1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2007-2008 Semihalf, Rafal Jaworowski 5 * Copyright (C) 2006-2007 Semihalf, Piotr Kruszynski 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 20 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 22 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 23 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 24 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 25 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 26 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* 30 * Freescale integrated Three-Speed Ethernet Controller (TSEC) driver. 31 */ 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #ifdef HAVE_KERNEL_OPTION_HEADERS 36 #include "opt_device_polling.h" 37 #endif 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/bus.h> 42 #include <sys/endian.h> 43 #include <sys/mbuf.h> 44 #include <sys/kernel.h> 45 #include <sys/module.h> 46 #include <sys/socket.h> 47 #include <sys/sockio.h> 48 #include <sys/sysctl.h> 49 50 #include <net/bpf.h> 51 #include <net/ethernet.h> 52 #include <net/if.h> 53 #include <net/if_var.h> 54 #include <net/if_arp.h> 55 #include <net/if_dl.h> 56 #include <net/if_media.h> 57 #include <net/if_types.h> 58 #include <net/if_vlan_var.h> 59 60 #include <netinet/in_systm.h> 61 #include <netinet/in.h> 62 #include <netinet/ip.h> 63 64 #include <machine/bus.h> 65 66 #include <dev/mii/mii.h> 67 #include <dev/mii/miivar.h> 68 69 #include <dev/tsec/if_tsec.h> 70 #include <dev/tsec/if_tsecreg.h> 71 72 static int tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag, 73 bus_dmamap_t *dmap, bus_size_t dsize, void **vaddr, void *raddr, 74 const char *dname); 75 static void tsec_dma_ctl(struct tsec_softc *sc, int state); 76 static void tsec_encap(struct ifnet *ifp, struct tsec_softc *sc, 77 struct mbuf *m0, uint16_t fcb_flags, int *start_tx); 78 static void tsec_free_dma(struct tsec_softc *sc); 79 static void tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr); 80 static int tsec_ifmedia_upd(struct ifnet *ifp); 81 static void tsec_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr); 82 static int tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map, 83 struct mbuf **mbufp, uint32_t *paddr); 84 static void tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs, 85 int nseg, int error); 86 static void tsec_intrs_ctl(struct tsec_softc *sc, int state); 87 static void tsec_init(void *xsc); 88 static void tsec_init_locked(struct tsec_softc *sc); 89 static int tsec_ioctl(struct ifnet *ifp, u_long command, caddr_t data); 90 static void tsec_reset_mac(struct tsec_softc *sc); 91 static void tsec_setfilter(struct tsec_softc *sc); 92 static void tsec_set_mac_address(struct tsec_softc *sc); 93 static void tsec_start(struct ifnet *ifp); 94 static void tsec_start_locked(struct ifnet *ifp); 95 static void tsec_stop(struct tsec_softc *sc); 96 static void tsec_tick(void *arg); 97 static void tsec_watchdog(struct tsec_softc *sc); 98 static void tsec_add_sysctls(struct tsec_softc *sc); 99 static int tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS); 100 static int tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS); 101 static void tsec_set_rxic(struct tsec_softc *sc); 102 static void tsec_set_txic(struct tsec_softc *sc); 103 static int tsec_receive_intr_locked(struct tsec_softc *sc, int count); 104 static void tsec_transmit_intr_locked(struct tsec_softc *sc); 105 static void tsec_error_intr_locked(struct tsec_softc *sc, int count); 106 static void tsec_offload_setup(struct tsec_softc *sc); 107 static void tsec_offload_process_frame(struct tsec_softc *sc, 108 struct mbuf *m); 109 static void tsec_setup_multicast(struct tsec_softc *sc); 110 static int tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu); 111 112 devclass_t tsec_devclass; 113 DRIVER_MODULE(miibus, tsec, miibus_driver, miibus_devclass, 0, 0); 114 MODULE_DEPEND(tsec, ether, 1, 1, 1); 115 MODULE_DEPEND(tsec, miibus, 1, 1, 1); 116 117 struct mtx tsec_phy_mtx; 118 119 int 120 tsec_attach(struct tsec_softc *sc) 121 { 122 uint8_t hwaddr[ETHER_ADDR_LEN]; 123 struct ifnet *ifp; 124 int error = 0; 125 int i; 126 127 /* Initialize global (because potentially shared) MII lock */ 128 if (!mtx_initialized(&tsec_phy_mtx)) 129 mtx_init(&tsec_phy_mtx, "tsec mii", NULL, MTX_DEF); 130 131 /* Reset all TSEC counters */ 132 TSEC_TX_RX_COUNTERS_INIT(sc); 133 134 /* Stop DMA engine if enabled by firmware */ 135 tsec_dma_ctl(sc, 0); 136 137 /* Reset MAC */ 138 tsec_reset_mac(sc); 139 140 /* Disable interrupts for now */ 141 tsec_intrs_ctl(sc, 0); 142 143 /* Configure defaults for interrupts coalescing */ 144 sc->rx_ic_time = 768; 145 sc->rx_ic_count = 16; 146 sc->tx_ic_time = 768; 147 sc->tx_ic_count = 16; 148 tsec_set_rxic(sc); 149 tsec_set_txic(sc); 150 tsec_add_sysctls(sc); 151 152 /* Allocate a busdma tag and DMA safe memory for TX descriptors. */ 153 error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_tx_dtag, 154 &sc->tsec_tx_dmap, sizeof(*sc->tsec_tx_vaddr) * TSEC_TX_NUM_DESC, 155 (void **)&sc->tsec_tx_vaddr, &sc->tsec_tx_raddr, "TX"); 156 157 if (error) { 158 tsec_detach(sc); 159 return (ENXIO); 160 } 161 162 /* Allocate a busdma tag and DMA safe memory for RX descriptors. */ 163 error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_rx_dtag, 164 &sc->tsec_rx_dmap, sizeof(*sc->tsec_rx_vaddr) * TSEC_RX_NUM_DESC, 165 (void **)&sc->tsec_rx_vaddr, &sc->tsec_rx_raddr, "RX"); 166 if (error) { 167 tsec_detach(sc); 168 return (ENXIO); 169 } 170 171 /* Allocate a busdma tag for TX mbufs. */ 172 error = bus_dma_tag_create(NULL, /* parent */ 173 TSEC_TXBUFFER_ALIGNMENT, 0, /* alignment, boundary */ 174 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 175 BUS_SPACE_MAXADDR, /* highaddr */ 176 NULL, NULL, /* filtfunc, filtfuncarg */ 177 MCLBYTES * (TSEC_TX_NUM_DESC - 1), /* maxsize */ 178 TSEC_TX_MAX_DMA_SEGS, /* nsegments */ 179 MCLBYTES, 0, /* maxsegsz, flags */ 180 NULL, NULL, /* lockfunc, lockfuncarg */ 181 &sc->tsec_tx_mtag); /* dmat */ 182 if (error) { 183 device_printf(sc->dev, "failed to allocate busdma tag " 184 "(tx mbufs)\n"); 185 tsec_detach(sc); 186 return (ENXIO); 187 } 188 189 /* Allocate a busdma tag for RX mbufs. */ 190 error = bus_dma_tag_create(NULL, /* parent */ 191 TSEC_RXBUFFER_ALIGNMENT, 0, /* alignment, boundary */ 192 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 193 BUS_SPACE_MAXADDR, /* highaddr */ 194 NULL, NULL, /* filtfunc, filtfuncarg */ 195 MCLBYTES, /* maxsize */ 196 1, /* nsegments */ 197 MCLBYTES, 0, /* maxsegsz, flags */ 198 NULL, NULL, /* lockfunc, lockfuncarg */ 199 &sc->tsec_rx_mtag); /* dmat */ 200 if (error) { 201 device_printf(sc->dev, "failed to allocate busdma tag " 202 "(rx mbufs)\n"); 203 tsec_detach(sc); 204 return (ENXIO); 205 } 206 207 /* Create