xref: /freebsd/sys/dev/tsec/if_tsec.c (revision 9e4c35f867aca020df8d01fb7371bf5ae1cc8a2d)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2007-2008 Semihalf, Rafal Jaworowski
5  * Copyright (C) 2006-2007 Semihalf, Piotr Kruszynski
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
20  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
22  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
23  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
24  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
25  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
26  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * Freescale integrated Three-Speed Ethernet Controller (TSEC) driver.
31  */
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #ifdef HAVE_KERNEL_OPTION_HEADERS
36 #include "opt_device_polling.h"
37 #endif
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/bus.h>
42 #include <sys/endian.h>
43 #include <sys/mbuf.h>
44 #include <sys/kernel.h>
45 #include <sys/module.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
49 
50 #include <net/bpf.h>
51 #include <net/ethernet.h>
52 #include <net/if.h>
53 #include <net/if_var.h>
54 #include <net/if_arp.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/if_types.h>
58 #include <net/if_vlan_var.h>
59 
60 #include <netinet/in_systm.h>
61 #include <netinet/in.h>
62 #include <netinet/ip.h>
63 
64 #include <machine/bus.h>
65 
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68 
69 #include <dev/tsec/if_tsec.h>
70 #include <dev/tsec/if_tsecreg.h>
71 
72 static int	tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag,
73     bus_dmamap_t *dmap, bus_size_t dsize, void **vaddr, void *raddr,
74     const char *dname);
75 static void	tsec_dma_ctl(struct tsec_softc *sc, int state);
76 static void	 tsec_encap(struct ifnet *ifp, struct tsec_softc *sc,
77     struct mbuf *m0, uint16_t fcb_flags, int *start_tx);
78 static void	tsec_free_dma(struct tsec_softc *sc);
79 static void	tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr);
80 static int	tsec_ifmedia_upd(struct ifnet *ifp);
81 static void	tsec_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
82 static int	tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map,
83     struct mbuf **mbufp, uint32_t *paddr);
84 static void	tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs,
85     int nseg, int error);
86 static void	tsec_intrs_ctl(struct tsec_softc *sc, int state);
87 static void	tsec_init(void *xsc);
88 static void	tsec_init_locked(struct tsec_softc *sc);
89 static int	tsec_ioctl(struct ifnet *ifp, u_long command, caddr_t data);
90 static void	tsec_reset_mac(struct tsec_softc *sc);
91 static void	tsec_setfilter(struct tsec_softc *sc);
92 static void	tsec_set_mac_address(struct tsec_softc *sc);
93 static void	tsec_start(struct ifnet *ifp);
94 static void	tsec_start_locked(struct ifnet *ifp);
95 static void	tsec_stop(struct tsec_softc *sc);
96 static void	tsec_tick(void *arg);
97 static void	tsec_watchdog(struct tsec_softc *sc);
98 static void	tsec_add_sysctls(struct tsec_softc *sc);
99 static int	tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS);
100 static int	tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS);
101 static void	tsec_set_rxic(struct tsec_softc *sc);
102 static void	tsec_set_txic(struct tsec_softc *sc);
103 static int	tsec_receive_intr_locked(struct tsec_softc *sc, int count);
104 static void	tsec_transmit_intr_locked(struct tsec_softc *sc);
105 static void	tsec_error_intr_locked(struct tsec_softc *sc, int count);
106 static void	tsec_offload_setup(struct tsec_softc *sc);
107 static void	tsec_offload_process_frame(struct tsec_softc *sc,
108     struct mbuf *m);
109 static void	tsec_setup_multicast(struct tsec_softc *sc);
110 static int	tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu);
111 
112 devclass_t tsec_devclass;
113 DRIVER_MODULE(miibus, tsec, miibus_driver, miibus_devclass, 0, 0);
114 MODULE_DEPEND(tsec, ether, 1, 1, 1);
115 MODULE_DEPEND(tsec, miibus, 1, 1, 1);
116 
117 struct mtx tsec_phy_mtx;
118 
119 int
120 tsec_attach(struct tsec_softc *sc)
121 {
122 	uint8_t hwaddr[ETHER_ADDR_LEN];
123 	struct ifnet *ifp;
124 	int error = 0;
125 	int i;
126 
127 	/* Initialize global (because potentially shared) MII lock */
128 	if (!mtx_initialized(&tsec_phy_mtx))
129 		mtx_init(&tsec_phy_mtx, "tsec mii", NULL, MTX_DEF);
130 
131 	/* Reset all TSEC counters */
132 	TSEC_TX_RX_COUNTERS_INIT(sc);
133 
134 	/* Stop DMA engine if enabled by firmware */
135 	tsec_dma_ctl(sc, 0);
136 
137 	/* Reset MAC */
138 	tsec_reset_mac(sc);
139 
140 	/* Disable interrupts for now */
141 	tsec_intrs_ctl(sc, 0);
142 
143 	/* Configure defaults for interrupts coalescing */
144 	sc->rx_ic_time = 768;
145 	sc->rx_ic_count = 16;
146 	sc->tx_ic_time = 768;
147 	sc->tx_ic_count = 16;
148 	tsec_set_rxic(sc);
149 	tsec_set_txic(sc);
150 	tsec_add_sysctls(sc);
151 
152 	/* Allocate a busdma tag and DMA safe memory for TX descriptors. */
153 	error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_tx_dtag,
154 	    &sc->tsec_tx_dmap, sizeof(*sc->tsec_tx_vaddr) * TSEC_TX_NUM_DESC,
155 	    (void **)&sc->tsec_tx_vaddr, &sc->tsec_tx_raddr, "TX");
156 
157 	if (error) {
158 		tsec_detach(sc);
159 		return (ENXIO);
160 	}
161 
162 	/* Allocate a busdma tag and DMA safe memory for RX descriptors. */
163 	error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_rx_dtag,
164 	    &sc->tsec_rx_dmap, sizeof(*sc->tsec_rx_vaddr) * TSEC_RX_NUM_DESC,
165 	    (void **)&sc->tsec_rx_vaddr, &sc->tsec_rx_raddr, "RX");
166 	if (error) {
167 		tsec_detach(sc);
168 		return (ENXIO);
169 	}
170 
171 	/* Allocate a busdma tag for TX mbufs. */
172 	error = bus_dma_tag_create(NULL,	/* parent */
173 	    TSEC_TXBUFFER_ALIGNMENT, 0,		/* alignment, boundary */
174 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
175 	    BUS_SPACE_MAXADDR,			/* highaddr */
176 	    NULL, NULL,				/* filtfunc, filtfuncarg */
177 	    MCLBYTES * (TSEC_TX_NUM_DESC - 1),	/* maxsize */
178 	    TSEC_TX_MAX_DMA_SEGS,		/* nsegments */
179 	    MCLBYTES, 0,			/* maxsegsz, flags */
180 	    NULL, NULL,				/* lockfunc, lockfuncarg */
181 	    &sc->tsec_tx_mtag);			/* dmat */
182 	if (error) {
183 		device_printf(sc->dev, "failed to allocate busdma tag "
184 		    "(tx mbufs)\n");
185 		tsec_detach(sc);
186 		return (ENXIO);
187 	}
188 
189 	/* Allocate a busdma tag for RX mbufs. */
190 	error = bus_dma_tag_create(NULL,	/* parent */
191 	    TSEC_RXBUFFER_ALIGNMENT, 0,		/* alignment, boundary */
192 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
193 	    BUS_SPACE_MAXADDR,			/* highaddr */
194 	    NULL, NULL,				/* filtfunc, filtfuncarg */
195 	    MCLBYTES,				/* maxsize */
196 	    1,					/* nsegments */
197 	    MCLBYTES, 0,			/* maxsegsz, flags */
198 	    NULL, NULL,				/* lockfunc, lockfuncarg */
199 	    &sc->tsec_rx_mtag);			/* dmat */
200 	if (error) {
201 		device_printf(sc->dev, "failed to allocate busdma tag "
202 		    "(rx mbufs)\n");
203 		tsec_detach(sc);
204 		return (ENXIO);
205 	}
206 
207 	/* Create TX busdma maps */
208 	for (i = 0; i < TSEC_TX_NUM_DESC; i++) {
209 		error = bus_dmamap_create(sc->tsec_tx_mtag, 0,
210 		   &sc->tx_bufmap[i].map);
211 		if (error) {
212 			device_printf(sc->dev, "failed to init TX ring\n");
213 			tsec_detach(sc);
214 			return (ENXIO);
215 		}
216 		sc->tx_bufmap[i].map_initialized = 1;
217 	}
218 
219 	/* Create RX busdma maps and zero mbuf handlers */
220 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
221 		error = bus_dmamap_create(sc->tsec_rx_mtag, 0,
222 		    &sc->rx_data[i].map);
223 		if (error) {
