1 /*- 2 * Copyright (C) 2007-2008 Semihalf, Rafal Jaworowski 3 * Copyright (C) 2006-2007 Semihalf, Piotr Kruszynski 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 18 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 20 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 22 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 23 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 24 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 /* 28 * Freescale integrated Three-Speed Ethernet Controller (TSEC) driver. 29 */ 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #ifdef HAVE_KERNEL_OPTION_HEADERS 34 #include "opt_device_polling.h" 35 #endif 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/bus.h> 40 #include <sys/endian.h> 41 #include <sys/mbuf.h> 42 #include <sys/kernel.h> 43 #include <sys/module.h> 44 #include <sys/socket.h> 45 #include <sys/sockio.h> 46 #include <sys/sysctl.h> 47 48 #include <net/bpf.h> 49 #include <net/ethernet.h> 50 #include <net/if.h> 51 #include <net/if_var.h> 52 #include <net/if_arp.h> 53 #include <net/if_dl.h> 54 #include <net/if_media.h> 55 #include <net/if_types.h> 56 #include <net/if_vlan_var.h> 57 58 #include <netinet/in_systm.h> 59 #include <netinet/in.h> 60 #include <netinet/ip.h> 61 62 #include <machine/bus.h> 63 64 #include <dev/mii/mii.h> 65 #include <dev/mii/miivar.h> 66 67 #include <dev/tsec/if_tsec.h> 68 #include <dev/tsec/if_tsecreg.h> 69 70 static int tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag, 71 bus_dmamap_t *dmap, bus_size_t dsize, void **vaddr, void *raddr, 72 const char *dname); 73 static void tsec_dma_ctl(struct tsec_softc *sc, int state); 74 static int tsec_encap(struct tsec_softc *sc, struct mbuf *m_head, 75 int fcb_inserted); 76 static void tsec_free_dma(struct tsec_softc *sc); 77 static void tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr); 78 static int tsec_ifmedia_upd(struct ifnet *ifp); 79 static void tsec_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr); 80 static int tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map, 81 struct mbuf **mbufp, uint32_t *paddr); 82 static void tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs, 83 int nseg, int error); 84 static void tsec_intrs_ctl(struct tsec_softc *sc, int state); 85 static void tsec_init(void *xsc); 86 static void tsec_init_locked(struct tsec_softc *sc); 87 static int tsec_ioctl(struct ifnet *ifp, u_long command, caddr_t data); 88 static void tsec_reset_mac(struct tsec_softc *sc); 89 static void tsec_setfilter(struct tsec_softc *sc); 90 static void tsec_set_mac_address(struct tsec_softc *sc); 91 static void tsec_start(struct ifnet *ifp); 92 static void tsec_start_locked(struct ifnet *ifp); 93 static void tsec_stop(struct tsec_softc *sc); 94 static void tsec_tick(void *arg); 95 static void tsec_watchdog(struct tsec_softc *sc); 96 static void tsec_add_sysctls(struct tsec_softc *sc); 97 static int tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS); 98 static int tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS); 99 static void tsec_set_rxic(struct tsec_softc *sc); 100 static void tsec_set_txic(struct tsec_softc *sc); 101 static int tsec_receive_intr_locked(struct tsec_softc *sc, int count); 102 static void tsec_transmit_intr_locked(struct tsec_softc *sc); 103 static void tsec_error_intr_locked(struct tsec_softc *sc, int count); 104 static void tsec_offload_setup(struct tsec_softc *sc); 105 static void tsec_offload_process_frame(struct tsec_softc *sc, 106 struct mbuf *m); 107 static void tsec_setup_multicast(struct tsec_softc *sc); 108 static int tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu); 109 110 devclass_t tsec_devclass; 111 DRIVER_MODULE(miibus, tsec, miibus_driver, miibus_devclass, 0, 0); 112 MODULE_DEPEND(tsec, ether, 1, 1, 1); 113 MODULE_DEPEND(tsec, miibus, 1, 1, 1); 114 115 int 116 tsec_attach(struct tsec_softc *sc) 117 { 118 uint8_t hwaddr[ETHER_ADDR_LEN]; 119 struct ifnet *ifp; 120 bus_dmamap_t *map_ptr; 121 bus_dmamap_t **map_pptr; 122 int error = 0; 123 int i; 124 125 /* Reset all TSEC counters */ 126 TSEC_TX_RX_COUNTERS_INIT(sc); 127 128 /* Stop DMA engine if enabled by firmware */ 129 tsec_dma_ctl(sc, 0); 130 131 /* Reset MAC */ 132 tsec_reset_mac(sc); 133 134 /* Disable interrupts for now */ 135 tsec_intrs_ctl(sc, 0); 136 137 /* Configure defaults for interrupts coalescing */ 138 sc->rx_ic_time = 768; 139 sc->rx_ic_count = 16; 140 sc->tx_ic_time = 768; 141 sc->tx_ic_count = 16; 142 tsec_set_rxic(sc); 143 tsec_set_txic(sc); 144 tsec_add_sysctls(sc); 145 146 /* Allocate a busdma tag and DMA safe memory for TX descriptors. */ 147 error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_tx_dtag, 148 &sc->tsec_tx_dmap, sizeof(*sc->tsec_tx_vaddr) * TSEC_TX_NUM_DESC, 149 (void **)&sc->tsec_tx_vaddr, &sc->tsec_tx_raddr, "TX"); 150 151 if (error) { 152 tsec_detach(sc); 153 return (ENXIO); 154 } 155 156 /* Allocate a busdma tag and DMA safe memory for RX descriptors. */ 157 error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_rx_dtag, 158 &sc->tsec_rx_dmap, sizeof(*sc->tsec_rx_vaddr) * TSEC_RX_NUM_DESC, 159 (void **)&sc->tsec_rx_vaddr, &sc->tsec_rx_raddr, "RX"); 160 if (error) { 161 tsec_detach(sc); 162 return (ENXIO); 163 } 164 165 /* Allocate a busdma tag for TX mbufs. */ 166 error = bus_dma_tag_create(NULL, /* parent */ 167 TSEC_TXBUFFER_ALIGNMENT, 0, /* alignment, boundary */ 168 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 169 BUS_SPACE_MAXADDR, /* highaddr */ 170 NULL, NULL, /* filtfunc, filtfuncarg */ 171 MCLBYTES * (TSEC_TX_NUM_DESC - 1), /* maxsize */ 172 TSEC_TX_NUM_DESC - 1, /* nsegments */ 173 MCLBYTES, 0, /* maxsegsz, flags */ 174 NULL, NULL, /* lockfunc, lockfuncarg */ 175 &sc->tsec_tx_mtag); /* dmat */ 176 if (error) { 177 device_printf(sc->dev, "failed to allocate busdma tag " 178 "(tx mbufs)\n"); 179 tsec_detach(sc); 180 return (ENXIO); 181 } 182 183 /* Allocate a busdma tag for RX mbufs. */ 184 error = bus_dma_tag_create(NULL, /* parent */ 185 TSEC_RXBUFFER_ALIGNMENT, 0, /* alignment, boundary */ 186 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 187 BUS_SPACE_MAXADDR, /* highaddr */ 188 NULL, NULL, /* filtfunc, filtfuncarg */ 189 MCLBYTES, /* maxsize */ 190 1, /* nsegments */ 191 MCLBYTES, 0, /* maxsegsz, flags */ 192 NULL, NULL, /* lockfunc, lockfuncarg */ 193 &sc->tsec_rx_mtag); /* dmat */ 194 if (error) { 195 device_printf(sc->dev, "failed to allocate busdma tag " 196 "(rx mbufs)\n"); 197 tsec_detach(sc); 198 return (ENXIO); 199 } 200 201 /* Create TX busdma maps */ 202 map_ptr = sc->tx_map_data; 203 map_pptr = sc->tx_map_unused_data; 204 205 for (i = 0; i < TSEC_TX_NUM_DESC; i++) { 206 map_pptr[i] = &map_ptr[i]; 207 