xref: /freebsd/sys/dev/tsec/if_tsec.c (revision f5f7c05209ca2c3748fd8b27c5e80ffad49120eb)
1 /*-
2  * Copyright (C) 2007-2008 Semihalf, Rafal Jaworowski
3  * Copyright (C) 2006-2007 Semihalf, Piotr Kruszynski
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /*
28  * Freescale integrated Three-Speed Ethernet Controller (TSEC) driver.
29  */
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #ifdef HAVE_KERNEL_OPTION_HEADERS
34 #include "opt_device_polling.h"
35 #endif
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/bus.h>
40 #include <sys/endian.h>
41 #include <sys/mbuf.h>
42 #include <sys/kernel.h>
43 #include <sys/module.h>
44 #include <sys/socket.h>
45 #include <sys/sockio.h>
46 #include <sys/sysctl.h>
47 
48 #include <net/bpf.h>
49 #include <net/ethernet.h>
50 #include <net/if.h>
51 #include <net/if_arp.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 #include <net/if_vlan_var.h>
56 
57 #include <netinet/in_systm.h>
58 #include <netinet/in.h>
59 #include <netinet/ip.h>
60 
61 #include <machine/bus.h>
62 
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65 
66 #include <dev/tsec/if_tsec.h>
67 #include <dev/tsec/if_tsecreg.h>
68 
69 static int	tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag,
70     bus_dmamap_t *dmap, bus_size_t dsize, void **vaddr, void *raddr,
71     const char *dname);
72 static void	tsec_dma_ctl(struct tsec_softc *sc, int state);
73 static int	tsec_encap(struct tsec_softc *sc, struct mbuf *m_head,
74     int fcb_inserted);
75 static void	tsec_free_dma(struct tsec_softc *sc);
76 static void	tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr);
77 static int	tsec_ifmedia_upd(struct ifnet *ifp);
78 static void	tsec_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
79 static int	tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map,
80     struct mbuf **mbufp, uint32_t *paddr);
81 static void	tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs,
82     int nseg, int error);
83 static void	tsec_intrs_ctl(struct tsec_softc *sc, int state);
84 static void	tsec_init(void *xsc);
85 static void	tsec_init_locked(struct tsec_softc *sc);
86 static int	tsec_ioctl(struct ifnet *ifp, u_long command, caddr_t data);
87 static void	tsec_reset_mac(struct tsec_softc *sc);
88 static void	tsec_setfilter(struct tsec_softc *sc);
89 static void	tsec_set_mac_address(struct tsec_softc *sc);
90 static void	tsec_start(struct ifnet *ifp);
91 static void	tsec_start_locked(struct ifnet *ifp);
92 static void	tsec_stop(struct tsec_softc *sc);
93 static void	tsec_tick(void *arg);
94 static void	tsec_watchdog(struct tsec_softc *sc);
95 static void	tsec_add_sysctls(struct tsec_softc *sc);
96 static int	tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS);
97 static int	tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS);
98 static void	tsec_set_rxic(struct tsec_softc *sc);
99 static void	tsec_set_txic(struct tsec_softc *sc);
100 static int	tsec_receive_intr_locked(struct tsec_softc *sc, int count);
101 static void	tsec_transmit_intr_locked(struct tsec_softc *sc);
102 static void	tsec_error_intr_locked(struct tsec_softc *sc, int count);
103 static void	tsec_offload_setup(struct tsec_softc *sc);
104 static void	tsec_offload_process_frame(struct tsec_softc *sc,
105     struct mbuf *m);
106 static void	tsec_setup_multicast(struct tsec_softc *sc);
107 static int	tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu);
108 
109 devclass_t tsec_devclass;
110 DRIVER_MODULE(miibus, tsec, miibus_driver, miibus_devclass, 0, 0);
111 MODULE_DEPEND(tsec, ether, 1, 1, 1);
112 MODULE_DEPEND(tsec, miibus, 1, 1, 1);
113 
114 int
115 tsec_attach(struct tsec_softc *sc)
116 {
117 	uint8_t hwaddr[ETHER_ADDR_LEN];
118 	struct ifnet *ifp;
119 	bus_dmamap_t *map_ptr;
120 	bus_dmamap_t **map_pptr;
121 	int error = 0;
122 	int i;
123 
124 	/* Reset all TSEC counters */
125 	TSEC_TX_RX_COUNTERS_INIT(sc);
126 
127 	/* Stop DMA engine if enabled by firmware */
128 	tsec_dma_ctl(sc, 0);
129 
130 	/* Reset MAC */
131 	tsec_reset_mac(sc);
132 
133 	/* Disable interrupts for now */
134 	tsec_intrs_ctl(sc, 0);
135 
136 	/* Configure defaults for interrupts coalescing */
137 	sc->rx_ic_time = 768;
138 	sc->rx_ic_count = 16;
139 	sc->tx_ic_time = 768;
140 	sc->tx_ic_count = 16;
141 	tsec_set_rxic(sc);
142 	tsec_set_txic(sc);
143 	tsec_add_sysctls(sc);
144 
145 	/* Allocate a busdma tag and DMA safe memory for TX descriptors. */
146 	error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_tx_dtag,
147 	    &sc->tsec_tx_dmap, sizeof(*sc->tsec_tx_vaddr) * TSEC_TX_NUM_DESC,
148 	    (void **)&sc->tsec_tx_vaddr, &sc->tsec_tx_raddr, "TX");
149 
150 	if (error) {
151 		tsec_detach(sc);
152 		return (ENXIO);
153 	}
154 
155 	/* Allocate a busdma tag and DMA safe memory for RX descriptors. */
156 	error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_rx_dtag,
157 	    &sc->tsec_rx_dmap, sizeof(*sc->tsec_rx_vaddr) * TSEC_RX_NUM_DESC,
158 	    (void **)&sc->tsec_rx_vaddr, &sc->tsec_rx_raddr, "RX");
159 	if (error) {
160 		tsec_detach(sc);
161 		return (ENXIO);
162 	}
163 
164 	/* Allocate a busdma tag for TX mbufs. */
165 	error = bus_dma_tag_create(NULL,	/* parent */
166 	    TSEC_TXBUFFER_ALIGNMENT, 0,		/* alignment, boundary */
167 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
168 	    BUS_SPACE_MAXADDR,			/* highaddr */
169 	    NULL, NULL,				/* filtfunc, filtfuncarg */
170 	    MCLBYTES * (TSEC_TX_NUM_DESC - 1),	/* maxsize */
171 	    TSEC_TX_NUM_DESC - 1,		/* nsegments */
172 	    MCLBYTES, 0,			/* maxsegsz, flags */
173 	    NULL, NULL,				/* lockfunc, lockfuncarg */
174 	    &sc->tsec_tx_mtag);			/* dmat */
175 	if (error) {
176 		device_printf(sc->dev, "failed to allocate busdma tag "
177 		    "(tx mbufs)\n");
178 		tsec_detach(sc);
179 		return (ENXIO);
180 	}
181 
182 	/* Allocate a busdma tag for RX mbufs. */
183 	error = bus_dma_tag_create(NULL,	/* parent */
184 	    TSEC_RXBUFFER_ALIGNMENT, 0,		/* alignment, boundary */
185 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
186 	    BUS_SPACE_MAXADDR,			/* highaddr */
187 	    NULL, NULL,				/* filtfunc, filtfuncarg */
188 	    MCLBYTES,				/* maxsize */
189 	    1,					/* nsegments */
190 	    MCLBYTES, 0,			/* maxsegsz, flags */
191 	    NULL, NULL,				/* lockfunc, lockfuncarg */
192 	    &sc->tsec_rx_mtag);			/* dmat */
193 	if (error) {
194 		device_printf(sc->dev, "failed to allocate busdma tag "
195 		    "(rx mbufs)\n");
196 		tsec_detach(sc);
197 		return (ENXIO);
198 	}
199 
200 	/* Create TX busdma maps */
201 	map_ptr = sc->tx_map_data;
202 	map_pptr = sc->tx_map_unused_data;
203 
204 	for (i = 0; i < TSEC_TX_NUM_DESC; i++) {
205 		map_pptr[i] = &map_ptr[i];
206 		error = bus_dmamap_create(sc->tsec_tx_mtag, 0, map_pptr[i]);
207 		if (error) {
208 			device_printf(sc->dev, "failed to init TX ring\n");
209 			tsec_detach(sc);
210 			return (ENXIO);
211 		}
212 	}
213 
214 	/* Create RX busdma maps and zero mbuf handlers */
215 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
216 		error = bus_dmamap_create(sc->tsec_rx_mtag, 0,
217 		    &sc->rx_data[i].map);
218 		if (error) {
219 			device_printf(sc->dev, "failed to init RX ring\n");
220 			tsec_detach(sc);
221 			return (ENXIO);
