1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2003 Marcel Moolenaar 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/bus.h> 35 #include <sys/conf.h> 36 #include <sys/cons.h> 37 #include <sys/fcntl.h> 38 #include <sys/interrupt.h> 39 #include <sys/kdb.h> 40 #include <sys/kernel.h> 41 #include <sys/malloc.h> 42 #include <sys/queue.h> 43 #include <sys/reboot.h> 44 #include <sys/sysctl.h> 45 #include <machine/bus.h> 46 #include <sys/rman.h> 47 #include <machine/resource.h> 48 #include <machine/stdarg.h> 49 50 #include <dev/uart/uart.h> 51 #include <dev/uart/uart_bus.h> 52 #include <dev/uart/uart_cpu.h> 53 #include <dev/uart/uart_ppstypes.h> 54 55 #include "uart_if.h" 56 57 devclass_t uart_devclass; 58 const char uart_driver_name[] = "uart"; 59 60 SLIST_HEAD(uart_devinfo_list, uart_devinfo) uart_sysdevs = 61 SLIST_HEAD_INITIALIZER(uart_sysdevs); 62 63 static MALLOC_DEFINE(M_UART, "UART", "UART driver"); 64 65 #ifndef UART_POLL_FREQ 66 #define UART_POLL_FREQ 50 67 #endif 68 static int uart_poll_freq = UART_POLL_FREQ; 69 SYSCTL_INT(_debug, OID_AUTO, uart_poll_freq, CTLFLAG_RDTUN, &uart_poll_freq, 70 0, "UART poll frequency"); 71 72 static int uart_force_poll; 73 SYSCTL_INT(_debug, OID_AUTO, uart_force_poll, CTLFLAG_RDTUN, &uart_force_poll, 74 0, "Force UART polling"); 75 76 static inline int 77 uart_pps_mode_valid(int pps_mode) 78 { 79 int opt; 80 81 switch(pps_mode & UART_PPS_SIGNAL_MASK) { 82 case UART_PPS_DISABLED: 83 case UART_PPS_CTS: 84 case UART_PPS_DCD: 85 break; 86 default: 87 return (false); 88 } 89 90 opt = pps_mode & UART_PPS_OPTION_MASK; 91 if ((opt & ~(UART_PPS_INVERT_PULSE | UART_PPS_NARROW_PULSE)) != 0) 92 return (false); 93 94 return (true); 95 } 96 97 static void 98 uart_pps_print_mode(struct uart_softc *sc) 99 { 100 101 device_printf(sc->sc_dev, "PPS capture mode: "); 102 switch(sc->sc_pps_mode & UART_PPS_SIGNAL_MASK) { 103 case UART_PPS_DISABLED: 104 printf("disabled"); 105 break; 106 case UART_PPS_CTS: 107 printf("CTS"); 108 break; 109 case UART_PPS_DCD: 110 printf("DCD"); 111 break; 112 default: 113 printf("invalid"); 114 break; 115 } 116 if (sc->sc_pps_mode & UART_PPS_INVERT_PULSE) 117 printf("-Inverted"); 118 if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE) 119 printf("-NarrowPulse"); 120 printf("\n"); 121 } 122 123 static int 124 uart_pps_mode_sysctl(SYSCTL_HANDLER_ARGS) 125 { 126 struct uart_softc *sc; 127 int err, tmp; 128 129 sc = arg1; 130 tmp = sc->sc_pps_mode; 131 err = sysctl_handle_int(oidp, &tmp, 0, req); 132 if (err != 0 || req->newptr == NULL) 133 return (err); 134 if (!uart_pps_mode_valid(tmp)) 135 return (EINVAL); 136 sc->sc_pps_mode = tmp; 137 return(0); 138 } 139 140 static void 141 uart_pps_process(struct uart_softc *sc, int ser_sig) 142 { 143 sbintime_t now; 144 int is_assert, pps_sig; 145 146 /* Which signal is configured as PPS? Early out if none. */ 147 switch(sc->sc_pps_mode & UART_PPS_SIGNAL_MASK) { 148 case UART_PPS_CTS: 149 pps_sig = SER_CTS; 150 break; 151 case UART_PPS_DCD: 152 pps_sig = SER_DCD; 153 break; 154 default: 155 return; 156 } 157 158 /* Early out if there is no change in the signal configured as PPS. */ 159 if ((ser_sig & SER_DELTA(pps_sig)) == 0) 160 return; 