error = bus_dmamap_create(sc->tsec_tx_mtag, 0, map_pptr[i]); 208 if (error) { 209 device_printf(sc->dev, "failed to init TX ring\n"); 210 tsec_detach(sc); 211 return (ENXIO); 212 } 213 } 214 215 /* Create RX busdma maps and zero mbuf handlers */ 216 for (i = 0; i < TSEC_RX_NUM_DESC; i++) { 217 error = bus_dmamap_create(sc->tsec_rx_mtag, 0, 218 &sc->rx_data[i].map); 219 if (error) { 220 device_printf(sc->dev, "failed to init RX ring\n"); 221 tsec_detach(sc); 222 return (ENXIO); 223 } 224 sc->rx_data[i].mbuf = NULL; 225 } 226 227 /* Create mbufs for RX buffers */ 228 for (i = 0; i < TSEC_RX_NUM_DESC; i++) { 229 error = tsec_new_rxbuf(sc->tsec_rx_mtag, sc->rx_data[i].map, 230 &sc->rx_data[i].mbuf, &sc->rx_data[i].paddr); 231 if (error) { 232 device_printf(sc->dev, "can't load rx DMA map %d, " 233 "error = %d\n", i, error); 234 tsec_detach(sc); 235 return (error); 236 } 237 } 238 239 /* Create network interface for upper layers */ 240 ifp = sc->tsec_ifp = if_alloc(IFT_ETHER); 241 if (ifp == NULL) { 242 device_printf(sc->dev, "if_alloc() failed\n"); 243 tsec_detach(sc); 244 return (ENOMEM); 245 } 246 247 ifp->if_softc = sc; 248 if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev)); 249 ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST; 250 ifp->if_init = tsec_init; 251 ifp->if_start = tsec_start; 252 ifp->if_ioctl = tsec_ioctl; 253 254 IFQ_SET_MAXLEN(&ifp->if_snd, TSEC_TX_NUM_DESC - 1); 255 ifp->if_snd.ifq_drv_maxlen = TSEC_TX_NUM_DESC - 1; 256 IFQ_SET_READY(&ifp->if_snd); 257 258 ifp->if_capabilities = IFCAP_VLAN_MTU; 259 if (sc->is_etsec) 260 ifp->if_capabilities |= IFCAP_HWCSUM; 261 262 ifp->if_capenable = ifp->if_capabilities; 263 264 #ifdef DEVICE_POLLING 265 /* Advertise that polling is supported */ 266 ifp->if_capabilities |= IFCAP_POLLING; 267 #endif 268 269 /* Attach PHY(s) */ 270 error = mii_attach(sc->dev, &sc->tsec_miibus, ifp, tsec_ifmedia_upd, 271 tsec_ifmedia_sts, BMSR_DEFCAPMASK, sc->phyaddr, MII_OFFSET_ANY, 272 0); 273 if (error) { 274 device_printf(sc->dev, "attaching PHYs failed\n"); 275 if_free(ifp); 276 sc->tsec_ifp = NULL; 277 tsec_detach(sc); 278 return (error); 279 } 280 sc->tsec_mii = device_get_softc(sc->tsec_miibus); 281 282 /* Set MAC address */ 283 tsec_get_hwaddr(sc, hwaddr); 284 ether_ifattach(ifp, hwaddr); 285 286 return (0); 287 } 288 289 int 290 tsec_detach(struct tsec_softc *sc) 291 { 292 293 if (sc->tsec_ifp != NULL) { 294 #ifdef DEVICE_POLLING 295 if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) 296 ether_poll_deregister(sc->tsec_ifp); 297 #endif 298 299 /* Stop TSEC controller and free TX queue */ 300 if (sc->sc_rres) 301 tsec_shutdown(sc->dev); 302 303 /* Detach network interface */ 304 ether_ifdetach(sc->tsec_ifp); 305 if_free(sc->tsec_ifp); 306 sc->tsec_ifp = NULL; 307 } 308 309 /* Free DMA resources */ 310 tsec_free_dma(sc); 311 312 return (0); 313 } 314 315 int 316 tsec_shutdown(device_t dev) 317 { 318 struct tsec_softc *sc; 319 320 sc = device_get_softc(dev); 321 322 TSEC_GLOBAL_LOCK(sc); 323 tsec_stop(sc); 324 TSEC_GLOBAL_UNLOCK(sc); 325 return (0); 326 } 327 328 int 329 tsec_suspend(device_t dev) 330 { 331 332 /* TODO not implemented! */ 333 return (0); 334 } 335 336 int 337 tsec_resume(device_t dev) 338 { 339 340 /* TODO not implemented! */ 341 return (0); 342 } 343 344 static void 345 tsec_init(void *xsc) 346 { 347 struct tsec_softc *sc = xsc; 348 349 TSEC_GLOBAL_LOCK(sc); 350 tsec_init_locked(sc); 351 TSEC_GLOBAL_UNLOCK(sc); 352 } 353 354 static void 355 tsec_init_locked(struct tsec_softc *sc) 356 { 357 struct tsec_desc *tx_desc = sc->tsec_tx_vaddr; 358 struct tsec_desc *rx_desc = sc->tsec_rx_vaddr; 359 struct ifnet *ifp = sc->tsec_ifp; 360 uint32_t timeout, val, i; 361 362 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 363 return; 364 365 TSEC_GLOBAL_LOCK_ASSERT(sc); 366 tsec_stop(sc); 367 368 /* 369 * These steps are according to the MPC8555E PowerQUICCIII RM: 370 * 14.7 Initialization/Application Information 371 */ 372 373 /* Step 1: soft reset MAC */ 374 tsec_reset_mac(sc); 375 376 /* Step 2: Initialize MACCFG2 */ 377 TSEC_WRITE(sc, TSEC_REG_MACCFG2, 378 TSEC_MACCFG2_FULLDUPLEX | /* Full Duplex = 1 */ 379 TSEC_MACCFG2_PADCRC | /* PAD/CRC append */ 380 TSEC_MACCFG2_GMII | /* I/F Mode bit */ 381 TSEC_MACCFG2_PRECNT /* Preamble count = 7 */ 382 ); 383 384 /* Step 3: Initialize ECNTRL 385 * While the documentation states that R100M is ignored if RPM is 386 * not set, it does seem to be needed to get the orange boxes to 387 * work (which have a Marvell 88E1111 PHY). Go figure. 388 */ 389 390 /* 391 * XXX kludge - use circumstancial evidence to program ECNTRL 392 * correctly. Ideally we need some board information to guide 393 * us here. 394 */ 395 i = TSEC_READ(sc, TSEC_REG_ID2); 396 val = (i & 0xffff) 397 ? (TSEC_ECNTRL_TBIM | TSEC_ECNTRL_SGMIIM) /* Sumatra */ 398 : TSEC_ECNTRL_R100M; /* Orange + CDS */ 399 TSEC_WRITE(sc, TSEC_REG_ECNTRL, TSEC_ECNTRL_STEN | val); 400 401 /* Step 4: Initialize MAC station address */ 402 tsec_set_mac_address(sc); 403 404 /* 405 * Step 5: Assign a Physical address to the TBI so as to not conflict 406 * with the external PHY physical address 407 */ 408 TSEC_WRITE(sc, TSEC_REG_TBIPA, 5); 409 410 /* Step 6: Reset the management interface */ 411 TSEC_WRITE(sc->phy_sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_RESETMGMT); 412 413 /* Step 7: Setup the MII Mgmt clock speed */ 414 TSEC_WRITE(sc->phy_sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_CLKDIV28); 415 416 /* Step 8: Read MII Mgmt indicator register and check for Busy = 0 */ 417 timeout = TSEC_READ_RETRY; 418 while (--timeout && (TSEC_READ(sc->phy_sc, TSEC_REG_MIIMIND) & 419 TSEC_MIIMIND_BUSY)) 420 DELAY(TSEC_READ_DELAY); 421 if (timeout == 0) { 422 if_printf(ifp, "tsec_init_locked(): Mgmt busy timeout\n"); 423 return; 424 } 425 426 /* Step 9: Setup the MII Mgmt */ 427 mii_mediachg(sc->tsec_mii); 428 429 /* Step 10: Clear IEVENT register */ 430 TSEC_WRITE(sc, TSEC_REG_IEVENT, 0xffffffff); 431 432 /* Step 11: Enable interrupts */ 433 #ifdef DEVICE_POLLING 434 /* 435 * ...only if polling is not turned on. Disable interrupts explicitly 436 * if polling is enabled. 