222 		}
223 		sc->rx_data[i].mbuf = NULL;
224 	}
225 
226 	/* Create mbufs for RX buffers */
227 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
228 		error = tsec_new_rxbuf(sc->tsec_rx_mtag, sc->rx_data[i].map,
229 		    &sc->rx_data[i].mbuf, &sc->rx_data[i].paddr);
230 		if (error) {
231 			device_printf(sc->dev, "can't load rx DMA map %d, "
232 			    "error = %d\n", i, error);
233 			tsec_detach(sc);
234 			return (error);
235 		}
236 	}
237 
238 	/* Create network interface for upper layers */
239 	ifp = sc->tsec_ifp = if_alloc(IFT_ETHER);
240 	if (ifp == NULL) {
241 		device_printf(sc->dev, "if_alloc() failed\n");
242 		tsec_detach(sc);
243 		return (ENOMEM);
244 	}
245 
246 	ifp->if_softc = sc;
247 	if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
248 	ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST;
249 	ifp->if_init = tsec_init;
250 	ifp->if_start = tsec_start;
251 	ifp->if_ioctl = tsec_ioctl;
252 
253 	IFQ_SET_MAXLEN(&ifp->if_snd, TSEC_TX_NUM_DESC - 1);
254 	ifp->if_snd.ifq_drv_maxlen = TSEC_TX_NUM_DESC - 1;
255 	IFQ_SET_READY(&ifp->if_snd);
256 
257 	ifp->if_capabilities = IFCAP_VLAN_MTU;
258 	if (sc->is_etsec)
259 		ifp->if_capabilities |= IFCAP_HWCSUM;
260 
261 	ifp->if_capenable = ifp->if_capabilities;
262 
263 #ifdef DEVICE_POLLING
264 	/* Advertise that polling is supported */
265 	ifp->if_capabilities |= IFCAP_POLLING;
266 #endif
267 
268 	/* Attach PHY(s) */
269 	error = mii_attach(sc->dev, &sc->tsec_miibus, ifp, tsec_ifmedia_upd,
270 	    tsec_ifmedia_sts, BMSR_DEFCAPMASK, sc->phyaddr, MII_OFFSET_ANY,
271 	    0);
272 	if (error) {
273 		device_printf(sc->dev, "attaching PHYs failed\n");
274 		if_free(ifp);
275 		sc->tsec_ifp = NULL;
276 		tsec_detach(sc);
277 		return (error);
278 	}
279 	sc->tsec_mii = device_get_softc(sc->tsec_miibus);
280 
281 	/* Set MAC address */
282 	tsec_get_hwaddr(sc, hwaddr);
283 	ether_ifattach(ifp, hwaddr);
284 
285 	return (0);
286 }
287 
288 int
289 tsec_detach(struct tsec_softc *sc)
290 {
291 
292 	if (sc->tsec_ifp != NULL) {
293 #ifdef DEVICE_POLLING
294 		if (sc->tsec_ifp->if_capenable & IFCAP_POLLING)
295 			ether_poll_deregister(sc->tsec_ifp);
296 #endif
297 
298 		/* Stop TSEC controller and free TX queue */
299 		if (sc->sc_rres)
300 			tsec_shutdown(sc->dev);
301 
302 		/* Detach network interface */
303 		ether_ifdetach(sc->tsec_ifp);
304 		if_free(sc->tsec_ifp);
305 		sc->tsec_ifp = NULL;
306 	}
307 
308 	/* Free DMA resources */
309 	tsec_free_dma(sc);
310 
311 	return (0);
312 }
313 
314 int
315 tsec_shutdown(device_t dev)
316 {
317 	struct tsec_softc *sc;
318 
319 	sc = device_get_softc(dev);
320 
321 	TSEC_GLOBAL_LOCK(sc);
322 	tsec_stop(sc);
323 	TSEC_GLOBAL_UNLOCK(sc);
324 	return (0);
325 }
326 
327 int
328 tsec_suspend(device_t dev)
329 {
330 
331 	/* TODO not implemented! */
332 	return (0);
333 }
334 
335 int
336 tsec_resume(device_t dev)
337 {
338 
339 	/* TODO not implemented! */
340 	return (0);
341 }
342 
343 static void
344 tsec_init(void *xsc)
345 {
346 	struct tsec_softc *sc = xsc;
347 
348 	TSEC_GLOBAL_LOCK(sc);
349 	tsec_init_locked(sc);
350 	TSEC_GLOBAL_UNLOCK(sc);
351 }
352 
353 static void
354 tsec_init_locked(struct tsec_softc *sc)
355 {
356 	struct tsec_desc *tx_desc = sc->tsec_tx_vaddr;
357 	struct tsec_desc *rx_desc = sc->tsec_rx_vaddr;
358 	struct ifnet *ifp = sc->tsec_ifp;
359 	uint32_t timeout, val, i;
360 
361 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
362 		return;
363 
364 	TSEC_GLOBAL_LOCK_ASSERT(sc);
365 	tsec_stop(sc);
366 
367 	/*
368 	 * These steps are according to the MPC8555E PowerQUICCIII RM:
369 	 * 14.7 Initialization/Application Information
370 	 */
371 
372 	/* Step 1: soft reset MAC */
373 	tsec_reset_mac(sc);
374 
375 	/* Step 2: Initialize MACCFG2 */
376 	TSEC_WRITE(sc, TSEC_REG_MACCFG2,
377 	    TSEC_MACCFG2_FULLDUPLEX |	/* Full Duplex = 1 */
378 	    TSEC_MACCFG2_PADCRC |	/* PAD/CRC append */
379 	    TSEC_MACCFG2_GMII |		/* I/F Mode bit */
380 	    TSEC_MACCFG2_PRECNT		/* Preamble count = 7 */
381 	);
382 
383 	/* Step 3: Initialize ECNTRL
384 	 * While the documentation states that R100M is ignored if RPM is
385 	 * not set, it does seem to be needed to get the orange boxes to
386 	 * work (which have a Marvell 88E1111 PHY). Go figure.
387 	 */
388 
389 	/*
390 	 * XXX kludge - use circumstancial evidence to program ECNTRL
391 	 * correctly. Ideally we need some board information to guide
392 	 * us here.
393 	 */
394 	i = TSEC_READ(sc, TSEC_REG_ID2);
395 	val = (i & 0xffff)
396 	    ? (TSEC_ECNTRL_TBIM | TSEC_ECNTRL_SGMIIM)	/* Sumatra */
397 	    : TSEC_ECNTRL_R100M;			/* Orange + CDS */
398 	TSEC_WRITE(sc, TSEC_REG_ECNTRL, TSEC_ECNTRL_STEN | val);
399 
400 	/* Step 4: Initialize MAC station address */
401 	tsec_set_mac_address(sc);
402 
403 	/*
404 	 * Step 5: Assign a Physical address to the TBI so as to not conflict
405 	 * with the external PHY physical address
406 	 */
407 	TSEC_WRITE(sc, TSEC_REG_TBIPA, 5);
408 
409 	/* Step 6: Reset the management interface */
410 	TSEC_WRITE(sc->phy_sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_RESETMGMT);
411 
412 	/* Step 7: Setup the MII Mgmt clock speed */
413 	TSEC_WRITE(sc->phy_sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_CLKDIV28);
414 
415 	/* Step 8: Read MII Mgmt indicator register and check for Busy = 0 */
416 	timeout = TSEC_READ_RETRY;
417 	while (--timeout && (TSEC_READ(sc->phy_sc, TSEC_REG_MIIMIND) &
418 	    TSEC_MIIMIND_BUSY))
419 		DELAY(TSEC_READ_DELAY);
420 	if (timeout == 0) {
421 		if_printf(ifp, "tsec_init_locked(): Mgmt busy timeout\n");
422 		return;
423 	}
424 
425 	/* Step 9: Setup the MII Mgmt */
426 	mii_mediachg(sc->tsec_mii);
427 
428 	/* Step 10: Clear IEVENT register */
429 	TSEC_WRITE(sc, TSEC_REG_IEVENT, 0xffffffff);
430 
431 	/* Step 11: Enable interrupts */
432 #ifdef DEVICE_POLLING
433 	/*
434 	 * ...only if polling is not turned on. Disable interrupts explicitly
435 	 * if polling is enabled.
436 	 */
437 	if (ifp->if_capenable & IFCAP_POLLING )
438 		tsec_intrs_ctl(sc, 0);
439 	else
440 #endif /* DEVICE_POLLING */
441 	tsec_intrs_ctl(sc, 1);
442 
443 	/* Step 12: Initialize IADDRn */
444 	TSEC_WRITE(sc, TSEC_REG_IADDR0, 0);
445 	TSEC_WRITE(sc, TSEC_REG_IADDR1, 0);
446 	TSEC_WRITE(sc, TSEC_REG_IADDR2, 0);
447 	TSEC_WRITE(sc, TSEC_REG_IADDR3, 0);
448 	TSEC_WRITE(sc, TSEC_REG_IADDR4, 0);
449 	TSEC_WRITE(sc, TSEC_REG_IADDR5, 0);
450 	TSEC_WRITE(sc, TSEC_REG_IADDR6, 0);
451 	TSEC_WRITE(sc, TSEC_REG_IADDR7, 0);
452 
453 	/* Step 13: Initialize GADDRn */
454 	TSEC_WRITE(sc, TSEC_REG_GADDR0, 0);
455 	TSEC_WRITE(sc, TSEC_REG_GADDR1, 0);
456 	TSEC_WRITE(sc, TSEC_REG_GADDR2, 0);
457 	TSEC_WRITE(sc, TSEC_REG_GADDR3, 0);
458 	TSEC_WRITE(sc, TSEC_REG_GADDR4, 0);
459 	TSEC_WRITE(sc, TSEC_REG_GADDR5, 0);
460 	TSEC_WRITE(sc, TSEC_REG_GADDR6, 0);
461 	TSEC_WRITE(sc, TSEC_REG_GADDR7, 0);
462 
463 	/* Step 14: Initialize RCTRL */
464 	TSEC_WRITE(sc, TSEC_REG_RCTRL, 0);
465 
466 	/* Step 15: Initialize DMACTRL */
467 	tsec_dma_ctl(sc, 1);
468 
469 	/* Step 16: Initialize FIFO_PAUSE_CTRL */
470 	TSEC_WRITE(sc, TSEC_REG_FIFO_PAUSE_CTRL, TSEC_FIFO_PAUSE_CTRL_EN);
471 
472 	/*
473 	 * Step 17: Initialize transmit/receive descriptor rings.
