmp, 0, req);
125 	if (err != 0 || req->newptr == NULL)
126 		return (err);
127 	if (!uart_pps_mode_valid(tmp))
128 		return (EINVAL);
129 	sc->sc_pps_mode = tmp;
130 	return(0);
131 }
132 
133 static void
134 uart_pps_init(struct uart_softc *sc)
135 {
136 	struct sysctl_ctx_list *ctx;
137 	struct sysctl_oid *tree;
138 
139 	ctx = device_get_sysctl_ctx(sc->sc_dev);
140 	tree = device_get_sysctl_tree(sc->sc_dev);
141 
142 	/*
143 	 * The historical default for pps capture mode is either DCD or CTS,
144 	 * depending on the UART_PPS_ON_CTS kernel option.  Start with that,
145 	 * then try to fetch the tunable that overrides the mode for all uart
146 	 * devices, then try to fetch the sysctl-tunable that overrides the mode
147 	 * for one specific device.
148 	 */
149 #ifdef UART_PPS_ON_CTS
150 	sc->sc_pps_mode = PPS_MODE_CTS;
151 #else
152 	sc->sc_pps_mode = PPS_MODE_DCD;
153 #endif
154 	TUNABLE_INT_FETCH("hw.uart.pps_mode", &sc->sc_pps_mode);
155 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "pps_mode",
156 	    CTLTYPE_INT | CTLFLAG_RWTUN, sc, 0, uart_pps_mode_sysctl, "I",
157 	    "pulse capturing mode - 0/1/2 - disabled/CTS/DCD");
158 
159 	if (!uart_pps_mode_valid(sc->sc_pps_mode)) {
160 		device_printf(sc->sc_dev,
161 		    "Invalid pps_mode %d configured; disabling PPS capture\n",
162 		    sc->sc_pps_mode);
163 		sc->sc_pps_mode = PPS_MODE_DISABLED;
164 	} else if (bootverbose) {
165 		device_printf(sc->sc_dev, "PPS capture mode %d (%s)\n",
166 		    sc->sc_pps_mode, uart_pps_mode_name(sc->sc_pps_mode));
167 	}
168 
169 	sc->sc_pps.ppscap = PPS_CAPTUREBOTH;
170 	sc->sc_pps.driver_mtx = uart_tty_getlock(sc);
171 	sc->sc_pps.driver_abi = PPS_ABI_VERSION;
172 	pps_init_abi(&sc->sc_pps);
173 }
174 
175 void
176 uart_add_sysdev(struct uart_devinfo *di)
177 {
178 	SLIST_INSERT_HEAD(&uart_sysdevs, di, next);
179 }
180 
181 const char *
182 uart_getname(struct uart_class *uc)
183 {
184 	return ((uc != NULL) ? uc->name : NULL);
185 }
186 
187 struct uart_ops *
188 uart_getops(struct uart_class *uc)
189 {
190 	return ((uc != NULL) ? uc->uc_ops : NULL);
191 }
192 
193 int
194 uart_getrange(struct uart_class *uc)
195 {
196 	return ((uc != NULL) ? uc->uc_range : 0);
197 }
198 
199 u_int
200 uart_getregshift(struct uart_class *uc)
201 {
202 	return ((uc != NULL) ? uc->uc_rshift : 0);
203 }
204 
205 /*
206  * Schedule a soft interrupt. We do this on the 0 to !0 transition
207  * of the TTY pending interrupt status.
208  */
209 void
210 uart_sched_softih(struct uart_softc *sc, uint32_t ipend)
211 {
212 	uint32_t new, old;
213 
214 	do {
215 		old = sc->sc_ttypend;
216 		new = old | ipend;
217 	} while (!atomic_cmpset_32(&sc->sc_ttypend, old, new));
218 
219 	if ((old & SER_INT_MASK) == 0)
220 		swi_sched(sc->sc_softih, 0);
221 }
222 
223 /*
224  * A break condition has been detected. We treat the break condition as
225  * a special case that should not happen during normal operation. When
226  * the break condition is to be passed to higher levels in the form of
227  * a NUL character, we really want the break to be in the right place in
228  * the input stream. The overhead to achieve that is not in relation to
229  * the exceptional nature of the break condition, so we permit ourselves
230  * to be sloppy.