437 */ 438 if (ifp->if_capenable & IFCAP_POLLING ) 439 tsec_intrs_ctl(sc, 0); 440 else 441 #endif /* DEVICE_POLLING */ 442 tsec_intrs_ctl(sc, 1); 443 444 /* Step 12: Initialize IADDRn */ 445 TSEC_WRITE(sc, TSEC_REG_IADDR0, 0); 446 TSEC_WRITE(sc, TSEC_REG_IADDR1, 0); 447 TSEC_WRITE(sc, TSEC_REG_IADDR2, 0); 448 TSEC_WRITE(sc, TSEC_REG_IADDR3, 0); 449 TSEC_WRITE(sc, TSEC_REG_IADDR4, 0); 450 TSEC_WRITE(sc, TSEC_REG_IADDR5, 0); 451 TSEC_WRITE(sc, TSEC_REG_IADDR6, 0); 452 TSEC_WRITE(sc, TSEC_REG_IADDR7, 0); 453 454 /* Step 13: Initialize GADDRn */ 455 TSEC_WRITE(sc, TSEC_REG_GADDR0, 0); 456 TSEC_WRITE(sc, TSEC_REG_GADDR1, 0); 457 TSEC_WRITE(sc, TSEC_REG_GADDR2, 0); 458 TSEC_WRITE(sc, TSEC_REG_GADDR3, 0); 459 TSEC_WRITE(sc, TSEC_REG_GADDR4, 0); 460 TSEC_WRITE(sc, TSEC_REG_GADDR5, 0); 461 TSEC_WRITE(sc, TSEC_REG_GADDR6, 0); 462 TSEC_WRITE(sc, TSEC_REG_GADDR7, 0); 463 464 /* Step 14: Initialize RCTRL */ 465 TSEC_WRITE(sc, TSEC_REG_RCTRL, 0); 466 467 /* Step 15: Initialize DMACTRL */ 468 tsec_dma_ctl(sc, 1); 469 470 /* Step 16: Initialize FIFO_PAUSE_CTRL */ 471 TSEC_WRITE(sc, TSEC_REG_FIFO_PAUSE_CTRL, TSEC_FIFO_PAUSE_CTRL_EN); 472 473 /* 474 * Step 17: Initialize transmit/receive descriptor rings. 475 * Initialize TBASE and RBASE. 476 */ 477 TSEC_WRITE(sc, TSEC_REG_TBASE, sc->tsec_tx_raddr); 478 TSEC_WRITE(sc, TSEC_REG_RBASE, sc->tsec_rx_raddr); 479 480 for (i = 0; i < TSEC_TX_NUM_DESC; i++) { 481 tx_desc[i].bufptr = 0; 482 tx_desc[i].length = 0; 483 tx_desc[i].flags = ((i == TSEC_TX_NUM_DESC - 1) ? 484 TSEC_TXBD_W : 0); 485 } 486 bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap, 487 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 488 489 for (i = 0; i < TSEC_RX_NUM_DESC; i++) { 490 rx_desc[i].bufptr = sc->rx_data[i].paddr; 491 rx_desc[i].length = 0; 492 rx_desc[i].flags = TSEC_RXBD_E | TSEC_RXBD_I | 493 ((i == TSEC_RX_NUM_DESC - 1) ? TSEC_RXBD_W : 0); 494 } 495 bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap, 496 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 497 498 /* Step 18: Initialize the maximum receive buffer length */ 499 TSEC_WRITE(sc, TSEC_REG_MRBLR, MCLBYTES); 500 501 /* Step 19: Configure ethernet frame sizes */ 502 TSEC_WRITE(sc, TSEC_REG_MINFLR, TSEC_MIN_FRAME_SIZE); 503 tsec_set_mtu(sc, ifp->if_mtu); 504 505 /* Step 20: Enable Rx and RxBD sdata snooping */ 506 TSEC_WRITE(sc, TSEC_REG_ATTR, TSEC_ATTR_RDSEN | TSEC_ATTR_RBDSEN); 507 TSEC_WRITE(sc, TSEC_REG_ATTRELI, 0); 508 509 /* Step 21: Reset collision counters in hardware */ 510 TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0); 511 TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0); 512 TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0); 513 TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0); 514 TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0); 515 516 /* Step 22: Mask all CAM interrupts */ 517 TSEC_WRITE(sc, TSEC_REG_MON_CAM1, 0xffffffff); 518 TSEC_WRITE(sc, TSEC_REG_MON_CAM2, 0xffffffff); 519 520 /* Step 23: Enable Rx and Tx */ 521 val = TSEC_READ(sc, TSEC_REG_MACCFG1); 522 val |= (TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN); 523 TSEC_WRITE(sc, TSEC_REG_MACCFG1, val); 524 525 /* Step 24: Reset TSEC counters for Tx and Rx rings */ 526 TSEC_TX_RX_COUNTERS_INIT(sc); 527 528 /* Step 25: Setup TCP/IP Off-Load engine */ 529 if (sc->is_etsec) 530 tsec_offload_setup(sc); 531 532 /* Step 26: Setup multicast filters */ 533 tsec_setup_multicast(sc); 534 535 /* Step 27: Activate network interface */ 536 ifp->if_drv_flags |= IFF_DRV_RUNNING; 537 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 538 sc->tsec_if_flags = ifp->if_flags; 539 sc->tsec_watchdog = 0; 540 541 /* Schedule watchdog timeout */ 542 callout_reset(&sc->tsec_callout, hz, tsec_tick, sc); 543 } 544 545 static void 546 tsec_set_mac_address(struct tsec_softc *sc) 547 { 548 uint32_t macbuf[2] = { 0, 0 }; 549 char *macbufp, *curmac; 550 int i; 551 552 TSEC_GLOBAL_LOCK_ASSERT(sc); 553 554 KASSERT((ETHER_ADDR_LEN <= sizeof(macbuf)), 555 ("tsec_set_mac_address: (%d <= %d", ETHER_ADDR_LEN, 556 sizeof(macbuf))); 557 558 macbufp = (char *)macbuf; 559 curmac = (char *)IF_LLADDR(sc->tsec_ifp); 560 561 /* Correct order of MAC address bytes */ 562 for (i = 1; i <= ETHER_ADDR_LEN; i++) 563 macbufp[ETHER_ADDR_LEN-i] = curmac[i-1]; 564 565 /* Initialize MAC station address MACSTNADDR2 and MACSTNADDR1 */ 566 TSEC_WRITE(sc, TSEC_REG_MACSTNADDR2, macbuf[1]); 567 TSEC_WRITE(sc, TSEC_REG_MACSTNADDR1, macbuf[0]); 568 } 569 570 /* 571 * DMA control function, if argument state is: 572 * 0 - DMA engine will be disabled 573 * 1 - DMA engine will be enabled 574 */ 575 static void 576 tsec_dma_ctl(struct tsec_softc *sc, int state) 577 { 578 device_t dev; 579 uint32_t dma_flags, timeout; 580 581 dev = sc->dev; 582 583 dma_flags = TSEC_READ(sc, TSEC_REG_DMACTRL); 584 585 switch (state) { 586 case 0: 587 /* Temporarily clear stop graceful stop bits. */ 588 tsec_dma_ctl(sc, 1000); 589 590 /* Set it again */ 591 dma_flags |= (TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS); 592 break; 593 case 1000: 594 case 1: 595 /* Set write with response (WWR), wait (WOP) and snoop bits */ 596 dma_flags |= (TSEC_DMACTRL_TDSEN | TSEC_DMACTRL_TBDSEN | 597 DMACTRL_WWR | DMACTRL_WOP); 598 599 /* Clear graceful stop bits */ 600 dma_flags &= ~(TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS); 601 break; 602 default: 603 device_printf(dev, "tsec_dma_ctl(): unknown state value: %d\n", 604 state); 605 } 606 607 TSEC_WRITE(sc, TSEC_REG_DMACTRL, dma_flags); 608 609 switch (state) { 610 case 0: 611 /* Wait for DMA stop */ 612 timeout = TSEC_READ_RETRY; 613 while (--timeout && (!(TSEC_READ(sc, TSEC_REG_IEVENT) & 614 (TSEC_IEVENT_GRSC | TSEC_IEVENT_GTSC)))) 615 DELAY(TSEC_READ_DELAY); 616 617 if (timeout == 0) 618 device_printf(dev, "tsec_dma_ctl(): timeout!\n"); 619 break; 620 case 1: 621 /* Restart transmission function */ 622 TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT); 623 } 624 } 625 626 /* 627 * Interrupts control function, if argument state is: 628 * 0 - all TSEC interrupts will be masked 629 * 1 - all TSEC interrupts will be unmasked 630 */ 631 static void 632 tsec_intrs_ctl(struct tsec_softc *sc, int state) 633 { 634 device_t dev; 635 636 dev = sc->dev; 637 638 switch (state) { 639 case 0: 640 TSEC_WRITE(sc, TSEC_REG_IMASK, 0); 641 break; 642 case 1: 643 TSEC_WRITE(sc, TSEC_REG_IMASK, TSEC_IMASK_BREN | 644 TSEC_IMASK_RXCEN | TSEC_IMASK_BSYEN | TSEC_IMASK_EBERREN | 645 TSEC_IMASK_BTEN | TSEC_IMASK_TXEEN | TSEC_IMASK_TXBEN | 646 TSEC_IMASK_TXFEN | TSEC_IMASK_XFUNEN | TSEC_IMASK_RXFEN); 647 break; 648 default: 649 device_printf(dev, "tsec_intrs_ctl(): unknown state value: %d\n", 650 state); 651 } 652 } 653 654 static void 655 tsec_reset_mac(struct tsec_softc *sc) 656 { 657 uint32_t maccfg1_flags; 658 659 /* Set soft reset bit */ 660 maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1); 661 maccfg1_flags |= TSEC_MACCFG1_SOFT_RESET; 662 TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags); 663 664 /* Clear soft reset bit */ 665 maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1); 666 maccfg1_flags &= ~TSEC_MACCFG1_SOFT_RESET; 667 TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags); 668 } 669 670 static