xref: /freebsd/sys/dev/tsec/if_tsec.c (revision 8657387683946d0c03e09fe77029edfe309eeb20)
1 /*-
2  * Copyright (C) 2007-2008 Semihalf, Rafal Jaworowski
3  * Copyright (C) 2006-2007 Semihalf, Piotr Kruszynski
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /*
28  * Freescale integrated Three-Speed Ethernet Controller (TSEC) driver.
29  */
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #ifdef HAVE_KERNEL_OPTION_HEADERS
34 #include "opt_device_polling.h"
35 #endif
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/bus.h>
40 #include <sys/endian.h>
41 #include <sys/mbuf.h>
42 #include <sys/kernel.h>
43 #include <sys/module.h>
44 #include <sys/socket.h>
45 #include <sys/sockio.h>
46 #include <sys/sysctl.h>
47 
48 #include <net/bpf.h>
49 #include <net/ethernet.h>
50 #include <net/if.h>
51 #include <net/if_var.h>
52 #include <net/if_arp.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 #include <net/if_vlan_var.h>
57 
58 #include <netinet/in_systm.h>
59 #include <netinet/in.h>
60 #include <netinet/ip.h>
61 
62 #include <machine/bus.h>
63 
64 #include <dev/mii/mii.h>
65 #include <dev/mii/miivar.h>
66 
67 #include <dev/tsec/if_tsec.h>
68 #include <dev/tsec/if_tsecreg.h>
69 
70 static int	tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag,
71     bus_dmamap_t *dmap, bus_size_t dsize, void **vaddr, void *raddr,
72     const char *dname);
73 static void	tsec_dma_ctl(struct tsec_softc *sc, int state);
74 static void	 tsec_encap(struct ifnet *ifp, struct tsec_softc *sc,
75     struct mbuf *m0, uint16_t fcb_flags, int *start_tx);
76 static void	tsec_free_dma(struct tsec_softc *sc);
77 static void	tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr);
78 static int	tsec_ifmedia_upd(struct ifnet *ifp);
79 static void	tsec_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
80 static int	tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map,
81     struct mbuf **mbufp, uint32_t *paddr);
82 static void	tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs,
83     int nseg, int error);
84 static void	tsec_intrs_ctl(struct tsec_softc *sc, int state);
85 static void	tsec_init(void *xsc);
86 static void	tsec_init_locked(struct tsec_softc *sc);
87 static int	tsec_ioctl(struct ifnet *ifp, u_long command, caddr_t data);
88 static void	tsec_reset_mac(struct tsec_softc *sc);
89 static void	tsec_setfilter(struct tsec_softc *sc);
90 static void	tsec_set_mac_address(struct tsec_softc *sc);
91 static void	tsec_start(struct ifnet *ifp);
92 static void	tsec_start_locked(struct ifnet *ifp);
93 static void	tsec_stop(struct tsec_softc *sc);
94 static void	tsec_tick(void *arg);
95 static void	tsec_watchdog(struct tsec_softc *sc);
96 static void	tsec_add_sysctls(struct tsec_softc *sc);
97 static int	tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS);
98 static int	tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS);
99 static void	tsec_set_rxic(struct tsec_softc *sc);
100 static void	tsec_set_txic(struct tsec_softc *sc);
101 static int	tsec_receive_intr_locked(struct tsec_softc *sc, int count);
102 static void	tsec_transmit_intr_locked(struct tsec_softc *sc);
103 static void	tsec_error_intr_locked(struct tsec_softc *sc, int count);
104 static void	tsec_offload_setup(struct tsec_softc *sc);
105 static void	tsec_offload_process_frame(struct tsec_softc *sc,
106     struct mbuf *m);
107 static void	tsec_setup_multicast(struct tsec_softc *sc);
108 static int	tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu);
109 
110 devclass_t tsec_devclass;
111 DRIVER_MODULE(miibus, tsec, miibus_driver, miibus_devclass, 0, 0);
112 MODULE_DEPEND(tsec, ether, 1, 1, 1);
113 MODULE_DEPEND(tsec, miibus, 1, 1, 1);
114 
115 struct mtx tsec_phy_mtx;
116 
117 int
118 tsec_attach(struct tsec_softc *sc)
119 {
120 	uint8_t hwaddr[ETHER_ADDR_LEN];
121 	struct ifnet *ifp;
122 	int error = 0;
123 	int i;
124 
125 	/* Initialize global (because potentially shared) MII lock */
126 	if (!mtx_initialized(&tsec_phy_mtx))
127 		mtx_init(&tsec_phy_mtx, "tsec mii", NULL, MTX_DEF);
128 
129 	/* Reset all TSEC counters */
130 	TSEC_TX_RX_COUNTERS_INIT(sc);
131 
132 	/* Stop DMA engine if enabled by firmware */
133 	tsec_dma_ctl(sc, 0);
134 
135 	/* Reset MAC */
136 	tsec_reset_mac(sc);
137 
138 	/* Disable interrupts for now */
139 	tsec_intrs_ctl(sc, 0);
140 
141 	/* Configure defaults for interrupts coalescing */
142 	sc->rx_ic_time = 768;
143 	sc->rx_ic_count = 16;
144 	sc->tx_ic_time = 768;
145 	sc->tx_ic_count = 16;
146 	tsec_set_rxic(sc);
147 	tsec_set_txic(sc);
148 	tsec_add_sysctls(sc);
149 
150 	/* Allocate a busdma tag and DMA safe memory for TX descriptors. */
151 	error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_tx_dtag,
152 	    &sc->tsec_tx_dmap, sizeof(*sc->tsec_tx_vaddr) * TSEC_TX_NUM_DESC,
153 	    (void **)&sc->tsec_tx_vaddr, &sc->tsec_tx_raddr, "TX");
154 
155 	if (error) {
156 		tsec_detach(sc);
157 		return (ENXIO);
158 	}
159 
160 	/* Allocate a busdma tag and DMA safe memory for RX descriptors. */
161 	error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_rx_dtag,
162 	    &sc->tsec_rx_dmap, sizeof(*sc->tsec_rx_vaddr) * TSEC_RX_NUM_DESC,
163 	    (void **)&sc->tsec_rx_vaddr, &sc->tsec_rx_raddr, "RX");
164 	if (error) {
165 		tsec_detach(sc);
166 		return (ENXIO);
167 	}
168 
169 	/* Allocate a busdma tag for TX mbufs. */
170 	error = bus_dma_tag_create(NULL,	/* parent */
171 	    TSEC_TXBUFFER_ALIGNMENT, 0,		/* alignment, boundary */
172 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
173 	    BUS_SPACE_MAXADDR,			/* highaddr */
174 	    NULL, NULL,				/* filtfunc, filtfuncarg */
175 	    MCLBYTES * (TSEC_TX_NUM_DESC - 1),	/* maxsize */
176 	    TSEC_TX_MAX_DMA_SEGS,		/* nsegments */
177 	    MCLBYTES, 0,			/* maxsegsz, flags */
178 	    NULL, NULL,				/* lockfunc, lockfuncarg */
179 	    &sc->tsec_tx_mtag);			/* dmat */
180 	if (error) {
181 		device_printf(sc->dev, "failed to allocate busdma tag "
182 		    "(tx mbufs)\n");
183 		tsec_detach(sc);
184 		return (ENXIO);
185 	}
186 
187 	/* Allocate a busdma tag for RX mbufs. */
188 	error = bus_dma_tag_create(NULL,	/* parent */
189 	    TSEC_RXBUFFER_ALIGNMENT, 0,		/* alignment, boundary */
190 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
191 	    BUS_SPACE_MAXADDR,			/* highaddr */
192 	    NULL, NULL,				/* filtfunc, filtfuncarg */
193 	    MCLBYTES,				/* maxsize */
194 	    1,					/* nsegments */
195 	    MCLBYTES, 0,			/* maxsegsz, flags */
196 	    NULL, NULL,				/* lockfunc, lockfuncarg */
197 	    &sc->tsec_rx_mtag);			/* dmat */
198 	if (error) {
199 		device_printf(sc->dev, "failed to allocate busdma tag "
200 		    "(rx mbufs)\n");
201 		tsec_detach(sc);
202 		return (ENXIO);
203 	}
204 
205 	/* Create TX busdma maps */
206 	for (i = 0; i < TSEC_TX_NUM_DESC; i++) {
207 		error = bus_dmamap_create(sc->tsec_tx_mtag, 0,