231  */
232 static __inline int
233 uart_intr_break(void *arg)
234 {
235 	struct uart_softc *sc = arg;
236 
237 #if defined(KDB)
238 	if (sc->sc_sysdev != NULL && sc->sc_sysdev->type == UART_DEV_CONSOLE) {
239 		if (kdb_break())
240 			return (0);
241 	}
242 #endif
243 	if (sc->sc_opened)
244 		uart_sched_softih(sc, SER_INT_BREAK);
245 	return (0);
246 }
247 
248 /*
249  * Handle a receiver overrun situation. We lost at least 1 byte in the
250  * input stream and it's our job to contain the situation. We grab as
251  * much of the data we can, but otherwise flush the receiver FIFO to
252  * create some breathing room. The net effect is that we avoid the
253  * overrun condition to happen for the next X characters, where X is
254  * related to the FIFO size at the cost of losing data right away.
255  * So, instead of having multiple overrun interrupts in close proximity
256  * to each other and possibly pessimizing UART interrupt latency for
257  * other UARTs in a multiport configuration, we create a longer segment
258  * of missing characters by freeing up the FIFO.
259  * Each overrun condition is marked in the input buffer by a token. The
260  * token represents the loss of at least one, but possible more bytes in
261  * the input stream.
262  */
263 static __inline int
264 uart_intr_overrun(void *arg)
265 {
266 	struct uart_softc *sc = arg;
267 
268 	if (sc->sc_opened) {
269 		UART_RECEIVE(sc);
270 		if (uart_rx_put(sc, UART_STAT_OVERRUN))
271 			sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN;
272 		uart_sched_softih(sc, SER_INT_RXREADY);
273 	}
274 	UART_FLUSH(sc, UART_FLUSH_RECEIVER);
275 	return (0);
276 }
277 
278 /*
279  * Received data ready.
280  */
281 static __inline int
282 uart_intr_rxready(void *arg)
283 {
284 	struct uart_softc *sc = arg;
285 	int rxp;
286 
287 	rxp = sc->sc_rxput;
288 	UART_RECEIVE(sc);
289 #if defined(KDB)
290 	if (sc->sc_sysdev != NULL && sc->sc_sysdev->type == UART_DEV_CONSOLE) {
291 		while (rxp != sc->sc_rxput) {
292 			kdb_alt_break(sc->sc_rxbuf[rxp++], &sc->sc_altbrk);
293 			if (rxp == sc->sc_rxbufsz)
294 				rxp = 0;
295 		}
296 	}
297 #endif
298 	if (sc->sc_opened)
299 		uart_sched_softih(sc, SER_INT_RXREADY);
300 	else
301 		sc->sc_rxput = sc->sc_rxget;	/* Ignore received data. */
302 	return (1);
303 }
304 
305 /*
306  * Line or modem status change (OOB signalling).
307  * We pass the signals to the software interrupt handler for further
308  * processing. Note that we merge the delta bits, but set the state
309  * bits. This is to avoid losing state transitions due to having more
310  * than 1 hardware interrupt between software interrupts.
311  */
312 static __inline int
313 uart_intr_sigchg(void *arg)
314 {
315 	struct uart_softc *sc = arg;
316 	int new, old, pps_sig, sig;
317 
318 	sig = UART_GETSIG(sc);
319 
320 	/*
321 	 * Time pulse counting support. Note that both CTS and DCD are
322 	 * active-low signals. The status bit is high to indicate that
323 	 * the signal on the line is low, which corresponds to a PPS
324 	 * clear event.
325 	 */
326 	if (sc->sc_pps.ppsparam.mode & PPS_CAPTUREBOTH) {
327 		pps_sig = uart_pps_signal(sc->sc_pps_mode);
328 		if (sig & SER_DELTA(pps_sig)) {
329 			pps_capture(&sc->sc_pps);
330 			pps_event(&sc->sc_pps, (sig & pps_sig) ?
331 			    PPS_CAPTURECLEAR : PPS_CAPTUREASSERT);
332 		}
333 	}
334 
335 	/*
336 	 * Keep track of signal changes, even when the device is not
337 	 * opened. This allows us to inform upper layers about a
338 	 * possible loss of DCD and thus the existence of a (possibly)
339 	 * different connection when we have DCD back, during the time
340 	 * that the device was closed.
