1 /*- 2 * Copyright (C) 2007-2008 Semihalf, Rafal Jaworowski 3 * Copyright (C) 2006-2007 Semihalf, Piotr Kruszynski 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 18 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 20 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 22 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 23 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 24 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 /* 28 * Freescale integrated Three-Speed Ethernet Controller (TSEC) driver. 29 */ 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #ifdef HAVE_KERNEL_OPTION_HEADERS 34 #include "opt_device_polling.h" 35 #endif 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/bus.h> 40 #include <sys/endian.h> 41 #include <sys/mbuf.h> 42 #include <sys/kernel.h> 43 #include <sys/module.h> 44 #include <sys/socket.h> 45 #include <sys/sockio.h> 46 #include <sys/sysctl.h> 47 48 #include <net/bpf.h> 49 #include <net/ethernet.h> 50 #include <net/if.h> 51 #include <net/if_var.h> 52 #include <net/if_arp.h> 53 #include <net/if_dl.h> 54 #include <net/if_media.h> 55 #include <net/if_types.h> 56 #include <net/if_vlan_var.h> 57 58 #include <netinet/in_systm.h> 59 #include <netinet/in.h> 60 #include <netinet/ip.h> 61 62 #include <machine/bus.h> 63 64 #include <dev/mii/mii.h> 65 #include <dev/mii/miivar.h> 66 67 #include <dev/tsec/if_tsec.h> 68 #include <dev/tsec/if_tsecreg.h> 69 70 static int tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag, 71 bus_dmamap_t *dmap, bus_size_t dsize, void **vaddr, void *raddr, 72 const char *dname); 73 static void tsec_dma_ctl(struct tsec_softc *sc, int state); 74 static int tsec_encap(struct tsec_softc *sc, struct mbuf *m_head, 75 int fcb_inserted); 76 static void tsec_free_dma(struct tsec_softc *sc); 77 static void tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr); 78 static int tsec_ifmedia_upd(struct ifnet *ifp); 79 static void tsec_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr); 80 static int tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map, 81 struct mbuf **mbufp, uint32_t *paddr); 82 static void tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs, 83 int nseg, int error); 84 static void tsec_intrs_ctl(struct tsec_softc *sc, int state); 85 static void tsec_init(void *xsc); 86 static void tsec_init_locked(struct tsec_softc *sc); 87 static int tsec_ioctl(struct ifnet *ifp, u_long command, caddr_t data); 88 static void tsec_reset_mac(struct tsec_softc *sc); 89 static void tsec_setfilter(struct tsec_softc *sc); 90 static void tsec_set_mac_address(struct tsec_softc *sc); 91 static void tsec_start(struct ifnet *ifp); 92 static void tsec_start_locked(struct ifnet *ifp); 93 static void tsec_stop(struct tsec_softc *sc); 94 static void tsec_tick(void *arg); 95 static void tsec_watchdog(struct tsec_softc *sc); 96 static void tsec_add_sysctls(struct tsec_softc *sc); 97 static int tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS); 98 static int tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS); 99 static void tsec_set_rxic(struct tsec_softc *sc); 100 static void tsec_set_txic(struct tsec_softc *sc); 101 static int tsec_receive_intr_locked(struct tsec_softc *sc, int count); 102 static void tsec_transmit_intr_locked(struct tsec_softc *sc); 103 static void tsec_error_intr_locked(struct tsec_softc *sc, int count); 104 static void tsec_offload_setup(struct tsec_softc *sc); 105 static void tsec_offload_process_frame(struct tsec_softc *sc, 106 struct mbuf *m); 107 static void tsec_setup_multicast(struct tsec_softc *sc); 108 static int tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu); 109 110 devclass_t tsec_devclass; 111 DRIVER_MODULE(miibus, tsec, miibus_driver, miibus_devclass, 0, 0); 112 MODULE_DEPEND(tsec, ether, 1, 1, 1); 113 MODULE_DEPEND(tsec, miibus, 1, 1, 1); 114 115 struct mtx tsec_phy_mtx; 116 117 int 118 tsec_attach(struct tsec_softc *sc) 119 { 120 uint8_t hwaddr[ETHER_ADDR_LEN]; 121 struct ifnet *ifp; 122 bus_dmamap_t *map_ptr; 123 bus_dmamap_t **map_pptr; 124 int error = 0; 125 int i; 126 127 /* Initialize global (because potentially shared) MII lock */ 128 if (!mtx_initialized(&tsec_phy_mtx)) 129 mtx_init(&tsec_phy_mtx, "tsec mii", NULL, MTX_DEF); 130 131 /* Reset all TSEC counters */ 132 TSEC_TX_RX_COUNTERS_INIT(sc); 133 134 /* Stop DMA engine if enabled by firmware */ 135 tsec_dma_ctl(sc, 0); 136 137 /* Reset MAC */ 138 tsec_reset_mac(sc); 139 140 /* Disable interrupts for now */ 141 tsec_intrs_ctl(sc, 0); 142 143 /* Configure defaults for interrupts coalescing */ 144 sc->rx_ic_time = 768; 145 sc->rx_ic_count = 16; 146 sc->tx_ic_time = 768; 147 sc->tx_ic_count = 16; 148 tsec_set_rxic(sc); 149 tsec_set_txic(sc); 150 tsec_add_sysctls(sc); 151 152 /* Allocate a busdma tag and DMA safe memory for TX descriptors. */ 153 error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_tx_dtag, 154 &sc->tsec_tx_dmap, sizeof(*sc->tsec_tx_vaddr) * TSEC_TX_NUM_DESC, 155 (void **)&sc->tsec_tx_vaddr, &sc->tsec_tx_raddr, "TX"); 156 157 if (error) { 158 tsec_detach(sc); 159 return (ENXIO); 160 } 161 162 /* Allocate a busdma tag and DMA safe memory for RX descriptors. */ 163 error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_rx_dtag, 164 &sc->tsec_rx_dmap, sizeof(*sc->tsec_rx_vaddr) * TSEC_RX_NUM_DESC, 165 (void **)&sc->tsec_rx_vaddr, &sc->tsec_rx_raddr, "RX"); 166 if (error) { 167 tsec_detach(sc); 168 return (ENXIO); 169 } 170 171 /* Allocate a busdma tag for TX mbufs. */ 172 error = bus_dma_tag_create(NULL, /* parent */ 173 TSEC_TXBUFFER_ALIGNMENT, 0, /* alignment, boundary */ 174 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 175 BUS_SPACE_MAXADDR, /* highaddr */ 176 NULL, NULL, /* filtfunc, filtfuncarg */ 177 MCLBYTES * (TSEC_TX_NUM_DESC - 1), /* maxsize */ 178 TSEC_TX_NUM_DESC - 1, /* nsegments */ 179 MCLBYTES, 0, /* maxsegsz, flags */ 180 NULL, NULL, /* lockfunc, lockfuncarg */ 181 &sc->tsec_tx_mtag); /* dmat */ 182 if (error) { 183 device_printf(sc->dev, "failed to allocate busdma tag " 184 "(tx mbufs)\n"); 185 tsec_detach(sc); 186 return (ENXIO); 187 } 188 189 /* Allocate a busdma tag for RX mbufs. */ 190 error = bus_dma_tag_create(NULL, /* parent */ 191 TSEC_RXBUFFER_ALIGNMENT, 0, /* alignment, boundary */ 192 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 193 BUS_SPACE_MAXADDR, /* highaddr */ 194 NULL, NULL, /* filtfunc, filtfuncarg */ 195 MCLBYTES, /* maxsize */ 196 1, /* nsegments */ 197 MCLBYTES, 0, /* maxsegsz, flags */ 198 NULL, NULL, /* lockfunc, lockfuncarg */ 199 &sc->tsec_rx_mtag); /* dmat */ 200 if (error) { 201 device_printf(sc->dev, "failed to allocate busdma tag " 202 "(rx mbufs)\n"); 203 tsec_detach(sc); 204 return (ENXIO); 205 } 206 207 /* Create TX busdma maps */ 208 map_ptr = sc->tx_map_data; 209 map_pptr = sc->tx_map_unused_data; 210 211 for (i = 0; i < TSEC_TX_NUM_DESC; i++) { 212 map_pptr[i] = &map_ptr[i]; 213 error = bus_dmamap_create(sc->tsec_tx_mtag, 0, map_pptr[i]); 214 if (error) { 215 device_printf(sc->dev, "failed to init TX ring\n"); 216 tsec_detach(sc); 217 return (ENXIO); 218 } 219 } 220 221 /* Create RX busdma maps and zero mbuf handlers */ 222 for (i = 0; i < TSEC_RX_NUM_DESC; i++) { 223 error = bus_dmamap_create(sc->tsec_rx_mtag, 0, 224 &sc->rx_data[i].map); 225 if (error) { 226 device_printf(sc->dev, "failed to init RX ring\n"); 227 tsec_detach(sc); 228 return (ENXIO); 229 } 230 sc->rx_data[i].mbuf = NULL; 231 } 232 233 /* Create mbufs for RX buffers */ 234 for (i = 0; i < TSEC_RX_NUM_DESC; i++) { 235 error = tsec_new_rxbuf(sc->tsec_rx_mtag, sc->rx_data[i].map, 236 &sc->rx_data[i].mbuf, &sc->rx_data[i].paddr); 237 if (error) { 238 device_printf(sc->dev, "can't load rx DMA map %d, " 239 "error = %d\n", i, error); 240 tsec_detach(sc); 241 return (error); 242 } 243 } 244 245 /* Create network interface for upper layers */ 246 ifp = sc->tsec_ifp = if_alloc(IFT_ETHER); 247 if (ifp == NULL) { 248 device_printf(sc->dev, "if_alloc() failed\n"); 249 tsec_detach(sc); 250 return (ENOMEM); 251 } 252 253 ifp->if_softc = sc; 254 if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev)); 255 ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST; 256 ifp->if_init = tsec_init; 257 ifp->if_start = tsec_start; 258 ifp->if_ioctl = tsec_ioctl; 259 260 IFQ_SET_MAXLEN(&ifp->if_snd, TSEC_TX_NUM_DESC - 1); 261 ifp->if_snd.ifq_drv_maxlen = TSEC_TX_NUM_DESC - 1; 262 IFQ_SET_READY(&ifp->if_snd); 263 264 ifp->if_capabilities = IFCAP_VLAN_MTU; 265 if (sc->is_etsec) 266 ifp->if_capabilities |= IFCAP_HWCSUM; 267 268 ifp->if_capenable = ifp->if_capabilities; 269 270 #ifdef DEVICE_POLLING 271 /* Advertise that polling is supported */ 272 ifp->if_capabilities |= IFCAP_POLLING; 273 #endif 274 275 /* Attach PHY(s) */ 276 error = mii_attach(sc->dev, &sc->tsec_miibus, ifp, tsec_ifmedia_upd, 277 tsec_ifmedia_sts, BMSR_DEFCAPMASK, sc->phyaddr, MII_OFFSET_ANY, 278 0); 279 if (error) { 280 device_printf(sc->dev, "attaching PHYs failed\n"); 281 if_free(ifp); 282 sc->tsec_ifp = NULL; 283 tsec_detach(sc); 284 return (error); 285 } 286 sc->tsec_mii = device_get_softc(sc->tsec_miibus); 287 288 /* Set MAC address */ 289 tsec_get_hwaddr(sc, hwaddr); 290 ether_ifattach(ifp, hwaddr); 291 292 return (0); 293 } 294 295 int 296 tsec_detach(struct tsec_softc *sc) 297 { 298 299 if (sc->tsec_ifp != NULL) { 300 #ifdef DEVICE_POLLING 301 if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) 302 ether_poll_deregister(sc->tsec_ifp); 303 #endif 304 305 /* Stop TSEC controller and free TX queue */ 306 if (sc->sc_rres) 307 tsec_shutdown(sc->dev); 308 309 /* Detach network interface */ 310 ether_ifdetach(sc->tsec_ifp); 311 if_free(sc->tsec_ifp); 312 sc->tsec_ifp = NULL; 313 } 314 315 /* Free DMA resources */ 316 tsec_free_dma(sc); 317 318 return (0); 319 } 320 321 int 322 tsec_shutdown(device_t dev) 323 { 324 struct tsec_softc *sc; 325 326 sc = device_get_softc(dev); 327 328 TSEC_GLOBAL_LOCK(sc); 329 tsec_stop(sc); 330 TSEC_GLOBAL_UNLOCK(sc); 331 return (0); 332 } 333 334 int 335 tsec_suspend(device_t dev) 336 { 337 338 /* TODO not implemented! */ 339 return (0); 340 } 341 342 int 343 tsec_resume(device_t dev) 344 { 345 346 /* TODO not implemented! */ 347 return (0); 348 } 349 350 static void 351 tsec_init(void *xsc) 352 { 353 struct tsec_softc *sc = xsc; 354 355 TSEC_GLOBAL_LOCK(sc); 356 tsec_init_locked(sc); 357 TSEC_GLOBAL_UNLOCK(sc); 358 } 359 360 static void 361 tsec_init_locked(struct tsec_softc *sc) 362 { 363 struct tsec_desc *tx_desc = sc->tsec_tx_vaddr; 364 struct tsec_desc *rx_desc = sc->tsec_rx_vaddr; 365 struct ifnet *ifp = sc->tsec_ifp; 366 uint32_t timeout, val, i; 367 368 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 369 return; 370 371 TSEC_GLOBAL_LOCK_ASSERT(sc); 372 tsec_stop(sc); 373 374 /* 375 * These steps are according to the MPC8555E PowerQUICCIII RM: 376 * 14.7 Initialization/Application Information 377 */ 378 379 /* Step 1: soft reset MAC */ 380 tsec_reset_mac(sc); 381 382 /* Step 2: Initialize MACCFG2 */ 383 TSEC_WRITE(sc, TSEC_REG_MACCFG2, 384 TSEC_MACCFG2_FULLDUPLEX | /* Full Duplex = 1 */ 385 TSEC_MACCFG2_PADCRC | /* PAD/CRC append */ 386 TSEC_MACCFG2_GMII | /* I/F Mode bit */ 387 TSEC_MACCFG2_PRECNT /* Preamble count = 7 */ 388 ); 389 390 /* Step 3: Initialize ECNTRL 391 * While the documentation states that R100M is ignored if RPM is 392 * not set, it does seem to be needed to get the orange boxes to 393 * work (which have a Marvell 88E1111 PHY). Go figure. 394 */ 395 396 /* 397 * XXX kludge - use circumstancial evidence to program ECNTRL 398 * correctly. Ideally we need some board information to guide 399 * us here. 400 */ 401 i = TSEC_READ(sc, TSEC_REG_ID2); 402 val = (i & 0xffff) 403 ? (TSEC_ECNTRL_TBIM | TSEC_ECNTRL_SGMIIM) /* Sumatra */ 404 : TSEC_ECNTRL_R100M; /* Orange + CDS */ 405 TSEC_WRITE(sc, TSEC_REG_ECNTRL, TSEC_ECNTRL_STEN | val); 406 407 /* Step 4: Initialize MAC station address */ 408 tsec_set_mac_address(sc); 409 410 /* 411 * Step 5: Assign a Physical address to the TBI so as to not conflict 412 * with the external PHY physical address 413 */ 414 TSEC_WRITE(sc, TSEC_REG_TBIPA, 5); 415 416 TSEC_PHY_LOCK(sc); 417 418 /* Step 6: Reset the management interface */ 419 TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_RESETMGMT); 420 421 /* Step 7: Setup the MII Mgmt clock speed */ 422 TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_CLKDIV28); 423 424 /* Step 8: Read MII Mgmt indicator register and check for Busy = 0 */ 425 timeout = TSEC_READ_RETRY; 426 while (--timeout && (TSEC_PHY_READ(sc, TSEC_REG_MIIMIND) & 427 TSEC_MIIMIND_BUSY)) 428 DELAY(TSEC_READ_DELAY); 429 if (timeout == 0) { 430 if_printf(ifp, "tsec_init_locked(): Mgmt busy timeout\n"); 431 return; 432 } 433 TSEC_PHY_UNLOCK(sc); 434 435 /* Step 9: Setup the MII Mgmt */ 436 mii_mediachg(sc->tsec_mii); 437 438 /* Step 10: Clear IEVENT register */ 439 TSEC_WRITE(sc, TSEC_REG_IEVENT, 0xffffffff); 440 441 /* Step 11: Enable interrupts */ 442 #ifdef DEVICE_POLLING 443 /* 444 * ...only if polling is not turned on. Disable interrupts explicitly 445 * if polling is enabled. 