208 		   &sc->tx_bufmap[i].map);
209 		if (error) {
210 			device_printf(sc->dev, "failed to init TX ring\n");
211 			tsec_detach(sc);
212 			return (ENXIO);
213 		}
214 		sc->tx_bufmap[i].map_initialized = 1;
215 	}
216 
217 	/* Create RX busdma maps and zero mbuf handlers */
218 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
219 		error = bus_dmamap_create(sc->tsec_rx_mtag, 0,
220 		    &sc->rx_data[i].map);
221 		if (error) {
222 			device_printf(sc->dev, "failed to init RX ring\n");
223 			tsec_detach(sc);
224 			return (ENXIO);
225 		}
226 		sc->rx_data[i].mbuf = NULL;
227 	}
228 
229 	/* Create mbufs for RX buffers */
230 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
231 		error = tsec_new_rxbuf(sc->tsec_rx_mtag, sc->rx_data[i].map,
232 		    &sc->rx_data[i].mbuf, &sc->rx_data[i].paddr);
233 		if (error) {
234 			device_printf(sc->dev, "can't load rx DMA map %d, "
235 			    "error = %d\n", i, error);
236 			tsec_detach(sc);
237 			return (error);
238 		}
239 	}
240 
241 	/* Create network interface for upper layers */
242 	ifp = sc->tsec_ifp = if_alloc(IFT_ETHER);
243 	if (ifp == NULL) {
244 		device_printf(sc->dev, "if_alloc() failed\n");
245 		tsec_detach(sc);
246 		return (ENOMEM);
247 	}
248 
249 	ifp->if_softc = sc;
250 	if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
251 	ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST;
252 	ifp->if_init = tsec_init;
253 	ifp->if_start = tsec_start;
254 	ifp->if_ioctl = tsec_ioctl;
255 
256 	IFQ_SET_MAXLEN(&ifp->if_snd, TSEC_TX_NUM_DESC - 1);
257 	ifp->if_snd.ifq_drv_maxlen = TSEC_TX_NUM_DESC - 1;
258 	IFQ_SET_READY(&ifp->if_snd);
259 
260 	ifp->if_capabilities = IFCAP_VLAN_MTU;
261 	if (sc->is_etsec)
262 		ifp->if_capabilities |= IFCAP_HWCSUM;
263 
264 	ifp->if_capenable = ifp->if_capabilities;
265 
266 #ifdef DEVICE_POLLING
267 	/* Advertise that polling is supported */
268 	ifp->if_capabilities |= IFCAP_POLLING;
269 #endif
270 
271 	/* Attach PHY(s) */
272 	error = mii_attach(sc->dev, &sc->tsec_miibus, ifp, tsec_ifmedia_upd,
273 	    tsec_ifmedia_sts, BMSR_DEFCAPMASK, sc->phyaddr, MII_OFFSET_ANY,
274 	    0);
275 	if (error) {
276 		device_printf(sc->dev, "attaching PHYs failed\n");
277 		if_free(ifp);
278 		sc->tsec_ifp = NULL;
279 		tsec_detach(sc);
280 		return (error);
281 	}
282 	sc->tsec_mii = device_get_softc(sc->tsec_miibus);
283 
284 	/* Set MAC address */
285 	tsec_get_hwaddr(sc, hwaddr);
286 	ether_ifattach(ifp, hwaddr);
287 
288 	return (0);
289 }
290 
291 int
292 tsec_detach(struct tsec_softc *sc)
293 {
294 
295 	if (sc->tsec_ifp != NULL) {
296 #ifdef DEVICE_POLLING
297 		if (sc->tsec_ifp->if_capenable & IFCAP_POLLING)
298 			ether_poll_deregister(sc->tsec_ifp);
299 #endif
300 
301 		/* Stop TSEC controller and free TX queue */
302 		if (sc->sc_rres)
303 			tsec_shutdown(sc->dev);
304 
305 		/* Detach network interface */
306 		ether_ifdetach(sc->tsec_ifp);
307 		if_free(sc->tsec_ifp);
308 		sc->tsec_ifp = NULL;
309 	}
310 
311 	/* Free DMA resources */
312 	tsec_free_dma(sc);
313 
314 	return (0);
315 }
316 
317 int
318 tsec_shutdown(device_t dev)
319 {
320 	struct tsec_softc *sc;
321 
322 	sc = device_get_softc(dev);
323 
324 	TSEC_GLOBAL_LOCK(sc);
325 	tsec_stop(sc);
326 	TSEC_GLOBAL_UNLOCK(sc);
327 	return (0);
328 }
329 
330 int
331 tsec_suspend(device_t dev)
332 {
333 
334 	/* TODO not implemented! */
335 	return (0);
336 }
337 
338 int
339 tsec_resume(device_t dev)
340 {
341 
342 	/* TODO not implemented! */
343 	return (0);
344 }
345 
346 static void
347 tsec_init(void *xsc)
348 {
349 	struct tsec_softc *sc = xsc;
350 
351 	TSEC_GLOBAL_LOCK(sc);
352 	tsec_init_locked(sc);
353 	TSEC_GLOBAL_UNLOCK(sc);
354 }
355 
356 static int
357 tsec_mii_wait(struct tsec_softc *sc, uint32_t flags)
358 {
359 	int timeout;
360 
361 	/*
362 	 * The status indicators are not set immediatly after a command.
363 	 * Discard the first value.
364 	 */
365 	TSEC_PHY_READ(sc, TSEC_REG_MIIMIND);
366 
367 	timeout = TSEC_READ_RETRY;
368 	while ((TSEC_PHY_READ(sc, TSEC_REG_MIIMIND) & flags) && --timeout)
369 		DELAY(TSEC_READ_DELAY);
370 
371 	return (timeout == 0);
372 }
373 
374 
375 static void
376 tsec_init_locked(struct tsec_softc *sc)
377 {
378 	struct tsec_desc *tx_desc = sc->tsec_tx_vaddr;
379 	struct tsec_desc *rx_desc = sc->tsec_rx_vaddr;
380 	struct ifnet *ifp = sc->tsec_ifp;
381 	uint32_t val, i;
382 	int timeout;
383 
384 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
385 		return;
386 
387 	TSEC_GLOBAL_LOCK_ASSERT(sc);
388 	tsec_stop(sc);
389 
390 	/*
391 	 * These steps are according to the MPC8555E PowerQUICCIII RM:
392 	 * 14.7 Initialization/Application Information
393 	 */
394 
395 	/* Step 1: soft reset MAC */
396 	tsec_reset_mac(sc);
397 
398 	/* Step 2: Initialize MACCFG2 */
399 	TSEC_WRITE(sc, TSEC_REG_MACCFG2,
400 	    TSEC_MACCFG2_FULLDUPLEX |	/* Full Duplex = 1 */
401 	    TSEC_MACCFG2_PADCRC |	/* PAD/CRC append */
402 	    TSEC_MACCFG2_GMII |		/* I/F Mode bit */
403 	    TSEC_MACCFG2_PRECNT		/* Preamble count = 7 */
404 	);
405 
406 	/* Step 3: Initialize ECNTRL
407 	 * While the documentation states that R100M is ignored if RPM is
408 	 * not set, it does seem to be needed to get the orange boxes to
409 	 * work (which have a Marvell 88E1111 PHY). Go figure.
410 	 */
411 
412 	/*
413 	 * XXX kludge - use circumstancial evidence to program ECNTRL
414 	 * correctly. Ideally we need some board information to guide
415 	 * us here.
416 	 */
417 	i = TSEC_READ(sc, TSEC_REG_ID2);
418 	val = (i & 0xffff)
419 	    ? (TSEC_ECNTRL_TBIM | TSEC_ECNTRL_SGMIIM)	/* Sumatra */
420 	    : TSEC_ECNTRL_R100M;			/* Orange + CDS */
421 	TSEC_WRITE(sc, TSEC_REG_ECNTRL, TSEC_ECNTRL_STEN | val);
422 
423 	/* Step 4: Initialize MAC station address */
424 	tsec_set_mac_address(sc);
425 
426 	/*
427 	 * Step 5: Assign a Physical address to the TBI so as to not conflict
428 	 * with the external PHY physical address
429 	 */
430 	TSEC_WRITE(sc, TSEC_REG_TBIPA, 5);
431 
432 	TSEC_PHY_LOCK(sc);
433 
434 	/* Step 6: Reset the management interface */
435 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_RESETMGMT);
436 
437 	/* Step 7: Setup the MII Mgmt clock speed */
438 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_CLKDIV28);
439 
440 	/* Step 8: Read MII Mgmt indicator register and check for Busy = 0 */
441 	timeout = tsec_mii_wait(sc, TSEC_MIIMIND_BUSY);
442 
443 	TSEC_PHY_UNLOCK(sc);
444 	if (timeout) {
445 		if_printf(ifp, "tsec_init_locked(): Mgmt busy timeout\n");
446 		return;
447 	}
448 
449 	/* Step 9: Setup the MII Mgmt */
450 	mii_mediachg(sc->tsec_mii);
451 
452 	/* Step 10: Clear IEVENT register */
453 	TSEC_WRITE(sc, TSEC_REG_IEVENT, 0xffffffff);
454 
455 	/* Step 11: Enable interrupts */
456 #ifdef DEVICE_POLLING
457 	/*
458 	 * ...only if polling is not turned on. Disable interrupts explicitly
459 	 * if polling is enabled.