341 	 */
342 	do {
343 		old = sc->sc_ttypend;
344 		new = old & ~SER_MASK_STATE;
345 		new |= sig & SER_INT_SIGMASK;
346 	} while (!atomic_cmpset_32(&sc->sc_ttypend, old, new));
347 
348 	if (sc->sc_opened)
349 		uart_sched_softih(sc, SER_INT_SIGCHG);
350 	return (1);
351 }
352 
353 /*
354  * The transmitter can accept more data.
355  */
356 static __inline int
357 uart_intr_txidle(void *arg)
358 {
359 	struct uart_softc *sc = arg;
360 
361 	if (sc->sc_txbusy) {
362 		sc->sc_txbusy = 0;
363 		uart_sched_softih(sc, SER_INT_TXIDLE);
364 	}
365 	return (0);
366 }
367 
368 static int
369 uart_intr(void *arg)
370 {
371 	struct uart_softc *sc = arg;
372 	int cnt, ipend, testintr;
373 
374 	if (sc->sc_leaving)
375 		return (FILTER_STRAY);
376 
377 	cnt = 0;
378 	testintr = sc->sc_testintr;
379 	while ((!testintr || cnt < 20) && (ipend = UART_IPEND(sc)) != 0) {
380 		cnt++;
381 		if (ipend & SER_INT_OVERRUN)
382 			uart_intr_overrun(sc);
383 		if (ipend & SER_INT_BREAK)
384 			uart_intr_break(sc);
385 		if (ipend & SER_INT_RXREADY)
386 			uart_intr_rxready(sc);
387 		if (ipend & SER_INT_SIGCHG)
388 			uart_intr_sigchg(sc);
389 		if (ipend & SER_INT_TXIDLE)
390 			uart_intr_txidle(sc);
391 	}
392 
393 	if (sc->sc_polled) {
394 		callout_reset(&sc->sc_timer, hz / uart_poll_freq,
395 		    (timeout_t *)uart_intr, sc);
396 	}
397 
398 	return ((cnt == 0) ? FILTER_STRAY :
399 	    ((testintr && cnt == 20) ? FILTER_SCHEDULE_THREAD :
400 	    FILTER_HANDLED));
401 }
402 
403 serdev_intr_t *
404 uart_bus_ihand(device_t dev, int ipend)
405 {
406 
407 	switch (ipend) {
408 	case SER_INT_BREAK:
409 		return (uart_intr_break);
410 	case SER_INT_OVERRUN:
411 		return (uart_intr_overrun);
412 	case SER_INT_RXREADY:
413 		return (uart_intr_rxready);
414 	case SER_INT_SIGCHG:
415 		return (uart_intr_sigchg);
416 	case SER_INT_TXIDLE:
417 		return (uart_intr_txidle);
418 	}
419 	return (NULL);
420 }
421 
422 int
423 uart_bus_ipend(device_t dev)
424 {
425 	struct uart_softc *sc;
426 
427 	sc = device_get_softc(dev);
428 	return (UART_IPEND(sc));
429 }
430 
431 int
432 uart_bus_sysdev(device_t dev)
433 {
434 	struct uart_softc *sc;
435 
436 	sc = device_get_softc(dev);
437 	return ((sc->sc_sysdev != NULL) ? 1 : 0);
438 }
439 
440 int
441 uart_bus_probe(device_t dev, int regshft, int rclk, int rid, int chan)
442 {
443 	struct uart_softc *sc;
444 	struct uart_devinfo *sysdev;
445 	int error;
446 
447 	sc = device_get_softc(dev);
448 
449 	/*
450 	 * All uart_class references are weak. Check that the needed
451 	 * class has been compiled-in. Fail if not.
452 	 */
453 	if (sc->sc_class == NULL)
454 		return (ENXIO);
455 
456 	/*
457 	 * Initialize the instance. Note that the instance (=softc) does
458 	 * not necessarily match the hardware specific softc. We can't do
459 	 * anything about it now, because we may not attach to the device.
460 	 * Hardware drivers cannot use any of the class specific fields
461 	 * while probing.