161 162 /* 163 * In narrow-pulse mode we need to synthesize both capture and clear 164 * events from a single "delta occurred" indication from the uart 165 * hardware because the pulse width is too narrow to reliably detect 166 * both edges. However, when the pulse width is close to our interrupt 167 * processing latency we might intermittantly catch both edges. To 168 * guard against generating spurious events when that happens, we use a 169 * separate timer to ensure at least half a second elapses before we 170 * generate another event. 171 */ 172 pps_capture(&sc->sc_pps); 173 if (sc->sc_pps_mode & UART_PPS_NARROW_PULSE) { 174 now = getsbinuptime(); 175 if (now > sc->sc_pps_captime + 500 * SBT_1MS) { 176 sc->sc_pps_captime = now; 177 pps_event(&sc->sc_pps, PPS_CAPTUREASSERT); 178 pps_event(&sc->sc_pps, PPS_CAPTURECLEAR); 179 } 180 } else { 181 is_assert = ser_sig & pps_sig; 182 if (sc->sc_pps_mode & UART_PPS_INVERT_PULSE) 183 is_assert = !is_assert; 184 pps_event(&sc->sc_pps, is_assert ? PPS_CAPTUREASSERT : 185 PPS_CAPTURECLEAR); 186 } 187 } 188 189 static void 190 uart_pps_init(struct uart_softc *sc) 191 { 192 struct sysctl_ctx_list *ctx; 193 struct sysctl_oid *tree; 194 195 ctx = device_get_sysctl_ctx(sc->sc_dev); 196 tree = device_get_sysctl_tree(sc->sc_dev); 197 198 /* 199 * The historical default for pps capture mode is either DCD or CTS, 200 * depending on the UART_PPS_ON_CTS kernel option. Start with that, 201 * then try to fetch the tunable that overrides the mode for all uart 202 * devices, then try to fetch the sysctl-tunable that overrides the mode 203 * for one specific device. 204 */ 205 #ifdef UART_PPS_ON_CTS 206 sc->sc_pps_mode = UART_PPS_CTS; 207 #else 208 sc->sc_pps_mode = UART_PPS_DCD; 209 #endif 210 TUNABLE_INT_FETCH("hw.uart.pps_mode", &sc->sc_pps_mode); 211 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "pps_mode", 212 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, sc, 0, 213 uart_pps_mode_sysctl, "I", "pulse mode: 0/1/2=disabled/CTS/DCD; " 214 "add 0x10 to invert, 0x20 for narrow pulse"); 215 216 if (!uart_pps_mode_valid(sc->sc_pps_mode)) { 217 device_printf(sc->sc_dev, 218 "Invalid pps_mode 0x%02x configured; disabling PPS capture\n", 219 sc->sc_pps_mode); 220 sc->sc_pps_mode = UART_PPS_DISABLED; 221 } else if (bootverbose) { 222 uart_pps_print_mode(sc); 223 } 224 225 sc->sc_pps.ppscap = PPS_CAPTUREBOTH; 226 sc->sc_pps.driver_mtx = uart_tty_getlock(sc); 227 sc->sc_pps.driver_abi = PPS_ABI_VERSION; 228 pps_init_abi(&sc->sc_pps); 229 } 230 231 void 232 uart_add_sysdev(struct uart_devinfo *di) 233 { 234 SLIST_INSERT_HEAD(&uart_sysdevs, di, next); 235 } 236 237 const char * 238 uart_getname(struct uart_class *uc) 239 { 240 return ((uc != NULL) ? uc->name : NULL); 241 } 242 243 struct uart_ops * 244 uart_getops(struct uart_class *uc) 245 { 246 return ((uc != NULL) ? uc->uc_ops : NULL); 247 } 248 249 int 250 uart_getrange(struct uart_class *uc) 251 { 252 return ((uc != NULL) ? uc->uc_range : 0); 253 } 254 255 u_int 256 uart_getregshift(struct uart_class *uc) 257 { 258 return ((uc != NULL) ? uc->uc_rshift : 0); 259 } 260 261 u_int 262 uart_getregiowidth(struct uart_class *uc) 263 { 264 return ((uc != NULL) ? uc->uc_riowidth : 0); 265 } 266 267 /* 268 * Schedule a soft interrupt. We do this on the 0 to !0 transition 269 * of the TTY pending interrupt status. 