460 	 */
461 	if (ifp->if_capenable & IFCAP_POLLING )
462 		tsec_intrs_ctl(sc, 0);
463 	else
464 #endif /* DEVICE_POLLING */
465 	tsec_intrs_ctl(sc, 1);
466 
467 	/* Step 12: Initialize IADDRn */
468 	TSEC_WRITE(sc, TSEC_REG_IADDR0, 0);
469 	TSEC_WRITE(sc, TSEC_REG_IADDR1, 0);
470 	TSEC_WRITE(sc, TSEC_REG_IADDR2, 0);
471 	TSEC_WRITE(sc, TSEC_REG_IADDR3, 0);
472 	TSEC_WRITE(sc, TSEC_REG_IADDR4, 0);
473 	TSEC_WRITE(sc, TSEC_REG_IADDR5, 0);
474 	TSEC_WRITE(sc, TSEC_REG_IADDR6, 0);
475 	TSEC_WRITE(sc, TSEC_REG_IADDR7, 0);
476 
477 	/* Step 13: Initialize GADDRn */
478 	TSEC_WRITE(sc, TSEC_REG_GADDR0, 0);
479 	TSEC_WRITE(sc, TSEC_REG_GADDR1, 0);
480 	TSEC_WRITE(sc, TSEC_REG_GADDR2, 0);
481 	TSEC_WRITE(sc, TSEC_REG_GADDR3, 0);
482 	TSEC_WRITE(sc, TSEC_REG_GADDR4, 0);
483 	TSEC_WRITE(sc, TSEC_REG_GADDR5, 0);
484 	TSEC_WRITE(sc, TSEC_REG_GADDR6, 0);
485 	TSEC_WRITE(sc, TSEC_REG_GADDR7, 0);
486 
487 	/* Step 14: Initialize RCTRL */
488 	TSEC_WRITE(sc, TSEC_REG_RCTRL, 0);
489 
490 	/* Step 15: Initialize DMACTRL */
491 	tsec_dma_ctl(sc, 1);
492 
493 	/* Step 16: Initialize FIFO_PAUSE_CTRL */
494 	TSEC_WRITE(sc, TSEC_REG_FIFO_PAUSE_CTRL, TSEC_FIFO_PAUSE_CTRL_EN);
495 
496 	/*
497 	 * Step 17: Initialize transmit/receive descriptor rings.
498 	 * Initialize TBASE and RBASE.
499 	 */
500 	TSEC_WRITE(sc, TSEC_REG_TBASE, sc->tsec_tx_raddr);
501 	TSEC_WRITE(sc, TSEC_REG_RBASE, sc->tsec_rx_raddr);
502 
503 	for (i = 0; i < TSEC_TX_NUM_DESC; i++) {
504 		tx_desc[i].bufptr = 0;
505 		tx_desc[i].length = 0;
506 		tx_desc[i].flags = ((i == TSEC_TX_NUM_DESC - 1) ?
507 		    TSEC_TXBD_W : 0);
508 	}
509 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
510 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
511 
512 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
513 		rx_desc[i].bufptr = sc->rx_data[i].paddr;
514 		rx_desc[i].length = 0;
515 		rx_desc[i].flags = TSEC_RXBD_E | TSEC_RXBD_I |
516 		    ((i == TSEC_RX_NUM_DESC - 1) ? TSEC_RXBD_W : 0);
517 	}
518 	bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
519 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
520 
521 	/* Step 18: Initialize the maximum receive buffer length */
522 	TSEC_WRITE(sc, TSEC_REG_MRBLR, MCLBYTES);
523 
524 	/* Step 19: Configure ethernet frame sizes */
525 	TSEC_WRITE(sc, TSEC_REG_MINFLR, TSEC_MIN_FRAME_SIZE);
526 	tsec_set_mtu(sc, ifp->if_mtu);
527 
528 	/* Step 20: Enable Rx and RxBD sdata snooping */
529 	TSEC_WRITE(sc, TSEC_REG_ATTR, TSEC_ATTR_RDSEN | TSEC_ATTR_RBDSEN);
530 	TSEC_WRITE(sc, TSEC_REG_ATTRELI, 0);
531 
532 	/* Step 21: Reset collision counters in hardware */
533 	TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0);
534 	TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0);
535 	TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0);
536 	TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0);
537 	TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0);
538 
539 	/* Step 22: Mask all CAM interrupts */
540 	TSEC_WRITE(sc, TSEC_REG_MON_CAM1, 0xffffffff);
541 	TSEC_WRITE(sc, TSEC_REG_MON_CAM2, 0xffffffff);
542 
543 	/* Step 23: Enable Rx and Tx */
544 	val = TSEC_READ(sc, TSEC_REG_MACCFG1);
545 	val |= (TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN);
546 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, val);
547 
548 	/* Step 24: Reset TSEC counters for Tx and Rx rings */
549 	TSEC_TX_RX_COUNTERS_INIT(sc);
550 
551 	/* Step 25: Setup TCP/IP Off-Load engine */
552 	if (sc->is_etsec)
553 		tsec_offload_setup(sc);
554 
555 	/* Step 26: Setup multicast filters */
556 	tsec_setup_multicast(sc);
557 
558 	/* Step 27: Activate network interface */
559 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
560 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
561 	sc->tsec_if_flags = ifp->if_flags;
562 	sc->tsec_watchdog = 0;
563 
564 	/* Schedule watchdog timeout */
565 	callout_reset(&sc->tsec_callout, hz, tsec_tick, sc);
566 }
567 
568 static void
569 tsec_set_mac_address(struct tsec_softc *sc)
570 {
571 	uint32_t macbuf[2] = { 0, 0 };
572 	char *macbufp, *curmac;
573 	int i;
574 
575 	TSEC_GLOBAL_LOCK_ASSERT(sc);
576 
577 	KASSERT((ETHER_ADDR_LEN <= sizeof(macbuf)),
578 	    ("tsec_set_mac_address: (%d <= %zd", ETHER_ADDR_LEN,
579 	    sizeof(macbuf)));
580 
581 	macbufp = (char *)macbuf;
582 	curmac = (char *)IF_LLADDR(sc->tsec_ifp);
583 
584 	/* Correct order of MAC address bytes */
585 	for (i = 1; i <= ETHER_ADDR_LEN; i++)
586 		macbufp[ETHER_ADDR_LEN-i] = curmac[i-1];
587 
588 	/* Initialize MAC station address MACSTNADDR2 and MACSTNADDR1 */
589 	TSEC_WRITE(sc, TSEC_REG_MACSTNADDR2, macbuf[1]);
590 	TSEC_WRITE(sc, TSEC_REG_MACSTNADDR1, macbuf[0]);
591 }
592 
593 /*
594  * DMA control function, if argument state is:
595  * 0 - DMA engine will be disabled
596  * 1 - DMA engine will be enabled
597  */
598 static void
599 tsec_dma_ctl(struct tsec_softc *sc, int state)
600 {
601 	device_t dev;
602 	uint32_t dma_flags, timeout;
603 
604 	dev = sc->dev;
605 
606 	dma_flags = TSEC_READ(sc, TSEC_REG_DMACTRL);
607 
608 	switch (state) {
609 	case 0:
610 		/* Temporarily clear stop graceful stop bits. */
611 		tsec_dma_ctl(sc, 1000);
612 
613 		/* Set it again */
614 		dma_flags |= (TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS);
615 		break;
616 	case 1000:
617 	case 1:
618 		/* Set write with response (WWR), wait (WOP) and snoop bits */
619 		dma_flags |= (TSEC_DMACTRL_TDSEN | TSEC_DMACTRL_TBDSEN |
620 		    DMACTRL_WWR | DMACTRL_WOP);
621 
622 		/* Clear graceful stop bits */
623 		dma_flags &= ~(TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS);
624 		break;
625 	default:
626 		device_printf(dev, "tsec_dma_ctl(): unknown state value: %d\n",
627 		    state);
628 	}
629 
630 	TSEC_WRITE(sc, TSEC_REG_DMACTRL, dma_flags);
631 
632 	switch (state) {
633 	case 0:
634 		/* Wait for DMA stop */
635 		timeout = TSEC_READ_RETRY;
636 		while (--timeout && (!(TSEC_READ(sc, TSEC_REG_IEVENT) &
637 		    (TSEC_IEVENT_GRSC | TSEC_IEVENT_GTSC))))
638 			DELAY(TSEC_READ_DELAY);
639 
640 		if (timeout == 0)
641 			device_printf(dev, "tsec_dma_ctl(): timeout!\n");
642 		break;
643 	case 1:
644 		/* Restart transmission function */
645 		TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
646 	}
647 }
648 
649 /*
650  * Interrupts control function, if argument state is:
651  * 0 - all TSEC interrupts will be masked
652  * 1 - all TSEC interrupts will be unmasked
653  */
654 static void
655 tsec_intrs_ctl(struct tsec_softc *sc, int state)
656 {
657 	device_t dev;
658 
659 	dev = sc->dev;
660 
661 	switch (state) {
662 	case 0:
663 		TSEC_WRITE(sc, TSEC_REG_IMASK, 0);
664 		break;
665 	case 1:
666 		TSEC_WRITE(sc, TSEC_REG_IMASK, TSEC_IMASK_BREN |
667 		    TSEC_IMASK_RXCEN | TSEC_IMASK_BSYEN | TSEC_IMASK_EBERREN |
668 		    TSEC_IMASK_BTEN | TSEC_IMASK_TXEEN | TSEC_IMASK_TXBEN |
669 		    TSEC_IMASK_TXFEN | TSEC_IMASK_XFUNEN | TSEC_IMASK_RXFEN);
670 		break;
671 	default:
672 		device_printf(dev, "tsec_intrs_ctl(): unknown state value: %d\n",
673 		    state);
674 	}
675 }
676 
677 static void
678 tsec_reset_mac(struct tsec_softc *sc)
679 {
680 	uint32_t maccfg1_flags;
681 
682 	/* Set soft reset bit */
683 	maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1);
684 	maccfg1_flags |= TSEC_MACCFG1_SOFT_RESET;
685 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags);
686 
687 	/* Clear soft reset bit */
