xref: /freebsd/sys/dev/tsec/if_tsec.c (revision 3ef51c5fb9163f2aafb1c14729e06a8bf0c4d113)
1 /*-
2  * Copyright (C) 2007-2008 Semihalf, Rafal Jaworowski
3  * Copyright (C) 2006-2007 Semihalf, Piotr Kruszynski
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /*
28  * Freescale integrated Three-Speed Ethernet Controller (TSEC) driver.
29  */
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #ifdef HAVE_KERNEL_OPTION_HEADERS
34 #include "opt_device_polling.h"
35 #endif
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/bus.h>
40 #include <sys/endian.h>
41 #include <sys/mbuf.h>
42 #include <sys/kernel.h>
43 #include <sys/module.h>
44 #include <sys/socket.h>
45 #include <sys/sockio.h>
46 #include <sys/sysctl.h>
47 
48 #include <net/bpf.h>
49 #include <net/ethernet.h>
50 #include <net/if.h>
51 #include <net/if_arp.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 #include <net/if_vlan_var.h>
56 
57 #include <netinet/in_systm.h>
58 #include <netinet/in.h>
59 #include <netinet/ip.h>
60 
61 #include <machine/bus.h>
62 
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65 
66 #include <dev/tsec/if_tsec.h>
67 #include <dev/tsec/if_tsecreg.h>
68 
69 static int	tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag,
70     bus_dmamap_t *dmap, bus_size_t dsize, void **vaddr, void *raddr,
71     const char *dname);
72 static void	tsec_dma_ctl(struct tsec_softc *sc, int state);
73 static int	tsec_encap(struct tsec_softc *sc, struct mbuf *m_head,
74     int fcb_inserted);
75 static void	tsec_free_dma(struct tsec_softc *sc);
76 static void	tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr);
77 static int	tsec_ifmedia_upd(struct ifnet *ifp);
78 static void	tsec_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
79 static int	tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map,
80     struct mbuf **mbufp, uint32_t *paddr);
81 static void	tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs,
82     int nseg, int error);
83 static void	tsec_intrs_ctl(struct tsec_softc *sc, int state);
84 static void	tsec_init(void *xsc);
85 static void	tsec_init_locked(struct tsec_softc *sc);
86 static int	tsec_ioctl(struct ifnet *ifp, u_long command, caddr_t data);
87 static void	tsec_reset_mac(struct tsec_softc *sc);
88 static void	tsec_setfilter(struct tsec_softc *sc);
89 static void	tsec_set_mac_address(struct tsec_softc *sc);
90 static void	tsec_start(struct ifnet *ifp);
91 static void	tsec_start_locked(struct ifnet *ifp);
92 static void	tsec_stop(struct tsec_softc *sc);
93 static void	tsec_tick(void *arg);
94 static void	tsec_watchdog(struct tsec_softc *sc);
95 static void	tsec_add_sysctls(struct tsec_softc *sc);
96 static int	tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS);
97 static int	tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS);
98 static void	tsec_set_rxic(struct tsec_softc *sc);
99 static void	tsec_set_txic(struct tsec_softc *sc);
100 static int	tsec_receive_intr_locked(struct tsec_softc *sc, int count);
101 static void	tsec_transmit_intr_locked(struct tsec_softc *sc);
102 static void	tsec_error_intr_locked(struct tsec_softc *sc, int count);
103 static void	tsec_offload_setup(struct tsec_softc *sc);
104 static void	tsec_offload_process_frame(struct tsec_softc *sc,
105     struct mbuf *m);