446 */ 447 if (ifp->if_capenable & IFCAP_POLLING ) 448 tsec_intrs_ctl(sc, 0); 449 else 450 #endif /* DEVICE_POLLING */ 451 tsec_intrs_ctl(sc, 1); 452 453 /* Step 12: Initialize IADDRn */ 454 TSEC_WRITE(sc, TSEC_REG_IADDR0, 0); 455 TSEC_WRITE(sc, TSEC_REG_IADDR1, 0); 456 TSEC_WRITE(sc, TSEC_REG_IADDR2, 0); 457 TSEC_WRITE(sc, TSEC_REG_IADDR3, 0); 458 TSEC_WRITE(sc, TSEC_REG_IADDR4, 0); 459 TSEC_WRITE(sc, TSEC_REG_IADDR5, 0); 460 TSEC_WRITE(sc, TSEC_REG_IADDR6, 0); 461 TSEC_WRITE(sc, TSEC_REG_IADDR7, 0); 462 463 /* Step 13: Initialize GADDRn */ 464 TSEC_WRITE(sc, TSEC_REG_GADDR0, 0); 465 TSEC_WRITE(sc, TSEC_REG_GADDR1, 0); 466 TSEC_WRITE(sc, TSEC_REG_GADDR2, 0); 467 TSEC_WRITE(sc, TSEC_REG_GADDR3, 0); 468 TSEC_WRITE(sc, TSEC_REG_GADDR4, 0); 469 TSEC_WRITE(sc, TSEC_REG_GADDR5, 0); 470 TSEC_WRITE(sc, TSEC_REG_GADDR6, 0); 471 TSEC_WRITE(sc, TSEC_REG_GADDR7, 0); 472 473 /* Step 14: Initialize RCTRL */ 474 TSEC_WRITE(sc, TSEC_REG_RCTRL, 0); 475 476 /* Step 15: Initialize DMACTRL */ 477 tsec_dma_ctl(sc, 1); 478 479 /* Step 16: Initialize FIFO_PAUSE_CTRL */ 480 TSEC_WRITE(sc, TSEC_REG_FIFO_PAUSE_CTRL, TSEC_FIFO_PAUSE_CTRL_EN); 481 482 /* 483 * Step 17: Initialize transmit/receive descriptor rings. 484 * Initialize TBASE and RBASE. 485 */ 486 TSEC_WRITE(sc, TSEC_REG_TBASE, sc->tsec_tx_raddr); 487 TSEC_WRITE(sc, TSEC_REG_RBASE, sc->tsec_rx_raddr); 488 489 for (i = 0; i < TSEC_TX_NUM_DESC; i++) { 490 tx_desc[i].bufptr = 0; 491 tx_desc[i].length = 0; 492 tx_desc[i].flags = ((i == TSEC_TX_NUM_DESC - 1) ? 493 TSEC_TXBD_W : 0); 494 } 495 bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap, 496 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 497 498 for (i = 0; i < TSEC_RX_NUM_DESC; i++) { 499 rx_desc[i].bufptr = sc->rx_data[i].paddr; 500 rx_desc[i].length = 0; 501 rx_desc[i].flags = TSEC_RXBD_E | TSEC_RXBD_I | 502 ((i == TSEC_RX_NUM_DESC - 1) ? TSEC_RXBD_W : 0); 503 } 504 bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap, 505 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 506 507 /* Step 18: Initialize the maximum receive buffer length */ 508 TSEC_WRITE(sc, TSEC_REG_MRBLR, MCLBYTES); 509 510 /* Step 19: Configure ethernet frame sizes */ 511 TSEC_WRITE(sc, TSEC_REG_MINFLR, TSEC_MIN_FRAME_SIZE); 512 tsec_set_mtu(sc, ifp->if_mtu); 513 514 /* Step 20: Enable Rx and RxBD sdata snooping */ 515 TSEC_WRITE(sc, TSEC_REG_ATTR, TSEC_ATTR_RDSEN | TSEC_ATTR_RBDSEN); 516 TSEC_WRITE(sc, TSEC_REG_ATTRELI, 0); 517 518 /* Step 21: Reset collision counters in hardware */ 519 TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0); 520 TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0); 521 TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0); 522 TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0); 523 TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0); 524 525 /* Step 22: Mask all CAM interrupts */ 526 TSEC_WRITE(sc, TSEC_REG_MON_CAM1, 0xffffffff); 527 TSEC_WRITE(sc, TSEC_REG_MON_CAM2, 0xffffffff); 528 529 /* Step 23: Enable Rx and Tx */ 530 val = TSEC_READ(sc, TSEC_REG_MACCFG1); 531 val |= (TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN); 532 TSEC_WRITE(sc, TSEC_REG_MACCFG1, val); 533 534 /* Step 24: Reset TSEC counters for Tx and Rx rings */ 535 TSEC_TX_RX_COUNTERS_INIT(sc); 536 537 /* Step 25: Setup TCP/IP Off-Load engine */ 538 if (sc->is_etsec) 539 tsec_offload_setup(sc); 540 541 /* Step 26: Setup multicast filters */ 542 tsec_setup_multicast(sc); 543 544 /* Step 27: Activate network interface */ 545 ifp->if_drv_flags |= IFF_DRV_RUNNING; 546 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 547 sc->tsec_if_flags = ifp->if_flags; 548 sc->tsec_watchdog = 0; 549 550 /* Schedule watchdog timeout */ 551 callout_reset(&sc->tsec_callout, hz, tsec_tick, sc); 552 } 553 554 static void 555 tsec_set_mac_address(struct tsec_softc *sc) 556 { 557 uint32_t macbuf[2] = { 0, 0 }; 558 char *macbufp, *curmac; 559 int i; 560 561 TSEC_GLOBAL_LOCK_ASSERT(sc); 562 563 KASSERT((ETHER_ADDR_LEN <= sizeof(macbuf)), 564 ("tsec_set_mac_address: (%d <= %zd", ETHER_ADDR_LEN, 565 sizeof(macbuf))); 566 567 macbufp = (char *)macbuf; 568 curmac = (char *)IF_LLADDR(sc->tsec_ifp); 569 570 /* Correct order of MAC address bytes */ 571 for (i = 1; i <= ETHER_ADDR_LEN; i++) 572 macbufp[ETHER_ADDR_LEN-i] = curmac[i-1]; 573 574 /* Initialize MAC station address MACSTNADDR2 and MACSTNADDR1 */ 575 TSEC_WRITE(sc, TSEC_REG_MACSTNADDR2, macbuf[1]); 576 TSEC_WRITE(sc, TSEC_REG_MACSTNADDR1, macbuf[0]); 577 } 578 579 /* 580 * DMA control function, if argument state is: 581 * 0 - DMA engine will be disabled 582 * 1 - DMA engine will be enabled 583 */ 584 static void 585 tsec_dma_ctl(struct tsec_softc *sc, int state) 586 { 587 device_t dev; 588 uint32_t dma_flags, timeout; 589 590 dev = sc->dev; 591 592 dma_flags = TSEC_READ(sc, TSEC_REG_DMACTRL); 593 594 switch (state) { 595 case 0: 596 /* Temporarily clear stop graceful stop bits. */ 597 tsec_dma_ctl(sc, 1000); 598 599 /* Set it again */ 600 dma_flags |= (TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS); 601 break; 602 case 1000: 603 case 1: 604 /* Set write with response (WWR), wait (WOP) and snoop bits */ 605 dma_flags |= (TSEC_DMACTRL_TDSEN | TSEC_DMACTRL_TBDSEN | 606 DMACTRL_WWR | DMACTRL_WOP); 607 608 /* Clear graceful stop bits */ 609 dma_flags &= ~(TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS); 610 break; 611 default: 612 device_printf(dev, "tsec_dma_ctl(): unknown state value: %d\n", 613 state); 614 } 615 616 TSEC_WRITE(sc, TSEC_REG_DMACTRL, dma_flags); 617 618 switch (state) { 619 case 0: 620 /* Wait for DMA stop */ 621 timeout = TSEC_READ_RETRY; 622 while (--timeout && (!(TSEC_READ(sc, TSEC_REG_IEVENT) & 623 (TSEC_IEVENT_GRSC | TSEC_IEVENT_GTSC)))) 624 DELAY(TSEC_READ_DELAY); 625 626 if (timeout == 0) 627 device_printf(dev, "tsec_dma_ctl(): timeout!\n"); 628 break; 629 case 1: 630 /* Restart transmission function */ 631 TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT); 632 } 633 } 634 635 /* 636 * Interrupts control function, if argument state is: 637 * 0 - all TSEC interrupts will be masked 638 * 1 - all TSEC interrupts will be unmasked 639 */ 640 static void 641 tsec_intrs_ctl(struct tsec_softc *sc, int state) 642 { 643 device_t dev; 644 645 dev = sc->dev; 646 647 switch (state) { 648 case 0: 649 TSEC_WRITE(sc, TSEC_REG_IMASK, 0); 650 break; 651 case 1: 652 TSEC_WRITE(sc, TSEC_REG_IMASK, TSEC_IMASK_BREN | 653 TSEC_IMASK_RXCEN | TSEC_IMASK_BSYEN | TSEC_IMASK_EBERREN | 654 TSEC_IMASK_BTEN | TSEC_IMASK_TXEEN | TSEC_IMASK_TXBEN | 655 TSEC_IMASK_TXFEN | TSEC_IMASK_XFUNEN | TSEC_IMASK_RXFEN); 656 break; 657 default: 658 device_printf(dev, "tsec_intrs_ctl(): unknown state value: %d\n", 659 state); 660 } 661 } 662 663 static void 664 tsec_reset_mac(struct tsec_softc *sc) 665 { 666 uint32_t maccfg1_flags; 667 668 /* Set soft reset bit */ 669 maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1); 670 maccfg1_flags |= TSEC_MACCFG1_SOFT_RESET; 671 TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags); 672 673 /* Clear soft reset bit */ 674 maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1); 675 maccfg1_flags &= ~TSEC_MACCFG1_SOFT_RESET; 676 TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags); 677 } 678 679 static void 680 tsec_watchdog(struct tsec_softc *sc) 681 { 682 