688 	maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1);
689 	maccfg1_flags &= ~TSEC_MACCFG1_SOFT_RESET;
690 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags);
691 }
692 
693 static void
694 tsec_watchdog(struct tsec_softc *sc)
695 {
696 	struct ifnet *ifp;
697 
698 	TSEC_GLOBAL_LOCK_ASSERT(sc);
699 
700 	if (sc->tsec_watchdog == 0 || --sc->tsec_watchdog > 0)
701 		return;
702 
703 	ifp = sc->tsec_ifp;
704 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
705 	if_printf(ifp, "watchdog timeout\n");
706 
707 	tsec_stop(sc);
708 	tsec_init_locked(sc);
709 }
710 
711 static void
712 tsec_start(struct ifnet *ifp)
713 {
714 	struct tsec_softc *sc = ifp->if_softc;
715 
716 	TSEC_TRANSMIT_LOCK(sc);
717 	tsec_start_locked(ifp);
718 	TSEC_TRANSMIT_UNLOCK(sc);
719 }
720 
721 static void
722 tsec_start_locked(struct ifnet *ifp)
723 {
724 	struct tsec_softc *sc;
725 	struct mbuf *m0;
726 	struct tsec_tx_fcb *tx_fcb;
727 	int csum_flags;
728 	int start_tx;
729 	uint16_t fcb_flags;
730 
731 	sc = ifp->if_softc;
732 	start_tx = 0;
733 
734 	TSEC_TRANSMIT_LOCK_ASSERT(sc);
735 
736 	if (sc->tsec_link == 0)
737 		return;
738 
739 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
740 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
741 
742 	for (;;) {
743 
744 		if (TSEC_FREE_TX_DESC(sc) < TSEC_TX_MAX_DMA_SEGS) {
745 			/* No free descriptors */
746 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
747 			break;
748 		}
749 
750 		/* Get packet from the queue */
751 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
752 		if (m0 == NULL)
753 			break;
754 
755 		/* Insert TCP/IP Off-load frame control block */
756 		fcb_flags = 0;
757 		csum_flags = m0->m_pkthdr.csum_flags;
758 		if (csum_flags) {
759 			M_PREPEND(m0, sizeof(struct tsec_tx_fcb), M_NOWAIT);
760 			if (m0 == NULL)
761 				break;
762 
763 			if (csum_flags & CSUM_IP)
764 				fcb_flags |= TSEC_TX_FCB_IP4 |
765 				    TSEC_TX_FCB_CSUM_IP;
766 
767 			if (csum_flags & CSUM_TCP)
768 				fcb_flags |= TSEC_TX_FCB_TCP |
769 				    TSEC_TX_FCB_CSUM_TCP_UDP;
770 
771 			if (csum_flags & CSUM_UDP)
772 				fcb_flags |= TSEC_TX_FCB_UDP |
773 				    TSEC_TX_FCB_CSUM_TCP_UDP;
774 
775 			tx_fcb = mtod(m0, struct tsec_tx_fcb *);
776 			tx_fcb->flags = fcb_flags;
777 			tx_fcb->l3_offset = ETHER_HDR_LEN;
778 			tx_fcb->l4_offset = sizeof(struct ip);
779 		}
780 
781 		tsec_encap(ifp, sc, m0, fcb_flags, &start_tx);
782 	}
783 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
784 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
785 
786 	if (start_tx) {
787 		/* Enable transmitter and watchdog timer */
788 		TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
789 		sc->tsec_watchdog = 5;
790 	}
791 }
792 
793 static void
794 tsec_encap(struct ifnet *ifp, struct tsec_softc *sc, struct mbuf *m0,
795     uint16_t fcb_flags, int *start_tx)
796 {
797 	bus_dma_segment_t segs[TSEC_TX_MAX_DMA_SEGS];
798 	int error, i, nsegs;
799 	struct tsec_bufmap *tx_bufmap;
800 	uint32_t tx_idx;
801 	uint16_t flags;
802 
803 	TSEC_TRANSMIT_LOCK_ASSERT(sc);
804 
805 	tx_idx = sc->tx_idx_head;
806 	tx_bufmap = &sc->tx_bufmap[tx_idx];
807 
808 	/* Create mapping in DMA memory */
809 	error = bus_dmamap_load_mbuf_sg(sc->tsec_tx_mtag, tx_bufmap->map, m0,
810 	    segs, &nsegs, BUS_DMA_NOWAIT);
811 	if (error == EFBIG) {
812 		/* Too many segments!  Defrag and try again. */
813 		struct mbuf *m = m_defrag(m0, M_NOWAIT);
814 
815 		if (m == NULL) {
816 			m_freem(m0);
817 			return;
818 		}
819 		m0 = m;
820 		error = bus_dmamap_load_mbuf_sg(sc->tsec_tx_mtag,
821 		    tx_bufmap->map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
822 	}
823 	if (error != 0) {
824 		/* Give up. */
825 		m_freem(m0);
826 		return;
827 	}
828 
829 	bus_dmamap_sync(sc->tsec_tx_mtag, tx_bufmap->map,
830 	    BUS_DMASYNC_PREWRITE);
831 	tx_bufmap->mbuf = m0;
832 
833 	/*
834 	 * Fill in the TX descriptors back to front so that READY bit in first
835 	 * descriptor is set last.
836 	 */
837 	tx_idx = (tx_idx + (uint32_t)nsegs) & (TSEC_TX_NUM_DESC - 1);
838 	sc->tx_idx_head = tx_idx;
839 	flags = TSEC_TXBD_L | TSEC_TXBD_I | TSEC_TXBD_R | TSEC_TXBD_TC;
840 	for (i = nsegs - 1; i >= 0; i--) {
841 		struct tsec_desc *tx_desc;
842 
843 		tx_idx = (tx_idx - 1) & (TSEC_TX_NUM_DESC - 1);
844 		tx_desc = &sc->tsec_tx_vaddr[tx_idx];
845 		tx_desc->length = segs[i].ds_len;
846 		tx_desc->bufptr = segs[i].ds_addr;
847 
848 		if (i == 0) {
849 			wmb();
850 
851 			if (fcb_flags != 0)
852 				flags |= TSEC_TXBD_TOE;
853 		}
854 
855 		/*
856 		 * Set flags:
857 		 *   - wrap
858 		 *   - checksum
859 		 *   - ready to send
860 		 *   - transmit the CRC sequence after the last data byte
861 		 *   - interrupt after the last buffer
862 		 */
863 		tx_desc->flags = (tx_idx == (TSEC_TX_NUM_DESC - 1) ?
864 		    TSEC_TXBD_W : 0) | flags;
865 
866 		flags &= ~(TSEC_TXBD_L | TSEC_TXBD_I);
867 	}
868 
869 	BPF_MTAP(ifp, m0);
870 	*start_tx = 1;
871 }
872 
873 static void
874 tsec_setfilter(struct tsec_softc *sc)
875 {
876 	struct ifnet *ifp;
877 	uint32_t flags;
878 
879 	ifp = sc->tsec_ifp;
880 	flags = TSEC_READ(sc, TSEC_REG_RCTRL);
881 
882 	/* Promiscuous mode */
883 	if (ifp->if_flags & IFF_PROMISC)
884 		flags |= TSEC_RCTRL_PROM;
885 	else
886 		flags &= ~TSEC_RCTRL_PROM;
887 
888 	TSEC_WRITE(sc, TSEC_REG_RCTRL, flags);
889 }
890 
891 #ifdef DEVICE_POLLING
892 static poll_handler_t tsec_poll;
893 
894 static int
895 tsec_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
896 {
897 	uint32_t ie;
898 	struct tsec_softc *sc = ifp->if_softc;
899 	int rx_npkts;
900 
901 	rx_npkts = 0;
902 
903 	TSEC_GLOBAL_LOCK(sc);
904 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
905 		TSEC_GLOBAL_UNLOCK(sc);
906 		return (rx_npkts);
907 	}
908 
909 	if (cmd == POLL_AND_CHECK_STATUS) {
910 		tsec_error_intr_locked(sc, count);
911 
912 		/* Clear all events reported */
913 		ie = TSEC_READ(sc, TSEC_REG_IEVENT);
914 		TSEC_WRITE(sc, TSEC_REG_IEVENT, ie);
915 	}
916 
917 	tsec_transmit_intr_locked(sc);
918 
919 	TSEC_GLOBAL_TO_RECEIVE_LOCK(sc);
920 
921 	rx_npkts = tsec_receive_intr_locked(sc, count);
922 
923 	TSEC_RECEIVE_UNLOCK(sc);
924 
925 	return (rx_npkts);
926 }
927 #endif /* DEVICE_POLLING */
928 
929 static int
930 tsec_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
931 {
932 	struct tsec_softc *sc = ifp->if_softc;
933 	struct ifreq *ifr = (struct ifreq *)data;
934 	int mask, error = 0;
935 
936 	switch (command) {
937 	case SIOCSIFMTU:
938 		TSEC_GLOBAL_LOCK(sc);
939 		if (tsec_set_mtu(sc, ifr->ifr_mtu))
940 			ifp->if_mtu = ifr->ifr_mtu;
941 		else
942 			error = EINVAL;
943 		TSEC_GLOBAL_UNLOCK(sc);
944 		break;
945 	case SIOCSIFFLAGS:
946 		TSEC_GLOBAL_LOCK(sc);
947 		if (ifp->if_flags & IFF_UP) {
948 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
949 				if ((sc->tsec_if_flags ^ ifp->if_flags) &
950 				    IFF_PROMISC)
951 					tsec_setfilter(sc);
952 
953 				if ((sc->tsec_if_flags ^ ifp->if_flags) &
954 				    IFF_ALLMULTI)
955 					tsec_setup_multicast(sc);
956 			} else
957 				tsec_init_locked(sc);
958 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
959 			tsec_stop(sc);
960 
961 		sc->tsec_if_flags = ifp->if_flags;
962 		TSEC_GLOBAL_UNLOCK(sc);
963 		break;
964 	case SIOCADDMULTI:
965 	case SIOCDELMULTI:
966 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