TX busdma maps */ 208 for (i = 0; i < TSEC_TX_NUM_DESC; i++) { 209 error = bus_dmamap_create(sc->tsec_tx_mtag, 0, 210 &sc->tx_bufmap[i].map); 211 if (error) { 212 device_printf(sc->dev, "failed to init TX ring\n"); 213 tsec_detach(sc); 214 return (ENXIO); 215 } 216 sc->tx_bufmap[i].map_initialized = 1; 217 } 218 219 /* Create RX busdma maps and zero mbuf handlers */ 220 for (i = 0; i < TSEC_RX_NUM_DESC; i++) { 221 error = bus_dmamap_create(sc->tsec_rx_mtag, 0, 222 &sc->rx_data[i].map); 223 if (error) { 224 device_printf(sc->dev, "failed to init RX ring\n"); 225 tsec_detach(sc); 226 return (ENXIO); 227 } 228 sc->rx_data[i].mbuf = NULL; 229 } 230 231 /* Create mbufs for RX buffers */ 232 for (i = 0; i < TSEC_RX_NUM_DESC; i++) { 233 error = tsec_new_rxbuf(sc->tsec_rx_mtag, sc->rx_data[i].map, 234 &sc->rx_data[i].mbuf, &sc->rx_data[i].paddr); 235 if (error) { 236 device_printf(sc->dev, "can't load rx DMA map %d, " 237 "error = %d\n", i, error); 238 tsec_detach(sc); 239 return (error); 240 } 241 } 242 243 /* Create network interface for upper layers */ 244 ifp = sc->tsec_ifp = if_alloc(IFT_ETHER); 245 if (ifp == NULL) { 246 device_printf(sc->dev, "if_alloc() failed\n"); 247 tsec_detach(sc); 248 return (ENOMEM); 249 } 250 251 ifp->if_softc = sc; 252 if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev)); 253 ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST; 254 ifp->if_init = tsec_init; 255 ifp->if_start = tsec_start; 256 ifp->if_ioctl = tsec_ioctl; 257 258 IFQ_SET_MAXLEN(&ifp->if_snd, TSEC_TX_NUM_DESC - 1); 259 ifp->if_snd.ifq_drv_maxlen = TSEC_TX_NUM_DESC - 1; 260 IFQ_SET_READY(&ifp->if_snd); 261 262 ifp->if_capabilities = IFCAP_VLAN_MTU; 263 if (sc->is_etsec) 264 ifp->if_capabilities |= IFCAP_HWCSUM; 265 266 ifp->if_capenable = ifp->if_capabilities; 267 268 #ifdef DEVICE_POLLING 269 /* Advertise that polling is supported */ 270 ifp->if_capabilities |= IFCAP_POLLING; 271 #endif 272 273 /* Attach PHY(s) */ 274 error = mii_attach(sc->dev, &sc->tsec_miibus, ifp, tsec_ifmedia_upd, 275 tsec_ifmedia_sts, BMSR_DEFCAPMASK, sc->phyaddr, MII_OFFSET_ANY, 276 0); 277 if (error) { 278 device_printf(sc->dev, "attaching PHYs failed\n"); 279 if_free(ifp); 280 sc->tsec_ifp = NULL; 281 tsec_detach(sc); 282 return (error); 283 } 284 sc->tsec_mii = device_get_softc(sc->tsec_miibus); 285 286 /* Set MAC address */ 287 tsec_get_hwaddr(sc, hwaddr); 288 ether_ifattach(ifp, hwaddr); 289 290 return (0); 291 } 292 293 int 294 tsec_detach(struct tsec_softc *sc) 295 { 296 297 if (sc->tsec_ifp != NULL) { 298 #ifdef DEVICE_POLLING 299 if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) 300 ether_poll_deregister(sc->tsec_ifp); 301 #endif 302 303 /* Stop TSEC controller and free TX queue */ 304 if (sc->sc_rres) 305 tsec_shutdown(sc->dev); 306 307 /* Detach network interface */ 308 ether_ifdetach(sc->tsec_ifp); 309 if_free(sc->tsec_ifp); 310 sc->tsec_ifp = NULL; 311 } 312 313 /* Free DMA resources */ 314 tsec_free_dma(sc); 315 316 return (0); 317 } 318 319 int 320 tsec_shutdown(device_t dev) 321 { 322 struct tsec_softc *sc; 323 324 sc = device_get_softc(dev); 325 326 TSEC_GLOBAL_LOCK(sc); 327 tsec_stop(sc); 328 TSEC_GLOBAL_UNLOCK(sc); 329 return (0); 330 } 331 332 int 333 tsec_suspend(device_t dev) 334 { 335 336 /* TODO not implemented! */ 337 return (0); 338 } 339 340 int 341 tsec_resume(device_t dev) 342 { 343 344 /* TODO not implemented! */ 345 return (0); 346 } 347 348 static void 349 tsec_init(void *xsc) 350 { 351 struct tsec_softc *sc = xsc; 352 353 TSEC_GLOBAL_LOCK(sc); 354 tsec_init_locked(sc); 355 TSEC_GLOBAL_UNLOCK(sc); 356 } 357 358 static int 359 tsec_mii_wait(struct tsec_softc *sc, uint32_t flags) 360 { 361 int timeout; 362 363 /* 364 * The status indicators are not set immediatly after a command. 365 * Discard the first value. 366 */ 367 TSEC_PHY_READ(sc, TSEC_REG_MIIMIND); 368 369 timeout = TSEC_READ_RETRY; 370 while ((TSEC_PHY_READ(sc, TSEC_REG_MIIMIND) & flags) && --timeout) 371 DELAY(TSEC_READ_DELAY); 372 373 return (timeout == 0); 374 } 375 376 377 static void 378 tsec_init_locked(struct tsec_softc *sc) 379 { 380 struct tsec_desc *tx_desc = sc->tsec_tx_vaddr; 381 struct tsec_desc *rx_desc = sc->tsec_rx_vaddr; 382 struct ifnet *ifp = sc->tsec_ifp; 383 uint32_t val, i; 384 int timeout; 385 386 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 387 return; 388 389 TSEC_GLOBAL_LOCK_ASSERT(sc); 390 tsec_stop(sc); 391 392 /* 393 * These steps are according to the MPC8555E PowerQUICCIII RM: 394 * 14.7 Initialization/Application Information 395 */ 396 397 /* Step 1: soft reset MAC */ 398 tsec_reset_mac(sc); 399 400 /* Step 2: Initialize MACCFG2 */ 401 TSEC_WRITE(sc, TSEC_REG_MACCFG2, 402 TSEC_MACCFG2_FULLDUPLEX | /* Full Duplex = 1 */ 403 TSEC_MACCFG2_PADCRC | /* PAD/CRC append */ 404 TSEC_MACCFG2_GMII | /* I/F Mode bit */ 405 TSEC_MACCFG2_PRECNT /* Preamble count = 7 */ 406 ); 407 408 /* Step 3: Initialize ECNTRL 409 * While the documentation states that R100M is ignored if RPM is 410 * not set, it does seem to be needed to get the orange boxes to 411 * work (which have a Marvell 88E1111 PHY). Go figure. 412 */ 413 414 /* 415 * XXX kludge - use circumstancial evidence to program ECNTRL 416 * correctly. Ideally we need some board information to guide 417 * us here. 418 */ 419 i = TSEC_READ(sc, TSEC_REG_ID2); 420 val = (i & 0xffff) 421 ? (TSEC_ECNTRL_TBIM | TSEC_ECNTRL_SGMIIM) /* Sumatra */ 422 : TSEC_ECNTRL_R100M; /* Orange + CDS */ 423 TSEC_WRITE(sc, TSEC_REG_ECNTRL, TSEC_ECNTRL_STEN | val); 424 425 /* Step 4: Initialize MAC station address */ 426 tsec_set_mac_address(sc); 427 428 /* 429 * Step 5: Assign a Physical address to the TBI so as to not conflict 430 * with the external PHY physical address 431 */ 432 TSEC_WRITE(sc, TSEC_REG_TBIPA, 5); 433 434 TSEC_PHY_LOCK(sc); 435 436 /* Step 6: Reset the management interface */ 437 TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_RESETMGMT); 438 439 /* Step 7: Setup the MII Mgmt clock speed */ 440 TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_CLKDIV28); 441 442 /* Step 8: Read MII Mgmt indicator register and check for Busy = 0 */ 443 timeout = tsec_mii_wait(sc, TSEC_MIIMIND_BUSY); 444 445 TSEC_PHY_UNLOCK(sc); 446 if (timeout) { 447 if_printf(ifp, "tsec_init_locked(): Mgmt busy timeout\n"); 448 return; 449 } 450 451 /* Step 9: Setup the MII Mgmt */ 452 mii_mediachg(sc->tsec_mii); 453 454 /* Step 10: Clear IEVENT register */ 455 TSEC_WRITE(sc, TSEC_REG_IEVENT, 0xffffffff); 456 457 /* Step 11: Enable interrupts */ 458 #ifdef DEVICE_POLLING 459 /* 460 * ...only if polling is not turned on. Disable interrupts explicitly 461 * if polling is enabled. 