474 	 * Initialize TBASE and RBASE.
475 	 */
476 	TSEC_WRITE(sc, TSEC_REG_TBASE, sc->tsec_tx_raddr);
477 	TSEC_WRITE(sc, TSEC_REG_RBASE, sc->tsec_rx_raddr);
478 
479 	for (i = 0; i < TSEC_TX_NUM_DESC; i++) {
480 		tx_desc[i].bufptr = 0;
481 		tx_desc[i].length = 0;
482 		tx_desc[i].flags = ((i == TSEC_TX_NUM_DESC - 1) ?
483 		    TSEC_TXBD_W : 0);
484 	}
485 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
486 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
487 
488 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
489 		rx_desc[i].bufptr = sc->rx_data[i].paddr;
490 		rx_desc[i].length = 0;
491 		rx_desc[i].flags = TSEC_RXBD_E | TSEC_RXBD_I |
492 		    ((i == TSEC_RX_NUM_DESC - 1) ? TSEC_RXBD_W : 0);
493 	}
494 	bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
495 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
496 
497 	/* Step 18: Initialize the maximum receive buffer length */
498 	TSEC_WRITE(sc, TSEC_REG_MRBLR, MCLBYTES);
499 
500 	/* Step 19: Configure ethernet frame sizes */
501 	TSEC_WRITE(sc, TSEC_REG_MINFLR, TSEC_MIN_FRAME_SIZE);
502 	tsec_set_mtu(sc, ifp->if_mtu);
503 
504 	/* Step 20: Enable Rx and RxBD sdata snooping */
505 	TSEC_WRITE(sc, TSEC_REG_ATTR, TSEC_ATTR_RDSEN | TSEC_ATTR_RBDSEN);
506 	TSEC_WRITE(sc, TSEC_REG_ATTRELI, 0);
507 
508 	/* Step 21: Reset collision counters in hardware */
509 	TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0);
510 	TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0);
511 	TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0);
512 	TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0);
513 	TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0);
514 
515 	/* Step 22: Mask all CAM interrupts */
516 	TSEC_WRITE(sc, TSEC_REG_MON_CAM1, 0xffffffff);
517 	TSEC_WRITE(sc, TSEC_REG_MON_CAM2, 0xffffffff);
518 
519 	/* Step 23: Enable Rx and Tx */
520 	val = TSEC_READ(sc, TSEC_REG_MACCFG1);
521 	val |= (TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN);
522 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, val);
523 
524 	/* Step 24: Reset TSEC counters for Tx and Rx rings */
525 	TSEC_TX_RX_COUNTERS_INIT(sc);
526 
527 	/* Step 25: Setup TCP/IP Off-Load engine */
528 	if (sc->is_etsec)
529 		tsec_offload_setup(sc);
530 
531 	/* Step 26: Setup multicast filters */
532 	tsec_setup_multicast(sc);
533 
534 	/* Step 27: Activate network interface */
535 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
536 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
537 	sc->tsec_if_flags = ifp->if_flags;
538 	sc->tsec_watchdog = 0;
539 
540 	/* Schedule watchdog timeout */
541 	callout_reset(&sc->tsec_callout, hz, tsec_tick, sc);
542 }
543 
544 static void
545 tsec_set_mac_address(struct tsec_softc *sc)
546 {
547 	uint32_t macbuf[2] = { 0, 0 };
548 	char *macbufp, *curmac;
549 	int i;
550 
551 	TSEC_GLOBAL_LOCK_ASSERT(sc);
552 
553 	KASSERT((ETHER_ADDR_LEN <= sizeof(macbuf)),
554 	    ("tsec_set_mac_address: (%d <= %d", ETHER_ADDR_LEN,
555 	    sizeof(macbuf)));
556 
557 	macbufp = (char *)macbuf;
558 	curmac = (char *)IF_LLADDR(sc->tsec_ifp);
559 
560 	/* Correct order of MAC address bytes */
561 	for (i = 1; i <= ETHER_ADDR_LEN; i++)
562 		macbufp[ETHER_ADDR_LEN-i] = curmac[i-1];
563 
564 	/* Initialize MAC station address MACSTNADDR2 and MACSTNADDR1 */
565 	TSEC_WRITE(sc, TSEC_REG_MACSTNADDR2, macbuf[1]);
566 	TSEC_WRITE(sc, TSEC_REG_MACSTNADDR1, macbuf[0]);
567 }
568 
569 /*
570  * DMA control function, if argument state is:
571  * 0 - DMA engine will be disabled
572  * 1 - DMA engine will be enabled
573  */
574 static void
575 tsec_dma_ctl(struct tsec_softc *sc, int state)
576 {
577 	device_t dev;
578 	uint32_t dma_flags, timeout;
579 
580 	dev = sc->dev;
581 
582 	dma_flags = TSEC_READ(sc, TSEC_REG_DMACTRL);
583 
584 	switch (state) {
585 	case 0:
586 		/* Temporarily clear stop graceful stop bits. */
587 		tsec_dma_ctl(sc, 1000);
588 
589 		/* Set it again */
590 		dma_flags |= (TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS);
591 		break;
592 	case 1000:
593 	case 1:
594 		/* Set write with response (WWR), wait (WOP) and snoop bits */
595 		dma_flags |= (TSEC_DMACTRL_TDSEN | TSEC_DMACTRL_TBDSEN |
596 		    DMACTRL_WWR | DMACTRL_WOP);
597 
598 		/* Clear graceful stop bits */
599 		dma_flags &= ~(TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS);
600 		break;
601 	default:
602 		device_printf(dev, "tsec_dma_ctl(): unknown state value: %d\n",
603 		    state);
604 	}
605 
606 	TSEC_WRITE(sc, TSEC_REG_DMACTRL, dma_flags);
607 
608 	switch (state) {
609 	case 0:
610 		/* Wait for DMA stop */
611 		timeout = TSEC_READ_RETRY;
612 		while (--timeout && (!(TSEC_READ(sc, TSEC_REG_IEVENT) &
613 		    (TSEC_IEVENT_GRSC | TSEC_IEVENT_GTSC))))
614 			DELAY(TSEC_READ_DELAY);
615 
616 		if (timeout == 0)
617 			device_printf(dev, "tsec_dma_ctl(): timeout!\n");
618 		break;
619 	case 1:
620 		/* Restart transmission function */
621 		TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
622 	}
623 }
624 
625 /*
626  * Interrupts control function, if argument state is:
627  * 0 - all TSEC interrupts will be masked
628  * 1 - all TSEC interrupts will be unmasked
629  */
630 static void
631 tsec_intrs_ctl(struct tsec_softc *sc, int state)
632 {
633 	device_t dev;
634 
635 	dev = sc->dev;
636 
637 	switch (state) {
638 	case 0:
639 		TSEC_WRITE(sc, TSEC_REG_IMASK, 0);
640 		break;
641 	case 1:
642 		TSEC_WRITE(sc, TSEC_REG_IMASK, TSEC_IMASK_BREN |
643 		    TSEC_IMASK_RXCEN | TSEC_IMASK_BSYEN | TSEC_IMASK_EBERREN |
644 		    TSEC_IMASK_BTEN | TSEC_IMASK_TXEEN | TSEC_IMASK_TXBEN |
645 		    TSEC_IMASK_TXFEN | TSEC_IMASK_XFUNEN | TSEC_IMASK_RXFEN);
646 		break;
647 	default:
648 		device_printf(dev, "tsec_intrs_ctl(): unknown state value: %d\n",
649 		    state);
650 	}
651 }
652 
653 static void
654 tsec_reset_mac(struct tsec_softc *sc)
655 {
656 	uint32_t maccfg1_flags;
657 
658 	/* Set soft reset bit */
659 	maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1);
660 	maccfg1_flags |= TSEC_MACCFG1_SOFT_RESET;
661 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags);
662 
663 	/* Clear soft reset bit */
664 	maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1);
665 	maccfg1_flags &= ~TSEC_MACCFG1_SOFT_RESET;
666 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags);
667 }
668 
669 static void
670 tsec_watchdog(struct tsec_softc *sc)
671 {
672 	struct ifnet *ifp;
673 
674 	TSEC_GLOBAL_LOCK_ASSERT(sc);
675 
676 	if (sc->tsec_watchdog == 0 || --sc->tsec_watchdog > 0)
677 		return;
678 
679 	ifp = sc->tsec_ifp;
680 	ifp->if_oerrors++;
681 	if_printf(ifp, "watchdog timeout\n");
682 
683 	tsec_stop(sc);
684 	tsec_init_locked(sc);
685 }
686 
687 static void
688 tsec_start(struct ifnet *ifp)
689 {
690 	struct tsec_softc *sc = ifp->if_softc;
691 
692 	TSEC_TRANSMIT_LOCK(sc);
693 	tsec_start_locked(ifp);
694 	TSEC_TRANSMIT_UNLOCK(sc);
695 }
696 
697 static void
698 tsec_start_locked(struct ifnet *ifp)
699 {
700 	struct tsec_softc *sc;
701 	struct mbuf *m0, *mtmp;
702 	struct tsec_tx_fcb *tx_fcb;
703 	unsigned int queued = 0;
704 	int csum_flags, fcb_inserted = 0;
705 
706 	sc = ifp->if_softc;
707 
708 	TSEC_TRANSMIT_LOCK_ASSERT(sc);
709 
710 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
711 	    IFF_DRV_RUNNING)
712 		return;
713 
714 	if (sc->tsec_link == 0)
715 		return;
716 
717 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
718 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
719 
720 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