462 	 */
463 	kobj_init((kobj_t)sc, (kobj_class_t)sc->sc_class);
464 	sc->sc_dev = dev;
465 	if (device_get_desc(dev) == NULL)
466 		device_set_desc(dev, uart_getname(sc->sc_class));
467 
468 	/*
469 	 * Allocate the register resource. We assume that all UARTs have
470 	 * a single register window in either I/O port space or memory
471 	 * mapped I/O space. Any UART that needs multiple windows will
472 	 * consequently not be supported by this driver as-is. We try I/O
473 	 * port space first because that's the common case.
474 	 */
475 	sc->sc_rrid = rid;
476 	sc->sc_rtype = SYS_RES_IOPORT;
477 	sc->sc_rres = bus_alloc_resource_any(dev, sc->sc_rtype, &sc->sc_rrid,
478 	    RF_ACTIVE);
479 	if (sc->sc_rres == NULL) {
480 		sc->sc_rrid = rid;
481 		sc->sc_rtype = SYS_RES_MEMORY;
482 		sc->sc_rres = bus_alloc_resource_any(dev, sc->sc_rtype,
483 		    &sc->sc_rrid, RF_ACTIVE);
484 		if (sc->sc_rres == NULL)
485 			return (ENXIO);
486 	}
487 
488 	/*
489 	 * Fill in the bus access structure and compare this device with
490 	 * a possible console device and/or a debug port. We set the flags
491 	 * in the softc so that the hardware dependent probe can adjust
492 	 * accordingly. In general, you don't want to permanently disrupt
493 	 * console I/O.
494 	 */
495 	sc->sc_bas.bsh = rman_get_bushandle(sc->sc_rres);
496 	sc->sc_bas.bst = rman_get_bustag(sc->sc_rres);
497 	sc->sc_bas.chan = chan;
498 	sc->sc_bas.regshft = regshft;
499 	sc->sc_bas.rclk = (rclk == 0) ? sc->sc_class->uc_rclk : rclk;
500 
501 	SLIST_FOREACH(sysdev, &uart_sysdevs, next) {
502 		if (chan == sysdev->bas.chan &&
503 		    uart_cpu_eqres(&sc->sc_bas, &sysdev->bas)) {
504 			/* XXX check if ops matches class. */
505 			sc->sc_sysdev = sysdev;
506 			sysdev->bas.rclk = sc->sc_bas.rclk;
507 		}
508 	}
509 
510 	error = UART_PROBE(sc);
511 	bus_release_resource(dev, sc->sc_rtype, sc->sc_rrid, sc->sc_rres);
512 	return ((error) ? error : BUS_PROBE_DEFAULT);
513 }
514 
515 int
516 uart_bus_attach(device_t dev)
517 {
518 	struct uart_softc *sc, *sc0;
519 	const char *sep;
520 	int error, filt;
521 
522 	/*
523 	 * The sc_class field defines the type of UART we're going to work
524 	 * with and thus the size of the softc. Replace the generic softc
525 	 * with one that matches the UART now that we're certain we handle
526 	 * the device.
527 	 */
528 	sc0 = device_get_softc(dev);
529 	if (sc0->sc_class->size > sizeof(*sc)) {
530 		sc = malloc(sc0->sc_class->size, M_UART, M_WAITOK|M_ZERO);
531 		bcopy(sc0, sc, sizeof(*sc));
532 		device_set_softc(dev, sc);
533 	} else
534 		sc = sc0;
535 
536 	/*
537 	 * Now that we know the softc for this device, connect the back
538 	 * pointer from the sysdev for this device, if any
539 	 */
540 	if (sc->sc_sysdev != NULL)
541 		sc->sc_sysdev->sc = sc;
542 
543 	/*
544 	 * Protect ourselves against interrupts while we're not completely
545 	 * finished attaching and initializing. We don't expect interrupts
546 	 * until after UART_ATTACH(), though.
547 	 */
548 	sc->sc_leaving = 1;
549 
550 	mtx_init(&sc->sc_hwmtx_s, "uart_hwmtx", NULL, MTX_SPIN);
551 	if (sc->sc_hwmtx == NULL)
552 		sc->sc_hwmtx = &sc->sc_hwmtx_s;
553 
554 	/*
555 	 * Re-allocate. We expect that the softc contains the information
556 	 * collected by uart_bus_probe() intact.