967 			TSEC_GLOBAL_LOCK(sc);
968 			tsec_setup_multicast(sc);
969 			TSEC_GLOBAL_UNLOCK(sc);
970 		}
971 	case SIOCGIFMEDIA:
972 	case SIOCSIFMEDIA:
973 		error = ifmedia_ioctl(ifp, ifr, &sc->tsec_mii->mii_media,
974 		    command);
975 		break;
976 	case SIOCSIFCAP:
977 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
978 		if ((mask & IFCAP_HWCSUM) && sc->is_etsec) {
979 			TSEC_GLOBAL_LOCK(sc);
980 			ifp->if_capenable &= ~IFCAP_HWCSUM;
981 			ifp->if_capenable |= IFCAP_HWCSUM & ifr->ifr_reqcap;
982 			tsec_offload_setup(sc);
983 			TSEC_GLOBAL_UNLOCK(sc);
984 		}
985 #ifdef DEVICE_POLLING
986 		if (mask & IFCAP_POLLING) {
987 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
988 				error = ether_poll_register(tsec_poll, ifp);
989 				if (error)
990 					return (error);
991 
992 				TSEC_GLOBAL_LOCK(sc);
993 				/* Disable interrupts */
994 				tsec_intrs_ctl(sc, 0);
995 				ifp->if_capenable |= IFCAP_POLLING;
996 				TSEC_GLOBAL_UNLOCK(sc);
997 			} else {
998 				error = ether_poll_deregister(ifp);
999 				TSEC_GLOBAL_LOCK(sc);
1000 				/* Enable interrupts */
1001 				tsec_intrs_ctl(sc, 1);
1002 				ifp->if_capenable &= ~IFCAP_POLLING;
1003 				TSEC_GLOBAL_UNLOCK(sc);
1004 			}
1005 		}
1006 #endif
1007 		break;
1008 
1009 	default:
1010 		error = ether_ioctl(ifp, command, data);
1011 	}
1012 
1013 	/* Flush buffers if not empty */
1014 	if (ifp->if_flags & IFF_UP)
1015 		tsec_start(ifp);
1016 	return (error);
1017 }
1018 
1019 static int
1020 tsec_ifmedia_upd(struct ifnet *ifp)
1021 {
1022 	struct tsec_softc *sc = ifp->if_softc;
1023 	struct mii_data *mii;
1024 
1025 	TSEC_TRANSMIT_LOCK(sc);
1026 
1027 	mii = sc->tsec_mii;
1028 	mii_mediachg(mii);
1029 
1030 	TSEC_TRANSMIT_UNLOCK(sc);
1031 	return (0);
1032 }
1033 
1034 static void
1035 tsec_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1036 {
1037 	struct tsec_softc *sc = ifp->if_softc;
1038 	struct mii_data *mii;
1039 
1040 	TSEC_TRANSMIT_LOCK(sc);
1041 
1042 	mii = sc->tsec_mii;
1043 	mii_pollstat(mii);
1044 
1045 	ifmr->ifm_active = mii->mii_media_active;
1046 	ifmr->ifm_status = mii->mii_media_status;
1047 
1048 	TSEC_TRANSMIT_UNLOCK(sc);
1049 }
1050 
1051 static int
1052 tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map, struct mbuf **mbufp,
1053     uint32_t *paddr)
1054 {
1055 	struct mbuf *new_mbuf;
1056 	bus_dma_segment_t seg[1];
1057 	int error, nsegs;
1058 
1059 	KASSERT(mbufp != NULL, ("NULL mbuf pointer!"));
1060 
1061 	new_mbuf = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MCLBYTES);
1062 	if (new_mbuf == NULL)
1063 		return (ENOBUFS);
1064 	new_mbuf->m_len = new_mbuf->m_pkthdr.len = new_mbuf->m_ext.ext_size;
1065 
1066 	if (*mbufp) {
1067 		bus_dmamap_sync(tag, map, BUS_DMASYNC_POSTREAD);
1068 		bus_dmamap_unload(tag, map);
1069 	}
1070 
1071 	error = bus_dmamap_load_mbuf_sg(tag, map, new_mbuf, seg, &nsegs,
1072 	    BUS_DMA_NOWAIT);
1073 	KASSERT(nsegs == 1, ("Too many segments returned!"));
1074 	if (nsegs != 1 || error)
1075 		panic("tsec_new_rxbuf(): nsegs(%d), error(%d)", nsegs, error);
1076 
1077 #if 0
1078 	if (error) {
1079 		printf("tsec: bus_dmamap_load_mbuf_sg() returned: %d!\n",
1080 			error);
1081 		m_freem(new_mbuf);
1082 		return (ENOBUFS);
1083 	}
1084 #endif
1085 
1086 #if 0
1087 	KASSERT(((seg->ds_addr) & (TSEC_RXBUFFER_ALIGNMENT-1)) == 0,
1088 		("Wrong alignment of RX buffer!"));
1089 #endif
1090 	bus_dmamap_sync(tag, map, BUS_DMASYNC_PREREAD);
1091 
1092 	(*mbufp) = new_mbuf;
1093 	(*paddr) = seg->ds_addr;
1094 	return (0);
1095 }
1096 
1097 static void
1098 tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1099 {
1100 	u_int32_t *paddr;
1101 
1102 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
1103 	paddr = arg;
1104 	*paddr = segs->ds_addr;
1105 }
1106 
1107 static int
1108 tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag, bus_dmamap_t *dmap,
1109     bus_size_t dsize, void **vaddr, void *raddr, const char *dname)
1110 {
1111 	int error;
1112 
1113 	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
1114 	error = bus_dma_tag_create(NULL,	/* parent */
1115 	    PAGE_SIZE, 0,			/* alignment, boundary */
1116 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
1117 	    BUS_SPACE_MAXADDR,			/* highaddr */
1118 	    NULL, NULL,				/* filtfunc, filtfuncarg */
1119 	    dsize, 1,				/* maxsize, nsegments */
1120 	    dsize, 0,				/* maxsegsz, flags */
1121 	    NULL, NULL,				/* lockfunc, lockfuncarg */
1122 	    dtag);				/* dmat */
1123 
1124 	if (error) {
1125 		device_printf(dev, "failed to allocate busdma %s tag\n",
1126 		    dname);
1127 		(*vaddr) = NULL;
1128 		return (ENXIO);
1129 	}
1130 
1131 	error = bus_dmamem_alloc(*dtag, vaddr, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1132 	    dmap);
1133 	if (error) {
1134 		device_printf(dev, "failed to allocate %s DMA safe memory\n",
1135 		    dname);
1136 		bus_dma_tag_destroy(*dtag);
1137 		(*vaddr) = NULL;
1138 		return (ENXIO);
1139 	}
1140 
1141 	error = bus_dmamap_load(*dtag, *dmap, *vaddr, dsize,
1142 	    tsec_map_dma_addr, raddr, BUS_DMA_NOWAIT);
1143 	if (error) {
1144 		device_printf(dev, "cannot get address of the %s "
1145 		    "descriptors\n", dname);
1146 		bus_dmamem_free(*dtag, *vaddr, *dmap);
1147 		bus_dma_tag_destroy(*dtag);
1148 		(*vaddr) = NULL;
1149 		return (ENXIO);
1150 	}
1151 
1152 	return (0);
1153 }
1154 
1155 static void
1156 tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr)
1157 {
1158 
1159 	if (vaddr == NULL)
1160 		return;
1161 
1162 	/* Unmap descriptors from DMA memory */
1163 	bus_dmamap_sync(dtag, dmap, BUS_DMASYNC_POSTREAD |
1164 	    BUS_DMASYNC_POSTWRITE);
1165 	bus_dmamap_unload(dtag, dmap);
1166 
1167 	/* Free descriptors memory */
1168 	bus_dmamem_free(dtag, vaddr, dmap);
1169 
1170 	/* Destroy descriptors tag */
1171 	bus_dma_tag_destroy(dtag);
1172 }
1173 
1174 static void
1175 tsec_free_dma(struct tsec_softc *sc)
1176 {
1177 	int i;
1178 
1179 	/* Free TX maps */
1180 	for (i = 0; i < TSEC_TX_NUM_DESC; i++)
1181 		if (sc->tx_bufmap[i].map_initialized)
1182 			bus_dmamap_destroy(sc->tsec_tx_mtag,
1183 			    sc->tx_bufmap[i].map);
1184 	/* Destroy tag for TX mbufs */
1185 	bus_dma_tag_destroy(sc->tsec_tx_mtag);
1186 
1187 	/* Free RX mbufs and maps */
1188 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
1189 		if (sc->rx_data[i].mbuf) {
1190 			/* Unload buffer from DMA */
1191 			bus_dmamap_sync(sc->tsec_rx_mtag, sc->rx_data[i].map,
1192 			    BUS_DMASYNC_POSTREAD);
1193 			bus_dmamap_unload(sc->tsec_rx_mtag,
1194 			    sc->rx_data[i].map);
1195 
1196 			/* Free buffer */
1197 			m_freem(sc->rx_data[i].mbuf);
1198 		}
1199 		/* Destroy map for this buffer */
1200 		if (sc->rx_data[i].map != NULL)
1201 			bus_dmamap_destroy(sc->tsec_rx_mtag,
1202 			    sc->rx_data[i].map);
1203 	}
1204 	/* Destroy tag for RX mbufs */
1205 	bus_dma_tag_destroy(sc->tsec_rx_mtag);
1206 
1207 	/* Unload TX/RX descriptors */
1208 	tsec_free_dma_desc(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1209 	    sc->tsec_tx_vaddr);
1210 	tsec_free_dma_desc(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1211 	    sc->tsec_rx_vaddr);
1212 }
1213 
1214 static void
1215 tsec_stop(struct tsec_softc *sc)
1216 {
1217 	struct ifnet *ifp;
1218 	uint32_t tmpval;
1219 
1220 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1221 
1222 	ifp = sc->tsec_ifp;
1223 