462 */ 463 if (ifp->if_capenable & IFCAP_POLLING ) 464 tsec_intrs_ctl(sc, 0); 465 else 466 #endif /* DEVICE_POLLING */ 467 tsec_intrs_ctl(sc, 1); 468 469 /* Step 12: Initialize IADDRn */ 470 TSEC_WRITE(sc, TSEC_REG_IADDR0, 0); 471 TSEC_WRITE(sc, TSEC_REG_IADDR1, 0); 472 TSEC_WRITE(sc, TSEC_REG_IADDR2, 0); 473 TSEC_WRITE(sc, TSEC_REG_IADDR3, 0); 474 TSEC_WRITE(sc, TSEC_REG_IADDR4, 0); 475 TSEC_WRITE(sc, TSEC_REG_IADDR5, 0); 476 TSEC_WRITE(sc, TSEC_REG_IADDR6, 0); 477 TSEC_WRITE(sc, TSEC_REG_IADDR7, 0); 478 479 /* Step 13: Initialize GADDRn */ 480 TSEC_WRITE(sc, TSEC_REG_GADDR0, 0); 481 TSEC_WRITE(sc, TSEC_REG_GADDR1, 0); 482 TSEC_WRITE(sc, TSEC_REG_GADDR2, 0); 483 TSEC_WRITE(sc, TSEC_REG_GADDR3, 0); 484 TSEC_WRITE(sc, TSEC_REG_GADDR4, 0); 485 TSEC_WRITE(sc, TSEC_REG_GADDR5, 0); 486 TSEC_WRITE(sc, TSEC_REG_GADDR6, 0); 487 TSEC_WRITE(sc, TSEC_REG_GADDR7, 0); 488 489 /* Step 14: Initialize RCTRL */ 490 TSEC_WRITE(sc, TSEC_REG_RCTRL, 0); 491 492 /* Step 15: Initialize DMACTRL */ 493 tsec_dma_ctl(sc, 1); 494 495 /* Step 16: Initialize FIFO_PAUSE_CTRL */ 496 TSEC_WRITE(sc, TSEC_REG_FIFO_PAUSE_CTRL, TSEC_FIFO_PAUSE_CTRL_EN); 497 498 /* 499 * Step 17: Initialize transmit/receive descriptor rings. 500 * Initialize TBASE and RBASE. 501 */ 502 TSEC_WRITE(sc, TSEC_REG_TBASE, sc->tsec_tx_raddr); 503 TSEC_WRITE(sc, TSEC_REG_RBASE, sc->tsec_rx_raddr); 504 505 for (i = 0; i < TSEC_TX_NUM_DESC; i++) { 506 tx_desc[i].bufptr = 0; 507 tx_desc[i].length = 0; 508 tx_desc[i].flags = ((i == TSEC_TX_NUM_DESC - 1) ? 509 TSEC_TXBD_W : 0); 510 } 511 bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap, 512 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 513 514 for (i = 0; i < TSEC_RX_NUM_DESC; i++) { 515 rx_desc[i].bufptr = sc->rx_data[i].paddr; 516 rx_desc[i].length = 0; 517 rx_desc[i].flags = TSEC_RXBD_E | TSEC_RXBD_I | 518 ((i == TSEC_RX_NUM_DESC - 1) ? TSEC_RXBD_W : 0); 519 } 520 bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap, 521 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 522 523 /* Step 18: Initialize the maximum receive buffer length */ 524 TSEC_WRITE(sc, TSEC_REG_MRBLR, MCLBYTES); 525 526 /* Step 19: Configure ethernet frame sizes */ 527 TSEC_WRITE(sc, TSEC_REG_MINFLR, TSEC_MIN_FRAME_SIZE); 528 tsec_set_mtu(sc, ifp->if_mtu); 529 530 /* Step 20: Enable Rx and RxBD sdata snooping */ 531 TSEC_WRITE(sc, TSEC_REG_ATTR, TSEC_ATTR_RDSEN | TSEC_ATTR_RBDSEN); 532 TSEC_WRITE(sc, TSEC_REG_ATTRELI, 0); 533 534 /* Step 21: Reset collision counters in hardware */ 535 TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0); 536 TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0); 537 TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0); 538 TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0); 539 TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0); 540 541 /* Step 22: Mask all CAM interrupts */ 542 TSEC_WRITE(sc, TSEC_REG_MON_CAM1, 0xffffffff); 543 TSEC_WRITE(sc, TSEC_REG_MON_CAM2, 0xffffffff); 544 545 /* Step 23: Enable Rx and Tx */ 546 val = TSEC_READ(sc, TSEC_REG_MACCFG1); 547 val |= (TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN); 548 TSEC_WRITE(sc, TSEC_REG_MACCFG1, val); 549 550 /* Step 24: Reset TSEC counters for Tx and Rx rings */ 551 TSEC_TX_RX_COUNTERS_INIT(sc); 552 553 /* Step 25: Setup TCP/IP Off-Load engine */ 554 if (sc->is_etsec) 555 tsec_offload_setup(sc); 556 557 /* Step 26: Setup multicast filters */ 558 tsec_setup_multicast(sc); 559 560 /* Step 27: Activate network interface */ 561 ifp->if_drv_flags |= IFF_DRV_RUNNING; 562 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 563 sc->tsec_if_flags = ifp->if_flags; 564 sc->tsec_watchdog = 0; 565 566 /* Schedule watchdog timeout */ 567 callout_reset(&sc->tsec_callout, hz, tsec_tick, sc); 568 } 569 570 static void 571 tsec_set_mac_address(struct tsec_softc *sc) 572 { 573 uint32_t macbuf[2] = { 0, 0 }; 574 char *macbufp, *curmac; 575 int i; 576 577 TSEC_GLOBAL_LOCK_ASSERT(sc); 578 579 KASSERT((ETHER_ADDR_LEN <= sizeof(macbuf)), 580 ("tsec_set_mac_address: (%d <= %zd", ETHER_ADDR_LEN, 581 sizeof(macbuf))); 582 583 macbufp = (char *)macbuf; 584 curmac = (char *)IF_LLADDR(sc->tsec_ifp); 585 586 /* Correct order of MAC address bytes */ 587 for (i = 1; i <= ETHER_ADDR_LEN; i++) 588 macbufp[ETHER_ADDR_LEN-i] = curmac[i-1]; 589 590 /* Initialize MAC station address MACSTNADDR2 and MACSTNADDR1 */ 591 TSEC_WRITE(sc, TSEC_REG_MACSTNADDR2, macbuf[1]); 592 TSEC_WRITE(sc, TSEC_REG_MACSTNADDR1, macbuf[0]); 593 } 594 595 /* 596 * DMA control function, if argument state is: 597 * 0 - DMA engine will be disabled 598 * 1 - DMA engine will be enabled 599 */ 600 static void 601 tsec_dma_ctl(struct tsec_softc *sc, int state) 602 { 603 device_t dev; 604 uint32_t dma_flags, timeout; 605 606 dev = sc->dev; 607 608 dma_flags = TSEC_READ(sc, TSEC_REG_DMACTRL); 609 610 switch (state) { 611 case 0: 612 /* Temporarily clear stop graceful stop bits. */ 613 tsec_dma_ctl(sc, 1000); 614 615 /* Set it again */ 616 dma_flags |= (TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS); 617 break; 618 case 1000: 619 case 1: 620 /* Set write with response (WWR), wait (WOP) and snoop bits */ 621 dma_flags |= (TSEC_DMACTRL_TDSEN | TSEC_DMACTRL_TBDSEN | 622 DMACTRL_WWR | DMACTRL_WOP); 623 624 /* Clear graceful stop bits */ 625 dma_flags &= ~(TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS); 626 break; 627 default: 628 device_printf(dev, "tsec_dma_ctl(): unknown state value: %d\n", 629 state); 630 } 631 632 TSEC_WRITE(sc, TSEC_REG_DMACTRL, dma_flags); 633 634 switch (state) { 635 case 0: 636 /* Wait for DMA stop */ 637 timeout = TSEC_READ_RETRY; 638 while (--timeout && (!(TSEC_READ(sc, TSEC_REG_IEVENT) & 639 (TSEC_IEVENT_GRSC | TSEC_IEVENT_GTSC)))) 640 DELAY(TSEC_READ_DELAY); 641 642 if (timeout == 0) 643 device_printf(dev, "tsec_dma_ctl(): timeout!\n"); 644 break; 645 case 1: 646 /* Restart transmission function */ 647 TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT); 648 } 649 } 650 651 /* 652 * Interrupts control function, if argument state is: 653 * 0 - all TSEC interrupts will be masked 654 * 1 - all TSEC interrupts will be unmasked 655 */ 656 static void 657 tsec_intrs_ctl(struct tsec_softc *sc, int state) 658 { 659 device_t dev; 660 661 dev = sc->dev; 662 663 switch (state) { 664 case 0: 665 TSEC_WRITE(sc, TSEC_REG_IMASK, 0); 666 break; 667 case 1: 668 TSEC_WRITE(sc, TSEC_REG_IMASK, TSEC_IMASK_BREN | 669 TSEC_IMASK_RXCEN | TSEC_IMASK_BSYEN | TSEC_IMASK_EBERREN | 670 TSEC_IMASK_BTEN | TSEC_IMASK_TXEEN | TSEC_IMASK_TXBEN | 671 TSEC_IMASK_TXFEN | TSEC_IMASK_XFUNEN | TSEC_IMASK_RXFEN); 672 break; 673 default: 674 device_printf(dev, "tsec_intrs_ctl(): unknown state value: %d\n", 675 state); 676 } 677 } 678 679 static void 680 tsec_reset_mac(struct tsec_softc *sc) 681 { 682 uint32_t maccfg1_flags; 683 684 /* Set soft reset bit */ 685 maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1); 686 maccfg1_flags |= TSEC_MACCFG1_SOFT_RESET; 