721 		/* Get packet from the queue */
722 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
723 		if (m0 == NULL)
724 			break;
725 
726 		/* Insert TCP/IP Off-load frame control block */
727 		csum_flags = m0->m_pkthdr.csum_flags;
728 		if (csum_flags) {
729 
730 			M_PREPEND(m0, sizeof(struct tsec_tx_fcb), M_NOWAIT);
731 			if (m0 == NULL)
732 				break;
733 
734 			tx_fcb = mtod(m0, struct tsec_tx_fcb *);
735 			tx_fcb->flags = 0;
736 			tx_fcb->l3_offset = ETHER_HDR_LEN;
737 			tx_fcb->l4_offset = sizeof(struct ip);
738 
739 			if (csum_flags & CSUM_IP)
740 				tx_fcb->flags |= TSEC_TX_FCB_IP4 |
741 				    TSEC_TX_FCB_CSUM_IP;
742 
743 			if (csum_flags & CSUM_TCP)
744 				tx_fcb->flags |= TSEC_TX_FCB_TCP |
745 				    TSEC_TX_FCB_CSUM_TCP_UDP;
746 
747 			if (csum_flags & CSUM_UDP)
748 				tx_fcb->flags |= TSEC_TX_FCB_UDP |
749 				    TSEC_TX_FCB_CSUM_TCP_UDP;
750 
751 			fcb_inserted = 1;
752 		}
753 
754 		mtmp = m_defrag(m0, M_NOWAIT);
755 		if (mtmp)
756 			m0 = mtmp;
757 
758 		if (tsec_encap(sc, m0, fcb_inserted)) {
759 			IFQ_DRV_PREPEND(&ifp->if_snd, m0);
760 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
761 			break;
762 		}
763 		queued++;
764 		BPF_MTAP(ifp, m0);
765 	}
766 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
767 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
768 
769 	if (queued) {
770 		/* Enable transmitter and watchdog timer */
771 		TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
772 		sc->tsec_watchdog = 5;
773 	}
774 }
775 
776 static int
777 tsec_encap(struct tsec_softc *sc, struct mbuf *m0, int fcb_inserted)
778 {
779 	struct tsec_desc *tx_desc = NULL;
780 	struct ifnet *ifp;
781 	bus_dma_segment_t segs[TSEC_TX_NUM_DESC];
782 	bus_dmamap_t *mapp;
783 	int csum_flag = 0, error, seg, nsegs;
784 
785 	TSEC_TRANSMIT_LOCK_ASSERT(sc);
786 
787 	ifp = sc->tsec_ifp;
788 
789 	if (TSEC_FREE_TX_DESC(sc) == 0) {
790 		/* No free descriptors */
791 		return (-1);
792 	}
793 
794 	/* Fetch unused map */
795 	mapp = TSEC_ALLOC_TX_MAP(sc);
796 
797 	/* Create mapping in DMA memory */
798 	error = bus_dmamap_load_mbuf_sg(sc->tsec_tx_mtag,
799 	    *mapp, m0, segs, &nsegs, BUS_DMA_NOWAIT);
800 	if (error != 0 || nsegs > TSEC_FREE_TX_DESC(sc) || nsegs <= 0) {
801 		bus_dmamap_unload(sc->tsec_tx_mtag, *mapp);
802 		TSEC_FREE_TX_MAP(sc, mapp);
803 		return ((error != 0) ? error : -1);
804 	}
805 	bus_dmamap_sync(sc->tsec_tx_mtag, *mapp, BUS_DMASYNC_PREWRITE);
806 
807 	if ((ifp->if_flags & IFF_DEBUG) && (nsegs > 1))
808 		if_printf(ifp, "TX buffer has %d segments\n", nsegs);
809 
810 	if (fcb_inserted)
811 		csum_flag = TSEC_TXBD_TOE;
812 
813 	/* Everything is ok, now we can send buffers */
814 	for (seg = 0; seg < nsegs; seg++) {
815 		tx_desc = TSEC_GET_CUR_TX_DESC(sc);
816 
817 		tx_desc->length = segs[seg].ds_len;
818 		tx_desc->bufptr = segs[seg].ds_addr;
819 
820 		/*
821 		 * Set flags:
822 		 *   - wrap
823 		 *   - checksum
824 		 *   - ready to send
825 		 *   - transmit the CRC sequence after the last data byte
826 		 *   - interrupt after the last buffer
827 		 */
828 		tx_desc->flags =
829 		    (tx_desc->flags & TSEC_TXBD_W) |
830 		    ((seg == 0) ? csum_flag : 0) | TSEC_TXBD_R | TSEC_TXBD_TC |
831 		    ((seg == nsegs - 1) ? TSEC_TXBD_L | TSEC_TXBD_I : 0);
832 	}
833 
834 	/* Save mbuf and DMA mapping for release at later stage */
835 	TSEC_PUT_TX_MBUF(sc, m0);
836 	TSEC_PUT_TX_MAP(sc, mapp);
837 
838 	return (0);
839 }
840 
841 static void
842 tsec_setfilter(struct tsec_softc *sc)
843 {
844 	struct ifnet *ifp;
845 	uint32_t flags;
846 
847 	ifp = sc->tsec_ifp;
848 	flags = TSEC_READ(sc, TSEC_REG_RCTRL);
849 
850 	/* Promiscuous mode */
851 	if (ifp->if_flags & IFF_PROMISC)
852 		flags |= TSEC_RCTRL_PROM;
853 	else
854 		flags &= ~TSEC_RCTRL_PROM;
855 
856 	TSEC_WRITE(sc, TSEC_REG_RCTRL, flags);
857 }
858 
859 #ifdef DEVICE_POLLING
860 static poll_handler_t tsec_poll;
861 
862 static int
863 tsec_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
864 {
865 	uint32_t ie;
866 	struct tsec_softc *sc = ifp->if_softc;
867 	int rx_npkts;
868 
869 	rx_npkts = 0;
870 
871 	TSEC_GLOBAL_LOCK(sc);
872 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
873 		TSEC_GLOBAL_UNLOCK(sc);
874 		return (rx_npkts);
875 	}
876 
877 	if (cmd == POLL_AND_CHECK_STATUS) {
878 		tsec_error_intr_locked(sc, count);
879 
880 		/* Clear all events reported */
881 		ie = TSEC_READ(sc, TSEC_REG_IEVENT);
882 		TSEC_WRITE(sc, TSEC_REG_IEVENT, ie);
883 	}
884 
885 	tsec_transmit_intr_locked(sc);
886 
887 	TSEC_GLOBAL_TO_RECEIVE_LOCK(sc);
888 
889 	rx_npkts = tsec_receive_intr_locked(sc, count);
890 
891 	TSEC_RECEIVE_UNLOCK(sc);
892 
893 	return (rx_npkts);
894 }
895 #endif /* DEVICE_POLLING */
896 
897 static int
898 tsec_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
899 {
900 	struct tsec_softc *sc = ifp->if_softc;
901 	struct ifreq *ifr = (struct ifreq *)data;
902 	device_t dev;
903 	int mask, error = 0;
904 
905 	dev = sc->dev;
906 
907 	switch (command) {
908 	case SIOCSIFMTU:
909 		TSEC_GLOBAL_LOCK(sc);
910 		if (tsec_set_mtu(sc, ifr->ifr_mtu))
911 			ifp->if_mtu = ifr->ifr_mtu;
912 		else
913 			error = EINVAL;
914 		TSEC_GLOBAL_UNLOCK(sc);
915 		break;
916 	case SIOCSIFFLAGS:
917 		TSEC_GLOBAL_LOCK(sc);
918 		if (ifp->if_flags & IFF_UP) {
919 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
920 				if ((sc->tsec_if_flags ^ ifp->if_flags) &
921 				    IFF_PROMISC)
922 					tsec_setfilter(sc);
923 
924 				if ((sc->tsec_if_flags ^ ifp->if_flags) &
925 				    IFF_ALLMULTI)
926 					tsec_setup_multicast(sc);
927 			} else
928 				tsec_init_locked(sc);
929 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
930 			tsec_stop(sc);
931 
932 		sc->tsec_if_flags = ifp->if_flags;
933 		TSEC_GLOBAL_UNLOCK(sc);
934 		break;
935 	case SIOCADDMULTI:
936 	case SIOCDELMULTI:
937 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
938 			TSEC_GLOBAL_LOCK(sc);
939 			tsec_setup_multicast(sc);
940 			TSEC_GLOBAL_UNLOCK(sc);
941 		}
942 	case SIOCGIFMEDIA:
943 	case SIOCSIFMEDIA:
944 		error = ifmedia_ioctl(ifp, ifr, &sc->tsec_mii->mii_media,
945 		    command);
946 		break;
947 	case SIOCSIFCAP:
948 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
949 		if ((mask & IFCAP_HWCSUM) && sc->is_etsec) {
950 			TSEC_GLOBAL_LOCK(sc);
951 			ifp->if_capenable &= ~IFCAP_HWCSUM;
952 			ifp->if_capenable |= IFCAP_HWCSUM & ifr->ifr_reqcap;
953 			tsec_offload_setup(sc);
954 			TSEC_GLOBAL_UNLOCK(sc);
955 		}
956 #ifdef DEVICE_POLLING
957 		if (mask & IFCAP_POLLING) {
958 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
959 				error = ether_poll_register(tsec_poll, ifp);
960 				if (error)
961 					return (error);
962 
963 				TSEC_GLOBAL_LOCK(sc);
964 				/* Disable interrupts */
965 				tsec_intrs_ctl(sc, 0);
966 				ifp->if_capenable |= IFCAP_POLLING;
967 				TSEC_GLOBAL_UNLOCK(sc);
968 			} else {
969 				error = ether_poll_deregister(ifp);
970 				TSEC_GLOBAL_LOCK(sc);
971 				/* Enable interrupts */
972 				tsec_intrs_ctl(sc, 1);
973 				ifp->if_capenable &= ~IFCAP_POLLING;
974 				TSEC_GLOBAL_UNLOCK(sc);
975 			}
976 		}
977 #endif
978 		break;
979 
980 	default:
981 		error = ether_ioctl(ifp, command, data);
982 	}
983 
984 	/* Flush buffers if not empty */
985 	if (ifp->if_flags & IFF_UP)
986 		tsec_start(ifp);
987 	return (error);
988 }
989 
990 static int
991 tsec_ifmedia_upd(struct ifnet *ifp)
992 {
993 	struct tsec_softc *sc = ifp->if_softc;
994 	struct mii_data *mii;