270 */ 271 void 272 uart_sched_softih(struct uart_softc *sc, uint32_t ipend) 273 { 274 uint32_t new, old; 275 276 do { 277 old = sc->sc_ttypend; 278 new = old | ipend; 279 } while (!atomic_cmpset_32(&sc->sc_ttypend, old, new)); 280 281 if ((old & SER_INT_MASK) == 0) 282 swi_sched(sc->sc_softih, 0); 283 } 284 285 /* 286 * A break condition has been detected. We treat the break condition as 287 * a special case that should not happen during normal operation. When 288 * the break condition is to be passed to higher levels in the form of 289 * a NUL character, we really want the break to be in the right place in 290 * the input stream. The overhead to achieve that is not in relation to 291 * the exceptional nature of the break condition, so we permit ourselves 292 * to be sloppy. 293 */ 294 static __inline int 295 uart_intr_break(void *arg) 296 { 297 struct uart_softc *sc = arg; 298 299 #if defined(KDB) 300 if (sc->sc_sysdev != NULL && sc->sc_sysdev->type == UART_DEV_CONSOLE) { 301 if (kdb_break()) 302 return (0); 303 } 304 #endif 305 if (sc->sc_opened) 306 uart_sched_softih(sc, SER_INT_BREAK); 307 return (0); 308 } 309 310 /* 311 * Handle a receiver overrun situation. We lost at least 1 byte in the 312 * input stream and it's our job to contain the situation. We grab as 313 * much of the data we can, but otherwise flush the receiver FIFO to 314 * create some breathing room. The net effect is that we avoid the 315 * overrun condition to happen for the next X characters, where X is 316 * related to the FIFO size at the cost of losing data right away. 317 * So, instead of having multiple overrun interrupts in close proximity 318 * to each other and possibly pessimizing UART interrupt latency for 319 * other UARTs in a multiport configuration, we create a longer segment 320 * of missing characters by freeing up the FIFO. 321 * Each overrun condition is marked in the input buffer by a token. The 322 * token represents the loss of at least one, but possible more bytes in 323 * the input stream. 324 */ 325 static __inline int 326 uart_intr_overrun(void *arg) 327 { 328 struct uart_softc *sc = arg; 329 330 if (sc->sc_opened) { 331 UART_RECEIVE(sc); 332 if (uart_rx_put(sc, UART_STAT_OVERRUN)) 333 sc->sc_rxbuf[sc->sc_rxput] = UART_STAT_OVERRUN; 334 uart_sched_softih(sc, SER_INT_RXREADY); 335 } 336 sc->sc_rxoverruns++; 337 UART_FLUSH(sc, UART_FLUSH_RECEIVER); 338 return (0); 339 } 340 341 /* 342 * Received data ready. 343 */ 344 static __inline int 345 uart_intr_rxready(void *arg) 346 { 347 struct uart_softc *sc = arg; 348 int rxp; 349 350 rxp = sc->sc_rxput; 351 UART_RECEIVE(sc); 352 #if defined(KDB) 353 if (sc->sc_sysdev != NULL && sc->sc_sysdev->type == UART_DEV_CONSOLE) { 354 while (rxp != sc->sc_rxput) { 355 kdb_alt_break(sc->sc_rxbuf[rxp++], &sc->sc_altbrk); 356 if (rxp == sc->sc_rxbufsz) 357 rxp = 0; 358 } 359 } 360 #endif 361 if (sc->sc_opened) 362 uart_sched_softih(sc, SER_INT_RXREADY); 363 else 364 sc->sc_rxput = sc->sc_rxget; /* Ignore received data. */ 365 return (1); 366 } 367 368 /* 369 * Line or modem status change (OOB signalling). 