687 TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags); 688 689 /* Clear soft reset bit */ 690 maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1); 691 maccfg1_flags &= ~TSEC_MACCFG1_SOFT_RESET; 692 TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags); 693 } 694 695 static void 696 tsec_watchdog(struct tsec_softc *sc) 697 { 698 struct ifnet *ifp; 699 700 TSEC_GLOBAL_LOCK_ASSERT(sc); 701 702 if (sc->tsec_watchdog == 0 || --sc->tsec_watchdog > 0) 703 return; 704 705 ifp = sc->tsec_ifp; 706 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 707 if_printf(ifp, "watchdog timeout\n"); 708 709 tsec_stop(sc); 710 tsec_init_locked(sc); 711 } 712 713 static void 714 tsec_start(struct ifnet *ifp) 715 { 716 struct tsec_softc *sc = ifp->if_softc; 717 718 TSEC_TRANSMIT_LOCK(sc); 719 tsec_start_locked(ifp); 720 TSEC_TRANSMIT_UNLOCK(sc); 721 } 722 723 static void 724 tsec_start_locked(struct ifnet *ifp) 725 { 726 struct tsec_softc *sc; 727 struct mbuf *m0; 728 struct tsec_tx_fcb *tx_fcb; 729 int csum_flags; 730 int start_tx; 731 uint16_t fcb_flags; 732 733 sc = ifp->if_softc; 734 start_tx = 0; 735 736 TSEC_TRANSMIT_LOCK_ASSERT(sc); 737 738 if (sc->tsec_link == 0) 739 return; 740 741 bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap, 742 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 743 744 for (;;) { 745 746 if (TSEC_FREE_TX_DESC(sc) < TSEC_TX_MAX_DMA_SEGS) { 747 /* No free descriptors */ 748 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 749 break; 750 } 751 752 /* Get packet from the queue */ 753 IFQ_DRV_DEQUEUE(&ifp->if_snd, m0); 754 if (m0 == NULL) 755 break; 756 757 /* Insert TCP/IP Off-load frame control block */ 758 fcb_flags = 0; 759 csum_flags = m0->m_pkthdr.csum_flags; 760 if (csum_flags) { 761 M_PREPEND(m0, sizeof(struct tsec_tx_fcb), M_NOWAIT); 762 if (m0 == NULL) 763 break; 764 765 if (csum_flags & CSUM_IP) 766 fcb_flags |= TSEC_TX_FCB_IP4 | 767 TSEC_TX_FCB_CSUM_IP; 768 769 if (csum_flags & CSUM_TCP) 770 fcb_flags |= TSEC_TX_FCB_TCP | 771 TSEC_TX_FCB_CSUM_TCP_UDP; 772 773 if (csum_flags & CSUM_UDP) 774 fcb_flags |= TSEC_TX_FCB_UDP | 775 TSEC_TX_FCB_CSUM_TCP_UDP; 776 777 tx_fcb = mtod(m0, struct tsec_tx_fcb *); 778 tx_fcb->flags = fcb_flags; 779 tx_fcb->l3_offset = ETHER_HDR_LEN; 780 tx_fcb->l4_offset = sizeof(struct ip); 781 } 782 783 tsec_encap(ifp, sc, m0, fcb_flags, &start_tx); 784 } 785 bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap, 786 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 787 788 if (start_tx) { 789 /* Enable transmitter and watchdog timer */ 790 TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT); 791 sc->tsec_watchdog = 5; 792 } 793 } 794 795 static void 796 tsec_encap(struct ifnet *ifp, struct tsec_softc *sc, struct mbuf *m0, 797 uint16_t fcb_flags, int *start_tx) 798 { 799 bus_dma_segment_t segs[TSEC_TX_MAX_DMA_SEGS]; 800 int error, i, nsegs; 801 struct tsec_bufmap *tx_bufmap; 802 uint32_t tx_idx; 803 uint16_t flags; 804 805 TSEC_TRANSMIT_LOCK_ASSERT(sc); 806 807 tx_idx = sc->tx_idx_head; 808 tx_bufmap = &sc->tx_bufmap[tx_idx]; 809 810 /* Create mapping in DMA memory */ 811 error = bus_dmamap_load_mbuf_sg(sc->tsec_tx_mtag, tx_bufmap->map, m0, 812 segs, &nsegs, BUS_DMA_NOWAIT); 813 if (error == EFBIG) { 814 /* Too many segments! Defrag and try again. */ 815 struct mbuf *m = m_defrag(m0, M_NOWAIT); 816 817 if (m == NULL) { 818 m_freem(m0); 819 return; 820 } 821 m0 = m; 822 error = bus_dmamap_load_mbuf_sg(sc->tsec_tx_mtag, 823 tx_bufmap->map, m0, segs, &nsegs, BUS_DMA_NOWAIT); 824 } 825 if (error != 0) { 826 /* Give up. */ 827 m_freem(m0); 828 return; 829 } 830 831 bus_dmamap_sync(sc->tsec_tx_mtag, tx_bufmap->map, 832 BUS_DMASYNC_PREWRITE); 833 tx_bufmap->mbuf = m0; 834 835 /* 836 * Fill in the TX descriptors back to front so that READY bit in first 837 * descriptor is set last. 838 */ 839 tx_idx = (tx_idx + (uint32_t)nsegs) & (TSEC_TX_NUM_DESC - 1); 840 sc->tx_idx_head = tx_idx; 841 flags = TSEC_TXBD_L | TSEC_TXBD_I | TSEC_TXBD_R | TSEC_TXBD_TC; 842 for (i = nsegs - 1; i >= 0; i--) { 843 struct tsec_desc *tx_desc; 844 845 tx_idx = (tx_idx - 1) & (TSEC_TX_NUM_DESC - 1); 846 tx_desc = &sc->tsec_tx_vaddr[tx_idx]; 847 tx_desc->length = segs[i].ds_len; 848 tx_desc->bufptr = segs[i].ds_addr; 849 850 if (i == 0) { 851 wmb(); 852 853 if (fcb_flags != 0) 854 flags |= TSEC_TXBD_TOE; 855 } 856 857 /* 858 * Set flags: 859 * - wrap 860 * - checksum 861 * - ready to send 862 * - transmit the CRC sequence after the last data byte 863 * - interrupt after the last buffer 864 */ 865 tx_desc->flags = (tx_idx == (TSEC_TX_NUM_DESC - 1) ? 866 TSEC_TXBD_W : 0) | flags; 867 868 flags &= ~(TSEC_TXBD_L | TSEC_TXBD_I); 869 } 870 871 BPF_MTAP(ifp, m0); 872 *start_tx = 1; 873 } 874 875 static void 876 tsec_setfilter(struct tsec_softc *sc) 877 { 878 struct ifnet *ifp; 879 uint32_t flags; 880 881 ifp = sc->tsec_ifp; 882 flags = TSEC_READ(sc, TSEC_REG_RCTRL); 883 884 /* Promiscuous mode */ 885 if (ifp->if_flags & IFF_PROMISC) 886 flags |= TSEC_RCTRL_PROM; 887 else 888 flags &= ~TSEC_RCTRL_PROM; 889 890 TSEC_WRITE(sc, TSEC_REG_RCTRL, flags); 891 } 892 893 #ifdef DEVICE_POLLING 894 static poll_handler_t tsec_poll; 895 896 static int 897 tsec_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 898 { 899 uint32_t ie; 900 struct tsec_softc *sc = ifp->if_softc; 901 int rx_npkts; 902 903 rx_npkts = 0; 904 905 TSEC_GLOBAL_LOCK(sc); 906 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 907 TSEC_GLOBAL_UNLOCK(sc); 908 return (rx_npkts); 909 } 910 911 if (cmd == POLL_AND_CHECK_STATUS) { 912 tsec_error_intr_locked(sc, count); 913 914 /* Clear all events reported */ 915 ie = TSEC_READ(sc, TSEC_REG_IEVENT); 916 TSEC_WRITE(sc, TSEC_REG_IEVENT, ie); 917 } 918 919 tsec_transmit_intr_locked(sc); 920 921 TSEC_GLOBAL_TO_RECEIVE_LOCK(sc); 922 923 rx_npkts = tsec_receive_intr_locked(sc, count); 924 925 TSEC_RECEIVE_UNLOCK(sc); 926 927 return (rx_npkts); 928 } 929 #endif /* DEVICE_POLLING */ 930 931 static int 932 tsec_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 933 { 934 struct tsec_softc *sc = ifp->if_softc; 935 struct ifreq *ifr = (struct ifreq *)data; 936 int mask, error = 0; 937 938 switch (command) { 939 case SIOCSIFMTU: 940 TSEC_GLOBAL_LOCK(sc); 941 if (tsec_set_mtu(sc, ifr->ifr_mtu)) 942 ifp->if_mtu = ifr->ifr_mtu; 943 else 944 error = EINVAL; 945 TSEC_GLOBAL_UNLOCK(sc); 946 break; 947 case SIOCSIFFLAGS: 948 TSEC_GLOBAL_LOCK(sc); 949 if (ifp->if_flags & IFF_UP) { 950 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 951 if ((sc->tsec_if_flags ^ ifp->if_flags) & 952 IFF_PROMISC) 953 tsec_setfilter(sc); 954 955 if ((sc->tsec_if_flags ^ ifp->if_flags) & 956 IFF_ALLMULTI) 957 tsec_setup_multicast(sc); 958 } else 959 tsec_init_locked(sc); 960 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) 