1224 	/* Disable interface and watchdog timer */
1225 	callout_stop(&sc->tsec_callout);
1226 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1227 	sc->tsec_watchdog = 0;
1228 
1229 	/* Disable all interrupts and stop DMA */
1230 	tsec_intrs_ctl(sc, 0);
1231 	tsec_dma_ctl(sc, 0);
1232 
1233 	/* Remove pending data from TX queue */
1234 	while (sc->tx_idx_tail != sc->tx_idx_head) {
1235 		bus_dmamap_sync(sc->tsec_tx_mtag,
1236 		    sc->tx_bufmap[sc->tx_idx_tail].map,
1237 		    BUS_DMASYNC_POSTWRITE);
1238 		bus_dmamap_unload(sc->tsec_tx_mtag,
1239 		    sc->tx_bufmap[sc->tx_idx_tail].map);
1240 		m_freem(sc->tx_bufmap[sc->tx_idx_tail].mbuf);
1241 		sc->tx_idx_tail = (sc->tx_idx_tail + 1)
1242 		    & (TSEC_TX_NUM_DESC - 1);
1243 	}
1244 
1245 	/* Disable RX and TX */
1246 	tmpval = TSEC_READ(sc, TSEC_REG_MACCFG1);
1247 	tmpval &= ~(TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN);
1248 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, tmpval);
1249 	DELAY(10);
1250 }
1251 
1252 static void
1253 tsec_tick(void *arg)
1254 {
1255 	struct tsec_softc *sc = arg;
1256 	struct ifnet *ifp;
1257 	int link;
1258 
1259 	TSEC_GLOBAL_LOCK(sc);
1260 
1261 	tsec_watchdog(sc);
1262 
1263 	ifp = sc->tsec_ifp;
1264 	link = sc->tsec_link;
1265 
1266 	mii_tick(sc->tsec_mii);
1267 
1268 	if (link == 0 && sc->tsec_link == 1 &&
1269 	    (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)))
1270 		tsec_start_locked(ifp);
1271 
1272 	/* Schedule another timeout one second from now. */
1273 	callout_reset(&sc->tsec_callout, hz, tsec_tick, sc);
1274 
1275 	TSEC_GLOBAL_UNLOCK(sc);
1276 }
1277 
1278 /*
1279  *  This is the core RX routine. It replenishes mbufs in the descriptor and
1280  *  sends data which have been dma'ed into host memory to upper layer.
1281  *
1282  *  Loops at most count times if count is > 0, or until done if count < 0.
1283  */
1284 static int
1285 tsec_receive_intr_locked(struct tsec_softc *sc, int count)
1286 {
1287 	struct tsec_desc *rx_desc;
1288 	struct ifnet *ifp;
1289 	struct rx_data_type *rx_data;
1290 	struct mbuf *m;
1291 	uint32_t i;
1292 	int c, rx_npkts;
1293 	uint16_t flags;
1294 
1295 	TSEC_RECEIVE_LOCK_ASSERT(sc);
1296 
1297 	ifp = sc->tsec_ifp;
1298 	rx_data = sc->rx_data;
1299 	rx_npkts = 0;
1300 
1301 	bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1302 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1303 
1304 	for (c = 0; ; c++) {
1305 		if (count >= 0 && count-- == 0)
1306 			break;
1307 
1308 		rx_desc = TSEC_GET_CUR_RX_DESC(sc);
1309 		flags = rx_desc->flags;
1310 
1311 		/* Check if there is anything to receive */
1312 		if ((flags & TSEC_RXBD_E) || (c >= TSEC_RX_NUM_DESC)) {
1313 			/*
1314 			 * Avoid generating another interrupt
1315 			 */
1316 			if (flags & TSEC_RXBD_E)
1317 				TSEC_WRITE(sc, TSEC_REG_IEVENT,
1318 				    TSEC_IEVENT_RXB | TSEC_IEVENT_RXF);
1319 			/*
1320 			 * We didn't consume current descriptor and have to
1321 			 * return it to the queue
1322 			 */
1323 			TSEC_BACK_CUR_RX_DESC(sc);
1324 			break;
1325 		}
1326 
1327 		if (flags & (TSEC_RXBD_LG | TSEC_RXBD_SH | TSEC_RXBD_NO |
1328 		    TSEC_RXBD_CR | TSEC_RXBD_OV | TSEC_RXBD_TR)) {
1329 
1330 			rx_desc->length = 0;
1331 			rx_desc->flags = (rx_desc->flags &
1332 			    ~TSEC_RXBD_ZEROONINIT) | TSEC_RXBD_E | TSEC_RXBD_I;
1333 
1334 			if (sc->frame != NULL) {
1335 				m_free(sc->frame);
1336 				sc->frame = NULL;
1337 			}
1338 
1339 			continue;
1340 		}
1341 
1342 		/* Ok... process frame */
1343 		i = TSEC_GET_CUR_RX_DESC_CNT(sc);
1344 		m = rx_data[i].mbuf;
1345 		m->m_len = rx_desc->length;
1346 
1347 		if (sc->frame != NULL) {
1348 			if ((flags & TSEC_RXBD_L) != 0)
1349 				m->m_len -= m_length(sc->frame, NULL);
1350 
1351 			m->m_flags &= ~M_PKTHDR;
1352 			m_cat(sc->frame, m);
1353 		} else {
1354 			sc->frame = m;
1355 		}
1356 
1357 		m = NULL;
1358 
1359 		if ((flags & TSEC_RXBD_L) != 0) {
1360 			m = sc->frame;
1361 			sc->frame = NULL;
1362 		}
1363 
1364 		if (tsec_new_rxbuf(sc->tsec_rx_mtag, rx_data[i].map,
1365 		    &rx_data[i].mbuf, &rx_data[i].paddr)) {
1366 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1367 			/*
1368 			 * We ran out of mbufs; didn't consume current
1369 			 * descriptor and have to return it to the queue.
1370 			 */
1371 			TSEC_BACK_CUR_RX_DESC(sc);
1372 			break;
1373 		}
1374 
1375 		/* Attach new buffer to descriptor and clear flags */
1376 		rx_desc->bufptr = rx_data[i].paddr;
1377 		rx_desc->length = 0;
1378 		rx_desc->flags = (rx_desc->flags & ~TSEC_RXBD_ZEROONINIT) |
1379 		    TSEC_RXBD_E | TSEC_RXBD_I;
1380 
1381 		if (m != NULL) {
1382 			m->m_pkthdr.rcvif = ifp;
1383 
1384 			m_fixhdr(m);
1385 			m_adj(m, -ETHER_CRC_LEN);
1386 
1387 			if (sc->is_etsec)
1388 				tsec_offload_process_frame(sc, m);
1389 
1390 			TSEC_RECEIVE_UNLOCK(sc);
1391 			(*ifp->if_input)(ifp, m);
1392 			TSEC_RECEIVE_LOCK(sc);
1393 			rx_npkts++;
1394 		}
1395 	}
1396 
1397 	bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1398 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1399 
1400 	/*
1401 	 * Make sure TSEC receiver is not halted.
1402 	 *
1403 	 * Various conditions can stop the TSEC receiver, but not all are
1404 	 * signaled and handled by error interrupt, so make sure the receiver
1405 	 * is running. Writing to TSEC_REG_RSTAT restarts the receiver when
1406 	 * halted, and is harmless if already running.
1407 	 */
1408 	TSEC_WRITE(sc, TSEC_REG_RSTAT, TSEC_RSTAT_QHLT);
1409 	return (rx_npkts);
1410 }
1411 
1412 void
1413 tsec_receive_intr(void *arg)
1414 {
1415 	struct tsec_softc *sc = arg;
1416 
1417 	TSEC_RECEIVE_LOCK(sc);
1418 
1419 #ifdef DEVICE_POLLING
1420 	if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) {
1421 		TSEC_RECEIVE_UNLOCK(sc);
1422 		return;
1423 	}
1424 #endif
1425 
1426 	/* Confirm the interrupt was received by driver */
1427 	TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXB | TSEC_IEVENT_RXF);
1428 	tsec_receive_intr_locked(sc, -1);
1429 
1430 	TSEC_RECEIVE_UNLOCK(sc);
1431 }
1432 
1433 static void
1434 tsec_transmit_intr_locked(struct tsec_softc *sc)
1435 {
1436 	struct ifnet *ifp;
1437 	uint32_t tx_idx;
1438 
1439 	TSEC_TRANSMIT_LOCK_ASSERT(sc);
1440 
1441 	ifp = sc->tsec_ifp;
1442 
1443 	/* Update collision statistics */
1444 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, TSEC_READ(sc, TSEC_REG_MON_TNCL));
1445 
1446 	/* Reset collision counters in hardware */
1447 	TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0);
1448 	TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0);
1449 	TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0);
1450 	TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0);
1451 	TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0);
1452 
1453 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1454 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1455 
1456 	tx_idx = sc->tx_idx_tail;
1457 	while (tx_idx != sc->tx_idx_head) {
1458 		struct tsec_desc *tx_desc;
1459 		struct tsec_bufmap *tx_bufmap;
1460 
1461 		tx_desc = &sc->tsec_tx_vaddr[tx_idx];
1462 		if (tx_desc->flags & TSEC_TXBD_R) {
1463 			break;
1464 		}
1465 
1466 		tx_bufmap = &sc->tx_bufmap[tx_idx];
1467 		tx_idx = (tx_idx + 1) & (TSEC_TX_NUM_DESC - 1);
1468 		if (tx_bufmap->mbuf == NULL)
1469 			continue;
1470 
1471 		/*
1472 		 * This is the last buf in this packet, so unmap and free it.