557 	 */
558 	sc->sc_rres = bus_alloc_resource_any(dev, sc->sc_rtype, &sc->sc_rrid,
559 	    RF_ACTIVE);
560 	if (sc->sc_rres == NULL) {
561 		mtx_destroy(&sc->sc_hwmtx_s);
562 		return (ENXIO);
563 	}
564 	sc->sc_bas.bsh = rman_get_bushandle(sc->sc_rres);
565 	sc->sc_bas.bst = rman_get_bustag(sc->sc_rres);
566 
567 	/*
568 	 * Ensure there is room for at least three full FIFOs of data in the
569 	 * receive buffer (handles the case of low-level drivers with huge
570 	 * FIFOs), and also ensure that there is no less than the historical
571 	 * size of 384 bytes (handles the typical small-FIFO case).
572 	 */
573 	sc->sc_rxbufsz = MAX(384, sc->sc_rxfifosz * 3);
574 	sc->sc_rxbuf = malloc(sc->sc_rxbufsz * sizeof(*sc->sc_rxbuf),
575 	    M_UART, M_WAITOK);
576 	sc->sc_txbuf = malloc(sc->sc_txfifosz * sizeof(*sc->sc_txbuf),
577 	    M_UART, M_WAITOK);
578 
579 	error = UART_ATTACH(sc);
580 	if (error)
581 		goto fail;
582 
583 	if (sc->sc_hwiflow || sc->sc_hwoflow) {
584 		sep = "";
585 		device_print_prettyname(dev);
586 		if (sc->sc_hwiflow) {
587 			printf("%sRTS iflow", sep);
588 			sep = ", ";
589 		}
590 		if (sc->sc_hwoflow) {
591 			printf("%sCTS oflow", sep);
592 			sep = ", ";
593 		}
594 		printf("\n");
595 	}
596 
597 	if (sc->sc_sysdev != NULL) {
598 		if (sc->sc_sysdev->baudrate == 0) {
599 			if (UART_IOCTL(sc, UART_IOCTL_BAUD,
600 			    (intptr_t)&sc->sc_sysdev->baudrate) != 0)
601 				sc->sc_sysdev->baudrate = -1;
602 		}
603 		switch (sc->sc_sysdev->type) {
604 		case UART_DEV_CONSOLE:
605 			device_printf(dev, "console");
606 			break;
607 		case UART_DEV_DBGPORT:
608 			device_printf(dev, "debug port");
609 			break;
610 		case UART_DEV_KEYBOARD:
611 			device_printf(dev, "keyboard");
612 			break;
613 		default:
614 			device_printf(dev, "unknown system device");
615 			break;
616 		}
617 		printf(" (%d,%c,%d,%d)\n", sc->sc_sysdev->baudrate,
618 		    "noems"[sc->sc_sysdev->parity], sc->sc_sysdev->databits,
619 		    sc->sc_sysdev->stopbits);
620 	}
621 
622 	sc->sc_leaving = 0;
623 	sc->sc_testintr = 1;
624 	filt = uart_intr(sc);
625 	sc->sc_testintr = 0;
626 
627 	/*
628 	 * Don't use interrupts if we couldn't clear any pending interrupt
629 	 * conditions. We may have broken H/W and polling is probably the
630 	 * safest thing to do.