961 tsec_stop(sc); 962 963 sc->tsec_if_flags = ifp->if_flags; 964 TSEC_GLOBAL_UNLOCK(sc); 965 break; 966 case SIOCADDMULTI: 967 case SIOCDELMULTI: 968 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 969 TSEC_GLOBAL_LOCK(sc); 970 tsec_setup_multicast(sc); 971 TSEC_GLOBAL_UNLOCK(sc); 972 } 973 case SIOCGIFMEDIA: 974 case SIOCSIFMEDIA: 975 error = ifmedia_ioctl(ifp, ifr, &sc->tsec_mii->mii_media, 976 command); 977 break; 978 case SIOCSIFCAP: 979 mask = ifp->if_capenable ^ ifr->ifr_reqcap; 980 if ((mask & IFCAP_HWCSUM) && sc->is_etsec) { 981 TSEC_GLOBAL_LOCK(sc); 982 ifp->if_capenable &= ~IFCAP_HWCSUM; 983 ifp->if_capenable |= IFCAP_HWCSUM & ifr->ifr_reqcap; 984 tsec_offload_setup(sc); 985 TSEC_GLOBAL_UNLOCK(sc); 986 } 987 #ifdef DEVICE_POLLING 988 if (mask & IFCAP_POLLING) { 989 if (ifr->ifr_reqcap & IFCAP_POLLING) { 990 error = ether_poll_register(tsec_poll, ifp); 991 if (error) 992 return (error); 993 994 TSEC_GLOBAL_LOCK(sc); 995 /* Disable interrupts */ 996 tsec_intrs_ctl(sc, 0); 997 ifp->if_capenable |= IFCAP_POLLING; 998 TSEC_GLOBAL_UNLOCK(sc); 999 } else { 1000 error = ether_poll_deregister(ifp); 1001 TSEC_GLOBAL_LOCK(sc); 1002 /* Enable interrupts */ 1003 tsec_intrs_ctl(sc, 1); 1004 ifp->if_capenable &= ~IFCAP_POLLING; 1005 TSEC_GLOBAL_UNLOCK(sc); 1006 } 1007 } 1008 #endif 1009 break; 1010 1011 default: 1012 error = ether_ioctl(ifp, command, data); 1013 } 1014 1015 /* Flush buffers if not empty */ 1016 if (ifp->if_flags & IFF_UP) 1017 tsec_start(ifp); 1018 return (error); 1019 } 1020 1021 static int 1022 tsec_ifmedia_upd(struct ifnet *ifp) 1023 { 1024 struct tsec_softc *sc = ifp->if_softc; 1025 struct mii_data *mii; 1026 1027 TSEC_TRANSMIT_LOCK(sc); 1028 1029 mii = sc->tsec_mii; 1030 mii_mediachg(mii); 1031 1032 TSEC_TRANSMIT_UNLOCK(sc); 1033 return (0); 1034 } 1035 1036 static void 1037 tsec_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 1038 { 1039 struct tsec_softc *sc = ifp->if_softc; 1040 struct mii_data *mii; 1041 1042 TSEC_TRANSMIT_LOCK(sc); 1043 1044 mii = sc->tsec_mii; 1045 mii_pollstat(mii); 1046 1047 ifmr->ifm_active = mii->mii_media_active; 1048 ifmr->ifm_status = mii->mii_media_status; 1049 1050 TSEC_TRANSMIT_UNLOCK(sc); 1051 } 1052 1053 static int 1054 tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map, struct mbuf **mbufp, 1055 uint32_t *paddr) 1056 { 1057 struct mbuf *new_mbuf; 1058 bus_dma_segment_t seg[1]; 1059 int error, nsegs; 1060 1061 KASSERT(mbufp != NULL, ("NULL mbuf pointer!")); 1062 1063 new_mbuf = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MCLBYTES); 1064 if (new_mbuf == NULL) 1065 return (ENOBUFS); 1066 new_mbuf->m_len = new_mbuf->m_pkthdr.len = new_mbuf->m_ext.ext_size; 1067 1068 if (*mbufp) { 1069 bus_dmamap_sync(tag, map, BUS_DMASYNC_POSTREAD); 1070 bus_dmamap_unload(tag, map); 1071 } 1072 1073 error = bus_dmamap_load_mbuf_sg(tag, map, new_mbuf, seg, &nsegs, 1074 BUS_DMA_NOWAIT); 1075 KASSERT(nsegs == 1, ("Too many segments returned!")); 1076 if (nsegs != 1 || error) 1077 panic("tsec_new_rxbuf(): nsegs(%d), error(%d)", nsegs, error); 1078 1079 #if 0 1080 if (error) { 1081 printf("tsec: bus_dmamap_load_mbuf_sg() returned: %d!\n", 1082 error); 1083 m_freem(new_mbuf); 1084 return (ENOBUFS); 1085 } 1086 #endif 1087 1088 #if 0 1089 KASSERT(((seg->ds_addr) & (TSEC_RXBUFFER_ALIGNMENT-1)) == 0, 1090 ("Wrong alignment of RX buffer!")); 1091 #endif 1092 bus_dmamap_sync(tag, map, BUS_DMASYNC_PREREAD); 1093 1094 (*mbufp) = new_mbuf; 1095 (*paddr) = seg->ds_addr; 1096 return (0); 1097 } 1098 1099 static void 1100 tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1101 { 1102 u_int32_t *paddr; 1103 1104 KASSERT(nseg == 1, ("wrong number of segments, should be 1")); 1105 paddr = arg; 1106 *paddr = segs->ds_addr; 1107 } 1108 1109 static int 1110 tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag, bus_dmamap_t *dmap, 1111 bus_size_t dsize, void **vaddr, void *raddr, const char *dname) 1112 { 1113 int error; 1114 1115 /* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */ 1116 error = bus_dma_tag_create(NULL, /* parent */ 1117 PAGE_SIZE, 0, /* alignment, boundary */ 1118 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1119 BUS_SPACE_MAXADDR, /* highaddr */ 1120 NULL, NULL, /* filtfunc, filtfuncarg */ 1121 dsize, 1, /* maxsize, nsegments */ 1122 dsize, 0, /* maxsegsz, flags */ 1123 NULL, NULL, /* lockfunc, lockfuncarg */ 1124 dtag); /* dmat */ 1125 1126 if (error) { 1127 device_printf(dev, "failed to allocate busdma %s tag\n", 1128 dname); 1129 (*vaddr) = NULL; 1130 return (ENXIO); 1131 } 1132 1133 error = bus_dmamem_alloc(*dtag, vaddr, BUS_DMA_NOWAIT | BUS_DMA_ZERO, 1134 dmap); 1135 if (error) { 1136 device_printf(dev, "failed to allocate %s DMA safe memory\n", 1137 dname); 1138 bus_dma_tag_destroy(*dtag); 1139 (*vaddr) = NULL; 1140 return (ENXIO); 1141 } 1142 1143 error = bus_dmamap_load(*dtag, *dmap, *vaddr, dsize, 1144 tsec_map_dma_addr, raddr, BUS_DMA_NOWAIT); 1145 if (error) { 1146 device_printf(dev, "cannot get address of the %s " 1147 "descriptors\n", dname); 1148 bus_dmamem_free(*dtag, *vaddr, *dmap); 1149 bus_dma_tag_destroy(*dtag); 1150 (*vaddr) = NULL; 1151 return (ENXIO); 1152 } 1153 1154 return (0); 1155 } 1156 1157 static void 1158 tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr) 1159 { 1160 1161 if (vaddr == NULL) 1162 return; 1163 1164 /* Unmap descriptors from DMA memory */ 1165 bus_dmamap_sync(dtag, dmap, BUS_DMASYNC_POSTREAD | 1166 BUS_DMASYNC_POSTWRITE); 1167 bus_dmamap_unload(dtag, dmap); 1168 1169 /* Free descriptors memory */ 1170 bus_dmamem_free(dtag, vaddr, dmap); 1171 1172 /* Destroy descriptors tag */ 1173 bus_dma_tag_destroy(dtag); 1174 } 1175 1176 static void 1177 tsec_free_dma(struct tsec_softc *sc) 1178 { 1179 int i; 1180 1181 /* Free TX maps */ 1182 for (i = 0; i < TSEC_TX_NUM_DESC; i++) 1183 if (sc->tx_bufmap[i].map_initialized) 1184 bus_dmamap_destroy(sc->tsec_tx_mtag, 1185 sc->tx_bufmap[i].map); 1186 /* Destroy tag for TX mbufs */ 1187 bus_dma_tag_destroy(sc->tsec_tx_mtag); 1188 1189 /* Free RX mbufs and maps */ 1190 for (i = 0; i < TSEC_RX_NUM_DESC; i++) { 1191 if (sc->rx_data[i].mbuf) { 1192 /* Unload buffer from DMA */ 1193 bus_dmamap_sync(sc->tsec_rx_mtag, sc->rx_data[i].map, 1194 BUS_DMASYNC_POSTREAD); 1195 bus_dmamap_unload(sc->tsec_rx_mtag, 1196 sc->rx_data[i].map); 1197 1198 /* Free buffer */ 1199 m_freem(sc->rx_data[i].mbuf); 1200 } 1201 /* Destroy map for this buffer */ 1202 if (sc->rx_data[i].map != NULL) 1203 bus_dmamap_destroy(sc->tsec_rx_mtag, 1204 sc->rx_data[i].map); 1205 } 1206 /* Destroy tag for RX mbufs */ 1207 bus_dma_tag_destroy(sc->tsec_rx_mtag); 1208 1209 /* Unload TX/RX descriptors */ 1210 tsec_free_dma_desc(sc->tsec_tx_dtag, sc->tsec_tx_dmap, 1211 sc->tsec_tx_vaddr); 1212 tsec_free_dma_desc(sc->tsec_rx_dtag, sc->tsec_rx_dmap, 