370 * We pass the signals to the software interrupt handler for further 371 * processing. Note that we merge the delta bits, but set the state 372 * bits. This is to avoid losing state transitions due to having more 373 * than 1 hardware interrupt between software interrupts. 374 */ 375 static __inline int 376 uart_intr_sigchg(void *arg) 377 { 378 struct uart_softc *sc = arg; 379 int new, old, sig; 380 381 sig = UART_GETSIG(sc); 382 383 /* 384 * Time pulse counting support, invoked whenever the PPS parameters are 385 * currently set to capture either edge of the signal. 386 */ 387 if (sc->sc_pps.ppsparam.mode & PPS_CAPTUREBOTH) { 388 uart_pps_process(sc, sig); 389 } 390 391 /* 392 * Keep track of signal changes, even when the device is not 393 * opened. This allows us to inform upper layers about a 394 * possible loss of DCD and thus the existence of a (possibly) 395 * different connection when we have DCD back, during the time 396 * that the device was closed. 397 */ 398 do { 399 old = sc->sc_ttypend; 400 new = old & ~SER_MASK_STATE; 401 new |= sig & SER_INT_SIGMASK; 402 } while (!atomic_cmpset_32(&sc->sc_ttypend, old, new)); 403 404 if (sc->sc_opened) 405 uart_sched_softih(sc, SER_INT_SIGCHG); 406 return (1); 407 } 408 409 /* 410 * The transmitter can accept more data. 411 */ 412 static __inline int 413 uart_intr_txidle(void *arg) 414 { 415 struct uart_softc *sc = arg; 416 417 if (sc->sc_txbusy) { 418 sc->sc_txbusy = 0; 419 uart_sched_softih(sc, SER_INT_TXIDLE); 420 } 421 return (0); 422 } 423 424 static int 425 uart_intr(void *arg) 426 { 427 struct uart_softc *sc = arg; 428 int cnt, ipend, testintr; 429 430 if (sc->sc_leaving) 431 return (FILTER_STRAY); 432 433 cnt = 0; 434 testintr = sc->sc_testintr; 435 while ((!testintr || cnt < 20) && (ipend = UART_IPEND(sc)) != 0) { 436 cnt++; 437 if (ipend & SER_INT_OVERRUN) 438 uart_intr_overrun(sc); 439 if (ipend & SER_INT_BREAK) 440 uart_intr_break(sc); 441 if (ipend & SER_INT_RXREADY) 442 uart_intr_rxready(sc); 443 if (ipend & SER_INT_SIGCHG) 444 uart_intr_sigchg(sc); 445 if (ipend & SER_INT_TXIDLE) 446 uart_intr_txidle(sc); 447 } 448 449 if (sc->sc_polled) { 450 callout_reset(&sc->sc_timer, hz / uart_poll_freq, 451 (callout_func_t *)uart_intr, sc); 452 } 453 454 return ((cnt == 0) ? FILTER_STRAY : 455 ((testintr && cnt == 20) ? FILTER_SCHEDULE_THREAD : 456 FILTER_HANDLED)); 457 } 458 459 serdev_intr_t * 460 uart_bus_ihand(device_t dev, int ipend) 461 { 462 463 switch (ipend) { 464 case SER_INT_BREAK: 465 return (uart_intr_break); 466 case SER_INT_OVERRUN: 467 return (uart_intr_overrun); 468 case SER_INT_RXREADY: 469 return (uart_intr_rxready); 470 case SER_INT_SIGCHG: 471 return (uart_intr_sigchg); 472 case SER_INT_TXIDLE: 473 return (uart_intr_txidle); 474 } 475 return (NULL); 476 } 477 478 int 479 uart_bus_ipend(device_t dev) 480 { 481 struct uart_softc *sc; 482 483 sc = device_get_softc(dev); 484 return (UART_IPEND(sc)); 485 } 486 487 int 488 uart_bus_sysdev(device_t dev) 489 { 490 struct uart_softc *sc; 491 492 sc = device_get_softc(dev); 493 return ((sc->sc_sysdev != NULL) ? 