void 671 tsec_watchdog(struct tsec_softc *sc) 672 { 673 struct ifnet *ifp; 674 675 TSEC_GLOBAL_LOCK_ASSERT(sc); 676 677 if (sc->tsec_watchdog == 0 || --sc->tsec_watchdog > 0) 678 return; 679 680 ifp = sc->tsec_ifp; 681 ifp->if_oerrors++; 682 if_printf(ifp, "watchdog timeout\n"); 683 684 tsec_stop(sc); 685 tsec_init_locked(sc); 686 } 687 688 static void 689 tsec_start(struct ifnet *ifp) 690 { 691 struct tsec_softc *sc = ifp->if_softc; 692 693 TSEC_TRANSMIT_LOCK(sc); 694 tsec_start_locked(ifp); 695 TSEC_TRANSMIT_UNLOCK(sc); 696 } 697 698 static void 699 tsec_start_locked(struct ifnet *ifp) 700 { 701 struct tsec_softc *sc; 702 struct mbuf *m0, *mtmp; 703 struct tsec_tx_fcb *tx_fcb; 704 unsigned int queued = 0; 705 int csum_flags, fcb_inserted = 0; 706 707 sc = ifp->if_softc; 708 709 TSEC_TRANSMIT_LOCK_ASSERT(sc); 710 711 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 712 IFF_DRV_RUNNING) 713 return; 714 715 if (sc->tsec_link == 0) 716 return; 717 718 bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap, 719 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 720 721 while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 722 /* Get packet from the queue */ 723 IFQ_DRV_DEQUEUE(&ifp->if_snd, m0); 724 if (m0 == NULL) 725 break; 726 727 /* Insert TCP/IP Off-load frame control block */ 728 csum_flags = m0->m_pkthdr.csum_flags; 729 if (csum_flags) { 730 731 M_PREPEND(m0, sizeof(struct tsec_tx_fcb), M_NOWAIT); 732 if (m0 == NULL) 733 break; 734 735 tx_fcb = mtod(m0, struct tsec_tx_fcb *); 736 tx_fcb->flags = 0; 737 tx_fcb->l3_offset = ETHER_HDR_LEN; 738 tx_fcb->l4_offset = sizeof(struct ip); 739 740 if (csum_flags & CSUM_IP) 741 tx_fcb->flags |= TSEC_TX_FCB_IP4 | 742 TSEC_TX_FCB_CSUM_IP; 743 744 if (csum_flags & CSUM_TCP) 745 tx_fcb->flags |= TSEC_TX_FCB_TCP | 746 TSEC_TX_FCB_CSUM_TCP_UDP; 747 748 if (csum_flags & CSUM_UDP) 749 tx_fcb->flags |= TSEC_TX_FCB_UDP | 750 TSEC_TX_FCB_CSUM_TCP_UDP; 751 752 fcb_inserted = 1; 753 } 754 755 mtmp = m_defrag(m0, M_NOWAIT); 756 if (mtmp) 757 m0 = mtmp; 758 759 if (tsec_encap(sc, m0, fcb_inserted)) { 760 IFQ_DRV_PREPEND(&ifp->if_snd, m0); 761 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 762 break; 763 } 764 queued++; 765 BPF_MTAP(ifp, m0); 766 } 767 bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap, 768 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 769 770 if (queued) { 771 /* Enable transmitter and watchdog timer */ 772 TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT); 773 sc->tsec_watchdog = 5; 774 } 775 } 776 777 static int 778 tsec_encap(struct tsec_softc *sc, struct mbuf *m0, int fcb_inserted) 779 { 780 struct tsec_desc *tx_desc = NULL; 781 struct ifnet *ifp; 782 bus_dma_segment_t segs[TSEC_TX_NUM_DESC]; 783 bus_dmamap_t *mapp; 784 int csum_flag = 0, error, seg, nsegs; 785 786 TSEC_TRANSMIT_LOCK_ASSERT(sc); 787 788 ifp = sc->tsec_ifp; 789 790 if (TSEC_FREE_TX_DESC(sc) == 0) { 791 /* No free descriptors */ 792 return (-1); 793 } 794 795 /* Fetch unused map */ 796 mapp = TSEC_ALLOC_TX_MAP(sc); 797 798 /* Create mapping in DMA memory */ 799 error = bus_dmamap_load_mbuf_sg(sc->tsec_tx_mtag, 800 *mapp, m0, segs, &nsegs, BUS_DMA_NOWAIT); 801 if (error != 0 || nsegs > TSEC_FREE_TX_DESC(sc) || nsegs <= 0) { 802 bus_dmamap_unload(sc->tsec_tx_mtag, *mapp); 803 TSEC_FREE_TX_MAP(sc, mapp); 804 return ((error != 0) ? error : -1); 805 } 806 bus_dmamap_sync(sc->tsec_tx_mtag, *mapp, BUS_DMASYNC_PREWRITE); 807 808 if ((ifp->if_flags & IFF_DEBUG) && (nsegs > 1)) 809 if_printf(ifp, "TX buffer has %d segments\n", nsegs); 810 811 if (fcb_inserted) 812 csum_flag = TSEC_TXBD_TOE; 813 814 /* Everything is ok, now we can send buffers */ 815 for (seg = 0; seg < nsegs; seg++) { 816 tx_desc = TSEC_GET_CUR_TX_DESC(sc); 817 818 tx_desc->length = segs[seg].ds_len; 819 tx_desc->bufptr = segs[seg].ds_addr; 820 821 /* 822 * Set flags: 823 * - wrap 824 * - checksum 825 * - ready to send 826 * - transmit the CRC sequence after the last data byte 827 * - interrupt after the last buffer 828 */ 829 tx_desc->flags = 830 (tx_desc->flags & TSEC_TXBD_W) | 831 ((seg == 0) ? csum_flag : 0) | TSEC_TXBD_R | TSEC_TXBD_TC | 832 ((seg == nsegs - 1) ? TSEC_TXBD_L | TSEC_TXBD_I : 0); 833 } 834 835 /* Save mbuf and DMA mapping for release at later stage */ 836 TSEC_PUT_TX_MBUF(sc, m0); 837 TSEC_PUT_TX_MAP(sc, mapp); 838 839 return (0); 840 } 841 842 static void 843 tsec_setfilter(struct tsec_softc *sc) 844 { 845 struct ifnet *ifp; 846 uint32_t flags; 847 848 ifp = sc->tsec_ifp; 849 flags = TSEC_READ(sc, TSEC_REG_RCTRL); 850 851 /* Promiscuous mode */ 852 if (ifp->if_flags & IFF_PROMISC) 853 flags |= TSEC_RCTRL_PROM; 854 else 855 flags &= ~TSEC_RCTRL_PROM; 856 857 TSEC_WRITE(sc, TSEC_REG_RCTRL, flags); 858 } 859 860 #ifdef DEVICE_POLLING 861 static poll_handler_t tsec_poll; 862 863 static int 864 tsec_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 865 { 866 uint32_t ie; 867 struct tsec_softc *sc = ifp->if_softc; 868 int rx_npkts; 869 870 rx_npkts = 0; 871 872 TSEC_GLOBAL_LOCK(sc); 873 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 874 TSEC_GLOBAL_UNLOCK(sc); 875 return (rx_npkts); 876 } 877 878 if (cmd == POLL_AND_CHECK_STATUS) { 879 tsec_error_intr_locked(sc, count); 880 881 /* Clear all events reported */ 882 ie = TSEC_READ(sc, TSEC_REG_IEVENT); 883 TSEC_WRITE(sc, TSEC_REG_IEVENT, ie); 884 } 885 886 tsec_transmit_intr_locked(sc); 887 888 TSEC_GLOBAL_TO_RECEIVE_LOCK(sc); 889 890 rx_npkts = tsec_receive_intr_locked(sc, count); 891 892 TSEC_RECEIVE_UNLOCK(sc); 893 894 return (rx_npkts); 895 } 896 #endif /* DEVICE_POLLING */ 897 898 static int 899 tsec_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 900 { 901 struct tsec_softc *sc = ifp->if_softc; 902 struct ifreq *ifr = (struct ifreq *)data; 903 device_t dev; 904 int mask, error = 0; 905 906 dev = sc->dev; 907 908 switch (command) { 909 case SIOCSIFMTU: 910 TSEC_GLOBAL_LOCK(sc); 911 if (tsec_set_mtu(sc, ifr->ifr_mtu)) 912 ifp->if_mtu = ifr->ifr_mtu; 913 else 914 error = EINVAL; 915 TSEC_GLOBAL_UNLOCK(sc); 916 break; 917 case SIOCSIFFLAGS: 918 TSEC_GLOBAL_LOCK(sc); 919 if (ifp->if_flags & IFF_UP) { 920 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 921 if ((sc->tsec_if_flags ^ ifp->if_flags) & 922 IFF_PROMISC) 923 tsec_setfilter(sc); 924 925 if ((sc->tsec_if_flags ^ ifp->if_flags) & 926 IFF_ALLMULTI) 927 tsec_setup_multicast(sc); 928 } else 929 tsec_init_locked(sc); 930 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) 931 tsec_stop(sc); 932 933 sc->tsec_if_flags = ifp->if_flags; 934 TSEC_GLOBAL_UNLOCK(sc); 935 break; 936 case SIOCADDMULTI: 937 case SIOCDELMULTI: 938 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 939 TSEC_GLOBAL_LOCK(sc); 940 