1473 		 */
1474 		bus_dmamap_sync(sc->tsec_tx_mtag, tx_bufmap->map,
1475 		    BUS_DMASYNC_POSTWRITE);
1476 		bus_dmamap_unload(sc->tsec_tx_mtag, tx_bufmap->map);
1477 		m_freem(tx_bufmap->mbuf);
1478 		tx_bufmap->mbuf = NULL;
1479 
1480 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1481 	}
1482 	sc->tx_idx_tail = tx_idx;
1483 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1484 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1485 
1486 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1487 	tsec_start_locked(ifp);
1488 
1489 	if (sc->tx_idx_tail == sc->tx_idx_head)
1490 		sc->tsec_watchdog = 0;
1491 }
1492 
1493 void
1494 tsec_transmit_intr(void *arg)
1495 {
1496 	struct tsec_softc *sc = arg;
1497 
1498 	TSEC_TRANSMIT_LOCK(sc);
1499 
1500 #ifdef DEVICE_POLLING
1501 	if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) {
1502 		TSEC_TRANSMIT_UNLOCK(sc);
1503 		return;
1504 	}
1505 #endif
1506 	/* Confirm the interrupt was received by driver */
1507 	TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_TXB | TSEC_IEVENT_TXF);
1508 	tsec_transmit_intr_locked(sc);
1509 
1510 	TSEC_TRANSMIT_UNLOCK(sc);
1511 }
1512 
1513 static void
1514 tsec_error_intr_locked(struct tsec_softc *sc, int count)
1515 {
1516 	struct ifnet *ifp;
1517 	uint32_t eflags;
1518 
1519 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1520 
1521 	ifp = sc->tsec_ifp;
1522 
1523 	eflags = TSEC_READ(sc, TSEC_REG_IEVENT);
1524 
1525 	/* Clear events bits in hardware */
1526 	TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXC | TSEC_IEVENT_BSY |
1527 	    TSEC_IEVENT_EBERR | TSEC_IEVENT_MSRO | TSEC_IEVENT_BABT |
1528 	    TSEC_IEVENT_TXC | TSEC_IEVENT_TXE | TSEC_IEVENT_LC |
1529 	    TSEC_IEVENT_CRL | TSEC_IEVENT_XFUN);
1530 
1531 	/* Check transmitter errors */
1532 	if (eflags & TSEC_IEVENT_TXE) {
1533 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1534 
1535 		if (eflags & TSEC_IEVENT_LC)
1536 			if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
1537 
1538 		TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
1539 	}
1540 
1541 	/* Check for discarded frame due to a lack of buffers */
1542 	if (eflags & TSEC_IEVENT_BSY) {
1543 		if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1544 	}
1545 
1546 	if (ifp->if_flags & IFF_DEBUG)
1547 		if_printf(ifp, "tsec_error_intr(): event flags: 0x%x\n",
1548 		    eflags);
1549 
1550 	if (eflags & TSEC_IEVENT_EBERR) {
1551 		if_printf(ifp, "System bus error occurred during"
1552 		    "DMA transaction (flags: 0x%x)\n", eflags);
1553 		tsec_init_locked(sc);
1554 	}
1555 
1556 	if (eflags & TSEC_IEVENT_BABT)
1557 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1558 
1559 	if (eflags & TSEC_IEVENT_BABR)
1560 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1561 }
1562 
1563 void
1564 tsec_error_intr(void *arg)
1565 {
1566 	struct tsec_softc *sc = arg;
1567 
1568 	TSEC_GLOBAL_LOCK(sc);
1569 	tsec_error_intr_locked(sc, -1);
1570 	TSEC_GLOBAL_UNLOCK(sc);
1571 }
1572 
1573 int
1574 tsec_miibus_readreg(device_t dev, int phy, int reg)
1575 {
1576 	struct tsec_softc *sc;
1577 	int timeout;
1578 	int rv;
1579 
1580 	sc = device_get_softc(dev);
1581 
1582 	TSEC_PHY_LOCK();
1583 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMADD, (phy << 8) | reg);
1584 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCOM, 0);
1585 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCOM, TSEC_MIIMCOM_READCYCLE);
1586 
1587 	timeout = tsec_mii_wait(sc, TSEC_MIIMIND_NOTVALID | TSEC_MIIMIND_BUSY);
1588 	rv = TSEC_PHY_READ(sc, TSEC_REG_MIIMSTAT);
1589 	TSEC_PHY_UNLOCK();
1590 
1591 	if (timeout)
1592 		device_printf(dev, "Timeout while reading from PHY!\n");
1593 
1594 	return (rv);
1595 }
1596 
1597 int
1598 tsec_miibus_writereg(device_t dev, int phy, int reg, int value)
1599 {
1600 	struct tsec_softc *sc;
1601 	int timeout;
1602 
1603 	sc = device_get_softc(dev);
1604 
1605 	TSEC_PHY_LOCK();
1606 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMADD, (phy << 8) | reg);
1607 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCON, value);
1608 	timeout = tsec_mii_wait(sc, TSEC_MIIMIND_BUSY);
1609 	TSEC_PHY_UNLOCK();
1610 
1611 	if (timeout)
1612 		device_printf(dev, "Timeout while writing to PHY!\n");
1613 
1614 	return (0);
1615 }
1616 
1617 void
1618 tsec_miibus_statchg(device_t dev)
1619 {
1620 	struct tsec_softc *sc;
1621 	struct mii_data *mii;
1622 	uint32_t ecntrl, id, tmp;
1623 	int link;
1624 
1625 	sc = device_get_softc(dev);
1626 	mii = sc->tsec_mii;
1627 	link = ((mii->mii_media_status & IFM_ACTIVE) ? 1 : 0);
1628 
1629 	tmp = TSEC_READ(sc, TSEC_REG_MACCFG2) & ~TSEC_MACCFG2_IF;
1630 
1631 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
1632 		tmp |= TSEC_MACCFG2_FULLDUPLEX;
1633 	else
1634 		tmp &= ~TSEC_MACCFG2_FULLDUPLEX;
1635 
1636 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1637 	case IFM_1000_T:
1638 	case IFM_1000_SX:
1639 		tmp |= TSEC_MACCFG2_GMII;
1640 		sc->tsec_link = link;
1641 		break;
1642 	case IFM_100_TX:
1643 	case IFM_10_T:
1644 		tmp |= TSEC_MACCFG2_MII;
1645 		sc->tsec_link = link;
1646 		break;
1647 	case IFM_NONE:
1648 		if (link)
1649 			device_printf(dev, "No speed selected but link "
1650 			    "active!\n");
1651 		sc->tsec_link = 0;
1652 		return;
1653 	default:
1654 		sc->tsec_link = 0;
1655 		device_printf(dev, "Unknown speed (%d), link %s!\n",
1656 		    IFM_SUBTYPE(mii->mii_media_active),
1657 		        ((link) ? "up" : "down"));
1658 		return;
1659 	}
1660 	TSEC_WRITE(sc, TSEC_REG_MACCFG2, tmp);
1661 
1662 	/* XXX kludge - use circumstantial evidence for reduced mode. */
1663 	id = TSEC_READ(sc, TSEC_REG_ID2);
1664 	if (id & 0xffff) {
1665 		ecntrl = TSEC_READ(sc, TSEC_REG_ECNTRL) & ~TSEC_ECNTRL_R100M;
1666 		ecntrl |= (tmp & TSEC_MACCFG2_MII) ? TSEC_ECNTRL_R100M : 0;
1667 		TSEC_WRITE(sc, TSEC_REG_ECNTRL, ecntrl);
1668 	}
1669 }
1670 
1671 static void
1672 tsec_add_sysctls(struct tsec_softc *sc)
1673 {
1674 	struct sysctl_ctx_list *ctx;
1675 	struct sysctl_oid_list *children;
1676 	struct sysctl_oid *tree;
1677 
1678 	ctx = device_get_sysctl_ctx(sc->dev);
1679 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
1680 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "int_coal",
1681 	    CTLFLAG_RD, 0, "TSEC Interrupts coalescing");
1682 	children = SYSCTL_CHILDREN(tree);
1683 
1684 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_time",
1685 	    CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_RX, tsec_sysctl_ic_time,
1686 	    "I", "IC RX time threshold (0-65535)");
1687 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_count",
1688 	    CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_RX, tsec_sysctl_ic_count,
1689 	    "I", "IC RX frame count threshold (0-255)");
1690 
1691 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_time",
1692 	    CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_TX, tsec_sysctl_ic_time,
1693 	    "I", "IC TX time threshold (0-65535)");
1694 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_count",
1695 	    CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_TX, tsec_sysctl_ic_count,
1696 	    "I", "IC TX frame count threshold (0-255)");
1697 }
1698 
1699 /*
1700  * With Interrupt Coalescing (IC) active, a transmit/receive frame
1701  * interrupt is raised either upon:
1702  *
1703  * - threshold-defined period of time elapsed, or
1704  * - threshold-defined number of frames is received/transmitted,
1705  *   whichever occurs first.