1213 sc->tsec_rx_vaddr); 1214 } 1215 1216 static void 1217 tsec_stop(struct tsec_softc *sc) 1218 { 1219 struct ifnet *ifp; 1220 uint32_t tmpval; 1221 1222 TSEC_GLOBAL_LOCK_ASSERT(sc); 1223 1224 ifp = sc->tsec_ifp; 1225 1226 /* Disable interface and watchdog timer */ 1227 callout_stop(&sc->tsec_callout); 1228 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 1229 sc->tsec_watchdog = 0; 1230 1231 /* Disable all interrupts and stop DMA */ 1232 tsec_intrs_ctl(sc, 0); 1233 tsec_dma_ctl(sc, 0); 1234 1235 /* Remove pending data from TX queue */ 1236 while (sc->tx_idx_tail != sc->tx_idx_head) { 1237 bus_dmamap_sync(sc->tsec_tx_mtag, 1238 sc->tx_bufmap[sc->tx_idx_tail].map, 1239 BUS_DMASYNC_POSTWRITE); 1240 bus_dmamap_unload(sc->tsec_tx_mtag, 1241 sc->tx_bufmap[sc->tx_idx_tail].map); 1242 m_freem(sc->tx_bufmap[sc->tx_idx_tail].mbuf); 1243 sc->tx_idx_tail = (sc->tx_idx_tail + 1) 1244 & (TSEC_TX_NUM_DESC - 1); 1245 } 1246 1247 /* Disable RX and TX */ 1248 tmpval = TSEC_READ(sc, TSEC_REG_MACCFG1); 1249 tmpval &= ~(TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN); 1250 TSEC_WRITE(sc, TSEC_REG_MACCFG1, tmpval); 1251 DELAY(10); 1252 } 1253 1254 static void 1255 tsec_tick(void *arg) 1256 { 1257 struct tsec_softc *sc = arg; 1258 struct ifnet *ifp; 1259 int link; 1260 1261 TSEC_GLOBAL_LOCK(sc); 1262 1263 tsec_watchdog(sc); 1264 1265 ifp = sc->tsec_ifp; 1266 link = sc->tsec_link; 1267 1268 mii_tick(sc->tsec_mii); 1269 1270 if (link == 0 && sc->tsec_link == 1 && 1271 (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))) 1272 tsec_start_locked(ifp); 1273 1274 /* Schedule another timeout one second from now. */ 1275 callout_reset(&sc->tsec_callout, hz, tsec_tick, sc); 1276 1277 TSEC_GLOBAL_UNLOCK(sc); 1278 } 1279 1280 /* 1281 * This is the core RX routine. It replenishes mbufs in the descriptor and 1282 * sends data which have been dma'ed into host memory to upper layer. 1283 * 1284 * Loops at most count times if count is > 0, or until done if count < 0. 1285 */ 1286 static int 1287 tsec_receive_intr_locked(struct tsec_softc *sc, int count) 1288 { 1289 struct tsec_desc *rx_desc; 1290 struct ifnet *ifp; 1291 struct rx_data_type *rx_data; 1292 struct mbuf *m; 1293 uint32_t i; 1294 int c, rx_npkts; 1295 uint16_t flags; 1296 1297 TSEC_RECEIVE_LOCK_ASSERT(sc); 1298 1299 ifp = sc->tsec_ifp; 1300 rx_data = sc->rx_data; 1301 rx_npkts = 0; 1302 1303 bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap, 1304 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1305 1306 for (c = 0; ; c++) { 1307 if (count >= 0 && count-- == 0) 1308 break; 1309 1310 rx_desc = TSEC_GET_CUR_RX_DESC(sc); 1311 flags = rx_desc->flags; 1312 1313 /* Check if there is anything to receive */ 1314 if ((flags & TSEC_RXBD_E) || (c >= TSEC_RX_NUM_DESC)) { 1315 /* 1316 * Avoid generating another interrupt 1317 */ 1318 if (flags & TSEC_RXBD_E) 1319 TSEC_WRITE(sc, TSEC_REG_IEVENT, 1320 TSEC_IEVENT_RXB | TSEC_IEVENT_RXF); 1321 /* 1322 * We didn't consume current descriptor and have to 1323 * return it to the queue 1324 */ 1325 TSEC_BACK_CUR_RX_DESC(sc); 1326 break; 1327 } 1328 1329 if (flags & (TSEC_RXBD_LG | TSEC_RXBD_SH | TSEC_RXBD_NO | 1330 TSEC_RXBD_CR | TSEC_RXBD_OV | TSEC_RXBD_TR)) { 1331 1332 rx_desc->length = 0; 1333 rx_desc->flags = (rx_desc->flags & 1334 ~TSEC_RXBD_ZEROONINIT) | TSEC_RXBD_E | TSEC_RXBD_I; 1335 1336 if (sc->frame != NULL) { 1337 m_free(sc->frame); 1338 sc->frame = NULL; 1339 } 1340 1341 continue; 1342 } 1343 1344 /* Ok... process frame */ 1345 i = TSEC_GET_CUR_RX_DESC_CNT(sc); 1346 m = rx_data[i].mbuf; 1347 m->m_len = rx_desc->length; 1348 1349 if (sc->frame != NULL) { 1350 if ((flags & TSEC_RXBD_L) != 0) 1351 m->m_len -= m_length(sc->frame, NULL); 1352 1353 m->m_flags &= ~M_PKTHDR; 1354 m_cat(sc->frame, m); 1355 } else { 1356 sc->frame = m; 1357 } 1358 1359 m = NULL; 1360 1361 if ((flags & TSEC_RXBD_L) != 0) { 1362 m = sc->frame; 1363 sc->frame = NULL; 1364 } 1365 1366 if (tsec_new_rxbuf(sc->tsec_rx_mtag, rx_data[i].map, 1367 &rx_data[i].mbuf, &rx_data[i].paddr)) { 1368 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 1369 /* 1370 * We ran out of mbufs; didn't consume current 1371 * descriptor and have to return it to the queue. 1372 */ 1373 TSEC_BACK_CUR_RX_DESC(sc); 1374 break; 1375 } 1376 1377 /* Attach new buffer to descriptor and clear flags */ 1378 rx_desc->bufptr = rx_data[i].paddr; 1379 rx_desc->length = 0; 1380 rx_desc->flags = (rx_desc->flags & ~TSEC_RXBD_ZEROONINIT) | 1381 TSEC_RXBD_E | TSEC_RXBD_I; 1382 1383 if (m != NULL) { 1384 m->m_pkthdr.rcvif = ifp; 1385 1386 m_fixhdr(m); 1387 m_adj(m, -ETHER_CRC_LEN); 1388 1389 if (sc->is_etsec) 1390 tsec_offload_process_frame(sc, m); 1391 1392 TSEC_RECEIVE_UNLOCK(sc); 1393 (*ifp->if_input)(ifp, m); 1394 TSEC_RECEIVE_LOCK(sc); 1395 rx_npkts++; 1396 } 1397 } 1398 1399 bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap, 1400 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1401 1402 /* 1403 * Make sure TSEC receiver is not halted. 1404 * 1405 * Various conditions can stop the TSEC receiver, but not all are 1406 * signaled and handled by error interrupt, so make sure the receiver 1407 * is running. Writing to TSEC_REG_RSTAT restarts the receiver when 1408 * halted, and is harmless if already running. 1409 */ 1410 TSEC_WRITE(sc, TSEC_REG_RSTAT, TSEC_RSTAT_QHLT); 1411 return (rx_npkts); 1412 } 1413 1414 void 1415 tsec_receive_intr(void *arg) 1416 { 1417 struct tsec_softc *sc = arg; 1418 1419 TSEC_RECEIVE_LOCK(sc); 1420 1421 #ifdef DEVICE_POLLING 1422 if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) { 1423 TSEC_RECEIVE_UNLOCK(sc); 1424 return; 1425 } 1426 #endif 1427 1428 /* Confirm the interrupt was received by driver */ 1429 TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXB | TSEC_IEVENT_RXF); 1430 tsec_receive_intr_locked(sc, -1); 1431 1432 TSEC_RECEIVE_UNLOCK(sc); 1433 } 1434 1435 static void 1436 tsec_transmit_intr_locked(struct tsec_softc *sc) 1437 { 1438 struct ifnet *ifp; 1439 uint32_t tx_idx; 1440 1441 TSEC_TRANSMIT_LOCK_ASSERT(sc); 1442 1443 ifp = sc->tsec_ifp; 1444 1445 /* Update collision statistics */ 1446 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, TSEC_READ(sc, TSEC_REG_MON_TNCL)); 1447 1448 /* Reset collision counters in hardware */ 1449 TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0); 1450 TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0); 1451 TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0); 1452 TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0); 1453 TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0); 1454 1455 bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap, 1456 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1457 1458 tx_idx = sc->tx_idx_tail; 1459 while (tx_idx != sc->tx_idx_head) { 