224 			device_printf(sc->dev, "failed to init RX ring\n");
225 			tsec_detach(sc);
226 			return (ENXIO);
227 		}
228 		sc->rx_data[i].mbuf = NULL;
229 	}
230 
231 	/* Create mbufs for RX buffers */
232 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
233 		error = tsec_new_rxbuf(sc->tsec_rx_mtag, sc->rx_data[i].map,
234 		    &sc->rx_data[i].mbuf, &sc->rx_data[i].paddr);
235 		if (error) {
236 			device_printf(sc->dev, "can't load rx DMA map %d, "
237 			    "error = %d\n", i, error);
238 			tsec_detach(sc);
239 			return (error);
240 		}
241 	}
242 
243 	/* Create network interface for upper layers */
244 	ifp = sc->tsec_ifp = if_alloc(IFT_ETHER);
245 	if (ifp == NULL) {
246 		device_printf(sc->dev, "if_alloc() failed\n");
247 		tsec_detach(sc);
248 		return (ENOMEM);
249 	}
250 
251 	ifp->if_softc = sc;
252 	if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
253 	ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST;
254 	ifp->if_init = tsec_init;
255 	ifp->if_start = tsec_start;
256 	ifp->if_ioctl = tsec_ioctl;
257 
258 	IFQ_SET_MAXLEN(&ifp->if_snd, TSEC_TX_NUM_DESC - 1);
259 	ifp->if_snd.ifq_drv_maxlen = TSEC_TX_NUM_DESC - 1;
260 	IFQ_SET_READY(&ifp->if_snd);
261 
262 	ifp->if_capabilities = IFCAP_VLAN_MTU;
263 	if (sc->is_etsec)
264 		ifp->if_capabilities |= IFCAP_HWCSUM;
265 
266 	ifp->if_capenable = ifp->if_capabilities;
267 
268 #ifdef DEVICE_POLLING
269 	/* Advertise that polling is supported */
270 	ifp->if_capabilities |= IFCAP_POLLING;
271 #endif
272 
273 	/* Attach PHY(s) */
274 	error = mii_attach(sc->dev, &sc->tsec_miibus, ifp, tsec_ifmedia_upd,
275 	    tsec_ifmedia_sts, BMSR_DEFCAPMASK, sc->phyaddr, MII_OFFSET_ANY,
276 	    0);
277 	if (error) {
278 		device_printf(sc->dev, "attaching PHYs failed\n");
279 		if_free(ifp);
280 		sc->tsec_ifp = NULL;
281 		tsec_detach(sc);
282 		return (error);
283 	}
284 	sc->tsec_mii = device_get_softc(sc->tsec_miibus);
285 
286 	/* Set MAC address */
287 	tsec_get_hwaddr(sc, hwaddr);
288 	ether_ifattach(ifp, hwaddr);
289 
290 	return (0);
291 }
292 
293 int
294 tsec_detach(struct tsec_softc *sc)
295 {
296 
297 	if (sc->tsec_ifp != NULL) {
298 #ifdef DEVICE_POLLING
299 		if (sc->tsec_ifp->if_capenable & IFCAP_POLLING)
300 			ether_poll_deregister(sc->tsec_ifp);
301 #endif
302 
303 		/* Stop TSEC controller and free TX queue */
304 		if (sc->sc_rres)
305 			tsec_shutdown(sc->dev);
306 
307 		/* Detach network interface */
308 		ether_ifdetach(sc->tsec_ifp);
309 		if_free(sc->tsec_ifp);
310 		sc->tsec_ifp = NULL;
311 	}
312 
313 	/* Free DMA resources */
314 	tsec_free_dma(sc);
315 
316 	return (0);
317 }
318 
319 int
320 tsec_shutdown(device_t dev)
321 {
322 	struct tsec_softc *sc;
323 
324 	sc = device_get_softc(dev);
325 
326 	TSEC_GLOBAL_LOCK(sc);
327 	tsec_stop(sc);
328 	TSEC_GLOBAL_UNLOCK(sc);
329 	return (0);
330 }
331 
332 int
333 tsec_suspend(device_t dev)
334 {
335 
336 	/* TODO not implemented! */
337 	return (0);
338 }
339 
340 int
341 tsec_resume(device_t dev)
342 {
343 
344 	/* TODO not implemented! */
345 	return (0);
346 }
347 
348 static void
349 tsec_init(void *xsc)
350 {
351 	struct tsec_softc *sc = xsc;
352 
353 	TSEC_GLOBAL_LOCK(sc);
354 	tsec_init_locked(sc);
355 	TSEC_GLOBAL_UNLOCK(sc);
356 }
357 
358 static int
359 tsec_mii_wait(struct tsec_softc *sc, uint32_t flags)
360 {
361 	int timeout;
362 
363 	/*
364 	 * The status indicators are not set immediatly after a command.
365 	 * Discard the first value.
366 	 */
367 	TSEC_PHY_READ(sc, TSEC_REG_MIIMIND);
368 
369 	timeout = TSEC_READ_RETRY;
370 	while ((TSEC_PHY_READ(sc, TSEC_REG_MIIMIND) & flags) && --timeout)
371 		DELAY(TSEC_READ_DELAY);
372 
373 	return (timeout == 0);
374 }
375 
376 static void
377 tsec_init_locked(struct tsec_softc *sc)
378 {
379 	struct tsec_desc *tx_desc = sc->tsec_tx_vaddr;
380 	struct tsec_desc *rx_desc = sc->tsec_rx_vaddr;
381 	struct ifnet *ifp = sc->tsec_ifp;
382 	uint32_t val, i;
383 	int timeout;
384 
385 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
386 		return;
387 
388 	TSEC_GLOBAL_LOCK_ASSERT(sc);
389 	tsec_stop(sc);
390 
391 	/*
392 	 * These steps are according to the MPC8555E PowerQUICCIII RM:
393 	 * 14.7 Initialization/Application Information
394 	 */
395 
396 	/* Step 1: soft reset MAC */
397 	tsec_reset_mac(sc);
398 
399 	/* Step 2: Initialize MACCFG2 */
400 	TSEC_WRITE(sc, TSEC_REG_MACCFG2,
401 	    TSEC_MACCFG2_FULLDUPLEX |	/* Full Duplex = 1 */
402 	    TSEC_MACCFG2_PADCRC |	/* PAD/CRC append */
403 	    TSEC_MACCFG2_GMII |		/* I/F Mode bit */
404 	    TSEC_MACCFG2_PRECNT		/* Preamble count = 7 */
405 	);
406 
407 	/* Step 3: Initialize ECNTRL
408 	 * While the documentation states that R100M is ignored if RPM is
409 	 * not set, it does seem to be needed to get the orange boxes to
410 	 * work (which have a Marvell 88E1111 PHY). Go figure.
411 	 */
412 
413 	/*
414 	 * XXX kludge - use circumstancial evidence to program ECNTRL
415 	 * correctly. Ideally we need some board information to guide
416 	 * us here.
417 	 */
418 	i = TSEC_READ(sc, TSEC_REG_ID2);
419 	val = (i & 0xffff)
420 	    ? (TSEC_ECNTRL_TBIM | TSEC_ECNTRL_SGMIIM)	/* Sumatra */
421 	    : TSEC_ECNTRL_R100M;			/* Orange + CDS */
422 	TSEC_WRITE(sc, TSEC_REG_ECNTRL, TSEC_ECNTRL_STEN | val);
423 
424 	/* Step 4: Initialize MAC station address */
425 	tsec_set_mac_address(sc);
426 
427 	/*
428 	 * Step 5: Assign a Physical address to the TBI so as to not conflict
429 	 * with the external PHY physical address
430 	 */
431 	TSEC_WRITE(sc, TSEC_REG_TBIPA, 5);
432 
433 	TSEC_PHY_LOCK(sc);
434 
435 	/* Step 6: Reset the management interface */
436 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_RESETMGMT);
437 
438 	/* Step 7: Setup the MII Mgmt clock speed */
439 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_CLKDIV28);
440 
441 	/* Step 8: Read MII Mgmt indicator register and check for Busy = 0 */
442 	timeout = tsec_mii_wait(sc, TSEC_MIIMIND_BUSY);
443 
444 	TSEC_PHY_UNLOCK(sc);
445 	if (timeout) {
446 		if_printf(ifp, "tsec_init_locked(): Mgmt busy timeout\n");
447 		return;
448 	}
449 
450 	/* Step 9: Setup the MII Mgmt */
451 	mii_mediachg(sc->tsec_mii);
452 
453 	/* Step 10: Clear IEVENT register */
454 	TSEC_WRITE(sc, TSEC_REG_IEVENT, 0xffffffff);
455 
456 	/* Step 11: Enable interrupts */
457 #ifdef DEVICE_POLLING
458 	/*
459 	 * ...only if polling is not turned on. Disable interrupts explicitly
460 	 * if polling is enabled.
461 	 */
462 	if (ifp->if_capenable & IFCAP_POLLING )
463 		tsec_intrs_ctl(sc, 0);
464 	else
465 #endif /* DEVICE_POLLING */
466 	tsec_intrs_ctl(sc, 1);
467 
468 	/* Step 12: Initialize IADDRn */
469 	TSEC_WRITE(sc, TSEC_REG_IADDR0, 0);
470 	TSEC_WRITE(sc, TSEC_REG_IADDR1, 0);
471 	TSEC_WRITE(sc, TSEC_REG_IADDR2, 0);
472 	TSEC_WRITE(sc, TSEC_REG_IADDR3, 0);
473 	TSEC_WRITE(sc, TSEC_REG_IADDR4, 0);
474 	TSEC_WRITE(sc, TSEC_REG_IADDR5, 0);
475 	TSEC_WRITE(sc, TSEC_REG_IADDR6, 0);
476 	TSEC_WRITE(sc, TSEC_REG_IADDR7, 0);
477 
478 	/* Step 13: Initialize GADDRn */
479 	TSEC_WRITE(sc, TSEC_REG_GADDR0, 0);
480 	TSEC_WRITE(sc, TSEC_REG_GADDR1, 0);
481 	TSEC_WRITE(sc, TSEC_REG_GADDR2, 0);
482 	TSEC_WRITE(sc, TSEC_REG_GADDR3, 0);
483 	TSEC_WRITE(sc, TSEC_REG_GADDR4, 0);
484 	TSEC_WRITE(sc, TSEC_REG_GADDR5, 0);
485 	TSEC_WRITE(sc, TSEC_REG_GADDR6, 0);
486 	TSEC_WRITE(sc, TSEC_REG_GADDR7, 0);
487 
488 	/* Step 14: Initialize RCTRL */
489 	TSEC_WRITE(sc, TSEC_REG_RCTRL, 0);
490 
491 	/* Step 15: Initialize DMACTRL */
492 	tsec_dma_ctl(sc, 1);
493 
494 	/* Step 16: Initialize FIFO_PAUSE_CTRL */
495 	TSEC_WRITE(sc, TSEC_REG_FIFO_PAUSE_CTRL, TSEC_FIFO_PAUSE_CTRL_EN);
496 
497 	/*
498 	 * Step 17: Initialize transmit/receive descriptor rings.