106 static void	tsec_setup_multicast(struct tsec_softc *sc);
107 static int	tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu);
108 
109 devclass_t tsec_devclass;
110 DRIVER_MODULE(miibus, tsec, miibus_driver, miibus_devclass, 0, 0);
111 MODULE_DEPEND(tsec, ether, 1, 1, 1);
112 MODULE_DEPEND(tsec, miibus, 1, 1, 1);
113 
114 int
115 tsec_attach(struct tsec_softc *sc)
116 {
117 	uint8_t hwaddr[ETHER_ADDR_LEN];
118 	struct ifnet *ifp;
119 	bus_dmamap_t *map_ptr;
120 	bus_dmamap_t **map_pptr;
121 	int error = 0;
122 	int i;
123 
124 	/* Reset all TSEC counters */
125 	TSEC_TX_RX_COUNTERS_INIT(sc);
126 
127 	/* Stop DMA engine if enabled by firmware */
128 	tsec_dma_ctl(sc, 0);
129 
130 	/* Reset MAC */
131 	tsec_reset_mac(sc);
132 
133 	/* Disable interrupts for now */
134 	tsec_intrs_ctl(sc, 0);
135 
136 	/* Configure defaults for interrupts coalescing */
137 	sc->rx_ic_time = 768;
138 	sc->rx_ic_count = 16;
139 	sc->tx_ic_time = 768;
140 	sc->tx_ic_count = 16;
141 	tsec_set_rxic(sc);
142 	tsec_set_txic(sc);
143 	tsec_add_sysctls(sc);
144 
145 	/* Allocate a busdma tag and DMA safe memory for TX descriptors. */
146 	error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_tx_dtag,
147 	    &sc->tsec_tx_dmap, sizeof(*sc->tsec_tx_vaddr) * TSEC_TX_NUM_DESC,
148 	    (void **)&sc->tsec_tx_vaddr, &sc->tsec_tx_raddr, "TX");
149 
150 	if (error) {
151 		tsec_detach(sc);
152 		return (ENXIO);
153 	}
154 
155 	/* Allocate a busdma tag and DMA safe memory for RX descriptors. */
156 	error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_rx_dtag,
157 	    &sc->tsec_rx_dmap, sizeof(*sc->tsec_rx_vaddr) * TSEC_RX_NUM_DESC,
158 	    (void **)&sc->tsec_rx_vaddr, &sc->tsec_rx_raddr, "RX");
159 	if (error) {
160 		tsec_detach(sc);
161 		return (ENXIO);
162 	}
163 
164 	/* Allocate a busdma tag for TX mbufs. */
165 	error = bus_dma_tag_create(NULL,	/* parent */
166 	    TSEC_TXBUFFER_ALIGNMENT, 0,		/* alignment, boundary */
167 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
168 	    BUS_SPACE_MAXADDR,			/* highaddr */
169 	    NULL, NULL,				/* filtfunc, filtfuncarg */
170 	    MCLBYTES * (TSEC_TX_NUM_DESC - 1),	/* maxsize */
171 	    TSEC_TX_NUM_DESC - 1,		/* nsegments */
172 	    MCLBYTES, 0,			/* maxsegsz, flags */
173 	    NULL, NULL,				/* lockfunc, lockfuncarg */
174 	    &sc->tsec_tx_mtag);			/* dmat */
175 	if (error) {
176 		device_printf(sc->dev, "failed to allocate busdma tag "
177 		    "(tx mbufs)\n");
178 		tsec_detach(sc);
179 		return (ENXIO);
180 	}
181 
182 	/* Allocate a busdma tag for RX mbufs. */
183 	error = bus_dma_tag_create(NULL,	/* parent */
184 	    TSEC_RXBUFFER_ALIGNMENT, 0,		/* alignment, boundary */
185 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
186 	    BUS_SPACE_MAXADDR,			/* highaddr */
187 	    NULL, NULL,				/* filtfunc, filtfuncarg */
188 	    MCLBYTES,				/* maxsize */
189 	    1,					/* nsegments */
190 	    MCLBYTES, 0,			/* maxsegsz, flags */
191 	    NULL, NULL,				/* lockfunc, lockfuncarg */
192 	    &sc->tsec_rx_mtag);			/* dmat */
193 	if (error) {
194 		device_printf(sc->dev, "failed to allocate busdma tag "
195 		    "(rx mbufs)\n");
196 		tsec_detach(sc);
197 		return (ENXIO);
198 	}
199 
200 	/* Create TX busdma maps */
201 	map_ptr = sc->tx_map_data;