struct ifnet *ifp; 683 684 TSEC_GLOBAL_LOCK_ASSERT(sc); 685 686 if (sc->tsec_watchdog == 0 || --sc->tsec_watchdog > 0) 687 return; 688 689 ifp = sc->tsec_ifp; 690 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 691 if_printf(ifp, "watchdog timeout\n"); 692 693 tsec_stop(sc); 694 tsec_init_locked(sc); 695 } 696 697 static void 698 tsec_start(struct ifnet *ifp) 699 { 700 struct tsec_softc *sc = ifp->if_softc; 701 702 TSEC_TRANSMIT_LOCK(sc); 703 tsec_start_locked(ifp); 704 TSEC_TRANSMIT_UNLOCK(sc); 705 } 706 707 static void 708 tsec_start_locked(struct ifnet *ifp) 709 { 710 struct tsec_softc *sc; 711 struct mbuf *m0, *mtmp; 712 struct tsec_tx_fcb *tx_fcb; 713 unsigned int queued = 0; 714 int csum_flags, fcb_inserted = 0; 715 716 sc = ifp->if_softc; 717 718 TSEC_TRANSMIT_LOCK_ASSERT(sc); 719 720 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 721 IFF_DRV_RUNNING) 722 return; 723 724 if (sc->tsec_link == 0) 725 return; 726 727 bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap, 728 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 729 730 while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 731 /* Get packet from the queue */ 732 IFQ_DRV_DEQUEUE(&ifp->if_snd, m0); 733 if (m0 == NULL) 734 break; 735 736 /* Insert TCP/IP Off-load frame control block */ 737 csum_flags = m0->m_pkthdr.csum_flags; 738 if (csum_flags) { 739 740 M_PREPEND(m0, sizeof(struct tsec_tx_fcb), M_NOWAIT); 741 if (m0 == NULL) 742 break; 743 744 tx_fcb = mtod(m0, struct tsec_tx_fcb *); 745 tx_fcb->flags = 0; 746 tx_fcb->l3_offset = ETHER_HDR_LEN; 747 tx_fcb->l4_offset = sizeof(struct ip); 748 749 if (csum_flags & CSUM_IP) 750 tx_fcb->flags |= TSEC_TX_FCB_IP4 | 751 TSEC_TX_FCB_CSUM_IP; 752 753 if (csum_flags & CSUM_TCP) 754 tx_fcb->flags |= TSEC_TX_FCB_TCP | 755 TSEC_TX_FCB_CSUM_TCP_UDP; 756 757 if (csum_flags & CSUM_UDP) 758 tx_fcb->flags |= TSEC_TX_FCB_UDP | 759 TSEC_TX_FCB_CSUM_TCP_UDP; 760 761 fcb_inserted = 1; 762 } 763 764 mtmp = m_defrag(m0, M_NOWAIT); 765 if (mtmp) 766 m0 = mtmp; 767 768 if (tsec_encap(sc, m0, fcb_inserted)) { 769 IFQ_DRV_PREPEND(&ifp->if_snd, m0); 770 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 771 break; 772 } 773 queued++; 774 BPF_MTAP(ifp, m0); 775 } 776 bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap, 777 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 778 779 if (queued) { 780 /* Enable transmitter and watchdog timer */ 781 TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT); 782 sc->tsec_watchdog = 5; 783 } 784 } 785 786 static int 787 tsec_encap(struct tsec_softc *sc, struct mbuf *m0, int fcb_inserted) 788 { 789 struct tsec_desc *tx_desc = NULL; 790 struct ifnet *ifp; 791 bus_dma_segment_t segs[TSEC_TX_NUM_DESC]; 792 bus_dmamap_t *mapp; 793 int csum_flag = 0, error, seg, nsegs; 794 795 TSEC_TRANSMIT_LOCK_ASSERT(sc); 796 797 ifp = sc->tsec_ifp; 798 799 if (TSEC_FREE_TX_DESC(sc) == 0) { 800 /* No free descriptors */ 801 return (-1); 802 } 803 804 /* Fetch unused map */ 805 mapp = TSEC_ALLOC_TX_MAP(sc); 806 807 /* Create mapping in DMA memory */ 808 error = bus_dmamap_load_mbuf_sg(sc->tsec_tx_mtag, 809 *mapp, m0, segs, &nsegs, BUS_DMA_NOWAIT); 810 if (error != 0 || nsegs > TSEC_FREE_TX_DESC(sc) || nsegs <= 0) { 811 bus_dmamap_unload(sc->tsec_tx_mtag, *mapp); 812 TSEC_FREE_TX_MAP(sc, mapp); 813 return ((error != 0) ? error : -1); 814 } 815 bus_dmamap_sync(sc->tsec_tx_mtag, *mapp, BUS_DMASYNC_PREWRITE); 816 817 if ((ifp->if_flags & IFF_DEBUG) && (nsegs > 1)) 818 if_printf(ifp, "TX buffer has %d segments\n", nsegs); 819 820 if (fcb_inserted) 821 csum_flag = TSEC_TXBD_TOE; 822 823 /* Everything is ok, now we can send buffers */ 824 for (seg = 0; seg < nsegs; seg++) { 825 tx_desc = TSEC_GET_CUR_TX_DESC(sc); 826 827 tx_desc->length = segs[seg].ds_len; 828 tx_desc->bufptr = segs[seg].ds_addr; 829 830 /* 831 * Set flags: 832 * - wrap 833 * - checksum 834 * - ready to send 835 * - transmit the CRC sequence after the last data byte 836 * - interrupt after the last buffer 837 */ 838 tx_desc->flags = 839 (tx_desc->flags & TSEC_TXBD_W) | 840 ((seg == 0) ? csum_flag : 0) | TSEC_TXBD_R | TSEC_TXBD_TC | 841 ((seg == nsegs - 1) ? TSEC_TXBD_L | TSEC_TXBD_I : 0); 842 } 843 844 /* Save mbuf and DMA mapping for release at later stage */ 845 TSEC_PUT_TX_MBUF(sc, m0); 846 TSEC_PUT_TX_MAP(sc, mapp); 847 848 return (0); 849 } 850 851 static void 852 tsec_setfilter(struct tsec_softc *sc) 853 { 854 struct ifnet *ifp; 855 uint32_t flags; 856 857 ifp = sc->tsec_ifp; 858 flags = TSEC_READ(sc, TSEC_REG_RCTRL); 859 860 /* Promiscuous mode */ 861 if (ifp->if_flags & IFF_PROMISC) 862 flags |= TSEC_RCTRL_PROM; 863 else 864 flags &= ~TSEC_RCTRL_PROM; 865 866 TSEC_WRITE(sc, TSEC_REG_RCTRL, flags); 867 } 868 869 #ifdef DEVICE_POLLING 870 static poll_handler_t tsec_poll; 871 872 static int 873 tsec_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 874 { 875 uint32_t ie; 876 struct tsec_softc *sc = ifp->if_softc; 877 int rx_npkts; 878 879 rx_npkts = 0; 880 881 TSEC_GLOBAL_LOCK(sc); 882 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 883 TSEC_GLOBAL_UNLOCK(sc); 884 return (rx_npkts); 885 } 886 887 if (cmd == POLL_AND_CHECK_STATUS) { 888 tsec_error_intr_locked(sc, count); 889 890 /* Clear all events reported */ 891 ie = TSEC_READ(sc, TSEC_REG_IEVENT); 892 TSEC_WRITE(sc, TSEC_REG_IEVENT, ie); 893 } 894 895 tsec_transmit_intr_locked(sc); 896 897 TSEC_GLOBAL_TO_RECEIVE_LOCK(sc); 898 899 rx_npkts = tsec_receive_intr_locked(sc, count); 900 901 TSEC_RECEIVE_UNLOCK(sc); 902 903 return (rx_npkts); 904 } 905 #endif /* DEVICE_POLLING */ 906 907 static int 908 tsec_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 909 { 910 struct tsec_softc *sc = ifp->if_softc; 911 struct ifreq *ifr = (struct ifreq *)data; 912 device_t dev; 913 int mask, error = 0; 914 915 dev = sc->dev; 916 917 switch (command) { 918 case SIOCSIFMTU: 919 TSEC_GLOBAL_LOCK(sc); 920 if (tsec_set_mtu(sc, ifr->ifr_mtu)) 921 ifp->if_mtu = ifr->ifr_mtu; 922 else 923 error = EINVAL; 924 TSEC_GLOBAL_UNLOCK(sc); 925 break; 926 case SIOCSIFFLAGS: 927 TSEC_GLOBAL_LOCK(sc); 928 if (ifp->if_flags & IFF_UP) { 929 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 930 if ((sc->tsec_if_flags ^ ifp->if_flags) & 931 IFF_PROMISC) 932 tsec_setfilter(sc); 933 934 if ((sc->tsec_if_flags ^ ifp->if_flags) & 935 IFF_ALLMULTI) 936 tsec_setup_multicast(sc); 937 } else 938 tsec_init_locked(sc); 939 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) 940 tsec_stop(sc); 941 942 sc->tsec_if_flags = ifp->if_flags; 943 TSEC_GLOBAL_UNLOCK(sc); 944 break; 945 case SIOCADDMULTI: 946 case SIOCDELMULTI: 947 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 948 TSEC_GLOBAL_LOCK(sc); 949 tsec_setup_multicast(sc); 950 TSEC_GLOBAL_UNLOCK(sc); 951 } 952 case SIOCGIFMEDIA: 953 case SIOCSIFMEDIA: 954 error = ifmedia_ioctl(ifp, ifr, &sc->tsec_mii->mii_media, 955 command); 956 break; 957 case SIOCSIFCAP: 958 mask = ifp->if_capenable ^ ifr->ifr_reqcap; 959 if ((mask & IFCAP_HWCSUM) && sc->is_etsec) { 960 TSEC_GLOBAL_LOCK(sc); 961 ifp->if_capenable &= ~IFCAP_HWCSUM; 962 ifp->if_capenable |= IFCAP_HWCSUM & ifr->ifr_reqcap; 963 tsec_offload_setup(sc); 964 TSEC_GLOBAL_UNLOCK(sc); 965 } 966 #ifdef DEVICE_POLLING 967 if (mask & IFCAP_POLLING) { 968 if (ifr->ifr_reqcap & IFCAP_POLLING) { 969 error = ether_poll_register(tsec_poll, ifp); 970 if (error) 971 return (error); 972 973 TSEC_GLOBAL_LOCK(sc); 974 /* Disable interrupts */ 975 tsec_intrs_ctl(sc, 0); 976 ifp->if_capenable |= IFCAP_POLLING; 977 TSEC_GLOBAL_UNLOCK(sc); 978 } else { 979 error = ether_poll_deregister(ifp); 980 TSEC_GLOBAL_LOCK(sc); 981 /* Enable interrupts */ 982 tsec_intrs_ctl(sc, 1); 983 ifp->if_capenable &= ~IFCAP_POLLING; 984 TSEC_GLOBAL_UNLOCK(sc); 985 } 986 } 987 #endif 988 break; 989 990 default: 991 error = ether_ioctl(ifp, command, data); 992 } 993 994 /* Flush buffers if not empty */ 995 if (ifp->if_flags & IFF_UP) 996 tsec_start(ifp); 997 return (error); 998 } 999 1000 static int 1001 tsec_ifmedia_upd(struct ifnet *ifp) 1002 { 1003 struct tsec_softc *sc = ifp->if_softc; 1004 struct mii_data *mii; 1005 1006 TSEC_TRANSMIT_LOCK(sc); 1007 1008 mii = sc->tsec_mii; 1009 mii_mediachg(mii); 1010 1011 TSEC_TRANSMIT_UNLOCK(sc); 1012 return (0); 1013 } 1014 1015 static void 1016 tsec_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 1017 { 1018 struct tsec_softc *sc = ifp->if_softc; 1019 struct mii_data *mii; 1020 1021 TSEC_TRANSMIT_LOCK(sc); 1022 1023 mii = sc->tsec_mii; 1024 mii_pollstat(mii); 1025 1026 ifmr->ifm_active = mii->mii_media_active; 1027 ifmr->ifm_status = mii->mii_media_status; 1028 1029 TSEC_TRANSMIT_UNLOCK(sc); 1030 } 1031 1032 static int 1033 tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map, struct mbuf **mbufp, 1034 uint32_t *paddr) 1035 { 1036 struct mbuf *new_mbuf; 1037 bus_dma_segment_t seg[1]; 1038 int error, nsegs; 1039 1040 KASSERT(mbufp != NULL, ("NULL mbuf pointer!")); 1041 1042 new_mbuf = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MCLBYTES); 1043 if (new_mbuf == NULL) 1044 return (ENOBUFS); 1045 new_mbuf->m_len = new_mbuf->m_pkthdr.len = new_mbuf->m_ext.ext_size; 1046 1047 if (*mbufp) { 1048 bus_dmamap_sync(tag, map, BUS_DMASYNC_POSTREAD); 1049 bus_dmamap_unload(tag, map); 1050 } 1051 1052 error = bus_dmamap_load_mbuf_sg(tag, map, new_mbuf, seg, &nsegs, 1053 BUS_DMA_NOWAIT); 1054 KASSERT(nsegs == 1, ("Too many segments returned!")); 1055 if (nsegs != 1 || error) 1056 panic("tsec_new_rxbuf(): nsegs(%d), error(%d)", nsegs, error); 1057 1058 #if 0 1059 if (error) { 1060 printf("tsec: bus_dmamap_load_mbuf_sg() returned: %d!\n", 1061 error); 1062 m_freem(new_mbuf); 1063 return (ENOBUFS); 1064 } 1065 #endif 1066 1067 #if 0 1068 KASSERT(((seg->ds_addr) & (TSEC_RXBUFFER_ALIGNMENT-1)) == 0, 1069 ("Wrong alignment of RX buffer!")); 1070 #endif 1071 bus_dmamap_sync(tag, map, BUS_DMASYNC_PREREAD); 1072 1073 (*mbufp) = new_mbuf; 1074 (*paddr) = seg->ds_addr; 1075 return (0); 1076 } 1077 1078 static void 1079 tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1080 { 1081 u_int32_t *paddr; 1082 1083 KASSERT(nseg == 1, ("wrong number of segments, should be 1")); 1084 paddr = arg; 1085 *paddr = segs->ds_addr; 1086 } 1087 1088 static int 1089 tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag, bus_dmamap_t *dmap, 1090 bus_size_t dsize, void **vaddr, void *raddr, const char *dname) 1091 { 1092 int error; 1093 1094 /* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */ 1095 error = bus_dma_tag_create(NULL, /* parent */ 1096 PAGE_SIZE, 0, /* alignment, boundary */ 1097 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1098 BUS_SPACE_MAXADDR, /* highaddr */ 1099 NULL, NULL, /* filtfunc, filtfuncarg */ 1100 dsize, 1, /* maxsize, nsegments */ 1101 dsize, 0, /* maxsegsz, flags */ 1102 NULL, NULL, /* lockfunc, lockfuncarg */ 1103 dtag); /* dmat */ 1104 1105 if (error) { 1106 device_printf(dev, "failed to allocate busdma %s tag\n", 1107 dname); 1108 (*vaddr) = NULL; 1109 return (ENXIO); 1110 } 1111 1112 error = bus_dmamem_alloc(*dtag, vaddr, BUS_DMA_NOWAIT | BUS_DMA_ZERO, 1113 dmap); 1114 if (error) { 1115 device_printf(dev, "failed to allocate %s DMA safe memory\n", 1116 dname); 1117 bus_dma_tag_destroy(*dtag); 1118 (*vaddr) = NULL; 1119 return (ENXIO); 1120 } 1121 1122 error = bus_dmamap_load(*dtag, *dmap, *vaddr, dsize, 1123 tsec_map_dma_addr, raddr, BUS_DMA_NOWAIT); 1124 if (error) { 1125 device_printf(dev, "cannot get address of the %s " 1126 "descriptors\n", dname); 1127 bus_dmamem_free(*dtag, *vaddr, *dmap); 1128 bus_dma_tag_destroy(*dtag); 1129 (*vaddr) = NULL; 1130 return (ENXIO); 1131 } 1132 1133 return (0); 1134 } 1135 1136 static void 1137 tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr) 1138 { 1139 1140 if (vaddr == NULL) 1141 return; 1142 1143 /* Unmap descriptors from DMA memory */ 1144 bus_dmamap_sync(dtag, dmap, BUS_DMASYNC_POSTREAD | 1145 BUS_DMASYNC_POSTWRITE); 1146 bus_dmamap_unload(dtag, dmap); 1147 1148 /* Free descriptors memory */ 1149 bus_dmamem_free(dtag, vaddr, dmap); 1150 1151 /* Destroy descriptors tag */ 1152 bus_dma_tag_destroy(dtag); 1153 } 1154 1155 static void 1156 tsec_free_dma(struct tsec_softc *sc) 1157 { 1158 int i; 1159 1160 /* Free TX maps */ 1161 for (i = 0; i < TSEC_TX_NUM_DESC; i++) 1162 if (sc->tx_map_data[i] != NULL) 1163 bus_dmamap_destroy(sc->tsec_tx_mtag, 1164 sc->tx_map_data[i]); 1165 /* Destroy tag for TX mbufs */ 1166 bus_dma_tag_destroy(sc->tsec_tx_mtag); 1167 1168 /* Free RX mbufs and maps */ 1169 for (i = 0; i < TSEC_RX_NUM_DESC; i++) { 1170 if (sc->rx_data[i].mbuf) { 1171 /* Unload buffer from DMA */ 1172 bus_dmamap_sync(sc->tsec_rx_mtag, sc->rx_data[i].map, 1173 BUS_DMASYNC_POSTREAD); 1174 bus_dmamap_unload(sc->tsec_rx_mtag, 1175 sc->rx_data[i].map); 1176 1177 /* Free buffer */ 1178 m_freem(sc->rx_data[i].mbuf); 1179 } 1180 /* Destroy map for this buffer */ 1181 if (sc->rx_data[i].map != NULL) 1182 bus_dmamap_destroy(sc->tsec_rx_mtag, 1183 sc->rx_data[i].map); 1184 } 1185 /* Destroy tag for RX mbufs */ 1186 bus_dma_tag_destroy(sc->tsec_rx_mtag); 1187 1188 /* Unload TX/RX descriptors */ 1189 tsec_free_dma_desc(sc->tsec_tx_dtag, sc->tsec_tx_dmap, 1190 sc->tsec_tx_vaddr); 1191 tsec_free_dma_desc(sc->tsec_rx_dtag, sc->tsec_rx_dmap, 1192 sc->tsec_rx_vaddr); 1193 } 1194 1195 static void 1196 tsec_stop(struct tsec_softc *sc) 1197 { 1198 struct ifnet *ifp; 1199 struct mbuf *m0; 1200 bus_dmamap_t *mapp; 1201 uint32_t tmpval; 1202 1203 TSEC_GLOBAL_LOCK_ASSERT(sc); 1204 1205 ifp = sc->tsec_ifp; 1206 1207 /* Disable interface and watchdog timer */ 1208 callout_stop(&sc->tsec_callout); 1209 