499 	 * Initialize TBASE and RBASE.
500 	 */
501 	TSEC_WRITE(sc, TSEC_REG_TBASE, sc->tsec_tx_raddr);
502 	TSEC_WRITE(sc, TSEC_REG_RBASE, sc->tsec_rx_raddr);
503 
504 	for (i = 0; i < TSEC_TX_NUM_DESC; i++) {
505 		tx_desc[i].bufptr = 0;
506 		tx_desc[i].length = 0;
507 		tx_desc[i].flags = ((i == TSEC_TX_NUM_DESC - 1) ?
508 		    TSEC_TXBD_W : 0);
509 	}
510 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
511 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
512 
513 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
514 		rx_desc[i].bufptr = sc->rx_data[i].paddr;
515 		rx_desc[i].length = 0;
516 		rx_desc[i].flags = TSEC_RXBD_E | TSEC_RXBD_I |
517 		    ((i == TSEC_RX_NUM_DESC - 1) ? TSEC_RXBD_W : 0);
518 	}
519 	bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
520 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
521 
522 	/* Step 18: Initialize the maximum receive buffer length */
523 	TSEC_WRITE(sc, TSEC_REG_MRBLR, MCLBYTES);
524 
525 	/* Step 19: Configure ethernet frame sizes */
526 	TSEC_WRITE(sc, TSEC_REG_MINFLR, TSEC_MIN_FRAME_SIZE);
527 	tsec_set_mtu(sc, ifp->if_mtu);
528 
529 	/* Step 20: Enable Rx and RxBD sdata snooping */
530 	TSEC_WRITE(sc, TSEC_REG_ATTR, TSEC_ATTR_RDSEN | TSEC_ATTR_RBDSEN);
531 	TSEC_WRITE(sc, TSEC_REG_ATTRELI, 0);
532 
533 	/* Step 21: Reset collision counters in hardware */
534 	TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0);
535 	TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0);
536 	TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0);
537 	TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0);
538 	TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0);
539 
540 	/* Step 22: Mask all CAM interrupts */
541 	TSEC_WRITE(sc, TSEC_REG_MON_CAM1, 0xffffffff);
542 	TSEC_WRITE(sc, TSEC_REG_MON_CAM2, 0xffffffff);
543 
544 	/* Step 23: Enable Rx and Tx */
545 	val = TSEC_READ(sc, TSEC_REG_MACCFG1);
546 	val |= (TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN);
547 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, val);
548 
549 	/* Step 24: Reset TSEC counters for Tx and Rx rings */
550 	TSEC_TX_RX_COUNTERS_INIT(sc);
551 
552 	/* Step 25: Setup TCP/IP Off-Load engine */
553 	if (sc->is_etsec)
554 		tsec_offload_setup(sc);
555 
556 	/* Step 26: Setup multicast filters */
557 	tsec_setup_multicast(sc);
558 
559 	/* Step 27: Activate network interface */
560 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
561 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
562 	sc->tsec_if_flags = ifp->if_flags;
563 	sc->tsec_watchdog = 0;
564 
565 	/* Schedule watchdog timeout */
566 	callout_reset(&sc->tsec_callout, hz, tsec_tick, sc);
567 }
568 
569 static void
570 tsec_set_mac_address(struct tsec_softc *sc)
571 {
572 	uint32_t macbuf[2] = { 0, 0 };
573 	char *macbufp, *curmac;
574 	int i;
575 
576 	TSEC_GLOBAL_LOCK_ASSERT(sc);
577 
578 	KASSERT((ETHER_ADDR_LEN <= sizeof(macbuf)),
579 	    ("tsec_set_mac_address: (%d <= %zd", ETHER_ADDR_LEN,
580 	    sizeof(macbuf)));
581 
582 	macbufp = (char *)macbuf;
583 	curmac = (char *)IF_LLADDR(sc->tsec_ifp);
584 
585 	/* Correct order of MAC address bytes */
586 	for (i = 1; i <= ETHER_ADDR_LEN; i++)
587 		macbufp[ETHER_ADDR_LEN-i] = curmac[i-1];
588 
589 	/* Initialize MAC station address MACSTNADDR2 and MACSTNADDR1 */
590 	TSEC_WRITE(sc, TSEC_REG_MACSTNADDR2, macbuf[1]);
591 	TSEC_WRITE(sc, TSEC_REG_MACSTNADDR1, macbuf[0]);
592 }
593 
594 /*
595  * DMA control function, if argument state is:
596  * 0 - DMA engine will be disabled
597  * 1 - DMA engine will be enabled
598  */
599 static void
600 tsec_dma_ctl(struct tsec_softc *sc, int state)
601 {
602 	device_t dev;
603 	uint32_t dma_flags, timeout;
604 
605 	dev = sc->dev;
606 
607 	dma_flags = TSEC_READ(sc, TSEC_REG_DMACTRL);
608 
609 	switch (state) {
610 	case 0:
611 		/* Temporarily clear stop graceful stop bits. */
612 		tsec_dma_ctl(sc, 1000);
613 
614 		/* Set it again */
615 		dma_flags |= (TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS);
616 		break;
617 	case 1000:
618 	case 1:
619 		/* Set write with response (WWR), wait (WOP) and snoop bits */
620 		dma_flags |= (TSEC_DMACTRL_TDSEN | TSEC_DMACTRL_TBDSEN |
621 		    DMACTRL_WWR | DMACTRL_WOP);
622 
623 		/* Clear graceful stop bits */
624 		dma_flags &= ~(TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS);
625 		break;
626 	default:
627 		device_printf(dev, "tsec_dma_ctl(): unknown state value: %d\n",
628 		    state);
629 	}
630 
631 	TSEC_WRITE(sc, TSEC_REG_DMACTRL, dma_flags);
632 
633 	switch (state) {
634 	case 0:
635 		/* Wait for DMA stop */
636 		timeout = TSEC_READ_RETRY;
637 		while (--timeout && (!(TSEC_READ(sc, TSEC_REG_IEVENT) &
638 		    (TSEC_IEVENT_GRSC | TSEC_IEVENT_GTSC))))
639 			DELAY(TSEC_READ_DELAY);
640 
641 		if (timeout == 0)
642 			device_printf(dev, "tsec_dma_ctl(): timeout!\n");
643 		break;
644 	case 1:
645 		/* Restart transmission function */
646 		TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
647 	}
648 }
649 
650 /*
651  * Interrupts control function, if argument state is:
652  * 0 - all TSEC interrupts will be masked
653  * 1 - all TSEC interrupts will be unmasked
654  */
655 static void
656 tsec_intrs_ctl(struct tsec_softc *sc, int state)
657 {
658 	device_t dev;
659 
660 	dev = sc->dev;
661 
662 	switch (state) {
663 	case 0:
664 		TSEC_WRITE(sc, TSEC_REG_IMASK, 0);
665 		break;
666 	case 1:
667 		TSEC_WRITE(sc, TSEC_REG_IMASK, TSEC_IMASK_BREN |
668 		    TSEC_IMASK_RXCEN | TSEC_IMASK_BSYEN | TSEC_IMASK_EBERREN |
669 		    TSEC_IMASK_BTEN | TSEC_IMASK_TXEEN | TSEC_IMASK_TXBEN |
670 		    TSEC_IMASK_TXFEN | TSEC_IMASK_XFUNEN | TSEC_IMASK_RXFEN);
671 		break;
672 	default:
673 		device_printf(dev, "tsec_intrs_ctl(): unknown state value: %d\n",
674 		    state);
675 	}
676 }
677 
678 static void
679 tsec_reset_mac(struct tsec_softc *sc)
680 {
681 	uint32_t maccfg1_flags;
682 
683 	/* Set soft reset bit */
684 	maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1);
685 	maccfg1_flags |= TSEC_MACCFG1_SOFT_RESET;
686 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags);
687 
688 	/* Clear soft reset bit */
689 	maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1);
690 	maccfg1_flags &= ~TSEC_MACCFG1_SOFT_RESET;
691 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags);
692 }
693 
694 static void
695 tsec_watchdog(struct tsec_softc *sc)
696 {
697 	struct ifnet *ifp;
698 
699 	TSEC_GLOBAL_LOCK_ASSERT(sc);
700 
701 	if (sc->tsec_watchdog == 0 || --sc->tsec_watchdog > 0)
702 		return;
703 
704 	ifp = sc->tsec_ifp;
705 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
706 	if_printf(ifp, "watchdog timeout\n");
707 
708 	tsec_stop(sc);
709 	tsec_init_locked(sc);
710 }
711 
712 static void
713 tsec_start(struct ifnet *ifp)
714 {
715 	struct tsec_softc *sc = ifp->if_softc;
716 
717 	TSEC_TRANSMIT_LOCK(sc);
718 	tsec_start_locked(ifp);
719 	TSEC_TRANSMIT_UNLOCK(sc);
720 }
721 
722 static void
723 tsec_start_locked(struct ifnet *ifp)
724 {
725 	struct tsec_softc *sc;
726 	struct mbuf *m0;
727 	struct tsec_tx_fcb *tx_fcb;