631 	 */
632 	if (filt != FILTER_SCHEDULE_THREAD && !uart_force_poll) {
633 		sc->sc_irid = 0;
634 		sc->sc_ires = bus_alloc_resource_any(dev, SYS_RES_IRQ,
635 		    &sc->sc_irid, RF_ACTIVE | RF_SHAREABLE);
636 	}
637 	if (sc->sc_ires != NULL) {
638 		error = bus_setup_intr(dev, sc->sc_ires, INTR_TYPE_TTY,
639 		    uart_intr, NULL, sc, &sc->sc_icookie);
640 		sc->sc_fastintr = (error == 0) ? 1 : 0;
641 
642 		if (!sc->sc_fastintr)
643 			error = bus_setup_intr(dev, sc->sc_ires,
644 			    INTR_TYPE_TTY | INTR_MPSAFE, NULL,
645 			    (driver_intr_t *)uart_intr, sc, &sc->sc_icookie);
646 
647 		if (error) {
648 			device_printf(dev, "could not activate interrupt\n");
649 			bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irid,
650 			    sc->sc_ires);
651 			sc->sc_ires = NULL;
652 		}
653 	}
654 	if (sc->sc_ires == NULL) {
655 		/* No interrupt resource. Force polled mode. */
656 		sc->sc_polled = 1;
657 		callout_init(&sc->sc_timer, 1);
658 		callout_reset(&sc->sc_timer, hz / uart_poll_freq,
659 		    (timeout_t *)uart_intr, sc);
660 	}
661 
662 	if (bootverbose && (sc->sc_fastintr || sc->sc_polled)) {
663 		sep = "";
664 		device_print_prettyname(dev);
665 		if (sc->sc_fastintr) {
666 			printf("%sfast interrupt", sep);
667 			sep = ", ";
668 		}
669 		if (sc->sc_polled) {
670 			printf("%spolled mode (%dHz)", sep, uart_poll_freq);
671 			sep = ", ";
672 		}
673 		printf("\n");
674 	}
675 
676 	if (sc->sc_sysdev != NULL && sc->sc_sysdev->attach != NULL) {
677 		if ((error = sc->sc_sysdev->attach(sc)) != 0)
678 			goto fail;
679 	} else {
680 		if ((error = uart_tty_attach(sc)) != 0)
681 			goto fail;
682 		uart_pps_init(sc);
683 	}
684 
685 	if (sc->sc_sysdev != NULL)
686 		sc->sc_sysdev->hwmtx = sc->sc_hwmtx;
687 
688 	return (0);
689 
690  fail:
691 	free(sc->sc_txbuf, M_UART);
692 	free(sc->sc_rxbuf, M_UART);
693 
694 	if (sc->sc_ires != NULL) {
695 		bus_teardown_intr(dev, sc->sc_ires, sc->sc_icookie);
696 		bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irid,
697 		    sc->sc_ires);
698 	}
699 	bus_release_resource(dev, sc->sc_rtype, sc->sc_rrid, sc->sc_rres);
700 
701 	mtx_destroy(&sc->sc_hwmtx_s);
702 
703 	return (error);
704 }
705 
706 int
707 uart_bus_detach(device_t dev)
708 {
709 	struct uart_softc *sc;
710 
711 	sc = device_get_softc(dev);
712 
713 	sc->sc_leaving = 1;
714 
715 	if (sc->sc_sysdev != NULL)
716 		sc->sc_sysdev->hwmtx = NULL;
717 
718 	UART_DETACH(sc);
719 
720 	if (sc->sc_sysdev != NULL && sc->sc_sysdev->detach != NULL)
721 		(*sc->sc_sysdev->detach)(sc);
722 	else
723 		uart_tty_detach(sc);
724 
725 	free(sc->sc_txbuf, M_UART);
726 	free(sc->sc_rxbuf, M_UART);
727 
728 	if (sc->sc_ires != NULL) {
729 		bus_teardown_intr(dev, sc->sc_ires, sc->sc_icookie);
730 		bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irid,
731 		    sc->sc_ires);
732 	}
733 	bus_release_resource(dev, sc->sc_rtype, sc->sc_rrid, sc->sc_rres);
734 
735 	mtx_destroy(&sc->sc_hwmtx_s);
736 
737 	if (sc->sc_class->size > sizeof(*sc)) {
738 		device_set_softc(dev, NULL);
739 		free(sc, M_UART);
740 	} else
741 		device_set_softc(dev, NULL);
742 
743 	return (0);
744 }
745 
746 int
747 uart_bus_resume(device_t dev)
748 {
749 	struct uart_softc *sc;
750 
751 	sc = device_get_softc(dev);
752 	return (UART_ATTACH(sc));
753 }
754 
755 void
756 uart_grab(struct uart_devinfo *di)
757 {
758 
759 	if (di->sc)
760 		UART_GRAB(di->sc);
761 }
762 
763 void
764 uart_ungrab(struct uart_devinfo *di)
765 {
766 
767 	if (di->sc)
768 		UART_UNGRAB(di->sc);
769 }
770