995 
996 	TSEC_TRANSMIT_LOCK(sc);
997 
998 	mii = sc->tsec_mii;
999 	mii_mediachg(mii);
1000 
1001 	TSEC_TRANSMIT_UNLOCK(sc);
1002 	return (0);
1003 }
1004 
1005 static void
1006 tsec_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1007 {
1008 	struct tsec_softc *sc = ifp->if_softc;
1009 	struct mii_data *mii;
1010 
1011 	TSEC_TRANSMIT_LOCK(sc);
1012 
1013 	mii = sc->tsec_mii;
1014 	mii_pollstat(mii);
1015 
1016 	ifmr->ifm_active = mii->mii_media_active;
1017 	ifmr->ifm_status = mii->mii_media_status;
1018 
1019 	TSEC_TRANSMIT_UNLOCK(sc);
1020 }
1021 
1022 static int
1023 tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map, struct mbuf **mbufp,
1024     uint32_t *paddr)
1025 {
1026 	struct mbuf *new_mbuf;
1027 	bus_dma_segment_t seg[1];
1028 	int error, nsegs;
1029 
1030 	KASSERT(mbufp != NULL, ("NULL mbuf pointer!"));
1031 
1032 	new_mbuf = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MCLBYTES);
1033 	if (new_mbuf == NULL)
1034 		return (ENOBUFS);
1035 	new_mbuf->m_len = new_mbuf->m_pkthdr.len = new_mbuf->m_ext.ext_size;
1036 
1037 	if (*mbufp) {
1038 		bus_dmamap_sync(tag, map, BUS_DMASYNC_POSTREAD);
1039 		bus_dmamap_unload(tag, map);
1040 	}
1041 
1042 	error = bus_dmamap_load_mbuf_sg(tag, map, new_mbuf, seg, &nsegs,
1043 	    BUS_DMA_NOWAIT);
1044 	KASSERT(nsegs == 1, ("Too many segments returned!"));
1045 	if (nsegs != 1 || error)
1046 		panic("tsec_new_rxbuf(): nsegs(%d), error(%d)", nsegs, error);
1047 
1048 #if 0
1049 	if (error) {
1050 		printf("tsec: bus_dmamap_load_mbuf_sg() returned: %d!\n",
1051 			error);
1052 		m_freem(new_mbuf);
1053 		return (ENOBUFS);
1054 	}
1055 #endif
1056 
1057 #if 0
1058 	KASSERT(((seg->ds_addr) & (TSEC_RXBUFFER_ALIGNMENT-1)) == 0,
1059 		("Wrong alignment of RX buffer!"));
1060 #endif
1061 	bus_dmamap_sync(tag, map, BUS_DMASYNC_PREREAD);
1062 
1063 	(*mbufp) = new_mbuf;
1064 	(*paddr) = seg->ds_addr;
1065 	return (0);
1066 }
1067 
1068 static void
1069 tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1070 {
1071 	u_int32_t *paddr;
1072 
1073 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
1074 	paddr = arg;
1075 	*paddr = segs->ds_addr;
1076 }
1077 
1078 static int
1079 tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag, bus_dmamap_t *dmap,
1080     bus_size_t dsize, void **vaddr, void *raddr, const char *dname)
1081 {
1082 	int error;
1083 
1084 	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
1085 	error = bus_dma_tag_create(NULL,	/* parent */
1086 	    PAGE_SIZE, 0,			/* alignment, boundary */
1087 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
1088 	    BUS_SPACE_MAXADDR,			/* highaddr */
1089 	    NULL, NULL,				/* filtfunc, filtfuncarg */
1090 	    dsize, 1,				/* maxsize, nsegments */
1091 	    dsize, 0,				/* maxsegsz, flags */
1092 	    NULL, NULL,				/* lockfunc, lockfuncarg */
1093 	    dtag);				/* dmat */
1094 
1095 	if (error) {
1096 		device_printf(dev, "failed to allocate busdma %s tag\n",
1097 		    dname);
1098 		(*vaddr) = NULL;
1099 		return (ENXIO);
1100 	}
1101 
1102 	error = bus_dmamem_alloc(*dtag, vaddr, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1103 	    dmap);
1104 	if (error) {
1105 		device_printf(dev, "failed to allocate %s DMA safe memory\n",
1106 		    dname);
1107 		bus_dma_tag_destroy(*dtag);
1108 		(*vaddr) = NULL;
1109 		return (ENXIO);
1110 	}
1111 
1112 	error = bus_dmamap_load(*dtag, *dmap, *vaddr, dsize,
1113 	    tsec_map_dma_addr, raddr, BUS_DMA_NOWAIT);
1114 	if (error) {
1115 		device_printf(dev, "cannot get address of the %s "
1116 		    "descriptors\n", dname);
1117 		bus_dmamem_free(*dtag, *vaddr, *dmap);
1118 		bus_dma_tag_destroy(*dtag);
1119 		(*vaddr) = NULL;
1120 		return (ENXIO);
1121 	}
1122 
1123 	return (0);
1124 }
1125 
1126 static void
1127 tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr)
1128 {
1129 
1130 	if (vaddr == NULL)
1131 		return;
1132 
1133 	/* Unmap descriptors from DMA memory */
1134 	bus_dmamap_sync(dtag, dmap, BUS_DMASYNC_POSTREAD |
1135 	    BUS_DMASYNC_POSTWRITE);
1136 	bus_dmamap_unload(dtag, dmap);
1137 
1138 	/* Free descriptors memory */
1139 	bus_dmamem_free(dtag, vaddr, dmap);
1140 
1141 	/* Destroy descriptors tag */
1142 	bus_dma_tag_destroy(dtag);
1143 }
1144 
1145 static void
1146 tsec_free_dma(struct tsec_softc *sc)
1147 {
1148 	int i;
1149 
1150 	/* Free TX maps */
1151 	for (i = 0; i < TSEC_TX_NUM_DESC; i++)
1152 		if (sc->tx_map_data[i] != NULL)
1153 			bus_dmamap_destroy(sc->tsec_tx_mtag,
1154 			    sc->tx_map_data[i]);
1155 	/* Destroy tag for TX mbufs */
1156 	bus_dma_tag_destroy(sc->tsec_tx_mtag);
1157 
1158 	/* Free RX mbufs and maps */
1159 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
1160 		if (sc->rx_data[i].mbuf) {
1161 			/* Unload buffer from DMA */
1162 			bus_dmamap_sync(sc->tsec_rx_mtag, sc->rx_data[i].map,
1163 			    BUS_DMASYNC_POSTREAD);
1164 			bus_dmamap_unload(sc->tsec_rx_mtag,
1165 			    sc->rx_data[i].map);
1166 
1167 			/* Free buffer */
1168 			m_freem(sc->rx_data[i].mbuf);
1169 		}
1170 		/* Destroy map for this buffer */
1171 		if (sc->rx_data[i].map != NULL)
1172 			bus_dmamap_destroy(sc->tsec_rx_mtag,
1173 			    sc->rx_data[i].map);
1174 	}
1175 	/* Destroy tag for RX mbufs */
1176 	bus_dma_tag_destroy(sc->tsec_rx_mtag);
1177 
1178 	/* Unload TX/RX descriptors */
1179 	tsec_free_dma_desc(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1180 	    sc->tsec_tx_vaddr);
1181 	tsec_free_dma_desc(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1182 	    sc->tsec_rx_vaddr);
1183 }
1184 
1185 static void
1186 tsec_stop(struct tsec_softc *sc)
1187 {
1188 	struct ifnet *ifp;
1189 	struct mbuf *m0;
1190 	bus_dmamap_t *mapp;
1191 	uint32_t tmpval;
1192 
1193 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1194 
1195 	ifp = sc->tsec_ifp;
1196 
1197 	/* Disable interface and watchdog timer */
1198 	callout_stop(&sc->tsec_callout);
1199 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1200 	sc->tsec_watchdog = 0;
1201 
1202 	/* Disable all interrupts and stop DMA */
1203 	tsec_intrs_ctl(sc, 0);
1204 	tsec_dma_ctl(sc, 0);
1205 
1206 	/* Remove pending data from TX queue */
1207 	while (!TSEC_EMPTYQ_TX_MBUF(sc)) {
1208 		m0 = TSEC_GET_TX_MBUF(sc);
1209 		mapp = TSEC_GET_TX_MAP(sc);
1210 
1211 		bus_dmamap_sync(sc->tsec_tx_mtag, *mapp,
1212 		    BUS_DMASYNC_POSTWRITE);
1213 		bus_dmamap_unload(sc->tsec_tx_mtag, *mapp);
1214 
1215 		TSEC_FREE_TX_MAP(sc, mapp);
1216 		m_freem(m0);
1217 	}
1218 
1219 	/* Disable RX and TX */
1220 	tmpval = TSEC_READ(sc, TSEC_REG_MACCFG1);
1221 	tmpval &= ~(TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN);
1222 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, tmpval);
1223 	DELAY(10);
1224 }
1225 
1226 static void
1227 tsec_tick(void *arg)
1228 {
1229 	struct tsec_softc *sc = arg;
1230 	struct ifnet *ifp;
1231 	int link;
1232 
1233 	TSEC_GLOBAL_LOCK(sc);
1234 
1235 	tsec_watchdog(sc);
1236 
1237 	ifp = sc->tsec_ifp;
1238 	link = sc->tsec_link;
1239 
1240 	mii_tick(sc->tsec_mii);
1241 
1242 	if (link == 0 && sc->tsec_link == 1 &&
1243 	    (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)))
1244 		tsec_start_locked(ifp);
1245 
1246 	/* Schedule another timeout one second from now. */
1247 	callout_reset(&sc->tsec_callout, hz, tsec_tick, sc);
1248 
1249 	TSEC_GLOBAL_UNLOCK(sc);
1250 }
1251 
1252 /*
1253  *  This is the core RX routine. It replenishes mbufs in the descriptor and
1254  *  sends data which have been dma'ed into host memory to upper layer.