728 	int csum_flags;
729 	int start_tx;
730 	uint16_t fcb_flags;
731 
732 	sc = ifp->if_softc;
733 	start_tx = 0;
734 
735 	TSEC_TRANSMIT_LOCK_ASSERT(sc);
736 
737 	if (sc->tsec_link == 0)
738 		return;
739 
740 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
741 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
742 
743 	for (;;) {
744 		if (TSEC_FREE_TX_DESC(sc) < TSEC_TX_MAX_DMA_SEGS) {
745 			/* No free descriptors */
746 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
747 			break;
748 		}
749 
750 		/* Get packet from the queue */
751 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
752 		if (m0 == NULL)
753 			break;
754 
755 		/* Insert TCP/IP Off-load frame control block */
756 		fcb_flags = 0;
757 		csum_flags = m0->m_pkthdr.csum_flags;
758 		if (csum_flags) {
759 			M_PREPEND(m0, sizeof(struct tsec_tx_fcb), M_NOWAIT);
760 			if (m0 == NULL)
761 				break;
762 
763 			if (csum_flags & CSUM_IP)
764 				fcb_flags |= TSEC_TX_FCB_IP4 |
765 				    TSEC_TX_FCB_CSUM_IP;
766 
767 			if (csum_flags & CSUM_TCP)
768 				fcb_flags |= TSEC_TX_FCB_TCP |
769 				    TSEC_TX_FCB_CSUM_TCP_UDP;
770 
771 			if (csum_flags & CSUM_UDP)
772 				fcb_flags |= TSEC_TX_FCB_UDP |
773 				    TSEC_TX_FCB_CSUM_TCP_UDP;
774 
775 			tx_fcb = mtod(m0, struct tsec_tx_fcb *);
776 			tx_fcb->flags = fcb_flags;
777 			tx_fcb->l3_offset = ETHER_HDR_LEN;
778 			tx_fcb->l4_offset = sizeof(struct ip);
779 		}
780 
781 		tsec_encap(ifp, sc, m0, fcb_flags, &start_tx);
782 	}
783 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
784 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
785 
786 	if (start_tx) {
787 		/* Enable transmitter and watchdog timer */
788 		TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
789 		sc->tsec_watchdog = 5;
790 	}
791 }
792 
793 static void
794 tsec_encap(struct ifnet *ifp, struct tsec_softc *sc, struct mbuf *m0,
795     uint16_t fcb_flags, int *start_tx)
796 {
797 	bus_dma_segment_t segs[TSEC_TX_MAX_DMA_SEGS];
798 	int error, i, nsegs;
799 	struct tsec_bufmap *tx_bufmap;
800 	uint32_t tx_idx;
801 	uint16_t flags;
802 
803 	TSEC_TRANSMIT_LOCK_ASSERT(sc);
804 
805 	tx_idx = sc->tx_idx_head;
806 	tx_bufmap = &sc->tx_bufmap[tx_idx];
807 
808 	/* Create mapping in DMA memory */
809 	error = bus_dmamap_load_mbuf_sg(sc->tsec_tx_mtag, tx_bufmap->map, m0,
810 	    segs, &nsegs, BUS_DMA_NOWAIT);
811 	if (error == EFBIG) {
812 		/* Too many segments!  Defrag and try again. */
813 		struct mbuf *m = m_defrag(m0, M_NOWAIT);
814 
815 		if (m == NULL) {
816 			m_freem(m0);
817 			return;
818 		}
819 		m0 = m;
820 		error = bus_dmamap_load_mbuf_sg(sc->tsec_tx_mtag,
821 		    tx_bufmap->map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
822 	}
823 	if (error != 0) {
824 		/* Give up. */
825 		m_freem(m0);
826 		return;
827 	}
828 
829 	bus_dmamap_sync(sc->tsec_tx_mtag, tx_bufmap->map,
830 	    BUS_DMASYNC_PREWRITE);
831 	tx_bufmap->mbuf = m0;
832 
833 	/*
834 	 * Fill in the TX descriptors back to front so that READY bit in first
835 	 * descriptor is set last.
836 	 */
837 	tx_idx = (tx_idx + (uint32_t)nsegs) & (TSEC_TX_NUM_DESC - 1);
838 	sc->tx_idx_head = tx_idx;
839 	flags = TSEC_TXBD_L | TSEC_TXBD_I | TSEC_TXBD_R | TSEC_TXBD_TC;
840 	for (i = nsegs - 1; i >= 0; i--) {
841 		struct tsec_desc *tx_desc;
842 
843 		tx_idx = (tx_idx - 1) & (TSEC_TX_NUM_DESC - 1);
844 		tx_desc = &sc->tsec_tx_vaddr[tx_idx];
845 		tx_desc->length = segs[i].ds_len;
846 		tx_desc->bufptr = segs[i].ds_addr;
847 
848 		if (i == 0) {
849 			wmb();
850 
851 			if (fcb_flags != 0)
852 				flags |= TSEC_TXBD_TOE;
853 		}
854 
855 		/*
856 		 * Set flags:
857 		 *   - wrap
858 		 *   - checksum
859 		 *   - ready to send
860 		 *   - transmit the CRC sequence after the last data byte
861 		 *   - interrupt after the last buffer
862 		 */
863 		tx_desc->flags = (tx_idx == (TSEC_TX_NUM_DESC - 1) ?
864 		    TSEC_TXBD_W : 0) | flags;
865 
866 		flags &= ~(TSEC_TXBD_L | TSEC_TXBD_I);
867 	}
868 
869 	BPF_MTAP(ifp, m0);
870 	*start_tx = 1;
871 }
872 
873 static void
874 tsec_setfilter(struct tsec_softc *sc)
875 {
876 	struct ifnet *ifp;
877 	uint32_t flags;
878 
879 	ifp = sc->tsec_ifp;
880 	flags = TSEC_READ(sc, TSEC_REG_RCTRL);
881 
882 	/* Promiscuous mode */
883 	if (ifp->if_flags & IFF_PROMISC)
884 		flags |= TSEC_RCTRL_PROM;
885 	else
886 		flags &= ~TSEC_RCTRL_PROM;
887 
888 	TSEC_WRITE(sc, TSEC_REG_RCTRL, flags);
889 }
890 
891 #ifdef DEVICE_POLLING
892 static poll_handler_t tsec_poll;
893 
894 static int
895 tsec_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
896 {
897 	uint32_t ie;
898 	struct tsec_softc *sc = ifp->if_softc;
899 	int rx_npkts;
900 
901 	rx_npkts = 0;
902 
903 	TSEC_GLOBAL_LOCK(sc);
904 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
905 		TSEC_GLOBAL_UNLOCK(sc);
906 		return (rx_npkts);
907 	}
908 
909 	if (cmd == POLL_AND_CHECK_STATUS) {
910 		tsec_error_intr_locked(sc, count);
911 
912 		/* Clear all events reported */
913 		ie = TSEC_READ(sc, TSEC_REG_IEVENT);
914 		TSEC_WRITE(sc, TSEC_REG_IEVENT, ie);
915 	}
916 
917 	tsec_transmit_intr_locked(sc);
918 
919 	TSEC_GLOBAL_TO_RECEIVE_LOCK(sc);
920 
921 	rx_npkts = tsec_receive_intr_locked(sc, count);
922 
923 	TSEC_RECEIVE_UNLOCK(sc);
924 
925 	return (rx_npkts);
926 }
927 #endif /* DEVICE_POLLING */
928 
929 static int
930 tsec_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
931 {
932 	struct tsec_softc *sc = ifp->if_softc;
933 	struct ifreq *ifr = (struct ifreq *)data;
934 	int mask, error = 0;
935 
936 	switch (command) {
937 	case SIOCSIFMTU:
938 		TSEC_GLOBAL_LOCK(sc);
939 		if (tsec_set_mtu(sc, ifr->ifr_mtu))
940 			ifp->if_mtu = ifr->ifr_mtu;
941 		else
942 			error = EINVAL;
943 		TSEC_GLOBAL_UNLOCK(sc);
944 		break;
945 	case SIOCSIFFLAGS:
946 		TSEC_GLOBAL_LOCK(sc);
947 		if (ifp->if_flags & IFF_UP) {
948 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
949 				if ((sc->tsec_if_flags ^ ifp->if_flags) &
950 				    IFF_PROMISC)
951 					tsec_setfilter(sc);
952 
953 				if ((sc->tsec_if_flags ^ ifp->if_flags) &
954 				    IFF_ALLMULTI)
955 					tsec_setup_multicast(sc);
956 			} else
957 				tsec_init_locked(sc);
958 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
959 			tsec_stop(sc);
960 
961 		sc->tsec_if_flags = ifp->if_flags;
962 		TSEC_GLOBAL_UNLOCK(sc);
963 		break;
964 	case SIOCADDMULTI:
965 	case SIOCDELMULTI:
966 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
967 			TSEC_GLOBAL_LOCK(sc);
968 			tsec_setup_multicast(sc);
969 			TSEC_GLOBAL_UNLOCK(sc);
970 		}
971 	case SIOCGIFMEDIA:
972 	case SIOCSIFMEDIA:
973 		error = ifmedia_ioctl(ifp, ifr, &sc->tsec_mii->mii_media,
974 		    command);
975 		break;
976 	case SIOCSIFCAP:
977 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
978 		if ((mask & IFCAP_HWCSUM) && sc->is_etsec) {
979 			TSEC_GLOBAL_LOCK(sc);
980 			ifp->if_capenable &= ~IFCAP_HWCSUM;
981 			ifp->if_capenable |= IFCAP_HWCSUM & ifr->ifr_reqcap;
982 			tsec_offload_setup(sc);
983 			TSEC_GLOBAL_UNLOCK(sc);
984 		}
985 #ifdef DEVICE_POLLING
986 		if (mask & IFCAP_POLLING) {