1460 struct tsec_desc *tx_desc; 1461 struct tsec_bufmap *tx_bufmap; 1462 1463 tx_desc = &sc->tsec_tx_vaddr[tx_idx]; 1464 if (tx_desc->flags & TSEC_TXBD_R) { 1465 break; 1466 } 1467 1468 tx_bufmap = &sc->tx_bufmap[tx_idx]; 1469 tx_idx = (tx_idx + 1) & (TSEC_TX_NUM_DESC - 1); 1470 if (tx_bufmap->mbuf == NULL) 1471 continue; 1472 1473 /* 1474 * This is the last buf in this packet, so unmap and free it. 1475 */ 1476 bus_dmamap_sync(sc->tsec_tx_mtag, tx_bufmap->map, 1477 BUS_DMASYNC_POSTWRITE); 1478 bus_dmamap_unload(sc->tsec_tx_mtag, tx_bufmap->map); 1479 m_freem(tx_bufmap->mbuf); 1480 tx_bufmap->mbuf = NULL; 1481 1482 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 1483 } 1484 sc->tx_idx_tail = tx_idx; 1485 bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap, 1486 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1487 1488 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1489 tsec_start_locked(ifp); 1490 1491 if (sc->tx_idx_tail == sc->tx_idx_head) 1492 sc->tsec_watchdog = 0; 1493 } 1494 1495 void 1496 tsec_transmit_intr(void *arg) 1497 { 1498 struct tsec_softc *sc = arg; 1499 1500 TSEC_TRANSMIT_LOCK(sc); 1501 1502 #ifdef DEVICE_POLLING 1503 if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) { 1504 TSEC_TRANSMIT_UNLOCK(sc); 1505 return; 1506 } 1507 #endif 1508 /* Confirm the interrupt was received by driver */ 1509 TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_TXB | TSEC_IEVENT_TXF); 1510 tsec_transmit_intr_locked(sc); 1511 1512 TSEC_TRANSMIT_UNLOCK(sc); 1513 } 1514 1515 static void 1516 tsec_error_intr_locked(struct tsec_softc *sc, int count) 1517 { 1518 struct ifnet *ifp; 1519 uint32_t eflags; 1520 1521 TSEC_GLOBAL_LOCK_ASSERT(sc); 1522 1523 ifp = sc->tsec_ifp; 1524 1525 eflags = TSEC_READ(sc, TSEC_REG_IEVENT); 1526 1527 /* Clear events bits in hardware */ 1528 TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXC | TSEC_IEVENT_BSY | 1529 TSEC_IEVENT_EBERR | TSEC_IEVENT_MSRO | TSEC_IEVENT_BABT | 1530 TSEC_IEVENT_TXC | TSEC_IEVENT_TXE | TSEC_IEVENT_LC | 1531 TSEC_IEVENT_CRL | TSEC_IEVENT_XFUN); 1532 1533 /* Check transmitter errors */ 1534 if (eflags & TSEC_IEVENT_TXE) { 1535 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1536 1537 if (eflags & TSEC_IEVENT_LC) 1538 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1); 1539 1540 TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT); 1541 } 1542 1543 /* Check for discarded frame due to a lack of buffers */ 1544 if (eflags & TSEC_IEVENT_BSY) { 1545 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 1546 } 1547 1548 if (ifp->if_flags & IFF_DEBUG) 1549 if_printf(ifp, "tsec_error_intr(): event flags: 0x%x\n", 1550 eflags); 1551 1552 if (eflags & TSEC_IEVENT_EBERR) { 1553 if_printf(ifp, "System bus error occurred during" 1554 "DMA transaction (flags: 0x%x)\n", eflags); 1555 tsec_init_locked(sc); 1556 } 1557 1558 if (eflags & TSEC_IEVENT_BABT) 1559 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1560 1561 if (eflags & TSEC_IEVENT_BABR) 1562 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1563 } 1564 1565 void 1566 tsec_error_intr(void *arg) 1567 { 1568 struct tsec_softc *sc = arg; 1569 1570 TSEC_GLOBAL_LOCK(sc); 1571 tsec_error_intr_locked(sc, -1); 1572 TSEC_GLOBAL_UNLOCK(sc); 1573 } 1574 1575 int 1576 tsec_miibus_readreg(device_t dev, int phy, int reg) 1577 { 1578 struct tsec_softc *sc; 1579 int timeout; 1580 int rv; 1581 1582 sc = device_get_softc(dev); 1583 1584 TSEC_PHY_LOCK(); 1585 TSEC_PHY_WRITE(sc, TSEC_REG_MIIMADD, (phy << 8) | reg); 1586 TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCOM, 0); 1587 TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCOM, TSEC_MIIMCOM_READCYCLE); 1588 1589 timeout = tsec_mii_wait(sc, TSEC_MIIMIND_NOTVALID | TSEC_MIIMIND_BUSY); 1590 rv = TSEC_PHY_READ(sc, TSEC_REG_MIIMSTAT); 1591 TSEC_PHY_UNLOCK(); 1592 1593 if (timeout) 1594 device_printf(dev, "Timeout while reading from PHY!\n"); 1595 1596 return (rv); 1597 } 1598 1599 int 1600 tsec_miibus_writereg(device_t dev, int phy, int reg, int value) 1601 { 1602 struct tsec_softc *sc; 1603 int timeout; 1604 1605 sc = device_get_softc(dev); 1606 1607 TSEC_PHY_LOCK(); 1608 TSEC_PHY_WRITE(sc, TSEC_REG_MIIMADD, (phy << 8) | reg); 1609 TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCON, value); 1610 timeout = tsec_mii_wait(sc, TSEC_MIIMIND_BUSY); 1611 TSEC_PHY_UNLOCK(); 1612 1613 if (timeout) 1614 device_printf(dev, "Timeout while writing to PHY!\n"); 1615 1616 return (0); 1617 } 1618 1619 void 1620 tsec_miibus_statchg(device_t dev) 1621 { 1622 struct tsec_softc *sc; 1623 struct mii_data *mii; 1624 uint32_t ecntrl, id, tmp; 1625 int link; 1626 1627 sc = device_get_softc(dev); 1628 mii = sc->tsec_mii; 1629 link = ((mii->mii_media_status & IFM_ACTIVE) ? 1 : 0); 1630 1631 tmp = TSEC_READ(sc, TSEC_REG_MACCFG2) & ~TSEC_MACCFG2_IF; 1632 1633 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) 1634 tmp |= TSEC_MACCFG2_FULLDUPLEX; 1635 else 1636 tmp &= ~TSEC_MACCFG2_FULLDUPLEX; 1637 1638 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1639 case IFM_1000_T: 1640 case IFM_1000_SX: 1641 tmp |= TSEC_MACCFG2_GMII; 1642 sc->tsec_link = link; 1643 break; 1644 case IFM_100_TX: 1645 case IFM_10_T: 1646 tmp |= TSEC_MACCFG2_MII; 1647 sc->tsec_link = link; 1648 break; 1649 case IFM_NONE: 1650 if (link) 1651 device_printf(dev, "No speed selected but link " 1652 "active!\n"); 1653 sc->tsec_link = 0; 1654 return; 1655 default: 1656 sc->tsec_link = 0; 1657 device_printf(dev, "Unknown speed (%d), link %s!\n", 1658 IFM_SUBTYPE(mii->mii_media_active), 1659 ((link) ? "up" : "down")); 1660 return; 1661 } 1662 TSEC_WRITE(sc, TSEC_REG_MACCFG2, tmp); 1663 1664 /* XXX kludge - use circumstantial evidence for reduced mode. */ 1665 id = TSEC_READ(sc, TSEC_REG_ID2); 1666 if (id & 0xffff) { 1667 ecntrl = TSEC_READ(sc, TSEC_REG_ECNTRL) & ~TSEC_ECNTRL_R100M; 1668 ecntrl |= (tmp & TSEC_MACCFG2_MII) ? TSEC_ECNTRL_R100M : 0; 1669 TSEC_WRITE(sc, TSEC_REG_ECNTRL, ecntrl); 1670 } 1671 } 1672 1673 static void 1674 tsec_add_sysctls(struct tsec_softc *sc) 1675 { 1676 struct sysctl_ctx_list *ctx; 1677 struct sysctl_oid_list *children; 1678 struct sysctl_oid *tree; 1679 1680 ctx = device_get_sysctl_ctx(sc->dev); 1681 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 1682 tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "int_coal", 1683 CTLFLAG_RD, 0, "TSEC Interrupts coalescing"); 1684 children = SYSCTL_CHILDREN(tree); 1685 1686 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_time", 1687 CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_RX, tsec_sysctl_ic_time, 1688 "I", "IC RX time threshold (0-65535)"); 1689 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_count", 1690 CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_RX, tsec_sysctl_ic_count, 1691 "I", "IC RX frame count threshold (0-255)"); 1692 1693 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_time", 1694 CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_TX, tsec_sysctl_ic_time, 1695 "I", "IC TX time threshold (0-65535)"); 1696 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_count", 1697 CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_TX, tsec_sysctl_ic_count, 1698 "I", "IC TX frame count threshold (0-255)"); 1699 } 1700 1701 /* 1702 * With Interrupt Coalescing (IC) active, a transmit/receive frame 1703 * interrupt is raised either upon: 1704 * 1705 * - threshold-defined period of time elapsed, or 1706 * - threshold-defined number of frames is received/transmitted, 1707 * whichever occurs first. 