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 1210 sc->tsec_watchdog = 0; 1211 1212 /* Disable all interrupts and stop DMA */ 1213 tsec_intrs_ctl(sc, 0); 1214 tsec_dma_ctl(sc, 0); 1215 1216 /* Remove pending data from TX queue */ 1217 while (!TSEC_EMPTYQ_TX_MBUF(sc)) { 1218 m0 = TSEC_GET_TX_MBUF(sc); 1219 mapp = TSEC_GET_TX_MAP(sc); 1220 1221 bus_dmamap_sync(sc->tsec_tx_mtag, *mapp, 1222 BUS_DMASYNC_POSTWRITE); 1223 bus_dmamap_unload(sc->tsec_tx_mtag, *mapp); 1224 1225 TSEC_FREE_TX_MAP(sc, mapp); 1226 m_freem(m0); 1227 } 1228 1229 /* Disable RX and TX */ 1230 tmpval = TSEC_READ(sc, TSEC_REG_MACCFG1); 1231 tmpval &= ~(TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN); 1232 TSEC_WRITE(sc, TSEC_REG_MACCFG1, tmpval); 1233 DELAY(10); 1234 } 1235 1236 static void 1237 tsec_tick(void *arg) 1238 { 1239 struct tsec_softc *sc = arg; 1240 struct ifnet *ifp; 1241 int link; 1242 1243 TSEC_GLOBAL_LOCK(sc); 1244 1245 tsec_watchdog(sc); 1246 1247 ifp = sc->tsec_ifp; 1248 link = sc->tsec_link; 1249 1250 mii_tick(sc->tsec_mii); 1251 1252 if (link == 0 && sc->tsec_link == 1 && 1253 (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))) 1254 tsec_start_locked(ifp); 1255 1256 /* Schedule another timeout one second from now. */ 1257 callout_reset(&sc->tsec_callout, hz, tsec_tick, sc); 1258 1259 TSEC_GLOBAL_UNLOCK(sc); 1260 } 1261 1262 /* 1263 * This is the core RX routine. It replenishes mbufs in the descriptor and 1264 * sends data which have been dma'ed into host memory to upper layer. 1265 * 1266 * Loops at most count times if count is > 0, or until done if count < 0. 1267 */ 1268 static int 1269 tsec_receive_intr_locked(struct tsec_softc *sc, int count) 1270 { 1271 struct tsec_desc *rx_desc; 1272 struct ifnet *ifp; 1273 struct rx_data_type *rx_data; 1274 struct mbuf *m; 1275 device_t dev; 1276 uint32_t i; 1277 int c, rx_npkts; 1278 uint16_t flags; 1279 1280 TSEC_RECEIVE_LOCK_ASSERT(sc); 1281 1282 ifp = sc->tsec_ifp; 1283 rx_data = sc->rx_data; 1284 dev = sc->dev; 1285 rx_npkts = 0; 1286 1287 bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap, 1288 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1289 1290 for (c = 0; ; c++) { 1291 if (count >= 0 && count-- == 0) 1292 break; 1293 1294 rx_desc = TSEC_GET_CUR_RX_DESC(sc); 1295 flags = rx_desc->flags; 1296 1297 /* Check if there is anything to receive */ 1298 if ((flags & TSEC_RXBD_E) || (c >= TSEC_RX_NUM_DESC)) { 1299 /* 1300 * Avoid generating another interrupt 1301 */ 1302 if (flags & TSEC_RXBD_E) 1303 TSEC_WRITE(sc, TSEC_REG_IEVENT, 1304 TSEC_IEVENT_RXB | TSEC_IEVENT_RXF); 1305 /* 1306 * We didn't consume current descriptor and have to 1307 * return it to the queue 1308 */ 1309 TSEC_BACK_CUR_RX_DESC(sc); 1310 break; 1311 } 1312 1313 if (flags & (TSEC_RXBD_LG | TSEC_RXBD_SH | TSEC_RXBD_NO | 1314 TSEC_RXBD_CR | TSEC_RXBD_OV | TSEC_RXBD_TR)) { 1315 1316 rx_desc->length = 0; 1317 rx_desc->flags = (rx_desc->flags & 1318 ~TSEC_RXBD_ZEROONINIT) | TSEC_RXBD_E | TSEC_RXBD_I; 1319 1320 if (sc->frame != NULL) { 1321 m_free(sc->frame); 1322 sc->frame = NULL; 1323 } 1324 1325 continue; 1326 } 1327 1328 /* Ok... process frame */ 1329 i = TSEC_GET_CUR_RX_DESC_CNT(sc); 1330 m = rx_data[i].mbuf; 1331 m->m_len = rx_desc->length; 1332 1333 if (sc->frame != NULL) { 1334 if ((flags & TSEC_RXBD_L) != 0) 1335 m->m_len -= m_length(sc->frame, NULL); 1336 1337 m->m_flags &= ~M_PKTHDR; 1338 m_cat(sc->frame, m); 1339 } else { 1340 sc->frame = m; 1341 } 1342 1343 m = NULL; 1344 1345 if ((flags & TSEC_RXBD_L) != 0) { 1346 m = sc->frame; 1347 sc->frame = NULL; 1348 } 1349 1350 if (tsec_new_rxbuf(sc->tsec_rx_mtag, rx_data[i].map, 1351 &rx_data[i].mbuf, &rx_data[i].paddr)) { 1352 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1353 /* 1354 * We ran out of mbufs; didn't consume current 1355 * descriptor and have to return it to the queue. 1356 */ 1357 TSEC_BACK_CUR_RX_DESC(sc); 1358 break; 1359 } 1360 1361 /* Attach new buffer to descriptor and clear flags */ 1362 rx_desc->bufptr = rx_data[i].paddr; 1363 rx_desc->length = 0; 1364 rx_desc->flags = (rx_desc->flags & ~TSEC_RXBD_ZEROONINIT) | 1365 TSEC_RXBD_E | TSEC_RXBD_I; 1366 1367 if (m != NULL) { 1368 m->m_pkthdr.rcvif = ifp; 1369 1370 m_fixhdr(m); 1371 m_adj(m, -ETHER_CRC_LEN); 1372 1373 if (sc->is_etsec) 1374 tsec_offload_process_frame(sc, m); 1375 1376 TSEC_RECEIVE_UNLOCK(sc); 1377 (*ifp->if_input)(ifp, m); 1378 TSEC_RECEIVE_LOCK(sc); 1379 rx_npkts++; 1380 } 1381 } 1382 1383 bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap, 1384 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1385 1386 /* 1387 * Make sure TSEC receiver is not halted. 1388 * 1389 * Various conditions can stop the TSEC receiver, but not all are 1390 * signaled and handled by error interrupt, so make sure the receiver 1391 * is running. Writing to TSEC_REG_RSTAT restarts the receiver when 1392 * halted, and is harmless if already running. 1393 */ 1394 TSEC_WRITE(sc, TSEC_REG_RSTAT, TSEC_RSTAT_QHLT); 1395 return (rx_npkts); 1396 } 1397 1398 void 1399 tsec_receive_intr(void *arg) 1400 { 1401 struct tsec_softc *sc = arg; 1402 1403 TSEC_RECEIVE_LOCK(sc); 1404 1405 #ifdef DEVICE_POLLING 1406 if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) { 1407 TSEC_RECEIVE_UNLOCK(sc); 1408 return; 1409 } 1410 #endif 1411 1412 /* Confirm the interrupt was received by driver */ 1413 TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXB | TSEC_IEVENT_RXF); 1414 tsec_receive_intr_locked(sc, -1); 1415 1416 TSEC_RECEIVE_UNLOCK(sc); 1417 } 1418 1419 static void 1420 tsec_transmit_intr_locked(struct tsec_softc *sc) 1421 { 1422 struct tsec_desc *tx_desc; 1423 struct ifnet *ifp; 1424 struct mbuf *m0; 1425 bus_dmamap_t *mapp; 1426 int send = 0; 1427 1428 TSEC_TRANSMIT_LOCK_ASSERT(sc); 1429 1430 ifp = sc->tsec_ifp; 1431 1432 /* Update collision statistics */ 1433 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, TSEC_READ(sc, TSEC_REG_MON_TNCL)); 1434 1435 /* Reset collision counters in hardware */ 1436 TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0); 1437 TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0); 1438 TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0); 1439 TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0); 1440 TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0); 1441 1442 bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap, 1443 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1444 1445 while (TSEC_CUR_DIFF_DIRTY_TX_DESC(sc)) { 1446 tx_desc = TSEC_GET_DIRTY_TX_DESC(sc); 1447 if (tx_desc->flags & TSEC_TXBD_R) { 1448 TSEC_BACK_DIRTY_TX_DESC(sc); 1449 break; 1450 } 1451 1452 if ((tx_desc->flags & TSEC_TXBD_L) == 0) 1453 continue; 1454 1455 /* 1456 * This is the last buf in this packet, so unmap and free it. 1457 */ 1458 m0 = TSEC_GET_TX_MBUF(sc); 1459 mapp = TSEC_GET_TX_MAP(sc); 1460 1461 bus_dmamap_sync(sc->tsec_tx_mtag, *mapp, 1462 BUS_DMASYNC_POSTWRITE); 1463 bus_dmamap_unload(sc->tsec_tx_mtag, *mapp); 1464 1465 TSEC_FREE_TX_MAP(sc, mapp); 1466 m_freem(m0); 1467 1468 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 1469 send = 1; 1470 } 1471 bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap, 1472 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1473 1474 if (send) { 1475 /* Now send anything that was pending */ 1476 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1477 tsec_start_locked(ifp); 1478 1479 /* Stop wathdog if all sent */ 1480 if (TSEC_EMPTYQ_TX_MBUF(sc)) 1481 sc->tsec_watchdog = 0; 1482 } 1483 } 1484 1485 void 1486 tsec_transmit_intr(void *arg) 1487 { 1488 struct tsec_softc *sc = arg; 1489 1490 TSEC_TRANSMIT_LOCK(sc); 1491 1492 #ifdef DEVICE_POLLING 1493 if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) { 1494 TSEC_TRANSMIT_UNLOCK(sc); 1495 return; 1496 } 1497 #endif 1498 /* Confirm the interrupt was received by driver */ 1499 TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_TXB | TSEC_IEVENT_TXF); 1500 tsec_transmit_intr_locked(sc); 1501 1502 TSEC_TRANSMIT_UNLOCK(sc); 1503 } 1504 1505 static void 1506 tsec_error_intr_locked(struct tsec_softc *sc, int count) 1507 { 1508 struct ifnet *ifp; 1509 uint32_t eflags; 1510 1511 TSEC_GLOBAL_LOCK_ASSERT(sc); 1512 1513 ifp = sc->tsec_ifp; 1514 1515 eflags = TSEC_READ(sc, TSEC_REG_IEVENT); 1516 1517 /* Clear events bits in hardware */ 1518 TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXC | TSEC_IEVENT_BSY | 1519 TSEC_IEVENT_EBERR | TSEC_IEVENT_MSRO | TSEC_IEVENT_BABT | 1520 TSEC_IEVENT_TXC | TSEC_IEVENT_TXE | TSEC_IEVENT_LC | 1521 TSEC_IEVENT_CRL | TSEC_IEVENT_XFUN); 1522 1523 /* Check transmitter errors */ 1524 if (eflags & TSEC_IEVENT_TXE) { 1525 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1526 1527 if (eflags & TSEC_IEVENT_LC) 1528 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1); 1529 1530 TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT); 1531 } 1532 1533 /* Check receiver errors */ 1534 if (eflags & TSEC_IEVENT_BSY) { 1535 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1536 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 1537 1538 /* Get data from RX buffers */ 1539 tsec_receive_intr_locked(sc, count); 1540 } 1541 1542 if (ifp->if_flags & IFF_DEBUG) 1543 if_printf(ifp, "tsec_error_intr(): event flags: 0x%x\n", 1544 eflags); 1545 1546 if (eflags & TSEC_IEVENT_EBERR) { 1547 if_printf(ifp, "System bus error occurred during" 1548 "DMA transaction (flags: 0x%x)\n", eflags); 1549 tsec_init_locked(sc); 1550 } 1551 1552 if (eflags & TSEC_IEVENT_BABT) 1553 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1554 1555 if (eflags & TSEC_IEVENT_BABR) 1556 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1557 } 1558 1559 void 1560 tsec_error_intr(void *arg) 1561 { 1562 struct tsec_softc *sc = arg; 1563 1564 TSEC_GLOBAL_LOCK(sc); 1565 tsec_error_intr_locked(sc, -1); 1566 TSEC_GLOBAL_UNLOCK(sc); 1567 } 1568 1569 int 1570 tsec_miibus_readreg(device_t dev, int phy, int reg) 1571 { 1572 struct tsec_softc *sc; 1573 uint32_t timeout; 1574 int rv; 1575 1576 sc = device_get_softc(dev); 1577 1578 TSEC_PHY_LOCK(); 1579 TSEC_PHY_WRITE(sc, TSEC_REG_MIIMADD, (phy << 8) | reg); 1580 TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCOM, 0); 1581 TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCOM, TSEC_MIIMCOM_READCYCLE); 1582 1583 timeout = TSEC_READ_RETRY; 1584 while (--timeout && TSEC_PHY_READ(sc, TSEC_REG_MIIMIND) & 1585 (TSEC_MIIMIND_NOTVALID | TSEC_MIIMIND_BUSY)) 1586 DELAY(TSEC_READ_DELAY); 1587 1588 if (timeout == 0) 1589 device_printf(dev, "Timeout while reading from PHY!\n"); 1590 1591 rv = TSEC_PHY_READ(sc, TSEC_REG_MIIMSTAT); 1592 TSEC_PHY_UNLOCK(); 1593 1594 return (rv); 1595 } 1596 1597 int 1598 tsec_miibus_writereg(device_t dev, int phy, int reg, int value) 1599 { 1600 struct tsec_softc *sc; 1601 uint32_t timeout; 1602 1603 sc = device_get_softc(dev); 1604 1605 TSEC_PHY_LOCK(); 1606 TSEC_PHY_WRITE(sc, TSEC_REG_MIIMADD, (phy << 8) | reg); 1607 TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCON, value); 1608 1609 timeout = TSEC_READ_RETRY; 1610 while (--timeout && (TSEC_READ(sc, TSEC_REG_MIIMIND) & 1611 TSEC_MIIMIND_BUSY)) 1612 DELAY(TSEC_READ_DELAY); 1613 TSEC_PHY_UNLOCK(); 1614 1615 if (timeout == 0) 1616 device_printf(dev, "Timeout while writing to PHY!\n"); 1617 1618 return (0); 1619 } 1620 1621 void 1622 tsec_miibus_statchg(device_t dev) 1623 { 1624 struct tsec_softc *sc; 1625 struct mii_data *mii; 1626 uint32_t ecntrl, id, tmp; 1627 int link; 1628 1629 sc = device_get_softc(dev); 1630 mii = sc->tsec_mii; 1631 link = ((mii->mii_media_status & IFM_ACTIVE) ? 1 : 0); 1632 1633 tmp = TSEC_READ(sc, TSEC_REG_MACCFG2) & ~TSEC_MACCFG2_IF; 1634 1635 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) 1636 tmp |= TSEC_MACCFG2_FULLDUPLEX; 1637 else 1638 tmp &= ~TSEC_MACCFG2_FULLDUPLEX; 1639 1640 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1641 case IFM_1000_T: 1642 case IFM_1000_SX: 1643 tmp |= TSEC_MACCFG2_GMII; 1644 sc->tsec_link = link; 1645 break; 1646 case IFM_100_TX: 1647 case IFM_10_T: 1648 tmp |= TSEC_MACCFG2_MII; 1649 sc->tsec_link = link; 1650 break; 1651 case IFM_NONE: 1652 if (link) 1653 device_printf(dev, "No speed selected but link " 1654 "active!\n"); 1655 sc->tsec_link = 0; 1656 return; 1657 default: 1658 sc->tsec_link = 0; 1659 device_printf(dev, "Unknown speed (%d), link %s!\n", 1660 IFM_SUBTYPE(mii->mii_media_active), 1661 ((link) ? "up" : "down")); 1662 return; 1663 } 1664 TSEC_WRITE(sc, TSEC_REG_MACCFG2, tmp); 1665 1666 /* XXX kludge - use circumstantial evidence for reduced mode. */ 1667 id = TSEC_READ(sc, TSEC_REG_ID2); 1668 if (id & 0xffff) { 1669 ecntrl = TSEC_READ(sc, TSEC_REG_ECNTRL) & ~TSEC_ECNTRL_R100M; 1670 ecntrl |= (tmp & TSEC_MACCFG2_MII) ? TSEC_ECNTRL_R100M : 0; 1671 TSEC_WRITE(sc, TSEC_REG_ECNTRL, ecntrl); 1672 } 1673 } 1674 1675 static void 1676 tsec_add_sysctls(struct tsec_softc *sc) 1677 { 1678 struct sysctl_ctx_list *ctx; 1679 struct sysctl_oid_list *children; 1680 struct sysctl_oid *tree; 1681 1682 ctx = device_get_sysctl_ctx(sc->dev); 1683 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 1684 tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "int_coal", 1685 CTLFLAG_RD, 0, "TSEC Interrupts coalescing"); 1686 children = SYSCTL_CHILDREN(tree); 1687 1688 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_time", 1689 CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_RX, tsec_sysctl_ic_time, 1690 "I", "IC RX time threshold (0-65535)"); 1691 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_count", 1692 CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_RX, tsec_sysctl_ic_count, 1693 "I", "IC RX frame count threshold (0-255)"); 1694 1695 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_time", 1696 CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_TX, tsec_sysctl_ic_time, 1697 "I", "IC TX time threshold (0-65535)"); 1698 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_count", 1699 CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_TX, tsec_sysctl_ic_count, 1700 "I", "IC TX frame count threshold (0-255)"); 1701 } 1702 1703 /* 1704 * With Interrupt Coalescing (IC) active, a transmit/receive frame 1705 * interrupt is raised either upon: 1706 * 1707 * - threshold-defined period of time elapsed, or 1708 * - threshold-defined number of frames is received/transmitted, 1709 * whichever occurs first. 