987 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
988 				error = ether_poll_register(tsec_poll, ifp);
989 				if (error)
990 					return (error);
991 
992 				TSEC_GLOBAL_LOCK(sc);
993 				/* Disable interrupts */
994 				tsec_intrs_ctl(sc, 0);
995 				ifp->if_capenable |= IFCAP_POLLING;
996 				TSEC_GLOBAL_UNLOCK(sc);
997 			} else {
998 				error = ether_poll_deregister(ifp);
999 				TSEC_GLOBAL_LOCK(sc);
1000 				/* Enable interrupts */
1001 				tsec_intrs_ctl(sc, 1);
1002 				ifp->if_capenable &= ~IFCAP_POLLING;
1003 				TSEC_GLOBAL_UNLOCK(sc);
1004 			}
1005 		}
1006 #endif
1007 		break;
1008 
1009 	default:
1010 		error = ether_ioctl(ifp, command, data);
1011 	}
1012 
1013 	/* Flush buffers if not empty */
1014 	if (ifp->if_flags & IFF_UP)
1015 		tsec_start(ifp);
1016 	return (error);
1017 }
1018 
1019 static int
1020 tsec_ifmedia_upd(struct ifnet *ifp)
1021 {
1022 	struct tsec_softc *sc = ifp->if_softc;
1023 	struct mii_data *mii;
1024 
1025 	TSEC_TRANSMIT_LOCK(sc);
1026 
1027 	mii = sc->tsec_mii;
1028 	mii_mediachg(mii);
1029 
1030 	TSEC_TRANSMIT_UNLOCK(sc);
1031 	return (0);
1032 }
1033 
1034 static void
1035 tsec_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1036 {
1037 	struct tsec_softc *sc = ifp->if_softc;
1038 	struct mii_data *mii;
1039 
1040 	TSEC_TRANSMIT_LOCK(sc);
1041 
1042 	mii = sc->tsec_mii;
1043 	mii_pollstat(mii);
1044 
1045 	ifmr->ifm_active = mii->mii_media_active;
1046 	ifmr->ifm_status = mii->mii_media_status;
1047 
1048 	TSEC_TRANSMIT_UNLOCK(sc);
1049 }
1050 
1051 static int
1052 tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map, struct mbuf **mbufp,
1053     uint32_t *paddr)
1054 {
1055 	struct mbuf *new_mbuf;
1056 	bus_dma_segment_t seg[1];
1057 	int error, nsegs;
1058 
1059 	KASSERT(mbufp != NULL, ("NULL mbuf pointer!"));
1060 
1061 	new_mbuf = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MCLBYTES);
1062 	if (new_mbuf == NULL)
1063 		return (ENOBUFS);
1064 	new_mbuf->m_len = new_mbuf->m_pkthdr.len = new_mbuf->m_ext.ext_size;
1065 
1066 	if (*mbufp) {
1067 		bus_dmamap_sync(tag, map, BUS_DMASYNC_POSTREAD);
1068 		bus_dmamap_unload(tag, map);
1069 	}
1070 
1071 	error = bus_dmamap_load_mbuf_sg(tag, map, new_mbuf, seg, &nsegs,
1072 	    BUS_DMA_NOWAIT);
1073 	KASSERT(nsegs == 1, ("Too many segments returned!"));
1074 	if (nsegs != 1 || error)
1075 		panic("tsec_new_rxbuf(): nsegs(%d), error(%d)", nsegs, error);
1076 
1077 #if 0
1078 	if (error) {
1079 		printf("tsec: bus_dmamap_load_mbuf_sg() returned: %d!\n",
1080 			error);
1081 		m_freem(new_mbuf);
1082 		return (ENOBUFS);
1083 	}
1084 #endif
1085 
1086 #if 0
1087 	KASSERT(((seg->ds_addr) & (TSEC_RXBUFFER_ALIGNMENT-1)) == 0,
1088 		("Wrong alignment of RX buffer!"));
1089 #endif
1090 	bus_dmamap_sync(tag, map, BUS_DMASYNC_PREREAD);
1091 
1092 	(*mbufp) = new_mbuf;
1093 	(*paddr) = seg->ds_addr;
1094 	return (0);
1095 }
1096 
1097 static void
1098 tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1099 {
1100 	u_int32_t *paddr;
1101 
1102 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
1103 	paddr = arg;
1104 	*paddr = segs->ds_addr;
1105 }
1106 
1107 static int
1108 tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag, bus_dmamap_t *dmap,
1109     bus_size_t dsize, void **vaddr, void *raddr, const char *dname)
1110 {
1111 	int error;
1112 
1113 	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
1114 	error = bus_dma_tag_create(NULL,	/* parent */
1115 	    PAGE_SIZE, 0,			/* alignment, boundary */
1116 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
1117 	    BUS_SPACE_MAXADDR,			/* highaddr */
1118 	    NULL, NULL,				/* filtfunc, filtfuncarg */
1119 	    dsize, 1,				/* maxsize, nsegments */
1120 	    dsize, 0,				/* maxsegsz, flags */
1121 	    NULL, NULL,				/* lockfunc, lockfuncarg */
1122 	    dtag);				/* dmat */
1123 
1124 	if (error) {
1125 		device_printf(dev, "failed to allocate busdma %s tag\n",
1126 		    dname);
1127 		(*vaddr) = NULL;
1128 		return (ENXIO);
1129 	}
1130 
1131 	error = bus_dmamem_alloc(*dtag, vaddr, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1132 	    dmap);
1133 	if (error) {
1134 		device_printf(dev, "failed to allocate %s DMA safe memory\n",
1135 		    dname);
1136 		bus_dma_tag_destroy(*dtag);
1137 		(*vaddr) = NULL;
1138 		return (ENXIO);
1139 	}
1140 
1141 	error = bus_dmamap_load(*dtag, *dmap, *vaddr, dsize,
1142 	    tsec_map_dma_addr, raddr, BUS_DMA_NOWAIT);
1143 	if (error) {
1144 		device_printf(dev, "cannot get address of the %s "
1145 		    "descriptors\n", dname);
1146 		bus_dmamem_free(*dtag, *vaddr, *dmap);
1147 		bus_dma_tag_destroy(*dtag);
1148 		(*vaddr) = NULL;
1149 		return (ENXIO);
1150 	}
1151 
1152 	return (0);
1153 }
1154 
1155 static void
1156 tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr)
1157 {
1158 
1159 	if (vaddr == NULL)
1160 		return;
1161 
1162 	/* Unmap descriptors from DMA memory */
1163 	bus_dmamap_sync(dtag, dmap, BUS_DMASYNC_POSTREAD |
1164 	    BUS_DMASYNC_POSTWRITE);
1165 	bus_dmamap_unload(dtag, dmap);
1166 
1167 	/* Free descriptors memory */
1168 	bus_dmamem_free(dtag, vaddr, dmap);
1169 
1170 	/* Destroy descriptors tag */
1171 	bus_dma_tag_destroy(dtag);
1172 }
1173 
1174 static void
1175 tsec_free_dma(struct tsec_softc *sc)
1176 {
1177 	int i;
1178 
1179 	/* Free TX maps */
1180 	for (i = 0; i < TSEC_TX_NUM_DESC; i++)
1181 		if (sc->tx_bufmap[i].map_initialized)
1182 			bus_dmamap_destroy(sc->tsec_tx_mtag,
1183 			    sc->tx_bufmap[i].map);
1184 	/* Destroy tag for TX mbufs */
1185 	bus_dma_tag_destroy(sc->tsec_tx_mtag);
1186 
1187 	/* Free RX mbufs and maps */
1188 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
1189 		if (sc->rx_data[i].mbuf) {
1190 			/* Unload buffer from DMA */
1191 			bus_dmamap_sync(sc->tsec_rx_mtag, sc->rx_data[i].map,
1192 			    BUS_DMASYNC_POSTREAD);
1193 			bus_dmamap_unload(sc->tsec_rx_mtag,
1194 			    sc->rx_data[i].map);
1195 
1196 			/* Free buffer */
1197 			m_freem(sc->rx_data[i].mbuf);
1198 		}
1199 		/* Destroy map for this buffer */
1200 		if (sc->rx_data[i].map != NULL)
1201 			bus_dmamap_destroy(sc->tsec_rx_mtag,
1202 			    sc->rx_data[i].map);
1203 	}
1204 	/* Destroy tag for RX mbufs */
1205 	bus_dma_tag_destroy(sc->tsec_rx_mtag);
1206 
1207 	/* Unload TX/RX descriptors */
1208 	tsec_free_dma_desc(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1209 	    sc->tsec_tx_vaddr);
1210 	tsec_free_dma_desc(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1211 	    sc->tsec_rx_vaddr);
1212 }
1213 
1214 static void
1215 tsec_stop(struct tsec_softc *sc)
1216 {
1217 	struct ifnet *ifp;
1218 	uint32_t tmpval;
1219 
1220 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1221 
1222 	ifp = sc->tsec_ifp;
1223 
1224 	/* Disable interface and watchdog timer */
1225 	callout_stop(&sc->tsec_callout);
1226 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1227 	sc->tsec_watchdog = 0;
1228 
1229 	/* Disable all interrupts and stop DMA */
1230 	tsec_intrs_ctl(sc, 0);
1231 	tsec_dma_ctl(sc, 0);
1232 
1233 	/* Remove pending data from TX queue */