202 	map_pptr = sc->tx_map_unused_data;
203 
204 	for (i = 0; i < TSEC_TX_NUM_DESC; i++) {
205 		map_pptr[i] = &map_ptr[i];
206 		error = bus_dmamap_create(sc->tsec_tx_mtag, 0, map_pptr[i]);
207 		if (error) {
208 			device_printf(sc->dev, "failed to init TX ring\n");
209 			tsec_detach(sc);
210 			return (ENXIO);
211 		}
212 	}
213 
214 	/* Create RX busdma maps and zero mbuf handlers */
215 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
216 		error = bus_dmamap_create(sc->tsec_rx_mtag, 0,
217 		    &sc->rx_data[i].map);
218 		if (error) {
219 			device_printf(sc->dev, "failed to init RX ring\n");
220 			tsec_detach(sc);
221 			return (ENXIO);
222 		}
223 		sc->rx_data[i].mbuf = NULL;
224 	}
225 
226 	/* Create mbufs for RX buffers */
227 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
228 		error = tsec_new_rxbuf(sc->tsec_rx_mtag, sc->rx_data[i].map,
229 		    &sc->rx_data[i].mbuf, &sc->rx_data[i].paddr);
230 		if (error) {
231 			device_printf(sc->dev, "can't load rx DMA map %d, "
232 			    "error = %d\n", i, error);
233 			tsec_detach(sc);
234 			return (error);
235 		}
236 	}
237 
238 	/* Create network interface for upper layers */
239 	ifp = sc->tsec_ifp = if_alloc(IFT_ETHER);
240 	if (ifp == NULL) {
241 		device_printf(sc->dev, "if_alloc() failed\n");
242 		tsec_detach(sc);
243 		return (ENOMEM);
244 	}
245 
246 	ifp->if_softc = sc;
247 	if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
248 	ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST;
249 	ifp->if_init = tsec_init;
250 	ifp->if_start = tsec_start;
251 	ifp->if_ioctl = tsec_ioctl;
252 
253 	IFQ_SET_MAXLEN(&ifp->if_snd, TSEC_TX_NUM_DESC - 1);
254 	ifp->if_snd.ifq_drv_maxlen = TSEC_TX_NUM_DESC - 1;
255 	IFQ_SET_READY(&ifp->if_snd);
256 
257 	ifp->if_capabilities = IFCAP_VLAN_MTU;
258 	if (sc->is_etsec)
259 		ifp->if_capabilities |= IFCAP_HWCSUM;
260 
261 	ifp->if_capenable = ifp->if_capabilities;
262 
263 #ifdef DEVICE_POLLING
264 	/* Advertise that polling is supported */
265 	ifp->if_capabilities |= IFCAP_POLLING;
266 #endif
267 
268 	/* Attach PHY(s) */
269 	error = mii_attach(sc->dev, &sc->tsec_miibus, ifp, tsec_ifmedia_upd,
270 	    tsec_ifmedia_sts, BMSR_DEFCAPMASK, sc->phyaddr, MII_OFFSET_ANY,
271 	    0);
272 	if (error) {
273 		device_printf(sc->dev, "attaching PHYs failed\n");
274 		if_free(ifp);
275 		sc->tsec_ifp = NULL;
276 		tsec_detach(sc);
277 		return (error);
278 	}
279 	sc->tsec_mii = device_get_softc(sc->tsec_miibus);
280 
281 	/* Set MAC address */
282 	tsec_get_hwaddr(sc, hwaddr);
283 	ether_ifattach(ifp, hwaddr);
284 
285 	return (0);
286 }
287 
288 int
289 tsec_detach(struct tsec_softc *sc)
290 {
291 
292 #ifdef DEVICE_POLLING
293 	if (sc->tsec_ifp->if_capenable & IFCAP_POLLING)
294 		ether_poll_deregister(sc->tsec_ifp);
295 #endif
296 
297 	/* Stop TSEC controller and free TX queue */
298 	if (sc->sc_rres && sc->tsec_ifp)
299 		tsec_shutdown(sc->dev);
300 
301 	/* Detach network interface */
302 	if (sc->tsec_ifp) {
303 		ether_ifdetach(sc->tsec_ifp);
304 		if_free(sc->tsec_ifp);
305 		sc->tsec_ifp = NULL;
306 	}
307 
308 	/* Free DMA resources */
309 	tsec_free_dma(sc);
310 
311 	return (0);
312 }
313 
314 int
315 tsec_shutdown(device_t dev)
316 {
317 	struct tsec_softc *sc;
318 