tsec_setup_multicast(sc); 941 TSEC_GLOBAL_UNLOCK(sc); 942 } 943 case SIOCGIFMEDIA: 944 case SIOCSIFMEDIA: 945 error = ifmedia_ioctl(ifp, ifr, &sc->tsec_mii->mii_media, 946 command); 947 break; 948 case SIOCSIFCAP: 949 mask = ifp->if_capenable ^ ifr->ifr_reqcap; 950 if ((mask & IFCAP_HWCSUM) && sc->is_etsec) { 951 TSEC_GLOBAL_LOCK(sc); 952 ifp->if_capenable &= ~IFCAP_HWCSUM; 953 ifp->if_capenable |= IFCAP_HWCSUM & ifr->ifr_reqcap; 954 tsec_offload_setup(sc); 955 TSEC_GLOBAL_UNLOCK(sc); 956 } 957 #ifdef DEVICE_POLLING 958 if (mask & IFCAP_POLLING) { 959 if (ifr->ifr_reqcap & IFCAP_POLLING) { 960 error = ether_poll_register(tsec_poll, ifp); 961 if (error) 962 return (error); 963 964 TSEC_GLOBAL_LOCK(sc); 965 /* Disable interrupts */ 966 tsec_intrs_ctl(sc, 0); 967 ifp->if_capenable |= IFCAP_POLLING; 968 TSEC_GLOBAL_UNLOCK(sc); 969 } else { 970 error = ether_poll_deregister(ifp); 971 TSEC_GLOBAL_LOCK(sc); 972 /* Enable interrupts */ 973 tsec_intrs_ctl(sc, 1); 974 ifp->if_capenable &= ~IFCAP_POLLING; 975 TSEC_GLOBAL_UNLOCK(sc); 976 } 977 } 978 #endif 979 break; 980 981 default: 982 error = ether_ioctl(ifp, command, data); 983 } 984 985 /* Flush buffers if not empty */ 986 if (ifp->if_flags & IFF_UP) 987 tsec_start(ifp); 988 return (error); 989 } 990 991 static int 992 tsec_ifmedia_upd(struct ifnet *ifp) 993 { 994 struct tsec_softc *sc = ifp->if_softc; 995 struct mii_data *mii; 996 997 TSEC_TRANSMIT_LOCK(sc); 998 999 mii = sc->tsec_mii; 1000 mii_mediachg(mii); 1001 1002 TSEC_TRANSMIT_UNLOCK(sc); 1003 return (0); 1004 } 1005 1006 static void 1007 tsec_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 1008 { 1009 struct tsec_softc *sc = ifp->if_softc; 1010 struct mii_data *mii; 1011 1012 TSEC_TRANSMIT_LOCK(sc); 1013 1014 mii = sc->tsec_mii; 1015 mii_pollstat(mii); 1016 1017 ifmr->ifm_active = mii->mii_media_active; 1018 ifmr->ifm_status = mii->mii_media_status; 1019 1020 TSEC_TRANSMIT_UNLOCK(sc); 1021 } 1022 1023 static int 1024 tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map, struct mbuf **mbufp, 1025 uint32_t *paddr) 1026 { 1027 struct mbuf *new_mbuf; 1028 bus_dma_segment_t seg[1]; 1029 int error, nsegs; 1030 1031 KASSERT(mbufp != NULL, ("NULL mbuf pointer!")); 1032 1033 new_mbuf = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MCLBYTES); 1034 if (new_mbuf == NULL) 1035 return (ENOBUFS); 1036 new_mbuf->m_len = new_mbuf->m_pkthdr.len = new_mbuf->m_ext.ext_size; 1037 1038 if (*mbufp) { 1039 bus_dmamap_sync(tag, map, BUS_DMASYNC_POSTREAD); 1040 bus_dmamap_unload(tag, map); 1041 } 1042 1043 error = bus_dmamap_load_mbuf_sg(tag, map, new_mbuf, seg, &nsegs, 1044 BUS_DMA_NOWAIT); 1045 KASSERT(nsegs == 1, ("Too many segments returned!")); 1046 if (nsegs != 1 || error) 1047 panic("tsec_new_rxbuf(): nsegs(%d), error(%d)", nsegs, error); 1048 1049 #if 0 1050 if (error) { 1051 printf("tsec: bus_dmamap_load_mbuf_sg() returned: %d!\n", 1052 error); 1053 m_freem(new_mbuf); 1054 return (ENOBUFS); 1055 } 1056 #endif 1057 1058 #if 0 1059 KASSERT(((seg->ds_addr) & (TSEC_RXBUFFER_ALIGNMENT-1)) == 0, 1060 ("Wrong alignment of RX buffer!")); 1061 #endif 1062 bus_dmamap_sync(tag, map, BUS_DMASYNC_PREREAD); 1063 1064 (*mbufp) = new_mbuf; 1065 (*paddr) = seg->ds_addr; 1066 return (0); 1067 } 1068 1069 static void 1070 tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1071 { 1072 u_int32_t *paddr; 1073 1074 KASSERT(nseg == 1, ("wrong number of segments, should be 1")); 1075 paddr = arg; 1076 *paddr = segs->ds_addr; 1077 } 1078 1079 static int 1080 tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag, bus_dmamap_t *dmap, 1081 bus_size_t dsize, void **vaddr, void *raddr, const char *dname) 1082 { 1083 int error; 1084 1085 /* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */ 1086 error = bus_dma_tag_create(NULL, /* parent */ 1087 PAGE_SIZE, 0, /* alignment, boundary */ 1088 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1089 BUS_SPACE_MAXADDR, /* highaddr */ 1090 NULL, NULL, /* filtfunc, filtfuncarg */ 1091 dsize, 1, /* maxsize, nsegments */ 1092 dsize, 0, /* maxsegsz, flags */ 1093 NULL, NULL, /* lockfunc, lockfuncarg */ 1094 dtag); /* dmat */ 1095 1096 if (error) { 1097 device_printf(dev, "failed to allocate busdma %s tag\n", 1098 dname); 1099 (*vaddr) = NULL; 1100 return (ENXIO); 1101 } 1102 1103 error = bus_dmamem_alloc(*dtag, vaddr, BUS_DMA_NOWAIT | BUS_DMA_ZERO, 1104 dmap); 1105 if (error) { 1106 device_printf(dev, "failed to allocate %s DMA safe memory\n", 1107 dname); 1108 bus_dma_tag_destroy(*dtag); 1109 (*vaddr) = NULL; 1110 return (ENXIO); 1111 } 1112 1113 error = bus_dmamap_load(*dtag, *dmap, *vaddr, dsize, 1114 tsec_map_dma_addr, raddr, BUS_DMA_NOWAIT); 1115 if (error) { 1116 device_printf(dev, "cannot get address of the %s " 1117 "descriptors\n", dname); 1118 bus_dmamem_free(*dtag, *vaddr, *dmap); 1119 bus_dma_tag_destroy(*dtag); 1120 (*vaddr) = NULL; 1121 return (ENXIO); 1122 } 1123 1124 return (0); 1125 } 1126 1127 static void 1128 tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr) 1129 { 1130 1131 if (vaddr == NULL) 1132 return; 1133 1134 /* Unmap descriptors from DMA memory */ 1135 bus_dmamap_sync(dtag, dmap, BUS_DMASYNC_POSTREAD | 1136 BUS_DMASYNC_POSTWRITE); 1137 bus_dmamap_unload(dtag, dmap); 1138 1139 /* Free descriptors memory */ 1140 bus_dmamem_free(dtag, vaddr, dmap); 1141 1142 /* Destroy descriptors tag */ 1143 bus_dma_tag_destroy(dtag); 1144 } 1145 1146 static void 1147 tsec_free_dma(struct tsec_softc *sc) 1148 { 1149 int i; 1150 1151 /* Free TX maps */ 1152 for (i = 0; i < TSEC_TX_NUM_DESC; i++) 1153 if (sc->tx_map_data[i] != NULL) 1154 bus_dmamap_destroy(sc->tsec_tx_mtag, 1155 sc->tx_map_data[i]); 1156 /* Destroy tag for TX mbufs */ 1157 bus_dma_tag_destroy(sc->tsec_tx_mtag); 1158 1159 /* Free RX mbufs and maps */ 1160 for (i = 0; i < TSEC_RX_NUM_DESC; i++) { 1161 if (sc->rx_data[i].mbuf) { 1162 /* Unload buffer from DMA */ 1163 bus_dmamap_sync(sc->tsec_rx_mtag, sc->rx_data[i].map, 1164 BUS_DMASYNC_POSTREAD); 1165 bus_dmamap_unload(sc->tsec_rx_mtag, 1166 sc->rx_data[i].map); 1167 1168 /* Free buffer */ 1169 m_freem(sc->rx_data[i].mbuf); 1170 } 1171 /* Destroy map for this buffer */ 1172 if (sc->rx_data[i].map != NULL) 1173 bus_dmamap_destroy(sc->tsec_rx_mtag, 1174 sc->rx_data[i].map); 1175 } 1176 /* Destroy tag for RX mbufs */ 1177 bus_dma_tag_destroy(sc->tsec_rx_mtag); 1178 1179 /* Unload TX/RX descriptors */ 1180 tsec_free_dma_desc(sc->tsec_tx_dtag, sc->tsec_tx_dmap, 1181 sc->tsec_tx_vaddr); 1182 tsec_free_dma_desc(sc->tsec_rx_dtag, sc->tsec_rx_dmap, 1183 sc->tsec_rx_vaddr); 1184 } 1185 1186 static void 1187 tsec_stop(struct tsec_softc *sc) 1188 { 1189 struct ifnet *ifp; 1190 struct mbuf *m0; 1191 bus_dmamap_t *mapp; 1192 