1234 	while (sc->tx_idx_tail != sc->tx_idx_head) {
1235 		bus_dmamap_sync(sc->tsec_tx_mtag,
1236 		    sc->tx_bufmap[sc->tx_idx_tail].map,
1237 		    BUS_DMASYNC_POSTWRITE);
1238 		bus_dmamap_unload(sc->tsec_tx_mtag,
1239 		    sc->tx_bufmap[sc->tx_idx_tail].map);
1240 		m_freem(sc->tx_bufmap[sc->tx_idx_tail].mbuf);
1241 		sc->tx_idx_tail = (sc->tx_idx_tail + 1)
1242 		    & (TSEC_TX_NUM_DESC - 1);
1243 	}
1244 
1245 	/* Disable RX and TX */
1246 	tmpval = TSEC_READ(sc, TSEC_REG_MACCFG1);
1247 	tmpval &= ~(TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN);
1248 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, tmpval);
1249 	DELAY(10);
1250 }
1251 
1252 static void
1253 tsec_tick(void *arg)
1254 {
1255 	struct tsec_softc *sc = arg;
1256 	struct ifnet *ifp;
1257 	int link;
1258 
1259 	TSEC_GLOBAL_LOCK(sc);
1260 
1261 	tsec_watchdog(sc);
1262 
1263 	ifp = sc->tsec_ifp;
1264 	link = sc->tsec_link;
1265 
1266 	mii_tick(sc->tsec_mii);
1267 
1268 	if (link == 0 && sc->tsec_link == 1 &&
1269 	    (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)))
1270 		tsec_start_locked(ifp);
1271 
1272 	/* Schedule another timeout one second from now. */
1273 	callout_reset(&sc->tsec_callout, hz, tsec_tick, sc);
1274 
1275 	TSEC_GLOBAL_UNLOCK(sc);
1276 }
1277 
1278 /*
1279  *  This is the core RX routine. It replenishes mbufs in the descriptor and
1280  *  sends data which have been dma'ed into host memory to upper layer.
1281  *
1282  *  Loops at most count times if count is > 0, or until done if count < 0.
1283  */
1284 static int
1285 tsec_receive_intr_locked(struct tsec_softc *sc, int count)
1286 {
1287 	struct tsec_desc *rx_desc;
1288 	struct ifnet *ifp;
1289 	struct rx_data_type *rx_data;
1290 	struct mbuf *m;
1291 	uint32_t i;
1292 	int c, rx_npkts;
1293 	uint16_t flags;
1294 
1295 	TSEC_RECEIVE_LOCK_ASSERT(sc);
1296 
1297 	ifp = sc->tsec_ifp;
1298 	rx_data = sc->rx_data;
1299 	rx_npkts = 0;
1300 
1301 	bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1302 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1303 
1304 	for (c = 0; ; c++) {
1305 		if (count >= 0 && count-- == 0)
1306 			break;
1307 
1308 		rx_desc = TSEC_GET_CUR_RX_DESC(sc);
1309 		flags = rx_desc->flags;
1310 
1311 		/* Check if there is anything to receive */
1312 		if ((flags & TSEC_RXBD_E) || (c >= TSEC_RX_NUM_DESC)) {
1313 			/*
1314 			 * Avoid generating another interrupt
1315 			 */
1316 			if (flags & TSEC_RXBD_E)
1317 				TSEC_WRITE(sc, TSEC_REG_IEVENT,
1318 				    TSEC_IEVENT_RXB | TSEC_IEVENT_RXF);
1319 			/*
1320 			 * We didn't consume current descriptor and have to
1321 			 * return it to the queue
1322 			 */
1323 			TSEC_BACK_CUR_RX_DESC(sc);
1324 			break;
1325 		}
1326 
1327 		if (flags & (TSEC_RXBD_LG | TSEC_RXBD_SH | TSEC_RXBD_NO |
1328 		    TSEC_RXBD_CR | TSEC_RXBD_OV | TSEC_RXBD_TR)) {
1329 			rx_desc->length = 0;
1330 			rx_desc->flags = (rx_desc->flags &
1331 			    ~TSEC_RXBD_ZEROONINIT) | TSEC_RXBD_E | TSEC_RXBD_I;
1332 
1333 			if (sc->frame != NULL) {
1334 				m_free(sc->frame);
1335 				sc->frame = NULL;
1336 			}
1337 
1338 			continue;
1339 		}
1340 
1341 		/* Ok... process frame */
1342 		i = TSEC_GET_CUR_RX_DESC_CNT(sc);
1343 		m = rx_data[i].mbuf;
1344 		m->m_len = rx_desc->length;
1345 
1346 		if (sc->frame != NULL) {
1347 			if ((flags & TSEC_RXBD_L) != 0)
1348 				m->m_len -= m_length(sc->frame, NULL);
1349 
1350 			m->m_flags &= ~M_PKTHDR;
1351 			m_cat(sc->frame, m);
1352 		} else {
1353 			sc->frame = m;
1354 		}
1355 
1356 		m = NULL;
1357 
1358 		if ((flags & TSEC_RXBD_L) != 0) {
1359 			m = sc->frame;
1360 			sc->frame = NULL;
1361 		}
1362 
1363 		if (tsec_new_rxbuf(sc->tsec_rx_mtag, rx_data[i].map,
1364 		    &rx_data[i].mbuf, &rx_data[i].paddr)) {
1365 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1366 			/*
1367 			 * We ran out of mbufs; didn't consume current
1368 			 * descriptor and have to return it to the queue.
1369 			 */
1370 			TSEC_BACK_CUR_RX_DESC(sc);
1371 			break;
1372 		}
1373 
1374 		/* Attach new buffer to descriptor and clear flags */
1375 		rx_desc->bufptr = rx_data[i].paddr;
1376 		rx_desc->length = 0;
1377 		rx_desc->flags = (rx_desc->flags & ~TSEC_RXBD_ZEROONINIT) |
1378 		    TSEC_RXBD_E | TSEC_RXBD_I;
1379 
1380 		if (m != NULL) {
1381 			m->m_pkthdr.rcvif = ifp;
1382 
1383 			m_fixhdr(m);
1384 			m_adj(m, -ETHER_CRC_LEN);
1385 
1386 			if (sc->is_etsec)
1387 				tsec_offload_process_frame(sc, m);
1388 
1389 			TSEC_RECEIVE_UNLOCK(sc);
1390 			(*ifp->if_input)(ifp, m);
1391 			TSEC_RECEIVE_LOCK(sc);
1392 			rx_npkts++;
1393 		}
1394 	}
1395 
1396 	bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1397 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1398 
1399 	/*
1400 	 * Make sure TSEC receiver is not halted.
1401 	 *
1402 	 * Various conditions can stop the TSEC receiver, but not all are
1403 	 * signaled and handled by error interrupt, so make sure the receiver
1404 	 * is running. Writing to TSEC_REG_RSTAT restarts the receiver when
1405 	 * halted, and is harmless if already running.
1406 	 */
1407 	TSEC_WRITE(sc, TSEC_REG_RSTAT, TSEC_RSTAT_QHLT);
1408 	return (rx_npkts);
1409 }
1410 
1411 void
1412 tsec_receive_intr(void *arg)
1413 {
1414 	struct tsec_softc *sc = arg;
1415 
1416 	TSEC_RECEIVE_LOCK(sc);
1417 
1418 #ifdef DEVICE_POLLING
1419 	if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) {
1420 		TSEC_RECEIVE_UNLOCK(sc);
1421 		return;
1422 	}
1423 #endif
1424 
1425 	/* Confirm the interrupt was received by driver */
1426 	TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXB | TSEC_IEVENT_RXF);
1427 	tsec_receive_intr_locked(sc, -1);
1428 
1429 	TSEC_RECEIVE_UNLOCK(sc);
1430 }
1431 
1432 static void
1433 tsec_transmit_intr_locked(struct tsec_softc *sc)
1434 {
1435 	struct ifnet *ifp;
1436 	uint32_t tx_idx;
1437 
1438 	TSEC_TRANSMIT_LOCK_ASSERT(sc);
1439 
1440 	ifp = sc->tsec_ifp;
1441 
1442 	/* Update collision statistics */
1443 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, TSEC_READ(sc, TSEC_REG_MON_TNCL));
1444 
1445 	/* Reset collision counters in hardware */
1446 	TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0);
1447 	TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0);
1448 	TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0);
1449 	TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0);
1450 	TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0);
1451 
1452 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1453 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1454 
1455 	tx_idx = sc->tx_idx_tail;
1456 	while (tx_idx != sc->tx_idx_head) {
1457 		struct tsec_desc *tx_desc;
1458 		struct tsec_bufmap *tx_bufmap;
1459 
1460 		tx_desc = &sc->tsec_tx_vaddr[tx_idx];
1461 		if (tx_desc->flags & TSEC_TXBD_R) {
1462 			break;
1463 		}
1464 
1465 		tx_bufmap = &sc->tx_bufmap[tx_idx];
1466 		tx_idx = (tx_idx + 1) & (TSEC_TX_NUM_DESC - 1);
1467 		if (tx_bufmap->mbuf == NULL)
1468 			continue;
1469 
1470 		/*
1471 		 * This is the last buf in this packet, so unmap and free it.