1 : 0); 494 } 495 496 int 497 uart_bus_probe(device_t dev, int regshft, int regiowidth, int rclk, int rid, int chan, int quirks) 498 { 499 struct uart_softc *sc; 500 struct uart_devinfo *sysdev; 501 int error; 502 503 sc = device_get_softc(dev); 504 505 /* 506 * All uart_class references are weak. Check that the needed 507 * class has been compiled-in. Fail if not. 508 */ 509 if (sc->sc_class == NULL) 510 return (ENXIO); 511 512 /* 513 * Initialize the instance. Note that the instance (=softc) does 514 * not necessarily match the hardware specific softc. We can't do 515 * anything about it now, because we may not attach to the device. 516 * Hardware drivers cannot use any of the class specific fields 517 * while probing. 518 */ 519 kobj_init((kobj_t)sc, (kobj_class_t)sc->sc_class); 520 sc->sc_dev = dev; 521 if (device_get_desc(dev) == NULL) 522 device_set_desc(dev, uart_getname(sc->sc_class)); 523 524 /* 525 * Allocate the register resource. We assume that all UARTs have 526 * a single register window in either I/O port space or memory 527 * mapped I/O space. Any UART that needs multiple windows will 528 * consequently not be supported by this driver as-is. We try I/O 529 * port space first because that's the common case. 530 */ 531 sc->sc_rrid = rid; 532 sc->sc_rtype = SYS_RES_IOPORT; 533 sc->sc_rres = bus_alloc_resource_any(dev, sc->sc_rtype, &sc->sc_rrid, 534 RF_ACTIVE); 535 if (sc->sc_rres == NULL) { 536 sc->sc_rrid = rid; 537 sc->sc_rtype = SYS_RES_MEMORY; 538 sc->sc_rres = bus_alloc_resource_any(dev, sc->sc_rtype, 539 &sc->sc_rrid, RF_ACTIVE); 540 if (sc->sc_rres == NULL) 541 return (ENXIO); 542 } 543 544 /* 545 * Fill in the bus access structure and compare this device with 546 * a possible console device and/or a debug port. We set the flags 547 * in the softc so that the hardware dependent probe can adjust 548 * accordingly. In general, you don't want to permanently disrupt 549 * console I/O. 550 */ 551 sc->sc_bas.bsh = rman_get_bushandle(sc->sc_rres); 552 sc->sc_bas.bst = rman_get_bustag(sc->sc_rres); 553 sc->sc_bas.chan = chan; 554 sc->sc_bas.regshft = regshft; 555 sc->sc_bas.regiowidth = regiowidth; 556 sc->sc_bas.rclk = (rclk == 0) ? sc->sc_class->uc_rclk : rclk; 557 sc->sc_bas.busy_detect = !!(quirks & UART_F_BUSY_DETECT); 558 559 SLIST_FOREACH(sysdev, &uart_sysdevs, next) { 560 if (chan == sysdev->bas.chan && 561 uart_cpu_eqres(&sc->sc_bas, &sysdev->bas)) { 562 /* XXX check if ops matches class. */ 563 sc->sc_sysdev = sysdev; 564 sysdev->bas.rclk = sc->sc_bas.rclk; 565 } 566 } 567 568 error = UART_PROBE(sc); 569 bus_release_resource(dev, sc->sc_rtype, sc->sc_rrid, sc->sc_rres); 570 return ((error) ? error : BUS_PROBE_DEFAULT); 571 } 572 573 int 574 uart_bus_attach(device_t dev) 575 { 576 struct uart_softc *sc, *sc0; 577 const char *sep; 578 int error, filt; 579 580 /* 581 * The sc_class field defines the type of UART we're going to work 582 * with and thus the size of the softc. Replace the generic softc 583 * with one that matches the UART now that we're certain we handle 584 * the device. 