uint32_t tmpval; 1193 1194 TSEC_GLOBAL_LOCK_ASSERT(sc); 1195 1196 ifp = sc->tsec_ifp; 1197 1198 /* Disable interface and watchdog timer */ 1199 callout_stop(&sc->tsec_callout); 1200 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 1201 sc->tsec_watchdog = 0; 1202 1203 /* Disable all interrupts and stop DMA */ 1204 tsec_intrs_ctl(sc, 0); 1205 tsec_dma_ctl(sc, 0); 1206 1207 /* Remove pending data from TX queue */ 1208 while (!TSEC_EMPTYQ_TX_MBUF(sc)) { 1209 m0 = TSEC_GET_TX_MBUF(sc); 1210 mapp = TSEC_GET_TX_MAP(sc); 1211 1212 bus_dmamap_sync(sc->tsec_tx_mtag, *mapp, 1213 BUS_DMASYNC_POSTWRITE); 1214 bus_dmamap_unload(sc->tsec_tx_mtag, *mapp); 1215 1216 TSEC_FREE_TX_MAP(sc, mapp); 1217 m_freem(m0); 1218 } 1219 1220 /* Disable RX and TX */ 1221 tmpval = TSEC_READ(sc, TSEC_REG_MACCFG1); 1222 tmpval &= ~(TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN); 1223 TSEC_WRITE(sc, TSEC_REG_MACCFG1, tmpval); 1224 DELAY(10); 1225 } 1226 1227 static void 1228 tsec_tick(void *arg) 1229 { 1230 struct tsec_softc *sc = arg; 1231 struct ifnet *ifp; 1232 int link; 1233 1234 TSEC_GLOBAL_LOCK(sc); 1235 1236 tsec_watchdog(sc); 1237 1238 ifp = sc->tsec_ifp; 1239 link = sc->tsec_link; 1240 1241 mii_tick(sc->tsec_mii); 1242 1243 if (link == 0 && sc->tsec_link == 1 && 1244 (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))) 1245 tsec_start_locked(ifp); 1246 1247 /* Schedule another timeout one second from now. */ 1248 callout_reset(&sc->tsec_callout, hz, tsec_tick, sc); 1249 1250 TSEC_GLOBAL_UNLOCK(sc); 1251 } 1252 1253 /* 1254 * This is the core RX routine. It replenishes mbufs in the descriptor and 1255 * sends data which have been dma'ed into host memory to upper layer. 1256 * 1257 * Loops at most count times if count is > 0, or until done if count < 0. 1258 */ 1259 static int 1260 tsec_receive_intr_locked(struct tsec_softc *sc, int count) 1261 { 1262 struct tsec_desc *rx_desc; 1263 struct ifnet *ifp; 1264 struct rx_data_type *rx_data; 1265 struct mbuf *m; 1266 device_t dev; 1267 uint32_t i; 1268 int c, rx_npkts; 1269 uint16_t flags; 1270 1271 TSEC_RECEIVE_LOCK_ASSERT(sc); 1272 1273 ifp = sc->tsec_ifp; 1274 rx_data = sc->rx_data; 1275 dev = sc->dev; 1276 rx_npkts = 0; 1277 1278 bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap, 1279 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1280 1281 for (c = 0; ; c++) { 1282 if (count >= 0 && count-- == 0) 1283 break; 1284 1285 rx_desc = TSEC_GET_CUR_RX_DESC(sc); 1286 flags = rx_desc->flags; 1287 1288 /* Check if there is anything to receive */ 1289 if ((flags & TSEC_RXBD_E) || (c >= TSEC_RX_NUM_DESC)) { 1290 /* 1291 * Avoid generating another interrupt 1292 */ 1293 if (flags & TSEC_RXBD_E) 1294 TSEC_WRITE(sc, TSEC_REG_IEVENT, 1295 TSEC_IEVENT_RXB | TSEC_IEVENT_RXF); 1296 /* 1297 * We didn't consume current descriptor and have to 1298 * return it to the queue 1299 */ 1300 TSEC_BACK_CUR_RX_DESC(sc); 1301 break; 1302 } 1303 1304 if (flags & (TSEC_RXBD_LG | TSEC_RXBD_SH | TSEC_RXBD_NO | 1305 TSEC_RXBD_CR | TSEC_RXBD_OV | TSEC_RXBD_TR)) { 1306 1307 rx_desc->length = 0; 1308 rx_desc->flags = (rx_desc->flags & 1309 ~TSEC_RXBD_ZEROONINIT) | TSEC_RXBD_E | TSEC_RXBD_I; 1310 1311 if (sc->frame != NULL) { 1312 m_free(sc->frame); 1313 sc->frame = NULL; 1314 } 1315 1316 continue; 1317 } 1318 1319 /* Ok... process frame */ 1320 i = TSEC_GET_CUR_RX_DESC_CNT(sc); 1321 m = rx_data[i].mbuf; 1322 m->m_len = rx_desc->length; 1323 1324 if (sc->frame != NULL) { 1325 if ((flags & TSEC_RXBD_L) != 0) 1326 m->m_len -= m_length(sc->frame, NULL); 1327 1328 m->m_flags &= ~M_PKTHDR; 1329 m_cat(sc->frame, m); 1330 } else { 1331 sc->frame = m; 1332 } 1333 1334 m = NULL; 1335 1336 if ((flags & TSEC_RXBD_L) != 0) { 1337 m = sc->frame; 1338 sc->frame = NULL; 1339 } 1340 1341 if (tsec_new_rxbuf(sc->tsec_rx_mtag, rx_data[i].map, 1342 &rx_data[i].mbuf, &rx_data[i].paddr)) { 1343 ifp->if_ierrors++; 1344 /* 1345 * We ran out of mbufs; didn't consume current 1346 * descriptor and have to return it to the queue. 1347 */ 1348 TSEC_BACK_CUR_RX_DESC(sc); 1349 break; 1350 } 1351 1352 /* Attach new buffer to descriptor and clear flags */ 1353 rx_desc->bufptr = rx_data[i].paddr; 1354 rx_desc->length = 0; 1355 rx_desc->flags = (rx_desc->flags & ~TSEC_RXBD_ZEROONINIT) | 1356 TSEC_RXBD_E | TSEC_RXBD_I; 1357 1358 if (m != NULL) { 1359 m->m_pkthdr.rcvif = ifp; 1360 1361 m_fixhdr(m); 1362 m_adj(m, -ETHER_CRC_LEN); 1363 1364 if (sc->is_etsec) 1365 tsec_offload_process_frame(sc, m); 1366 1367 TSEC_RECEIVE_UNLOCK(sc); 1368 (*ifp->if_input)(ifp, m); 1369 TSEC_RECEIVE_LOCK(sc); 1370 rx_npkts++; 1371 } 1372 } 1373 1374 bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap, 1375 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1376 1377 /* 1378 * Make sure TSEC receiver is not halted. 1379 * 1380 * Various conditions can stop the TSEC receiver, but not all are 1381 * signaled and handled by error interrupt, so make sure the receiver 1382 * is running. Writing to TSEC_REG_RSTAT restarts the receiver when 1383 * halted, and is harmless if already running. 1384 */ 1385 TSEC_WRITE(sc, TSEC_REG_RSTAT, TSEC_RSTAT_QHLT); 1386 return (rx_npkts); 1387 } 1388 1389 void 1390 tsec_receive_intr(void *arg) 1391 { 1392 struct tsec_softc *sc = arg; 1393 1394 TSEC_RECEIVE_LOCK(sc); 1395 1396 #ifdef DEVICE_POLLING 1397 if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) { 1398 TSEC_RECEIVE_UNLOCK(sc); 1399 return; 1400 } 1401 #endif 1402 1403 /* Confirm the interrupt was received by driver */ 1404 TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXB | TSEC_IEVENT_RXF); 1405 tsec_receive_intr_locked(sc, -1); 1406 1407 TSEC_RECEIVE_UNLOCK(sc); 1408 } 1409 1410 static void 1411 tsec_transmit_intr_locked(struct tsec_softc *sc) 1412 { 1413 struct tsec_desc *tx_desc; 1414 struct ifnet *ifp; 1415 struct mbuf *m0; 1416 bus_dmamap_t *mapp; 1417 int send = 0; 1418 1419 TSEC_TRANSMIT_LOCK_ASSERT(sc); 1420 1421 ifp = sc->tsec_ifp; 1422 1423 /* Update collision statistics */ 1424 ifp->if_collisions += TSEC_READ(sc, TSEC_REG_MON_TNCL); 1425 1426 /* Reset collision counters in hardware */ 1427 TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0); 1428 TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0); 1429 TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0); 1430 TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0); 1431 TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0); 1432 1433 bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap, 1434 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1435 1436 while (TSEC_CUR_DIFF_DIRTY_TX_DESC(sc)) { 1437 tx_desc = TSEC_GET_DIRTY_TX_DESC(sc); 1438 if (tx_desc->flags & TSEC_TXBD_R) { 1439 TSEC_BACK_DIRTY_TX_DESC(sc); 1440 