1472 		 */
1473 		bus_dmamap_sync(sc->tsec_tx_mtag, tx_bufmap->map,
1474 		    BUS_DMASYNC_POSTWRITE);
1475 		bus_dmamap_unload(sc->tsec_tx_mtag, tx_bufmap->map);
1476 		m_freem(tx_bufmap->mbuf);
1477 		tx_bufmap->mbuf = NULL;
1478 
1479 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1480 	}
1481 	sc->tx_idx_tail = tx_idx;
1482 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1483 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1484 
1485 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1486 	tsec_start_locked(ifp);
1487 
1488 	if (sc->tx_idx_tail == sc->tx_idx_head)
1489 		sc->tsec_watchdog = 0;
1490 }
1491 
1492 void
1493 tsec_transmit_intr(void *arg)
1494 {
1495 	struct tsec_softc *sc = arg;
1496 
1497 	TSEC_TRANSMIT_LOCK(sc);
1498 
1499 #ifdef DEVICE_POLLING
1500 	if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) {
1501 		TSEC_TRANSMIT_UNLOCK(sc);
1502 		return;
1503 	}
1504 #endif
1505 	/* Confirm the interrupt was received by driver */
1506 	TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_TXB | TSEC_IEVENT_TXF);
1507 	tsec_transmit_intr_locked(sc);
1508 
1509 	TSEC_TRANSMIT_UNLOCK(sc);
1510 }
1511 
1512 static void
1513 tsec_error_intr_locked(struct tsec_softc *sc, int count)
1514 {
1515 	struct ifnet *ifp;
1516 	uint32_t eflags;
1517 
1518 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1519 
1520 	ifp = sc->tsec_ifp;
1521 
1522 	eflags = TSEC_READ(sc, TSEC_REG_IEVENT);
1523 
1524 	/* Clear events bits in hardware */
1525 	TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXC | TSEC_IEVENT_BSY |
1526 	    TSEC_IEVENT_EBERR | TSEC_IEVENT_MSRO | TSEC_IEVENT_BABT |
1527 	    TSEC_IEVENT_TXC | TSEC_IEVENT_TXE | TSEC_IEVENT_LC |
1528 	    TSEC_IEVENT_CRL | TSEC_IEVENT_XFUN);
1529 
1530 	/* Check transmitter errors */
1531 	if (eflags & TSEC_IEVENT_TXE) {
1532 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1533 
1534 		if (eflags & TSEC_IEVENT_LC)
1535 			if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1536 
1537 		TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
1538 	}
1539 
1540 	/* Check for discarded frame due to a lack of buffers */
1541 	if (eflags & TSEC_IEVENT_BSY) {
1542 		if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1543 	}
1544 
1545 	if (ifp->if_flags & IFF_DEBUG)
1546 		if_printf(ifp, "tsec_error_intr(): event flags: 0x%x\n",
1547 		    eflags);
1548 
1549 	if (eflags & TSEC_IEVENT_EBERR) {
1550 		if_printf(ifp, "System bus error occurred during"
1551 		    "DMA transaction (flags: 0x%x)\n", eflags);
1552 		tsec_init_locked(sc);
1553 	}
1554 
1555 	if (eflags & TSEC_IEVENT_BABT)
1556 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1557 
1558 	if (eflags & TSEC_IEVENT_BABR)
1559 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1560 }
1561 
1562 void
1563 tsec_error_intr(void *arg)
1564 {
1565 	struct tsec_softc *sc = arg;
1566 
1567 	TSEC_GLOBAL_LOCK(sc);
1568 	tsec_error_intr_locked(sc, -1);
1569 	TSEC_GLOBAL_UNLOCK(sc);
1570 }
1571 
1572 int
1573 tsec_miibus_readreg(device_t dev, int phy, int reg)
1574 {
1575 	struct tsec_softc *sc;
1576 	int timeout;
1577 	int rv;
1578 
1579 	sc = device_get_softc(dev);
1580 
1581 	TSEC_PHY_LOCK();
1582 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMADD, (phy << 8) | reg);
1583 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCOM, 0);
1584 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCOM, TSEC_MIIMCOM_READCYCLE);
1585 
1586 	timeout = tsec_mii_wait(sc, TSEC_MIIMIND_NOTVALID | TSEC_MIIMIND_BUSY);
1587 	rv = TSEC_PHY_READ(sc, TSEC_REG_MIIMSTAT);
1588 	TSEC_PHY_UNLOCK();
1589 
1590 	if (timeout)
1591 		device_printf(dev, "Timeout while reading from PHY!\n");
1592 
1593 	return (rv);
1594 }
1595 
1596 int
1597 tsec_miibus_writereg(device_t dev, int phy, int reg, int value)
1598 {
1599 	struct tsec_softc *sc;
1600 	int timeout;
1601 
1602 	sc = device_get_softc(dev);
1603 
1604 	TSEC_PHY_LOCK();
1605 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMADD, (phy << 8) | reg);
1606 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCON, value);
1607 	timeout = tsec_mii_wait(sc, TSEC_MIIMIND_BUSY);
1608 	TSEC_PHY_UNLOCK();
1609 
1610 	if (timeout)
1611 		device_printf(dev, "Timeout while writing to PHY!\n");
1612 
1613 	return (0);
1614 }
1615 
1616 void
1617 tsec_miibus_statchg(device_t dev)
1618 {
1619 	struct tsec_softc *sc;
1620 	struct mii_data *mii;
1621 	uint32_t ecntrl, id, tmp;
1622 	int link;
1623 
1624 	sc = device_get_softc(dev);
1625 	mii = sc->tsec_mii;
1626 	link = ((mii->mii_media_status & IFM_ACTIVE) ? 1 : 0);
1627 
1628 	tmp = TSEC_READ(sc, TSEC_REG_MACCFG2) & ~TSEC_MACCFG2_IF;
1629 
1630 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
1631 		tmp |= TSEC_MACCFG2_FULLDUPLEX;
1632 	else
1633 		tmp &= ~TSEC_MACCFG2_FULLDUPLEX;
1634 
1635 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1636 	case IFM_1000_T:
1637 	case IFM_1000_SX:
1638 		tmp |= TSEC_MACCFG2_GMII;
1639 		sc->tsec_link = link;
1640 		break;
1641 	case IFM_100_TX:
1642 	case IFM_10_T:
1643 		tmp |= TSEC_MACCFG2_MII;
1644 		sc->tsec_link = link;
1645 		break;
1646 	case IFM_NONE:
1647 		if (link)
1648 			device_printf(dev, "No speed selected but link "
1649 			    "active!\n");
1650 		sc->tsec_link = 0;
1651 		return;
1652 	default:
1653 		sc->tsec_link = 0;
1654 		device_printf(dev, "Unknown speed (%d), link %s!\n",
1655 		    IFM_SUBTYPE(mii->mii_media_active),
1656 		        ((link) ? "up" : "down"));
1657 		return;
1658 	}
1659 	TSEC_WRITE(sc, TSEC_REG_MACCFG2, tmp);
1660 
1661 	/* XXX kludge - use circumstantial evidence for reduced mode. */
1662 	id = TSEC_READ(sc, TSEC_REG_ID2);
1663 	if (id & 0xffff) {
1664 		ecntrl = TSEC_READ(sc, TSEC_REG_ECNTRL) & ~TSEC_ECNTRL_R100M;
1665 		ecntrl |= (tmp & TSEC_MACCFG2_MII) ? TSEC_ECNTRL_R100M : 0;
1666 		TSEC_WRITE(sc, TSEC_REG_ECNTRL, ecntrl);
1667 	}
1668 }
1669 
1670 static void
1671 tsec_add_sysctls(struct tsec_softc *sc)
1672 {
1673 	struct sysctl_ctx_list *ctx;
1674 	struct sysctl_oid_list *children;
1675 	struct sysctl_oid *tree;
1676 
1677 	ctx = device_get_sysctl_ctx(sc->dev);
1678 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
1679 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "int_coal",
1680 	    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "TSEC Interrupts coalescing");
1681 	children = SYSCTL_CHILDREN(tree);
1682 
1683 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_time",
1684 	    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, TSEC_IC_RX,
1685 	    tsec_sysctl_ic_time, "I", "IC RX time threshold (0-65535)");
1686 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_count",
1687 	    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, TSEC_IC_RX,
1688 	    tsec_sysctl_ic_count, "I", "IC RX frame count threshold (0-255)");
1689 
1690 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_time",
1691 	    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, TSEC_IC_TX,
1692 	    tsec_sysctl_ic_time, "I", "IC TX time threshold (0-65535)");
1693 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_count",
1694 	    CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, TSEC_IC_TX,
1695 	    tsec_sysctl_ic_count, "I", "IC TX frame count threshold (0-255)");
1696 }
1697 
1698 /*
1699  * With Interrupt Coalescing (IC) active, a transmit/receive frame
1700  * interrupt is raised either upon:
1701  *
1702  * - threshold-defined period of time elapsed, or
1703  * - threshold-defined number of frames is received/transmitted,
1704  *   whichever occurs first.