1255  *
1256  *  Loops at most count times if count is > 0, or until done if count < 0.
1257  */
1258 static int
1259 tsec_receive_intr_locked(struct tsec_softc *sc, int count)
1260 {
1261 	struct tsec_desc *rx_desc;
1262 	struct ifnet *ifp;
1263 	struct rx_data_type *rx_data;
1264 	struct mbuf *m;
1265 	device_t dev;
1266 	uint32_t i;
1267 	int c, rx_npkts;
1268 	uint16_t flags;
1269 
1270 	TSEC_RECEIVE_LOCK_ASSERT(sc);
1271 
1272 	ifp = sc->tsec_ifp;
1273 	rx_data = sc->rx_data;
1274 	dev = sc->dev;
1275 	rx_npkts = 0;
1276 
1277 	bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1278 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1279 
1280 	for (c = 0; ; c++) {
1281 		if (count >= 0 && count-- == 0)
1282 			break;
1283 
1284 		rx_desc = TSEC_GET_CUR_RX_DESC(sc);
1285 		flags = rx_desc->flags;
1286 
1287 		/* Check if there is anything to receive */
1288 		if ((flags & TSEC_RXBD_E) || (c >= TSEC_RX_NUM_DESC)) {
1289 			/*
1290 			 * Avoid generating another interrupt
1291 			 */
1292 			if (flags & TSEC_RXBD_E)
1293 				TSEC_WRITE(sc, TSEC_REG_IEVENT,
1294 				    TSEC_IEVENT_RXB | TSEC_IEVENT_RXF);
1295 			/*
1296 			 * We didn't consume current descriptor and have to
1297 			 * return it to the queue
1298 			 */
1299 			TSEC_BACK_CUR_RX_DESC(sc);
1300 			break;
1301 		}
1302 
1303 		if (flags & (TSEC_RXBD_LG | TSEC_RXBD_SH | TSEC_RXBD_NO |
1304 		    TSEC_RXBD_CR | TSEC_RXBD_OV | TSEC_RXBD_TR)) {
1305 
1306 			rx_desc->length = 0;
1307 			rx_desc->flags = (rx_desc->flags &
1308 			    ~TSEC_RXBD_ZEROONINIT) | TSEC_RXBD_E | TSEC_RXBD_I;
1309 
1310 			if (sc->frame != NULL) {
1311 				m_free(sc->frame);
1312 				sc->frame = NULL;
1313 			}
1314 
1315 			continue;
1316 		}
1317 
1318 		/* Ok... process frame */
1319 		i = TSEC_GET_CUR_RX_DESC_CNT(sc);
1320 		m = rx_data[i].mbuf;
1321 		m->m_len = rx_desc->length;
1322 
1323 		if (sc->frame != NULL) {
1324 			if ((flags & TSEC_RXBD_L) != 0)
1325 				m->m_len -= m_length(sc->frame, NULL);
1326 
1327 			m->m_flags &= ~M_PKTHDR;
1328 			m_cat(sc->frame, m);
1329 		} else {
1330 			sc->frame = m;
1331 		}
1332 
1333 		m = NULL;
1334 
1335 		if ((flags & TSEC_RXBD_L) != 0) {
1336 			m = sc->frame;
1337 			sc->frame = NULL;
1338 		}
1339 
1340 		if (tsec_new_rxbuf(sc->tsec_rx_mtag, rx_data[i].map,
1341 		    &rx_data[i].mbuf, &rx_data[i].paddr)) {
1342 			ifp->if_ierrors++;
1343 			/*
1344 			 * We ran out of mbufs; didn't consume current
1345 			 * descriptor and have to return it to the queue.
1346 			 */
1347 			TSEC_BACK_CUR_RX_DESC(sc);
1348 			break;
1349 		}
1350 
1351 		/* Attach new buffer to descriptor and clear flags */
1352 		rx_desc->bufptr = rx_data[i].paddr;
1353 		rx_desc->length = 0;
1354 		rx_desc->flags = (rx_desc->flags & ~TSEC_RXBD_ZEROONINIT) |
1355 		    TSEC_RXBD_E | TSEC_RXBD_I;
1356 
1357 		if (m != NULL) {
1358 			m->m_pkthdr.rcvif = ifp;
1359 
1360 			m_fixhdr(m);
1361 			m_adj(m, -ETHER_CRC_LEN);
1362 
1363 			if (sc->is_etsec)
1364 				tsec_offload_process_frame(sc, m);
1365 
1366 			TSEC_RECEIVE_UNLOCK(sc);
1367 			(*ifp->if_input)(ifp, m);
1368 			TSEC_RECEIVE_LOCK(sc);
1369 			rx_npkts++;
1370 		}
1371 	}
1372 
1373 	bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1374 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1375 
1376 	/*
1377 	 * Make sure TSEC receiver is not halted.
1378 	 *
1379 	 * Various conditions can stop the TSEC receiver, but not all are
1380 	 * signaled and handled by error interrupt, so make sure the receiver
1381 	 * is running. Writing to TSEC_REG_RSTAT restarts the receiver when
1382 	 * halted, and is harmless if already running.
1383 	 */
1384 	TSEC_WRITE(sc, TSEC_REG_RSTAT, TSEC_RSTAT_QHLT);
1385 	return (rx_npkts);
1386 }
1387 
1388 void
1389 tsec_receive_intr(void *arg)
1390 {
1391 	struct tsec_softc *sc = arg;
1392 
1393 	TSEC_RECEIVE_LOCK(sc);
1394 
1395 #ifdef DEVICE_POLLING
1396 	if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) {
1397 		TSEC_RECEIVE_UNLOCK(sc);
1398 		return;
1399 	}
1400 #endif
1401 
1402 	/* Confirm the interrupt was received by driver */
1403 	TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXB | TSEC_IEVENT_RXF);
1404 	tsec_receive_intr_locked(sc, -1);
1405 
1406 	TSEC_RECEIVE_UNLOCK(sc);
1407 }
1408 
1409 static void
1410 tsec_transmit_intr_locked(struct tsec_softc *sc)
1411 {
1412 	struct tsec_desc *tx_desc;
1413 	struct ifnet *ifp;
1414 	struct mbuf *m0;
1415 	bus_dmamap_t *mapp;
1416 	int send = 0;
1417 
1418 	TSEC_TRANSMIT_LOCK_ASSERT(sc);
1419 
1420 	ifp = sc->tsec_ifp;
1421 
1422 	/* Update collision statistics */
1423 	ifp->if_collisions += TSEC_READ(sc, TSEC_REG_MON_TNCL);
1424 
1425 	/* Reset collision counters in hardware */
1426 	TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0);
1427 	TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0);
1428 	TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0);
1429 	TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0);
1430 	TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0);
1431 
1432 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1433 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1434 
1435 	while (TSEC_CUR_DIFF_DIRTY_TX_DESC(sc)) {
1436 		tx_desc = TSEC_GET_DIRTY_TX_DESC(sc);
1437 		if (tx_desc->flags & TSEC_TXBD_R) {
1438 			TSEC_BACK_DIRTY_TX_DESC(sc);
1439 			break;
1440 		}
1441 
1442 		if ((tx_desc->flags & TSEC_TXBD_L) == 0)
1443 			continue;
1444 
1445 		/*
1446 		 * This is the last buf in this packet, so unmap and free it.