319 	sc = device_get_softc(dev);
320 
321 	TSEC_GLOBAL_LOCK(sc);
322 	tsec_stop(sc);
323 	TSEC_GLOBAL_UNLOCK(sc);
324 	return (0);
325 }
326 
327 int
328 tsec_suspend(device_t dev)
329 {
330 
331 	/* TODO not implemented! */
332 	return (0);
333 }
334 
335 int
336 tsec_resume(device_t dev)
337 {
338 
339 	/* TODO not implemented! */
340 	return (0);
341 }
342 
343 static void
344 tsec_init(void *xsc)
345 {
346 	struct tsec_softc *sc = xsc;
347 
348 	TSEC_GLOBAL_LOCK(sc);
349 	tsec_init_locked(sc);
350 	TSEC_GLOBAL_UNLOCK(sc);
351 }
352 
353 static void
354 tsec_init_locked(struct tsec_softc *sc)
355 {
356 	struct tsec_desc *tx_desc = sc->tsec_tx_vaddr;
357 	struct tsec_desc *rx_desc = sc->tsec_rx_vaddr;
358 	struct ifnet *ifp = sc->tsec_ifp;
359 	uint32_t timeout, val, i;
360 
361 	TSEC_GLOBAL_LOCK_ASSERT(sc);
362 	tsec_stop(sc);
363 
364 	/*
365 	 * These steps are according to the MPC8555E PowerQUICCIII RM:
366 	 * 14.7 Initialization/Application Information
367 	 */
368 
369 	/* Step 1: soft reset MAC */
370 	tsec_reset_mac(sc);
371 
372 	/* Step 2: Initialize MACCFG2 */
373 	TSEC_WRITE(sc, TSEC_REG_MACCFG2,
374 	    TSEC_MACCFG2_FULLDUPLEX |	/* Full Duplex = 1 */
375 	    TSEC_MACCFG2_PADCRC |	/* PAD/CRC append */
376 	    TSEC_MACCFG2_GMII |		/* I/F Mode bit */
377 	    TSEC_MACCFG2_PRECNT		/* Preamble count = 7 */
378 	);
379 
380 	/* Step 3: Initialize ECNTRL
381 	 * While the documentation states that R100M is ignored if RPM is
382 	 * not set, it does seem to be needed to get the orange boxes to
383 	 * work (which have a Marvell 88E1111 PHY). Go figure.
384 	 */
385 
386 	/*
387 	 * XXX kludge - use circumstancial evidence to program ECNTRL
388 	 * correctly. Ideally we need some board information to guide
389 	 * us here.
390 	 */
391 	i = TSEC_READ(sc, TSEC_REG_ID2);
392 	val = (i & 0xffff)
393 	    ? (TSEC_ECNTRL_TBIM | TSEC_ECNTRL_SGMIIM)	/* Sumatra */
394 	    : TSEC_ECNTRL_R100M;			/* Orange + CDS */
395 	TSEC_WRITE(sc, TSEC_REG_ECNTRL, TSEC_ECNTRL_STEN | val);
396 
397 	/* Step 4: Initialize MAC station address */
398 	tsec_set_mac_address(sc);
399 
400 	/*
401 	 * Step 5: Assign a Physical address to the TBI so as to not conflict
402 	 * with the external PHY physical address
403 	 */
404 	TSEC_WRITE(sc, TSEC_REG_TBIPA, 5);
405 
406 	/* Step 6: Reset the management interface */
407 	TSEC_WRITE(sc->phy_sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_RESETMGMT);
408 
409 	/* Step 7: Setup the MII Mgmt clock speed */
410 	TSEC_WRITE(sc->phy_sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_CLKDIV28);
411 
412 	/* Step 8: Read MII Mgmt indicator register and check for Busy = 0 */
413 	timeout = TSEC_READ_RETRY;
414 	while (--timeout && (TSEC_READ(sc->phy_sc, TSEC_REG_MIIMIND) &
415 	    TSEC_MIIMIND_BUSY))
416 		DELAY(TSEC_READ_DELAY);
417 	if (timeout == 0) {
418 		if_printf(ifp, "tsec_init_locked(): Mgmt busy timeout\n");
419 		return;
420 	}
421 
422 	/* Step 9: Setup the MII Mgmt */
423 	mii_mediachg(sc->tsec_mii);
424 
425 	/* Step 10: Clear IEVENT register */
426 	TSEC_WRITE(sc, TSEC_REG_IEVENT, 0xffffffff);
427 
428 	/* Step 11: Enable interrupts */
429 #ifdef DEVICE_POLLING
430 	/*
431 	 * ...only if polling is not turned on. Disable interrupts explicitly
432 	 * if polling is enabled.