1706  *
1707  * The following sysctls regulate IC behaviour (for TX/RX separately):
1708  *
1709  * dev.tsec.<unit>.int_coal.rx_time
1710  * dev.tsec.<unit>.int_coal.rx_count
1711  * dev.tsec.<unit>.int_coal.tx_time
1712  * dev.tsec.<unit>.int_coal.tx_count
1713  *
1714  * Values:
1715  *
1716  * - 0 for either time or count disables IC on the given TX/RX path
1717  *
1718  * - count: 1-255 (expresses frame count number; note that value of 1 is
1719  *   effectively IC off)
1720  *
1721  * - time: 1-65535 (value corresponds to a real time period and is
1722  *   expressed in units equivalent to 64 TSEC interface clocks, i.e. one timer
1723  *   threshold unit is 26.5 us, 2.56 us, or 512 ns, corresponding to 10 Mbps,
1724  *   100 Mbps, or 1Gbps, respectively. For detailed discussion consult the
1725  *   TSEC reference manual.
1726  */
1727 static int
1728 tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS)
1729 {
1730 	int error;
1731 	uint32_t time;
1732 	struct tsec_softc *sc = (struct tsec_softc *)arg1;
1733 
1734 	time = (arg2 == TSEC_IC_RX) ? sc->rx_ic_time : sc->tx_ic_time;
1735 
1736 	error = sysctl_handle_int(oidp, &time, 0, req);
1737 	if (error != 0)
1738 		return (error);
1739 
1740 	if (time > 65535)
1741 		return (EINVAL);
1742 
1743 	TSEC_IC_LOCK(sc);
1744 	if (arg2 == TSEC_IC_RX) {
1745 		sc->rx_ic_time = time;
1746 		tsec_set_rxic(sc);
1747 	} else {
1748 		sc->tx_ic_time = time;
1749 		tsec_set_txic(sc);
1750 	}
1751 	TSEC_IC_UNLOCK(sc);
1752 
1753 	return (0);
1754 }
1755 
1756 static int
1757 tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS)
1758 {
1759 	int error;
1760 	uint32_t count;
1761 	struct tsec_softc *sc = (struct tsec_softc *)arg1;
1762 
1763 	count = (arg2 == TSEC_IC_RX) ? sc->rx_ic_count : sc->tx_ic_count;
1764 
1765 	error = sysctl_handle_int(oidp, &count, 0, req);
1766 	if (error != 0)
1767 		return (error);
1768 
1769 	if (count > 255)
1770 		return (EINVAL);
1771 
1772 	TSEC_IC_LOCK(sc);
1773 	if (arg2 == TSEC_IC_RX) {
1774 		sc->rx_ic_count = count;
1775 		tsec_set_rxic(sc);
1776 	} else {
1777 		sc->tx_ic_count = count;
1778 		tsec_set_txic(sc);
1779 	}
1780 	TSEC_IC_UNLOCK(sc);
1781 
1782 	return (0);
1783 }
1784 
1785 static void
1786 tsec_set_rxic(struct tsec_softc *sc)
1787 {
1788 	uint32_t rxic_val;
1789 
1790 	if (sc->rx_ic_count == 0 || sc->rx_ic_time == 0)
1791 		/* Disable RX IC */
1792 		rxic_val = 0;
1793 	else {
1794 		rxic_val = 0x80000000;
1795 		rxic_val |= (sc->rx_ic_count << 21);
1796 		rxic_val |= sc->rx_ic_time;
1797 	}
1798 
1799 	TSEC_WRITE(sc, TSEC_REG_RXIC, rxic_val);
1800 }
1801 
1802 static void
1803 tsec_set_txic(struct tsec_softc *sc)
1804 {
1805 	uint32_t txic_val;
1806 
1807 	if (sc->tx_ic_count == 0 || sc->tx_ic_time == 0)
1808 		/* Disable TX IC */
1809 		txic_val = 0;
1810 	else {
1811 		txic_val = 0x80000000;
1812 		txic_val |= (sc->tx_ic_count << 21);
1813 		txic_val |= sc->tx_ic_time;
1814 	}
1815 
1816 	TSEC_WRITE(sc, TSEC_REG_TXIC, txic_val);
1817 }
1818 
1819 static void
1820 tsec_offload_setup(struct tsec_softc *sc)
1821 {
1822 	struct ifnet *ifp = sc->tsec_ifp;
1823 	uint32_t reg;
1824 
1825 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1826 
1827 	reg = TSEC_READ(sc, TSEC_REG_TCTRL);
1828 	reg |= TSEC_TCTRL_IPCSEN | TSEC_TCTRL_TUCSEN;
1829 
1830 	if (ifp->if_capenable & IFCAP_TXCSUM)
1831 		ifp->if_hwassist = TSEC_CHECKSUM_FEATURES;
1832 	else
1833 		ifp->if_hwassist = 0;
1834 
1835 	TSEC_WRITE(sc, TSEC_REG_TCTRL, reg);
1836 
1837 	reg = TSEC_READ(sc, TSEC_REG_RCTRL);
1838 	reg &= ~(TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN | TSEC_RCTRL_PRSDEP);
1839 	reg |= TSEC_RCTRL_PRSDEP_PARSE_L2 | TSEC_RCTRL_VLEX;
1840 
1841 	if (ifp->if_capenable & IFCAP_RXCSUM)
1842 		reg |= TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN |
1843 		    TSEC_RCTRL_PRSDEP_PARSE_L234;
1844 
1845 	TSEC_WRITE(sc, TSEC_REG_RCTRL, reg);
1846 }
1847 
1848 
1849 static void
1850 tsec_offload_process_frame(struct tsec_softc *sc, struct mbuf *m)
1851 {
1852 	struct tsec_rx_fcb rx_fcb;
1853 	int csum_flags = 0;
1854 	int protocol, flags;
1855 
1856 	TSEC_RECEIVE_LOCK_ASSERT(sc);
1857 
1858 	m_copydata(m, 0, sizeof(struct tsec_rx_fcb), (caddr_t)(&rx_fcb));
1859 	flags = rx_fcb.flags;
1860 	protocol = rx_fcb.protocol;
1861 
1862 	if (TSEC_RX_FCB_IP_CSUM_CHECKED(flags)) {
1863 		csum_flags |= CSUM_IP_CHECKED;
1864 
1865 		if ((flags & TSEC_RX_FCB_IP_CSUM_ERROR) == 0)
1866 			csum_flags |= CSUM_IP_VALID;
1867 	}
1868 
1869 	if ((protocol == IPPROTO_TCP || protocol == IPPROTO_UDP) &&
1870 	    TSEC_RX_FCB_TCP_UDP_CSUM_CHECKED(flags) &&
1871 	    (flags & TSEC_RX_FCB_TCP_UDP_CSUM_ERROR) == 0) {
1872 
1873 		csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1874 		m->m_pkthdr.csum_data = 0xFFFF;
1875 	}
1876 
1877 	m->m_pkthdr.csum_flags = csum_flags;
1878 
1879 	if (flags & TSEC_RX_FCB_VLAN) {
1880 		m->m_pkthdr.ether_vtag = rx_fcb.vlan;
1881 		m->m_flags |= M_VLANTAG;
1882 	}
1883 
1884 	m_adj(m, sizeof(struct tsec_rx_fcb));
1885 }
1886 
1887 static void
1888 tsec_setup_multicast(struct tsec_softc *sc)
1889 {
1890 	uint32_t hashtable[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
1891 	struct ifnet *ifp = sc->tsec_ifp;
1892 	struct ifmultiaddr *ifma;
1893 	uint32_t h;
1894 	int i;
1895 
1896 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1897 
1898 	if (ifp->if_flags & IFF_ALLMULTI) {
1899 		for (i = 0; i < 8; i++)
1900 			TSEC_WRITE(sc, TSEC_REG_GADDR(i), 0xFFFFFFFF);
1901 
1902 		return;
1903 	}
1904 
1905 	if_maddr_rlock(ifp);
1906 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1907 
1908 		if (ifma->ifma_addr->sa_family != AF_LINK)
1909 			continue;
1910 
1911 		h = (ether_crc32_be(LLADDR((struct sockaddr_dl *)
1912 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 24) & 0xFF;
1913 
1914 		hashtable[(h >> 5)] |= 1 << (0x1F - (h & 0x1F));
1915 	}
1916 	if_maddr_runlock(ifp);
1917 
1918 	for (i = 0; i < 8; i++)
1919 		TSEC_WRITE(sc, TSEC_REG_GADDR(i), hashtable[i]);
1920 }
1921 
1922 static int
1923 tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu)
1924 {
1925 
1926 	mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
1927 
1928 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1929 
1930 	if (mtu >= TSEC_MIN_FRAME_SIZE && mtu <= TSEC_MAX_FRAME_SIZE) {
1931 		TSEC_WRITE(sc, TSEC_REG_MAXFRM, mtu);
1932 		return (mtu);
1933 	}
1934 
1935 	return (0);
1936 }
1937