break; 1441 } 1442 1443 if ((tx_desc->flags & TSEC_TXBD_L) == 0) 1444 continue; 1445 1446 /* 1447 * This is the last buf in this packet, so unmap and free it. 1448 */ 1449 m0 = TSEC_GET_TX_MBUF(sc); 1450 mapp = TSEC_GET_TX_MAP(sc); 1451 1452 bus_dmamap_sync(sc->tsec_tx_mtag, *mapp, 1453 BUS_DMASYNC_POSTWRITE); 1454 bus_dmamap_unload(sc->tsec_tx_mtag, *mapp); 1455 1456 TSEC_FREE_TX_MAP(sc, mapp); 1457 m_freem(m0); 1458 1459 ifp->if_opackets++; 1460 send = 1; 1461 } 1462 bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap, 1463 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1464 1465 if (send) { 1466 /* Now send anything that was pending */ 1467 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1468 tsec_start_locked(ifp); 1469 1470 /* Stop wathdog if all sent */ 1471 if (TSEC_EMPTYQ_TX_MBUF(sc)) 1472 sc->tsec_watchdog = 0; 1473 } 1474 } 1475 1476 void 1477 tsec_transmit_intr(void *arg) 1478 { 1479 struct tsec_softc *sc = arg; 1480 1481 TSEC_TRANSMIT_LOCK(sc); 1482 1483 #ifdef DEVICE_POLLING 1484 if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) { 1485 TSEC_TRANSMIT_UNLOCK(sc); 1486 return; 1487 } 1488 #endif 1489 /* Confirm the interrupt was received by driver */ 1490 TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_TXB | TSEC_IEVENT_TXF); 1491 tsec_transmit_intr_locked(sc); 1492 1493 TSEC_TRANSMIT_UNLOCK(sc); 1494 } 1495 1496 static void 1497 tsec_error_intr_locked(struct tsec_softc *sc, int count) 1498 { 1499 struct ifnet *ifp; 1500 uint32_t eflags; 1501 1502 TSEC_GLOBAL_LOCK_ASSERT(sc); 1503 1504 ifp = sc->tsec_ifp; 1505 1506 eflags = TSEC_READ(sc, TSEC_REG_IEVENT); 1507 1508 /* Clear events bits in hardware */ 1509 TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXC | TSEC_IEVENT_BSY | 1510 TSEC_IEVENT_EBERR | TSEC_IEVENT_MSRO | TSEC_IEVENT_BABT | 1511 TSEC_IEVENT_TXC | TSEC_IEVENT_TXE | TSEC_IEVENT_LC | 1512 TSEC_IEVENT_CRL | TSEC_IEVENT_XFUN); 1513 1514 /* Check transmitter errors */ 1515 if (eflags & TSEC_IEVENT_TXE) { 1516 ifp->if_oerrors++; 1517 1518 if (eflags & TSEC_IEVENT_LC) 1519 ifp->if_collisions++; 1520 1521 TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT); 1522 } 1523 1524 /* Check receiver errors */ 1525 if (eflags & TSEC_IEVENT_BSY) { 1526 ifp->if_ierrors++; 1527 ifp->if_iqdrops++; 1528 1529 /* Get data from RX buffers */ 1530 tsec_receive_intr_locked(sc, count); 1531 } 1532 1533 if (ifp->if_flags & IFF_DEBUG) 1534 if_printf(ifp, "tsec_error_intr(): event flags: 0x%x\n", 1535 eflags); 1536 1537 if (eflags & TSEC_IEVENT_EBERR) { 1538 if_printf(ifp, "System bus error occurred during" 1539 "DMA transaction (flags: 0x%x)\n", eflags); 1540 tsec_init_locked(sc); 1541 } 1542 1543 if (eflags & TSEC_IEVENT_BABT) 1544 ifp->if_oerrors++; 1545 1546 if (eflags & TSEC_IEVENT_BABR) 1547 ifp->if_ierrors++; 1548 } 1549 1550 void 1551 tsec_error_intr(void *arg) 1552 { 1553 struct tsec_softc *sc = arg; 1554 1555 TSEC_GLOBAL_LOCK(sc); 1556 tsec_error_intr_locked(sc, -1); 1557 TSEC_GLOBAL_UNLOCK(sc); 1558 } 1559 1560 int 1561 tsec_miibus_readreg(device_t dev, int phy, int reg) 1562 { 1563 struct tsec_softc *sc; 1564 uint32_t timeout; 1565 1566 sc = device_get_softc(dev); 1567 1568 TSEC_WRITE(sc->phy_sc, TSEC_REG_MIIMADD, (phy << 8) | reg); 1569 TSEC_WRITE(sc->phy_sc, TSEC_REG_MIIMCOM, 0); 1570 TSEC_WRITE(sc->phy_sc, TSEC_REG_MIIMCOM, TSEC_MIIMCOM_READCYCLE); 1571 1572 timeout = TSEC_READ_RETRY; 1573 while (--timeout && TSEC_READ(sc->phy_sc, TSEC_REG_MIIMIND) & 1574 (TSEC_MIIMIND_NOTVALID | TSEC_MIIMIND_BUSY)) 1575 DELAY(TSEC_READ_DELAY); 1576 1577 if (timeout == 0) 1578 device_printf(dev, "Timeout while reading from PHY!\n"); 1579 1580 return (TSEC_READ(sc->phy_sc, TSEC_REG_MIIMSTAT)); 1581 } 1582 1583 int 1584 tsec_miibus_writereg(device_t dev, int phy, int reg, int value) 1585 { 1586 struct tsec_softc *sc; 1587 uint32_t timeout; 1588 1589 sc = device_get_softc(dev); 1590 1591 TSEC_WRITE(sc->phy_sc, TSEC_REG_MIIMADD, (phy << 8) | reg); 1592 TSEC_WRITE(sc->phy_sc, TSEC_REG_MIIMCON, value); 1593 1594 timeout = TSEC_READ_RETRY; 1595 while (--timeout && (TSEC_READ(sc->phy_sc, TSEC_REG_MIIMIND) & 1596 TSEC_MIIMIND_BUSY)) 1597 DELAY(TSEC_READ_DELAY); 1598 1599 if (timeout == 0) 1600 device_printf(dev, "Timeout while writing to PHY!\n"); 1601 1602 return (0); 1603 } 1604 1605 void 1606 tsec_miibus_statchg(device_t dev) 1607 { 1608 struct tsec_softc *sc; 1609 struct mii_data *mii; 1610 uint32_t ecntrl, id, tmp; 1611 int link; 1612 1613 sc = device_get_softc(dev); 1614 mii = sc->tsec_mii; 1615 link = ((mii->mii_media_status & IFM_ACTIVE) ? 1 : 0); 1616 1617 tmp = TSEC_READ(sc, TSEC_REG_MACCFG2) & ~TSEC_MACCFG2_IF; 1618 1619 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) 1620 tmp |= TSEC_MACCFG2_FULLDUPLEX; 1621 else 1622 tmp &= ~TSEC_MACCFG2_FULLDUPLEX; 1623 1624 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1625 case IFM_1000_T: 1626 case IFM_1000_SX: 1627 tmp |= TSEC_MACCFG2_GMII; 1628 sc->tsec_link = link; 1629 break; 1630 case IFM_100_TX: 1631 case IFM_10_T: 1632 tmp |= TSEC_MACCFG2_MII; 1633 sc->tsec_link = link; 1634 break; 1635 case IFM_NONE: 1636 if (link) 1637 device_printf(dev, "No speed selected but link " 1638 "active!\n"); 1639 sc->tsec_link = 0; 1640 return; 1641 default: 1642 sc->tsec_link = 0; 1643 device_printf(dev, "Unknown speed (%d), link %s!\n", 1644 IFM_SUBTYPE(mii->mii_media_active), 1645 ((link) ? "up" : "down")); 1646 return; 1647 } 1648 TSEC_WRITE(sc, TSEC_REG_MACCFG2, tmp); 1649 1650 /* XXX kludge - use circumstantial evidence for reduced mode. */ 1651 id = TSEC_READ(sc, TSEC_REG_ID2); 1652 if (id & 0xffff) { 1653 ecntrl = TSEC_READ(sc, TSEC_REG_ECNTRL) & ~TSEC_ECNTRL_R100M; 1654 ecntrl |= (tmp & TSEC_MACCFG2_MII) ? TSEC_ECNTRL_R100M : 0; 1655 TSEC_WRITE(sc, TSEC_REG_ECNTRL, ecntrl); 1656 } 1657 } 1658 1659 static void 1660 tsec_add_sysctls(struct tsec_softc *sc) 1661 { 1662 struct sysctl_ctx_list *ctx; 1663 struct sysctl_oid_list *children; 1664 struct sysctl_oid *tree; 1665 1666 ctx = device_get_sysctl_ctx(sc->dev); 1667 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 1668 tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "int_coal", 1669 CTLFLAG_RD, 0, "TSEC Interrupts coalescing"); 1670 children = SYSCTL_CHILDREN(tree); 1671 1672 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_time", 1673 CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_RX, tsec_sysctl_ic_time, 1674 "I", "IC RX time threshold (0-65535)"); 1675 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_count", 1676 CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_RX, tsec_sysctl_ic_count, 1677 "I", "IC RX frame count threshold (0-255)"); 1678 1679 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_time", 1680 CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_TX, tsec_sysctl_ic_time, 1681 "I", "IC TX time threshold (0-65535)"); 1682 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_count", 1683 CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_TX, tsec_sysctl_ic_count, 1684 "I", "IC TX frame count threshold (0-255)"); 1685 } 1686 1687 /* 1688 * With Interrupt Coalescing (IC) active, a transmit/receive frame 1689 * interrupt is raised either upon: 1690 * 1691 * - threshold-defined period of time elapsed, or 1692 * - threshold-defined number of frames is received/transmitted, 1693 * whichever occurs first. 