433 	 */
434 	if (ifp->if_capenable & IFCAP_POLLING )
435 		tsec_intrs_ctl(sc, 0);
436 	else
437 #endif /* DEVICE_POLLING */
438 	tsec_intrs_ctl(sc, 1);
439 
440 	/* Step 12: Initialize IADDRn */
441 	TSEC_WRITE(sc, TSEC_REG_IADDR0, 0);
442 	TSEC_WRITE(sc, TSEC_REG_IADDR1, 0);
443 	TSEC_WRITE(sc, TSEC_REG_IADDR2, 0);
444 	TSEC_WRITE(sc, TSEC_REG_IADDR3, 0);
445 	TSEC_WRITE(sc, TSEC_REG_IADDR4, 0);
446 	TSEC_WRITE(sc, TSEC_REG_IADDR5, 0);
447 	TSEC_WRITE(sc, TSEC_REG_IADDR6, 0);
448 	TSEC_WRITE(sc, TSEC_REG_IADDR7, 0);
449 
450 	/* Step 13: Initialize GADDRn */
451 	TSEC_WRITE(sc, TSEC_REG_GADDR0, 0);
452 	TSEC_WRITE(sc, TSEC_REG_GADDR1, 0);
453 	TSEC_WRITE(sc, TSEC_REG_GADDR2, 0);
454 	TSEC_WRITE(sc, TSEC_REG_GADDR3, 0);
455 	TSEC_WRITE(sc, TSEC_REG_GADDR4, 0);
456 	TSEC_WRITE(sc, TSEC_REG_GADDR5, 0);
457 	TSEC_WRITE(sc, TSEC_REG_GADDR6, 0);
458 	TSEC_WRITE(sc, TSEC_REG_GADDR7, 0);
459 
460 	/* Step 14: Initialize RCTRL */
461 	TSEC_WRITE(sc, TSEC_REG_RCTRL, 0);
462 
463 	/* Step 15: Initialize DMACTRL */
464 	tsec_dma_ctl(sc, 1);
465 
466 	/* Step 16: Initialize FIFO_PAUSE_CTRL */
467 	TSEC_WRITE(sc, TSEC_REG_FIFO_PAUSE_CTRL, TSEC_FIFO_PAUSE_CTRL_EN);
468 
469 	/*
470 	 * Step 17: Initialize transmit/receive descriptor rings.
471 	 * Initialize TBASE and RBASE.
472 	 */
473 	TSEC_WRITE(sc, TSEC_REG_TBASE, sc->tsec_tx_raddr);
474 	TSEC_WRITE(sc, TSEC_REG_RBASE, sc->tsec_rx_raddr);
475 
476 	for (i = 0; i < TSEC_TX_NUM_DESC; i++) {
477 		tx_desc[i].bufptr = 0;
478 		tx_desc[i].length = 0;
479 		tx_desc[i].flags = ((i == TSEC_TX_NUM_DESC - 1) ?
480 		    TSEC_TXBD_W : 0);
481 	}
482 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
483 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
484 
485 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
486 		rx_desc[i].bufptr = sc->rx_data[i].paddr;
487 		rx_desc[i].length = 0;
488 		rx_desc[i].flags = TSEC_RXBD_E | TSEC_RXBD_I |
489 		    ((i == TSEC_RX_NUM_DESC - 1) ? TSEC_RXBD_W : 0);
490 	}
491 	bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
492 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
493 
494 	/* Step 18: Initialize the maximum receive buffer length */
495 	TSEC_WRITE(sc, TSEC_REG_MRBLR, MCLBYTES);
496 
497 	/* Step 19: Configure ethernet frame sizes */
498 	TSEC_WRITE(sc, TSEC_REG_MINFLR, TSEC_MIN_FRAME_SIZE);
499 	tsec_set_mtu(sc, ifp->if_mtu);
500 
501 	/* Step 20: Enable Rx and RxBD sdata snooping */
502 	TSEC_WRITE(sc, TSEC_REG_ATTR, TSEC_ATTR_RDSEN | TSEC_ATTR_RBDSEN);
503 	TSEC_WRITE(sc, TSEC_REG_ATTRELI, 0);
504 
505 	/* Step 21: Reset collision counters in hardware */
506 	TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0);
507 	TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0);
508 	TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0);
509 	TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0);
510 	TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0);
511 
512 	/* Step 22: Mask all CAM interrupts */
513 	TSEC_WRITE(sc, TSEC_REG_MON_CAM1, 0xffffffff);
514 	TSEC_WRITE(sc, TSEC_REG_MON_CAM2, 0xffffffff);
515 
516 	/* Step 23: Enable Rx and Tx */
517 	val = TSEC_READ(sc, TSEC_REG_MACCFG1);