585 */ 586 sc0 = device_get_softc(dev); 587 if (sc0->sc_class->size > device_get_driver(dev)->size) { 588 sc = malloc(sc0->sc_class->size, M_UART, M_WAITOK|M_ZERO); 589 bcopy(sc0, sc, sizeof(*sc)); 590 device_set_softc(dev, sc); 591 } else 592 sc = sc0; 593 594 /* 595 * Now that we know the softc for this device, connect the back 596 * pointer from the sysdev for this device, if any 597 */ 598 if (sc->sc_sysdev != NULL) 599 sc->sc_sysdev->sc = sc; 600 601 /* 602 * Protect ourselves against interrupts while we're not completely 603 * finished attaching and initializing. We don't expect interrupts 604 * until after UART_ATTACH(), though. 605 */ 606 sc->sc_leaving = 1; 607 608 mtx_init(&sc->sc_hwmtx_s, "uart_hwmtx", NULL, MTX_SPIN); 609 if (sc->sc_hwmtx == NULL) 610 sc->sc_hwmtx = &sc->sc_hwmtx_s; 611 612 /* 613 * Re-allocate. We expect that the softc contains the information 614 * collected by uart_bus_probe() intact. 615 */ 616 sc->sc_rres = bus_alloc_resource_any(dev, sc->sc_rtype, &sc->sc_rrid, 617 RF_ACTIVE); 618 if (sc->sc_rres == NULL) { 619 mtx_destroy(&sc->sc_hwmtx_s); 620 return (ENXIO); 621 } 622 sc->sc_bas.bsh = rman_get_bushandle(sc->sc_rres); 623 sc->sc_bas.bst = rman_get_bustag(sc->sc_rres); 624 625 /* 626 * Ensure there is room for at least three full FIFOs of data in the 627 * receive buffer (handles the case of low-level drivers with huge 628 * FIFOs), and also ensure that there is no less than the historical 629 * size of 384 bytes (handles the typical small-FIFO case). 630 */ 631 sc->sc_rxbufsz = MAX(384, sc->sc_rxfifosz * 3); 632 sc->sc_rxbuf = malloc(sc->sc_rxbufsz * sizeof(*sc->sc_rxbuf), 633 M_UART, M_WAITOK); 634 sc->sc_txbuf = malloc(sc->sc_txfifosz * sizeof(*sc->sc_txbuf), 635 M_UART, M_WAITOK); 636 637 error = UART_ATTACH(sc); 638 if (error) 639 goto fail; 640 641 if (sc->sc_hwiflow || sc->sc_hwoflow) { 642 sep = ""; 643 device_print_prettyname(dev); 644 if (sc->sc_hwiflow) { 645 printf("%sRTS iflow", sep); 646 sep = ", "; 647 } 648 if (sc->sc_hwoflow) { 649 printf("%sCTS oflow", sep); 650 sep = ", "; 651 } 652 printf("\n"); 653 } 654 655 if (sc->sc_sysdev != NULL) { 656 if (sc->sc_sysdev->baudrate == 0) { 657 if (UART_IOCTL(sc, UART_IOCTL_BAUD, 658 (intptr_t)&sc->sc_sysdev->baudrate) != 0) 659 sc->sc_sysdev->baudrate = -1; 660 } 661 switch (sc->sc_sysdev->type) { 662 case UART_DEV_CONSOLE: 663 device_printf(dev, "console"); 664 break; 665 case UART_DEV_DBGPORT: 666 device_printf(dev, "debug port"); 667 break; 668 case UART_DEV_KEYBOARD: 669 device_printf(dev, "keyboard"); 670 break; 671 default: 672 device_printf(dev, "unknown system device"); 673 break; 674 } 675 printf(" (%d,%c,%d,%d)\n", sc->sc_sysdev->baudrate, 676 "noems"[sc->sc_sysdev->parity], sc->sc_sysdev->databits, 677 sc->sc_sysdev->stopbits); 678 } 679 680 sc->sc_leaving = 0; 681 sc->sc_testintr = 1; 682 filt = uart_intr(sc); 683 sc->sc_testintr = 0; 684 685 /* 686 * Don't use interrupts if we couldn't clear any pending interrupt 687 * conditions. We may have broken H/W and polling is probably the 688 * safest thing to do. 689 */ 690 if (filt != FILTER_SCHEDULE_THREAD && !uart_force_poll) { 691 sc->sc_ires = bus_alloc_resource_any(dev, SYS_RES_IRQ, 692 &sc->sc_irid, RF_ACTIVE | RF_SHAREABLE); 693 } 694 if (sc->sc_ires != NULL) { 695 error = bus_setup_intr(dev, sc->sc_ires, INTR_TYPE_TTY, 696 uart_intr, NULL, sc, &sc->sc_icookie); 697 sc->sc_fastintr = (error == 0) ? 