1708 * 1709 * The following sysctls regulate IC behaviour (for TX/RX separately): 1710 * 1711 * dev.tsec.<unit>.int_coal.rx_time 1712 * dev.tsec.<unit>.int_coal.rx_count 1713 * dev.tsec.<unit>.int_coal.tx_time 1714 * dev.tsec.<unit>.int_coal.tx_count 1715 * 1716 * Values: 1717 * 1718 * - 0 for either time or count disables IC on the given TX/RX path 1719 * 1720 * - count: 1-255 (expresses frame count number; note that value of 1 is 1721 * effectively IC off) 1722 * 1723 * - time: 1-65535 (value corresponds to a real time period and is 1724 * expressed in units equivalent to 64 TSEC interface clocks, i.e. one timer 1725 * threshold unit is 26.5 us, 2.56 us, or 512 ns, corresponding to 10 Mbps, 1726 * 100 Mbps, or 1Gbps, respectively. For detailed discussion consult the 1727 * TSEC reference manual. 1728 */ 1729 static int 1730 tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS) 1731 { 1732 int error; 1733 uint32_t time; 1734 struct tsec_softc *sc = (struct tsec_softc *)arg1; 1735 1736 time = (arg2 == TSEC_IC_RX) ? sc->rx_ic_time : sc->tx_ic_time; 1737 1738 error = sysctl_handle_int(oidp, &time, 0, req); 1739 if (error != 0) 1740 return (error); 1741 1742 if (time > 65535) 1743 return (EINVAL); 1744 1745 TSEC_IC_LOCK(sc); 1746 if (arg2 == TSEC_IC_RX) { 1747 sc->rx_ic_time = time; 1748 tsec_set_rxic(sc); 1749 } else { 1750 sc->tx_ic_time = time; 1751 tsec_set_txic(sc); 1752 } 1753 TSEC_IC_UNLOCK(sc); 1754 1755 return (0); 1756 } 1757 1758 static int 1759 tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS) 1760 { 1761 int error; 1762 uint32_t count; 1763 struct tsec_softc *sc = (struct tsec_softc *)arg1; 1764 1765 count = (arg2 == TSEC_IC_RX) ? sc->rx_ic_count : sc->tx_ic_count; 1766 1767 error = sysctl_handle_int(oidp, &count, 0, req); 1768 if (error != 0) 1769 return (error); 1770 1771 if (count > 255) 1772 return (EINVAL); 1773 1774 TSEC_IC_LOCK(sc); 1775 if (arg2 == TSEC_IC_RX) { 1776 sc->rx_ic_count = count; 1777 tsec_set_rxic(sc); 1778 } else { 1779 sc->tx_ic_count = count; 1780 tsec_set_txic(sc); 1781 } 1782 TSEC_IC_UNLOCK(sc); 1783 1784 return (0); 1785 } 1786 1787 static void 1788 tsec_set_rxic(struct tsec_softc *sc) 1789 { 1790 uint32_t rxic_val; 1791 1792 if (sc->rx_ic_count == 0 || sc->rx_ic_time == 0) 1793 /* Disable RX IC */ 1794 rxic_val = 0; 1795 else { 1796 rxic_val = 0x80000000; 1797 rxic_val |= (sc->rx_ic_count << 21); 1798 rxic_val |= sc->rx_ic_time; 1799 } 1800 1801 TSEC_WRITE(sc, TSEC_REG_RXIC, rxic_val); 1802 } 1803 1804 static void 1805 tsec_set_txic(struct tsec_softc *sc) 1806 { 1807 uint32_t txic_val; 1808 1809 if (sc->tx_ic_count == 0 || sc->tx_ic_time == 0) 1810 /* Disable TX IC */ 1811 txic_val = 0; 1812 else { 1813 txic_val = 0x80000000; 1814 txic_val |= (sc->tx_ic_count << 21); 1815 txic_val |= sc->tx_ic_time; 1816 } 1817 1818 TSEC_WRITE(sc, TSEC_REG_TXIC, txic_val); 1819 } 1820 1821 static void 1822 tsec_offload_setup(struct tsec_softc *sc) 1823 { 1824 struct ifnet *ifp = sc->tsec_ifp; 1825 uint32_t reg; 1826 1827 TSEC_GLOBAL_LOCK_ASSERT(sc); 1828 1829 reg = TSEC_READ(sc, TSEC_REG_TCTRL); 1830 reg |= TSEC_TCTRL_IPCSEN | TSEC_TCTRL_TUCSEN; 1831 1832 if (ifp->if_capenable & IFCAP_TXCSUM) 1833 ifp->if_hwassist = TSEC_CHECKSUM_FEATURES; 1834 else 1835 ifp->if_hwassist = 0; 1836 1837 TSEC_WRITE(sc, TSEC_REG_TCTRL, reg); 1838 1839 reg = TSEC_READ(sc, TSEC_REG_RCTRL); 1840 reg &= ~(TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN | TSEC_RCTRL_PRSDEP); 1841 reg |= TSEC_RCTRL_PRSDEP_PARSE_L2 | TSEC_RCTRL_VLEX; 1842 1843 if (ifp->if_capenable & IFCAP_RXCSUM) 1844 reg |= TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN | 1845 TSEC_RCTRL_PRSDEP_PARSE_L234; 1846 1847 TSEC_WRITE(sc, TSEC_REG_RCTRL, reg); 1848 } 1849 1850 1851 static void 1852 tsec_offload_process_frame(struct tsec_softc *sc, struct mbuf *m) 1853 { 1854 struct tsec_rx_fcb rx_fcb; 1855 int csum_flags = 0; 1856 int protocol, flags; 1857 1858 TSEC_RECEIVE_LOCK_ASSERT(sc); 1859 1860 m_copydata(m, 0, sizeof(struct tsec_rx_fcb), (caddr_t)(&rx_fcb)); 1861 flags = rx_fcb.flags; 1862 protocol = rx_fcb.protocol; 1863 1864 if (TSEC_RX_FCB_IP_CSUM_CHECKED(flags)) { 1865 csum_flags |= CSUM_IP_CHECKED; 1866 1867 if ((flags & TSEC_RX_FCB_IP_CSUM_ERROR) == 0) 1868 csum_flags |= CSUM_IP_VALID; 1869 } 1870 1871 if ((protocol == IPPROTO_TCP || protocol == IPPROTO_UDP) && 1872 TSEC_RX_FCB_TCP_UDP_CSUM_CHECKED(flags) && 1873 (flags & TSEC_RX_FCB_TCP_UDP_CSUM_ERROR) == 0) { 1874 1875 csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1876 m->m_pkthdr.csum_data = 0xFFFF; 1877 } 1878 1879 m->m_pkthdr.csum_flags = csum_flags; 1880 1881 if (flags & TSEC_RX_FCB_VLAN) { 1882 m->m_pkthdr.ether_vtag = rx_fcb.vlan; 1883 m->m_flags |= M_VLANTAG; 1884 } 1885 1886 m_adj(m, sizeof(struct tsec_rx_fcb)); 1887 } 1888 1889 static void 1890 tsec_setup_multicast(struct tsec_softc *sc) 1891 { 1892 uint32_t hashtable[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; 1893 struct ifnet *ifp = sc->tsec_ifp; 1894 struct ifmultiaddr *ifma; 1895 uint32_t h; 1896 int i; 1897 1898 TSEC_GLOBAL_LOCK_ASSERT(sc); 1899 1900 if (ifp->if_flags & IFF_ALLMULTI) { 1901 for (i = 0; i < 8; i++) 1902 TSEC_WRITE(sc, TSEC_REG_GADDR(i), 0xFFFFFFFF); 1903 1904 return; 1905 } 1906 1907 if_maddr_rlock(ifp); 1908 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1909 1910 if (ifma->ifma_addr->sa_family != AF_LINK) 1911 continue; 1912 1913 h = (ether_crc32_be(LLADDR((struct sockaddr_dl *) 1914 ifma->ifma_addr), ETHER_ADDR_LEN) >> 24) & 0xFF; 1915 1916 hashtable[(h >> 5)] |= 1 << (0x1F - (h & 0x1F)); 1917 } 1918 if_maddr_runlock(ifp); 1919 1920 for (i = 0; i < 8; i++) 1921 TSEC_WRITE(sc, TSEC_REG_GADDR(i), hashtable[i]); 1922 } 1923 1924 static int 1925 tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu) 1926 { 1927 1928 mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN; 1929 1930 TSEC_GLOBAL_LOCK_ASSERT(sc); 1931 1932 if (mtu >= TSEC_MIN_FRAME_SIZE && mtu <= TSEC_MAX_FRAME_SIZE) { 1933 TSEC_WRITE(sc, TSEC_REG_MAXFRM, mtu); 1934 return (mtu); 1935 } 1936 1937 return (0); 1938 } 1939