1447 		 */
1448 		m0 = TSEC_GET_TX_MBUF(sc);
1449 		mapp = TSEC_GET_TX_MAP(sc);
1450 
1451 		bus_dmamap_sync(sc->tsec_tx_mtag, *mapp,
1452 		    BUS_DMASYNC_POSTWRITE);
1453 		bus_dmamap_unload(sc->tsec_tx_mtag, *mapp);
1454 
1455 		TSEC_FREE_TX_MAP(sc, mapp);
1456 		m_freem(m0);
1457 
1458 		ifp->if_opackets++;
1459 		send = 1;
1460 	}
1461 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1462 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1463 
1464 	if (send) {
1465 		/* Now send anything that was pending */
1466 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1467 		tsec_start_locked(ifp);
1468 
1469 		/* Stop wathdog if all sent */
1470 		if (TSEC_EMPTYQ_TX_MBUF(sc))
1471 			sc->tsec_watchdog = 0;
1472 	}
1473 }
1474 
1475 void
1476 tsec_transmit_intr(void *arg)
1477 {
1478 	struct tsec_softc *sc = arg;
1479 
1480 	TSEC_TRANSMIT_LOCK(sc);
1481 
1482 #ifdef DEVICE_POLLING
1483 	if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) {
1484 		TSEC_TRANSMIT_UNLOCK(sc);
1485 		return;
1486 	}
1487 #endif
1488 	/* Confirm the interrupt was received by driver */
1489 	TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_TXB | TSEC_IEVENT_TXF);
1490 	tsec_transmit_intr_locked(sc);
1491 
1492 	TSEC_TRANSMIT_UNLOCK(sc);
1493 }
1494 
1495 static void
1496 tsec_error_intr_locked(struct tsec_softc *sc, int count)
1497 {
1498 	struct ifnet *ifp;
1499 	uint32_t eflags;
1500 
1501 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1502 
1503 	ifp = sc->tsec_ifp;
1504 
1505 	eflags = TSEC_READ(sc, TSEC_REG_IEVENT);
1506 
1507 	/* Clear events bits in hardware */
1508 	TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXC | TSEC_IEVENT_BSY |
1509 	    TSEC_IEVENT_EBERR | TSEC_IEVENT_MSRO | TSEC_IEVENT_BABT |
1510 	    TSEC_IEVENT_TXC | TSEC_IEVENT_TXE | TSEC_IEVENT_LC |
1511 	    TSEC_IEVENT_CRL | TSEC_IEVENT_XFUN);
1512 
1513 	/* Check transmitter errors */
1514 	if (eflags & TSEC_IEVENT_TXE) {
1515 		ifp->if_oerrors++;
1516 
1517 		if (eflags & TSEC_IEVENT_LC)
1518 			ifp->if_collisions++;
1519 
1520 		TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
1521 	}
1522 
1523 	/* Check receiver errors */
1524 	if (eflags & TSEC_IEVENT_BSY) {
1525 		ifp->if_ierrors++;
1526 		ifp->if_iqdrops++;
1527 
1528 		/* Get data from RX buffers */
1529 		tsec_receive_intr_locked(sc, count);
1530 	}
1531 
1532 	if (ifp->if_flags & IFF_DEBUG)
1533 		if_printf(ifp, "tsec_error_intr(): event flags: 0x%x\n",
1534 		    eflags);
1535 
1536 	if (eflags & TSEC_IEVENT_EBERR) {
1537 		if_printf(ifp, "System bus error occurred during"
1538 		    "DMA transaction (flags: 0x%x)\n", eflags);
1539 		tsec_init_locked(sc);
1540 	}
1541 
1542 	if (eflags & TSEC_IEVENT_BABT)
1543 		ifp->if_oerrors++;
1544 
1545 	if (eflags & TSEC_IEVENT_BABR)
1546 		ifp->if_ierrors++;
1547 }
1548 
1549 void
1550 tsec_error_intr(void *arg)
1551 {
1552 	struct tsec_softc *sc = arg;
1553 
1554 	TSEC_GLOBAL_LOCK(sc);
1555 	tsec_error_intr_locked(sc, -1);
1556 	TSEC_GLOBAL_UNLOCK(sc);
1557 }
1558 
1559 int
1560 tsec_miibus_readreg(device_t dev, int phy, int reg)
1561 {
1562 	struct tsec_softc *sc;
1563 	uint32_t timeout;
1564 
1565 	sc = device_get_softc(dev);
1566 
1567 	TSEC_WRITE(sc->phy_sc, TSEC_REG_MIIMADD, (phy << 8) | reg);
1568 	TSEC_WRITE(sc->phy_sc, TSEC_REG_MIIMCOM, 0);
1569 	TSEC_WRITE(sc->phy_sc, TSEC_REG_MIIMCOM, TSEC_MIIMCOM_READCYCLE);
1570 
1571 	timeout = TSEC_READ_RETRY;
1572 	while (--timeout && TSEC_READ(sc->phy_sc, TSEC_REG_MIIMIND) &
1573 	    (TSEC_MIIMIND_NOTVALID | TSEC_MIIMIND_BUSY))
1574 		DELAY(TSEC_READ_DELAY);
1575 
1576 	if (timeout == 0)
1577 		device_printf(dev, "Timeout while reading from PHY!\n");
1578 
1579 	return (TSEC_READ(sc->phy_sc, TSEC_REG_MIIMSTAT));
1580 }
1581 
1582 int
1583 tsec_miibus_writereg(device_t dev, int phy, int reg, int value)
1584 {
1585 	struct tsec_softc *sc;
1586 	uint32_t timeout;
1587 
1588 	sc = device_get_softc(dev);
1589 
1590 	TSEC_WRITE(sc->phy_sc, TSEC_REG_MIIMADD, (phy << 8) | reg);
1591 	TSEC_WRITE(sc->phy_sc, TSEC_REG_MIIMCON, value);
1592 
1593 	timeout = TSEC_READ_RETRY;
1594 	while (--timeout && (TSEC_READ(sc->phy_sc, TSEC_REG_MIIMIND) &
1595 	    TSEC_MIIMIND_BUSY))
1596 		DELAY(TSEC_READ_DELAY);
1597 
1598 	if (timeout == 0)
1599 		device_printf(dev, "Timeout while writing to PHY!\n");
1600 
1601 	return (0);
1602 }
1603 
1604 void
1605 tsec_miibus_statchg(device_t dev)
1606 {
1607 	struct tsec_softc *sc;
1608 	struct mii_data *mii;
1609 	uint32_t ecntrl, id, tmp;
1610 	int link;
1611 
1612 	sc = device_get_softc(dev);
1613 	mii = sc->tsec_mii;
1614 	link = ((mii->mii_media_status & IFM_ACTIVE) ? 1 : 0);
1615 
1616 	tmp = TSEC_READ(sc, TSEC_REG_MACCFG2) & ~TSEC_MACCFG2_IF;
1617 
1618 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
1619 		tmp |= TSEC_MACCFG2_FULLDUPLEX;
1620 	else
1621 		tmp &= ~TSEC_MACCFG2_FULLDUPLEX;
1622 
1623 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1624 	case IFM_1000_T:
1625 	case IFM_1000_SX:
1626 		tmp |= TSEC_MACCFG2_GMII;
1627 		sc->tsec_link = link;
1628 		break;
1629 	case IFM_100_TX:
1630 	case IFM_10_T:
1631 		tmp |= TSEC_MACCFG2_MII;
1632 		sc->tsec_link = link;
1633 		break;
1634 	case IFM_NONE:
1635 		if (link)
1636 			device_printf(dev, "No speed selected but link "
1637 			    "active!\n");
1638 		sc->tsec_link = 0;
1639 		return;
1640 	default:
1641 		sc->tsec_link = 0;
1642 		device_printf(dev, "Unknown speed (%d), link %s!\n",
1643 		    IFM_SUBTYPE(mii->mii_media_active),
1644 		        ((link) ? "up" : "down"));
1645 		return;
1646 	}
1647 	TSEC_WRITE(sc, TSEC_REG_MACCFG2, tmp);
1648 
1649 	/* XXX kludge - use circumstantial evidence for reduced mode. */
1650 	id = TSEC_READ(sc, TSEC_REG_ID2);
1651 	if (id & 0xffff) {
1652 		ecntrl = TSEC_READ(sc, TSEC_REG_ECNTRL) & ~TSEC_ECNTRL_R100M;
1653 		ecntrl |= (tmp & TSEC_MACCFG2_MII) ? TSEC_ECNTRL_R100M : 0;
1654 		TSEC_WRITE(sc, TSEC_REG_ECNTRL, ecntrl);
1655 	}
1656 }
1657 
1658 static void
1659 tsec_add_sysctls(struct tsec_softc *sc)
1660 {
1661 	struct sysctl_ctx_list *ctx;
1662 	struct sysctl_oid_list *children;
1663 	struct sysctl_oid *tree;
1664 
1665 	ctx = device_get_sysctl_ctx(sc->dev);
1666 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
1667 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "int_coal",
1668 	    CTLFLAG_RD, 0, "TSEC Interrupts coalescing");
1669 	children = SYSCTL_CHILDREN(tree);
1670 
1671 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_time",
1672 	    CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_RX, tsec_sysctl_ic_time,
1673 	    "I", "IC RX time threshold (0-65535)");
1674 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_count",
1675 	    CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_RX, tsec_sysctl_ic_count,
1676 	    "I", "IC RX frame count threshold (0-255)");
1677 
1678 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_time",
1679 	    CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_TX, tsec_sysctl_ic_time,
1680 	    "I", "IC TX time threshold (0-65535)");
1681 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_count",
1682 	    CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_TX, tsec_sysctl_ic_count,
1683 	    "I", "IC TX frame count threshold (0-255)");
1684 }
1685 
1686 /*
1687  * With Interrupt Coalescing (IC) active, a transmit/receive frame
1688  * interrupt is raised either upon:
1689  *
1690  * - threshold-defined period of time elapsed, or
1691  * - threshold-defined number of frames is received/transmitted,
1692  *   whichever occurs first.