1705  *
1706  * The following sysctls regulate IC behaviour (for TX/RX separately):
1707  *
1708  * dev.tsec.<unit>.int_coal.rx_time
1709  * dev.tsec.<unit>.int_coal.rx_count
1710  * dev.tsec.<unit>.int_coal.tx_time
1711  * dev.tsec.<unit>.int_coal.tx_count
1712  *
1713  * Values:
1714  *
1715  * - 0 for either time or count disables IC on the given TX/RX path
1716  *
1717  * - count: 1-255 (expresses frame count number; note that value of 1 is
1718  *   effectively IC off)
1719  *
1720  * - time: 1-65535 (value corresponds to a real time period and is
1721  *   expressed in units equivalent to 64 TSEC interface clocks, i.e. one timer
1722  *   threshold unit is 26.5 us, 2.56 us, or 512 ns, corresponding to 10 Mbps,
1723  *   100 Mbps, or 1Gbps, respectively. For detailed discussion consult the
1724  *   TSEC reference manual.
1725  */
1726 static int
1727 tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS)
1728 {
1729 	int error;
1730 	uint32_t time;
1731 	struct tsec_softc *sc = (struct tsec_softc *)arg1;
1732 
1733 	time = (arg2 == TSEC_IC_RX) ? sc->rx_ic_time : sc->tx_ic_time;
1734 
1735 	error = sysctl_handle_int(oidp, &time, 0, req);
1736 	if (error != 0)
1737 		return (error);
1738 
1739 	if (time > 65535)
1740 		return (EINVAL);
1741 
1742 	TSEC_IC_LOCK(sc);
1743 	if (arg2 == TSEC_IC_RX) {
1744 		sc->rx_ic_time = time;
1745 		tsec_set_rxic(sc);
1746 	} else {
1747 		sc->tx_ic_time = time;
1748 		tsec_set_txic(sc);
1749 	}
1750 	TSEC_IC_UNLOCK(sc);
1751 
1752 	return (0);
1753 }
1754 
1755 static int
1756 tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS)
1757 {
1758 	int error;
1759 	uint32_t count;
1760 	struct tsec_softc *sc = (struct tsec_softc *)arg1;
1761 
1762 	count = (arg2 == TSEC_IC_RX) ? sc->rx_ic_count : sc->tx_ic_count;
1763 
1764 	error = sysctl_handle_int(oidp, &count, 0, req);
1765 	if (error != 0)
1766 		return (error);
1767 
1768 	if (count > 255)
1769 		return (EINVAL);
1770 
1771 	TSEC_IC_LOCK(sc);
1772 	if (arg2 == TSEC_IC_RX) {
1773 		sc->rx_ic_count = count;
1774 		tsec_set_rxic(sc);
1775 	} else {
1776 		sc->tx_ic_count = count;
1777 		tsec_set_txic(sc);
1778 	}
1779 	TSEC_IC_UNLOCK(sc);
1780 
1781 	return (0);
1782 }
1783 
1784 static void
1785 tsec_set_rxic(struct tsec_softc *sc)
1786 {
1787 	uint32_t rxic_val;
1788 
1789 	if (sc->rx_ic_count == 0 || sc->rx_ic_time == 0)
1790 		/* Disable RX IC */
1791 		rxic_val = 0;
1792 	else {
1793 		rxic_val = 0x80000000;
1794 		rxic_val |= (sc->rx_ic_count << 21);
1795 		rxic_val |= sc->rx_ic_time;
1796 	}
1797 
1798 	TSEC_WRITE(sc, TSEC_REG_RXIC, rxic_val);
1799 }
1800 
1801 static void
1802 tsec_set_txic(struct tsec_softc *sc)
1803 {
1804 	uint32_t txic_val;
1805 
1806 	if (sc->tx_ic_count == 0 || sc->tx_ic_time == 0)
1807 		/* Disable TX IC */
1808 		txic_val = 0;
1809 	else {
1810 		txic_val = 0x80000000;
1811 		txic_val |= (sc->tx_ic_count << 21);
1812 		txic_val |= sc->tx_ic_time;
1813 	}
1814 
1815 	TSEC_WRITE(sc, TSEC_REG_TXIC, txic_val);
1816 }
1817 
1818 static void
1819 tsec_offload_setup(struct tsec_softc *sc)
1820 {
1821 	struct ifnet *ifp = sc->tsec_ifp;
1822 	uint32_t reg;
1823 
1824 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1825 
1826 	reg = TSEC_READ(sc, TSEC_REG_TCTRL);
1827 	reg |= TSEC_TCTRL_IPCSEN | TSEC_TCTRL_TUCSEN;
1828 
1829 	if (ifp->if_capenable & IFCAP_TXCSUM)
1830 		ifp->if_hwassist = TSEC_CHECKSUM_FEATURES;
1831 	else
1832 		ifp->if_hwassist = 0;
1833 
1834 	TSEC_WRITE(sc, TSEC_REG_TCTRL, reg);
1835 
1836 	reg = TSEC_READ(sc, TSEC_REG_RCTRL);
1837 	reg &= ~(TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN | TSEC_RCTRL_PRSDEP);
1838 	reg |= TSEC_RCTRL_PRSDEP_PARSE_L2 | TSEC_RCTRL_VLEX;
1839 
1840 	if (ifp->if_capenable & IFCAP_RXCSUM)
1841 		reg |= TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN |
1842 		    TSEC_RCTRL_PRSDEP_PARSE_L234;
1843 
1844 	TSEC_WRITE(sc, TSEC_REG_RCTRL, reg);
1845 }
1846 
1847 static void
1848 tsec_offload_process_frame(struct tsec_softc *sc, struct mbuf *m)
1849 {
1850 	struct tsec_rx_fcb rx_fcb;
1851 	int csum_flags = 0;
1852 	int protocol, flags;
1853 
1854 	TSEC_RECEIVE_LOCK_ASSERT(sc);
1855 
1856 	m_copydata(m, 0, sizeof(struct tsec_rx_fcb), (caddr_t)(&rx_fcb));
1857 	flags = rx_fcb.flags;
1858 	protocol = rx_fcb.protocol;
1859 
1860 	if (TSEC_RX_FCB_IP_CSUM_CHECKED(flags)) {
1861 		csum_flags |= CSUM_IP_CHECKED;
1862 
1863 		if ((flags & TSEC_RX_FCB_IP_CSUM_ERROR) == 0)
1864 			csum_flags |= CSUM_IP_VALID;
1865 	}
1866 
1867 	if ((protocol == IPPROTO_TCP || protocol == IPPROTO_UDP) &&
1868 	    TSEC_RX_FCB_TCP_UDP_CSUM_CHECKED(flags) &&
1869 	    (flags & TSEC_RX_FCB_TCP_UDP_CSUM_ERROR) == 0) {
1870 		csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1871 		m->m_pkthdr.csum_data = 0xFFFF;
1872 	}
1873 
1874 	m->m_pkthdr.csum_flags = csum_flags;
1875 
1876 	if (flags & TSEC_RX_FCB_VLAN) {
1877 		m->m_pkthdr.ether_vtag = rx_fcb.vlan;
1878 		m->m_flags |= M_VLANTAG;
1879 	}
1880 
1881 	m_adj(m, sizeof(struct tsec_rx_fcb));
1882 }
1883 
1884 static u_int
1885 tsec_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
1886 {
1887 	uint32_t h, *hashtable = arg;
1888 
1889 	h = (ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 24) & 0xFF;
1890 	hashtable[(h >> 5)] |= 1 << (0x1F - (h & 0x1F));
1891 
1892 	return (1);
1893 }
1894 
1895 static void
1896 tsec_setup_multicast(struct tsec_softc *sc)
1897 {
1898 	uint32_t hashtable[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
1899 	struct ifnet *ifp = sc->tsec_ifp;
1900 	int i;
1901 
1902 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1903 
1904 	if (ifp->if_flags & IFF_ALLMULTI) {
1905 		for (i = 0; i < 8; i++)
1906 			TSEC_WRITE(sc, TSEC_REG_GADDR(i), 0xFFFFFFFF);
1907 
1908 		return;
1909 	}
1910 
1911 	if_foreach_llmaddr(ifp, tsec_hash_maddr, &hashtable);
1912 
1913 	for (i = 0; i < 8; i++)
1914 		TSEC_WRITE(sc, TSEC_REG_GADDR(i), hashtable[i]);
1915 }
1916 
1917 static int
1918 tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu)
1919 {
1920 
1921 	mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
1922 
1923 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1924 
1925 	if (mtu >= TSEC_MIN_FRAME_SIZE && mtu <= TSEC_MAX_FRAME_SIZE) {
1926 		TSEC_WRITE(sc, TSEC_REG_MAXFRM, mtu);
1927 		return (mtu);
1928 	}
1929 
1930 	return (0);
1931 }
1932