1694 * 1695 * The following sysctls regulate IC behaviour (for TX/RX separately): 1696 * 1697 * dev.tsec.<unit>.int_coal.rx_time 1698 * dev.tsec.<unit>.int_coal.rx_count 1699 * dev.tsec.<unit>.int_coal.tx_time 1700 * dev.tsec.<unit>.int_coal.tx_count 1701 * 1702 * Values: 1703 * 1704 * - 0 for either time or count disables IC on the given TX/RX path 1705 * 1706 * - count: 1-255 (expresses frame count number; note that value of 1 is 1707 * effectively IC off) 1708 * 1709 * - time: 1-65535 (value corresponds to a real time period and is 1710 * expressed in units equivalent to 64 TSEC interface clocks, i.e. one timer 1711 * threshold unit is 26.5 us, 2.56 us, or 512 ns, corresponding to 10 Mbps, 1712 * 100 Mbps, or 1Gbps, respectively. For detailed discussion consult the 1713 * TSEC reference manual. 1714 */ 1715 static int 1716 tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS) 1717 { 1718 int error; 1719 uint32_t time; 1720 struct tsec_softc *sc = (struct tsec_softc *)arg1; 1721 1722 time = (arg2 == TSEC_IC_RX) ? sc->rx_ic_time : sc->tx_ic_time; 1723 1724 error = sysctl_handle_int(oidp, &time, 0, req); 1725 if (error != 0) 1726 return (error); 1727 1728 if (time > 65535) 1729 return (EINVAL); 1730 1731 TSEC_IC_LOCK(sc); 1732 if (arg2 == TSEC_IC_RX) { 1733 sc->rx_ic_time = time; 1734 tsec_set_rxic(sc); 1735 } else { 1736 sc->tx_ic_time = time; 1737 tsec_set_txic(sc); 1738 } 1739 TSEC_IC_UNLOCK(sc); 1740 1741 return (0); 1742 } 1743 1744 static int 1745 tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS) 1746 { 1747 int error; 1748 uint32_t count; 1749 struct tsec_softc *sc = (struct tsec_softc *)arg1; 1750 1751 count = (arg2 == TSEC_IC_RX) ? sc->rx_ic_count : sc->tx_ic_count; 1752 1753 error = sysctl_handle_int(oidp, &count, 0, req); 1754 if (error != 0) 1755 return (error); 1756 1757 if (count > 255) 1758 return (EINVAL); 1759 1760 TSEC_IC_LOCK(sc); 1761 if (arg2 == TSEC_IC_RX) { 1762 sc->rx_ic_count = count; 1763 tsec_set_rxic(sc); 1764 } else { 1765 sc->tx_ic_count = count; 1766 tsec_set_txic(sc); 1767 } 1768 TSEC_IC_UNLOCK(sc); 1769 1770 return (0); 1771 } 1772 1773 static void 1774 tsec_set_rxic(struct tsec_softc *sc) 1775 { 1776 uint32_t rxic_val; 1777 1778 if (sc->rx_ic_count == 0 || sc->rx_ic_time == 0) 1779 /* Disable RX IC */ 1780 rxic_val = 0; 1781 else { 1782 rxic_val = 0x80000000; 1783 rxic_val |= (sc->rx_ic_count << 21); 1784 rxic_val |= sc->rx_ic_time; 1785 } 1786 1787 TSEC_WRITE(sc, TSEC_REG_RXIC, rxic_val); 1788 } 1789 1790 static void 1791 tsec_set_txic(struct tsec_softc *sc) 1792 { 1793 uint32_t txic_val; 1794 1795 if (sc->tx_ic_count == 0 || sc->tx_ic_time == 0) 1796 /* Disable TX IC */ 1797 txic_val = 0; 1798 else { 1799 txic_val = 0x80000000; 1800 txic_val |= (sc->tx_ic_count << 21); 1801 txic_val |= sc->tx_ic_time; 1802 } 1803 1804 TSEC_WRITE(sc, TSEC_REG_TXIC, txic_val); 1805 } 1806 1807 static void 1808 tsec_offload_setup(struct tsec_softc *sc) 1809 { 1810 struct ifnet *ifp = sc->tsec_ifp; 1811 uint32_t reg; 1812 1813 TSEC_GLOBAL_LOCK_ASSERT(sc); 1814 1815 reg = TSEC_READ(sc, TSEC_REG_TCTRL); 1816 reg |= TSEC_TCTRL_IPCSEN | TSEC_TCTRL_TUCSEN; 1817 1818 if (ifp->if_capenable & IFCAP_TXCSUM) 1819 ifp->if_hwassist = TSEC_CHECKSUM_FEATURES; 1820 else 1821 ifp->if_hwassist = 0; 1822 1823 TSEC_WRITE(sc, TSEC_REG_TCTRL, reg); 1824 1825 reg = TSEC_READ(sc, TSEC_REG_RCTRL); 1826 reg &= ~(TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN | TSEC_RCTRL_PRSDEP); 1827 reg |= TSEC_RCTRL_PRSDEP_PARSE_L2 | TSEC_RCTRL_VLEX; 1828 1829 if (ifp->if_capenable & IFCAP_RXCSUM) 1830 reg |= TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN | 1831 TSEC_RCTRL_PRSDEP_PARSE_L234; 1832 1833 TSEC_WRITE(sc, TSEC_REG_RCTRL, reg); 1834 } 1835 1836 1837 static void 1838 tsec_offload_process_frame(struct tsec_softc *sc, struct mbuf *m) 1839 { 1840 struct tsec_rx_fcb rx_fcb; 1841 int csum_flags = 0; 1842 int protocol, flags; 1843 1844 TSEC_RECEIVE_LOCK_ASSERT(sc); 1845 1846 m_copydata(m, 0, sizeof(struct tsec_rx_fcb), (caddr_t)(&rx_fcb)); 1847 flags = rx_fcb.flags; 1848 protocol = rx_fcb.protocol; 1849 1850 if (TSEC_RX_FCB_IP_CSUM_CHECKED(flags)) { 1851 csum_flags |= CSUM_IP_CHECKED; 1852 1853 if ((flags & TSEC_RX_FCB_IP_CSUM_ERROR) == 0) 1854 csum_flags |= CSUM_IP_VALID; 1855 } 1856 1857 if ((protocol == IPPROTO_TCP || protocol == IPPROTO_UDP) && 1858 TSEC_RX_FCB_TCP_UDP_CSUM_CHECKED(flags) && 1859 (flags & TSEC_RX_FCB_TCP_UDP_CSUM_ERROR) == 0) { 1860 1861 csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1862 m->m_pkthdr.csum_data = 0xFFFF; 1863 } 1864 1865 m->m_pkthdr.csum_flags = csum_flags; 1866 1867 if (flags & TSEC_RX_FCB_VLAN) { 1868 m->m_pkthdr.ether_vtag = rx_fcb.vlan; 1869 m->m_flags |= M_VLANTAG; 1870 } 1871 1872 m_adj(m, sizeof(struct tsec_rx_fcb)); 1873 } 1874 1875 static void 1876 tsec_setup_multicast(struct tsec_softc *sc) 1877 { 1878 uint32_t hashtable[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; 1879 struct ifnet *ifp = sc->tsec_ifp; 1880 struct ifmultiaddr *ifma; 1881 uint32_t h; 1882 int i; 1883 1884 TSEC_GLOBAL_LOCK_ASSERT(sc); 1885 1886 if (ifp->if_flags & IFF_ALLMULTI) { 1887 for (i = 0; i < 8; i++) 1888 TSEC_WRITE(sc, TSEC_REG_GADDR(i), 0xFFFFFFFF); 1889 1890 return; 1891 } 1892 1893 if_maddr_rlock(ifp); 1894 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1895 1896 if (ifma->ifma_addr->sa_family != AF_LINK) 1897 continue; 1898 1899 h = (ether_crc32_be(LLADDR((struct sockaddr_dl *) 1900 ifma->ifma_addr), ETHER_ADDR_LEN) >> 24) & 0xFF; 1901 1902 hashtable[(h >> 5)] |= 1 << (0x1F - (h & 0x1F)); 1903 } 1904 if_maddr_runlock(ifp); 1905 1906 for (i = 0; i < 8; i++) 1907 TSEC_WRITE(sc, TSEC_REG_GADDR(i), hashtable[i]); 1908 } 1909 1910 static int 1911 tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu) 1912 { 1913 1914 mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN; 1915 1916 TSEC_GLOBAL_LOCK_ASSERT(sc); 1917 1918 if (mtu >= TSEC_MIN_FRAME_SIZE && mtu <= TSEC_MAX_FRAME_SIZE) { 1919 TSEC_WRITE(sc, TSEC_REG_MAXFRM, mtu); 1920 return (mtu); 1921 } 1922 1923 return (0); 1924 } 1925