1710 * 1711 * The following sysctls regulate IC behaviour (for TX/RX separately): 1712 * 1713 * dev.tsec.<unit>.int_coal.rx_time 1714 * dev.tsec.<unit>.int_coal.rx_count 1715 * dev.tsec.<unit>.int_coal.tx_time 1716 * dev.tsec.<unit>.int_coal.tx_count 1717 * 1718 * Values: 1719 * 1720 * - 0 for either time or count disables IC on the given TX/RX path 1721 * 1722 * - count: 1-255 (expresses frame count number; note that value of 1 is 1723 * effectively IC off) 1724 * 1725 * - time: 1-65535 (value corresponds to a real time period and is 1726 * expressed in units equivalent to 64 TSEC interface clocks, i.e. one timer 1727 * threshold unit is 26.5 us, 2.56 us, or 512 ns, corresponding to 10 Mbps, 1728 * 100 Mbps, or 1Gbps, respectively. For detailed discussion consult the 1729 * TSEC reference manual. 1730 */ 1731 static int 1732 tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS) 1733 { 1734 int error; 1735 uint32_t time; 1736 struct tsec_softc *sc = (struct tsec_softc *)arg1; 1737 1738 time = (arg2 == TSEC_IC_RX) ? sc->rx_ic_time : sc->tx_ic_time; 1739 1740 error = sysctl_handle_int(oidp, &time, 0, req); 1741 if (error != 0) 1742 return (error); 1743 1744 if (time > 65535) 1745 return (EINVAL); 1746 1747 TSEC_IC_LOCK(sc); 1748 if (arg2 == TSEC_IC_RX) { 1749 sc->rx_ic_time = time; 1750 tsec_set_rxic(sc); 1751 } else { 1752 sc->tx_ic_time = time; 1753 tsec_set_txic(sc); 1754 } 1755 TSEC_IC_UNLOCK(sc); 1756 1757 return (0); 1758 } 1759 1760 static int 1761 tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS) 1762 { 1763 int error; 1764 uint32_t count; 1765 struct tsec_softc *sc = (struct tsec_softc *)arg1; 1766 1767 count = (arg2 == TSEC_IC_RX) ? sc->rx_ic_count : sc->tx_ic_count; 1768 1769 error = sysctl_handle_int(oidp, &count, 0, req); 1770 if (error != 0) 1771 return (error); 1772 1773 if (count > 255) 1774 return (EINVAL); 1775 1776 TSEC_IC_LOCK(sc); 1777 if (arg2 == TSEC_IC_RX) { 1778 sc->rx_ic_count = count; 1779 tsec_set_rxic(sc); 1780 } else { 1781 sc->tx_ic_count = count; 1782 tsec_set_txic(sc); 1783 } 1784 TSEC_IC_UNLOCK(sc); 1785 1786 return (0); 1787 } 1788 1789 static void 1790 tsec_set_rxic(struct tsec_softc *sc) 1791 { 1792 uint32_t rxic_val; 1793 1794 if (sc->rx_ic_count == 0 || sc->rx_ic_time == 0) 1795 /* Disable RX IC */ 1796 rxic_val = 0; 1797 else { 1798 rxic_val = 0x80000000; 1799 rxic_val |= (sc->rx_ic_count << 21); 1800 rxic_val |= sc->rx_ic_time; 1801 } 1802 1803 TSEC_WRITE(sc, TSEC_REG_RXIC, rxic_val); 1804 } 1805 1806 static void 1807 tsec_set_txic(struct tsec_softc *sc) 1808 { 1809 uint32_t txic_val; 1810 1811 if (sc->tx_ic_count == 0 || sc->tx_ic_time == 0) 1812 /* Disable TX IC */ 1813 txic_val = 0; 1814 else { 1815 txic_val = 0x80000000; 1816 txic_val |= (sc->tx_ic_count << 21); 1817 txic_val |= sc->tx_ic_time; 1818 } 1819 1820 TSEC_WRITE(sc, TSEC_REG_TXIC, txic_val); 1821 } 1822 1823 static void 1824 tsec_offload_setup(struct tsec_softc *sc) 1825 { 1826 struct ifnet *ifp = sc->tsec_ifp; 1827 uint32_t reg; 1828 1829 TSEC_GLOBAL_LOCK_ASSERT(sc); 1830 1831 reg = TSEC_READ(sc, TSEC_REG_TCTRL); 1832 reg |= TSEC_TCTRL_IPCSEN | TSEC_TCTRL_TUCSEN; 1833 1834 if (ifp->if_capenable & IFCAP_TXCSUM) 1835 ifp->if_hwassist = TSEC_CHECKSUM_FEATURES; 1836 else 1837 ifp->if_hwassist = 0; 1838 1839 TSEC_WRITE(sc, TSEC_REG_TCTRL, reg); 1840 1841 reg = TSEC_READ(sc, TSEC_REG_RCTRL); 1842 reg &= ~(TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN | TSEC_RCTRL_PRSDEP); 1843 reg |= TSEC_RCTRL_PRSDEP_PARSE_L2 | TSEC_RCTRL_VLEX; 1844 1845 if (ifp->if_capenable & IFCAP_RXCSUM) 1846 reg |= TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN | 1847 TSEC_RCTRL_PRSDEP_PARSE_L234; 1848 1849 TSEC_WRITE(sc, TSEC_REG_RCTRL, reg); 1850 } 1851 1852 1853 static void 1854 tsec_offload_process_frame(struct tsec_softc *sc, struct mbuf *m) 1855 { 1856 struct tsec_rx_fcb rx_fcb; 1857 int csum_flags = 0; 1858 int protocol, flags; 1859 1860 TSEC_RECEIVE_LOCK_ASSERT(sc); 1861 1862 m_copydata(m, 0, sizeof(struct tsec_rx_fcb), (caddr_t)(&rx_fcb)); 1863 flags = rx_fcb.flags; 1864 protocol = rx_fcb.protocol; 1865 1866 if (TSEC_RX_FCB_IP_CSUM_CHECKED(flags)) { 1867 csum_flags |= CSUM_IP_CHECKED; 1868 1869 if ((flags & TSEC_RX_FCB_IP_CSUM_ERROR) == 0) 1870 csum_flags |= CSUM_IP_VALID; 1871 } 1872 1873 if ((protocol == IPPROTO_TCP || protocol == IPPROTO_UDP) && 1874 TSEC_RX_FCB_TCP_UDP_CSUM_CHECKED(flags) && 1875 (flags & TSEC_RX_FCB_TCP_UDP_CSUM_ERROR) == 0) { 1876 1877 csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1878 m->m_pkthdr.csum_data = 0xFFFF; 1879 } 1880 1881 m->m_pkthdr.csum_flags = csum_flags; 1882 1883 if (flags & TSEC_RX_FCB_VLAN) { 1884 m->m_pkthdr.ether_vtag = rx_fcb.vlan; 1885 m->m_flags |= M_VLANTAG; 1886 } 1887 1888 m_adj(m, sizeof(struct tsec_rx_fcb)); 1889 } 1890 1891 static void 1892 tsec_setup_multicast(struct tsec_softc *sc) 1893 { 1894 uint32_t hashtable[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; 1895 struct ifnet *ifp = sc->tsec_ifp; 1896 struct ifmultiaddr *ifma; 1897 uint32_t h; 1898 int i; 1899 1900 TSEC_GLOBAL_LOCK_ASSERT(sc); 1901 1902 if (ifp->if_flags & IFF_ALLMULTI) { 1903 for (i = 0; i < 8; i++) 1904 TSEC_WRITE(sc, TSEC_REG_GADDR(i), 0xFFFFFFFF); 1905 1906 return; 1907 } 1908 1909 if_maddr_rlock(ifp); 1910 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1911 1912 if (ifma->ifma_addr->sa_family != AF_LINK) 1913 continue; 1914 1915 h = (ether_crc32_be(LLADDR((struct sockaddr_dl *) 1916 ifma->ifma_addr), ETHER_ADDR_LEN) >> 24) & 0xFF; 1917 1918 hashtable[(h >> 5)] |= 1 << (0x1F - (h & 0x1F)); 1919 } 1920 if_maddr_runlock(ifp); 1921 1922 for (i = 0; i < 8; i++) 1923 TSEC_WRITE(sc, TSEC_REG_GADDR(i), hashtable[i]); 1924 } 1925 1926 static int 1927 tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu) 1928 { 1929 1930 mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN; 1931 1932 TSEC_GLOBAL_LOCK_ASSERT(sc); 1933 1934 if (mtu >= TSEC_MIN_FRAME_SIZE && mtu <= TSEC_MAX_FRAME_SIZE) { 1935 TSEC_WRITE(sc, TSEC_REG_MAXFRM, mtu); 1936 return (mtu); 1937 } 1938 1939 return (0); 1940 } 1941