1 : 0; 698 699 if (!sc->sc_fastintr) 700 error = bus_setup_intr(dev, sc->sc_ires, 701 INTR_TYPE_TTY | INTR_MPSAFE, NULL, 702 (driver_intr_t *)uart_intr, sc, &sc->sc_icookie); 703 704 if (error) { 705 device_printf(dev, "could not activate interrupt\n"); 706 bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irid, 707 sc->sc_ires); 708 sc->sc_ires = NULL; 709 } 710 } 711 if (sc->sc_ires == NULL) { 712 /* No interrupt resource. Force polled mode. */ 713 sc->sc_polled = 1; 714 callout_init(&sc->sc_timer, 1); 715 callout_reset(&sc->sc_timer, hz / uart_poll_freq, 716 (callout_func_t *)uart_intr, sc); 717 } 718 719 if (bootverbose && (sc->sc_fastintr || sc->sc_polled)) { 720 sep = ""; 721 device_print_prettyname(dev); 722 if (sc->sc_fastintr) { 723 printf("%sfast interrupt", sep); 724 sep = ", "; 725 } 726 if (sc->sc_polled) { 727 printf("%spolled mode (%dHz)", sep, uart_poll_freq); 728 sep = ", "; 729 } 730 printf("\n"); 731 } 732 733 if (sc->sc_sysdev != NULL && sc->sc_sysdev->attach != NULL) { 734 if ((error = sc->sc_sysdev->attach(sc)) != 0) 735 goto fail; 736 } else { 737 if ((error = uart_tty_attach(sc)) != 0) 738 goto fail; 739 uart_pps_init(sc); 740 } 741 742 if (sc->sc_sysdev != NULL) 743 sc->sc_sysdev->hwmtx = sc->sc_hwmtx; 744 745 if (sc->sc_rxfifosz > 1) 746 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 747 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, 748 "rx_overruns", CTLFLAG_RD, &sc->sc_rxoverruns, 0, 749 "Receive overruns"); 750 751 return (0); 752 753 fail: 754 free(sc->sc_txbuf, M_UART); 755 free(sc->sc_rxbuf, M_UART); 756 757 if (sc->sc_ires != NULL) { 758 bus_teardown_intr(dev, sc->sc_ires, sc->sc_icookie); 759 bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irid, 760 sc->sc_ires); 761 } 762 bus_release_resource(dev, sc->sc_rtype, sc->sc_rrid, sc->sc_rres); 763 764 mtx_destroy(&sc->sc_hwmtx_s); 765 766 return (error); 767 } 768 769 int 770 uart_bus_detach(device_t dev) 771 { 772 struct uart_softc *sc; 773 774 sc = device_get_softc(dev); 775 776 sc->sc_leaving = 1; 777 778 if (sc->sc_sysdev != NULL) 779 sc->sc_sysdev->hwmtx = NULL; 780 781 UART_DETACH(sc); 782 783 if (sc->sc_sysdev != NULL && sc->sc_sysdev->detach != NULL) 784 (*sc->sc_sysdev->detach)(sc); 785 else 786 uart_tty_detach(sc); 787 788 free(sc->sc_txbuf, M_UART); 789 free(sc->sc_rxbuf, M_UART); 790 791 if (sc->sc_ires != NULL) { 792 bus_teardown_intr(dev, sc->sc_ires, sc->sc_icookie); 793 bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irid, 794 sc->sc_ires); 795 } 796 bus_release_resource(dev, sc->sc_rtype, sc->sc_rrid, sc->sc_rres); 797 798 mtx_destroy(&sc->sc_hwmtx_s); 799 800 if (sc->sc_class->size > device_get_driver(dev)->size) { 801 device_set_softc(dev, NULL); 802 free(sc, M_UART); 803 } 804 805 return (0); 806 } 807 808 int 809 uart_bus_resume(device_t dev) 810 { 811 struct uart_softc *sc; 812 813 sc = device_get_softc(dev); 814 return (UART_ATTACH(sc)); 815 } 816 817 void 818 uart_grab(struct uart_devinfo *di) 819 { 820 821 if (di->sc) 822 UART_GRAB(di->sc); 823 } 824 825 void 826 uart_ungrab(struct uart_devinfo *di) 827 { 828 829 if (di->sc) 830 UART_UNGRAB(di->sc); 831 } 832