1693  *
1694  * The following sysctls regulate IC behaviour (for TX/RX separately):
1695  *
1696  * dev.tsec.<unit>.int_coal.rx_time
1697  * dev.tsec.<unit>.int_coal.rx_count
1698  * dev.tsec.<unit>.int_coal.tx_time
1699  * dev.tsec.<unit>.int_coal.tx_count
1700  *
1701  * Values:
1702  *
1703  * - 0 for either time or count disables IC on the given TX/RX path
1704  *
1705  * - count: 1-255 (expresses frame count number; note that value of 1 is
1706  *   effectively IC off)
1707  *
1708  * - time: 1-65535 (value corresponds to a real time period and is
1709  *   expressed in units equivalent to 64 TSEC interface clocks, i.e. one timer
1710  *   threshold unit is 26.5 us, 2.56 us, or 512 ns, corresponding to 10 Mbps,
1711  *   100 Mbps, or 1Gbps, respectively. For detailed discussion consult the
1712  *   TSEC reference manual.
1713  */
1714 static int
1715 tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS)
1716 {
1717 	int error;
1718 	uint32_t time;
1719 	struct tsec_softc *sc = (struct tsec_softc *)arg1;
1720 
1721 	time = (arg2 == TSEC_IC_RX) ? sc->rx_ic_time : sc->tx_ic_time;
1722 
1723 	error = sysctl_handle_int(oidp, &time, 0, req);
1724 	if (error != 0)
1725 		return (error);
1726 
1727 	if (time > 65535)
1728 		return (EINVAL);
1729 
1730 	TSEC_IC_LOCK(sc);
1731 	if (arg2 == TSEC_IC_RX) {
1732 		sc->rx_ic_time = time;
1733 		tsec_set_rxic(sc);
1734 	} else {
1735 		sc->tx_ic_time = time;
1736 		tsec_set_txic(sc);
1737 	}
1738 	TSEC_IC_UNLOCK(sc);
1739 
1740 	return (0);
1741 }
1742 
1743 static int
1744 tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS)
1745 {
1746 	int error;
1747 	uint32_t count;
1748 	struct tsec_softc *sc = (struct tsec_softc *)arg1;
1749 
1750 	count = (arg2 == TSEC_IC_RX) ? sc->rx_ic_count : sc->tx_ic_count;
1751 
1752 	error = sysctl_handle_int(oidp, &count, 0, req);
1753 	if (error != 0)
1754 		return (error);
1755 
1756 	if (count > 255)
1757 		return (EINVAL);
1758 
1759 	TSEC_IC_LOCK(sc);
1760 	if (arg2 == TSEC_IC_RX) {
1761 		sc->rx_ic_count = count;
1762 		tsec_set_rxic(sc);
1763 	} else {
1764 		sc->tx_ic_count = count;
1765 		tsec_set_txic(sc);
1766 	}
1767 	TSEC_IC_UNLOCK(sc);
1768 
1769 	return (0);
1770 }
1771 
1772 static void
1773 tsec_set_rxic(struct tsec_softc *sc)
1774 {
1775 	uint32_t rxic_val;
1776 
1777 	if (sc->rx_ic_count == 0 || sc->rx_ic_time == 0)
1778 		/* Disable RX IC */
1779 		rxic_val = 0;
1780 	else {
1781 		rxic_val = 0x80000000;
1782 		rxic_val |= (sc->rx_ic_count << 21);
1783 		rxic_val |= sc->rx_ic_time;
1784 	}
1785 
1786 	TSEC_WRITE(sc, TSEC_REG_RXIC, rxic_val);
1787 }
1788 
1789 static void
1790 tsec_set_txic(struct tsec_softc *sc)
1791 {
1792 	uint32_t txic_val;
1793 
1794 	if (sc->tx_ic_count == 0 || sc->tx_ic_time == 0)
1795 		/* Disable TX IC */
1796 		txic_val = 0;
1797 	else {
1798 		txic_val = 0x80000000;
1799 		txic_val |= (sc->tx_ic_count << 21);
1800 		txic_val |= sc->tx_ic_time;
1801 	}
1802 
1803 	TSEC_WRITE(sc, TSEC_REG_TXIC, txic_val);
1804 }
1805 
1806 static void
1807 tsec_offload_setup(struct tsec_softc *sc)
1808 {
1809 	struct ifnet *ifp = sc->tsec_ifp;
1810 	uint32_t reg;
1811 
1812 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1813 
1814 	reg = TSEC_READ(sc, TSEC_REG_TCTRL);
1815 	reg |= TSEC_TCTRL_IPCSEN | TSEC_TCTRL_TUCSEN;
1816 
1817 	if (ifp->if_capenable & IFCAP_TXCSUM)
1818 		ifp->if_hwassist = TSEC_CHECKSUM_FEATURES;
1819 	else
1820 		ifp->if_hwassist = 0;
1821 
1822 	TSEC_WRITE(sc, TSEC_REG_TCTRL, reg);
1823 
1824 	reg = TSEC_READ(sc, TSEC_REG_RCTRL);
1825 	reg &= ~(TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN | TSEC_RCTRL_PRSDEP);
1826 	reg |= TSEC_RCTRL_PRSDEP_PARSE_L2 | TSEC_RCTRL_VLEX;
1827 
1828 	if (ifp->if_capenable & IFCAP_RXCSUM)
1829 		reg |= TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN |
1830 		    TSEC_RCTRL_PRSDEP_PARSE_L234;
1831 
1832 	TSEC_WRITE(sc, TSEC_REG_RCTRL, reg);
1833 }
1834 
1835 
1836 static void
1837 tsec_offload_process_frame(struct tsec_softc *sc, struct mbuf *m)
1838 {
1839 	struct tsec_rx_fcb rx_fcb;
1840 	int csum_flags = 0;
1841 	int protocol, flags;
1842 
1843 	TSEC_RECEIVE_LOCK_ASSERT(sc);
1844 
1845 	m_copydata(m, 0, sizeof(struct tsec_rx_fcb), (caddr_t)(&rx_fcb));
1846 	flags = rx_fcb.flags;
1847 	protocol = rx_fcb.protocol;
1848 
1849 	if (TSEC_RX_FCB_IP_CSUM_CHECKED(flags)) {
1850 		csum_flags |= CSUM_IP_CHECKED;
1851 
1852 		if ((flags & TSEC_RX_FCB_IP_CSUM_ERROR) == 0)
1853 			csum_flags |= CSUM_IP_VALID;
1854 	}
1855 
1856 	if ((protocol == IPPROTO_TCP || protocol == IPPROTO_UDP) &&
1857 	    TSEC_RX_FCB_TCP_UDP_CSUM_CHECKED(flags) &&
1858 	    (flags & TSEC_RX_FCB_TCP_UDP_CSUM_ERROR) == 0) {
1859 
1860 		csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1861 		m->m_pkthdr.csum_data = 0xFFFF;
1862 	}
1863 
1864 	m->m_pkthdr.csum_flags = csum_flags;
1865 
1866 	if (flags & TSEC_RX_FCB_VLAN) {
1867 		m->m_pkthdr.ether_vtag = rx_fcb.vlan;
1868 		m->m_flags |= M_VLANTAG;
1869 	}
1870 
1871 	m_adj(m, sizeof(struct tsec_rx_fcb));
1872 }
1873 
1874 static void
1875 tsec_setup_multicast(struct tsec_softc *sc)
1876 {
1877 	uint32_t hashtable[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
1878 	struct ifnet *ifp = sc->tsec_ifp;
1879 	struct ifmultiaddr *ifma;
1880 	uint32_t h;
1881 	int i;
1882 
1883 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1884 
1885 	if (ifp->if_flags & IFF_ALLMULTI) {
1886 		for (i = 0; i < 8; i++)
1887 			TSEC_WRITE(sc, TSEC_REG_GADDR(i), 0xFFFFFFFF);
1888 
1889 		return;
1890 	}
1891 
1892 	if_maddr_rlock(ifp);
1893 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1894 
1895 		if (ifma->ifma_addr->sa_family != AF_LINK)
1896 			continue;
1897 
1898 		h = (ether_crc32_be(LLADDR((struct sockaddr_dl *)
1899 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 24) & 0xFF;
1900 
1901 		hashtable[(h >> 5)] |= 1 << (0x1F - (h & 0x1F));
1902 	}
1903 	if_maddr_runlock(ifp);
1904 
1905 	for (i = 0; i < 8; i++)
1906 		TSEC_WRITE(sc, TSEC_REG_GADDR(i), hashtable[i]);
1907 }
1908 
1909 static int
1910 tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu)
1911 {
1912 
1913 	mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
1914 
1915 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1916 
1917 	if (mtu >= TSEC_MIN_FRAME_SIZE && mtu <= TSEC_MAX_FRAME_SIZE) {
1918 		TSEC_WRITE(sc, TSEC_REG_MAXFRM, mtu);
1919 		return (mtu);
1920 	}
1921 
1922 	return (0);
1923 }
1924