518 	val |= (TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN);
519 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, val);
520 
521 	/* Step 24: Reset TSEC counters for Tx and Rx rings */
522 	TSEC_TX_RX_COUNTERS_INIT(sc);
523 
524 	/* Step 25: Setup TCP/IP Off-Load engine */
525 	if (sc->is_etsec)
526 		tsec_offload_setup(sc);
527 
528 	/* Step 26: Setup multicast filters */
529 	tsec_setup_multicast(sc);
530 
531 	/* Step 27: Activate network interface */
532 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
533 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
534 	sc->tsec_if_flags = ifp->if_flags;
535 	sc->tsec_watchdog = 0;
536 
537 	/* Schedule watchdog timeout */
538 	callout_reset(&sc->tsec_callout, hz, tsec_tick, sc);
539 }
540 
541 static void
542 tsec_set_mac_address(struct tsec_softc *sc)
543 {
544 	uint32_t macbuf[2] = { 0, 0 };
545 	char *macbufp, *curmac;
546 	int i;
547 
548 	TSEC_GLOBAL_LOCK_ASSERT(sc);
549 
550 	KASSERT((ETHER_ADDR_LEN <= sizeof(macbuf)),
551 	    ("tsec_set_mac_address: (%d <= %d", ETHER_ADDR_LEN,
552 	    sizeof(macbuf)));
553 
554 	macbufp = (char *)macbuf;
555 	curmac = (char *)IF_LLADDR(sc->tsec_ifp);
556 
557 	/* Correct order of MAC address bytes */
558 	for (i = 1; i <= ETHER_ADDR_LEN; i++)
559 		macbufp[ETHER_ADDR_LEN-i] = curmac[i-1];
560 
561 	/* Initialize MAC station address MACSTNADDR2 and MACSTNADDR1 */
562 	TSEC_WRITE(sc, TSEC_REG_MACSTNADDR2, macbuf[1]);
563 	TSEC_WRITE(sc, TSEC_REG_MACSTNADDR1, macbuf[0]);
564 }
565 
566 /*
567  * DMA control function, if argument state is:
568  * 0 - DMA engine will be disabled
569  * 1 - DMA engine will be enabled
570  */
571 static void
572 tsec_dma_ctl(struct tsec_softc *sc, int state)
573 {
574 	device_t dev;
575 	uint32_t dma_flags, timeout;
576 
577 	dev = sc->dev;
578 
579 	dma_flags = TSEC_READ(sc, TSEC_REG_DMACTRL);
580 
581 	switch (state) {
582 	case 0:
583 		/* Temporarily clear stop graceful stop bits. */
584 		tsec_dma_ctl(sc, 1000);
585 
586 		/* Set it again */
587 		dma_flags |= (TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS);
588 		break;
589 	case 1000:
590 	case 1:
591 		/* Set write with response (WWR), wait (WOP) and snoop bits */
592 		dma_flags |= (TSEC_DMACTRL_TDSEN | TSEC_DMACTRL_TBDSEN |
593 		    DMACTRL_WWR | DMACTRL_WOP);
594 
595 		/* Clear graceful stop bits */
596 		dma_flags &= ~(TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS);
597 		break;
598 	default:
599 		device_printf(dev, "tsec_dma_ctl(): unknown state value: %d\n",
600 		    state);
601 	}
602 
603 	TSEC_WRITE(sc, TSEC_REG_DMACTRL, dma_flags);
604 
605 	switch (state) {
606 	case 0:
607 		/* Wait for DMA stop */
608 		timeout = TSEC_READ_RETRY;
609 		while (--timeout && (!(TSEC_READ(sc, TSEC_REG_IEVENT) &
610 		    (TSEC_IEVENT_GRSC | TSEC_IEVENT_GTSC))))
611 			DELAY(TSEC_READ_DELAY);
612 
613 		if (timeout == 0)
614 			device_printf(dev, "tsec_dma_ctl(): timeout!\n");
615 		break;
616 	case 1:
617 		/* Restart transmission function */
618 		TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
619 	}
620 }
621 
622 /*
623  * Interrupts control function, if argument state is:
624  * 0 - all TSEC interrupts will be masked
625  * 1 - all TSEC interrupts will be unmasked
626  */
627 static void
628 tsec_intrs_ctl(struct tsec_softc *sc, int state)
629 {
630 	device_t dev;
631 
632 	dev = sc->dev;
633 
634 	switch (state) {
635 	case 0:
636 		TSEC_WRITE(sc, TSEC_REG_IMASK, 0);
637 		break;
638 	case 1:
639 		TSEC_WRITE(sc, TSEC_REG_IMASK, TSEC_IMASK_BREN |
640 		    TSEC_IMASK_RXCEN | TSEC_IMASK_BSYEN | TSEC_IMASK_EBERREN |
641 		    TSEC_IMASK_BTEN | TSEC_IMASK_TXEEN | TSEC_IMASK_TXBEN |
642 		    TSEC_IMASK_TXFEN | TSEC_IMASK_XFUNEN | TSEC_IMASK_RXFEN);
643 		break;
644 	default:
645 		device_printf(dev, "tsec_intrs_ctl(): unknown state value: %d\n",
646 		    state);
647 	}
648 }
649 
650 static void
651 tsec_reset_mac(struct tsec_softc *sc)
652 {
653 	uint32_t maccfg1_flags;
654 
655 	/* Set soft reset bit */
656 	maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1);
657 	maccfg1_flags |= TSEC_MACCFG1_SOFT_RESET;
658 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags);
659 
660 	/* Clear soft reset bit */
661 	maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1);
662 	maccfg1_flags &= ~TSEC_MACCFG1_SOFT_RESET;
663 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags);
664 }
665 
666 static void
667 tsec_watchdog(struct tsec_softc *sc)
668 {
669 	struct ifnet *ifp;
670 
671 	TSEC_GLOBAL_LOCK_ASSERT(sc);
672 
673 	if (sc->tsec_watchdog == 0 || --sc->tsec_watchdog > 0)
674 		return;
675 
676 	ifp = sc->tsec_ifp;
677 	ifp->if_oerrors++;
678 	if_printf(ifp, "watchdog timeout\n");
679 
680 	tsec_stop(sc);
681 	tsec_init_locked(sc);
682 }
683 
684 static void
685 tsec_start(struct ifnet *ifp)
686 {
687 	struct tsec_softc *sc = ifp->if_softc;
688 
689 	TSEC_TRANSMIT_LOCK(sc);
690 	tsec_start_locked(ifp);
691 	TSEC_TRANSMIT_UNLOCK(sc);
692 }
693 
694 static void
695 tsec_start_locked(struct ifnet *ifp)
696 {
697 	struct tsec_softc *sc;
698 	struct mbuf *m0, *mtmp;
699 	struct tsec_tx_fcb *tx_fcb;
700 	unsigned int queued = 0;
701 	int csum_flags, fcb_inserted = 0;
702 
703 	sc = ifp->if_softc;
704 
705 	TSEC_TRANSMIT_LOCK_ASSERT(sc);
706 
707 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
708 	    IFF_DRV_RUNNING)
709 		return;
710 
711 	if (sc->tsec_link == 0)
712 		return;
713 
714 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
715 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
716 
717 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
718 		/* Get packet from the queue */
719 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
720 		if (m0 == NULL)
721 			break;
722 
723 		/* Insert TCP/IP Off-load frame control block */
724 		csum_flags = m0->m_pkthdr.csum_flags;
725 		if (csum_flags) {
726 
727 			M_PREPEND(m0, sizeof(struct tsec_tx_fcb), M_DONTWAIT);
728 			if (m0 == NULL)
729 				break;
730 
731 			tx_fcb = mtod(m0, struct tsec_tx_fcb *);
732 			tx_fcb->flags = 0;
733 			tx_fcb->l3_offset = ETHER_HDR_LEN;
734 			tx_fcb->l4_offset = sizeof(struct ip);
735 
736 			if (csum_flags & CSUM_IP)
737 				tx_fcb->flags |= TSEC_TX_FCB_IP4 |
738 				    TSEC_TX_FCB_CSUM_IP;
739 
740 			if (csum_flags & CSUM_TCP)
741 				tx_fcb->flags |= TSEC_TX_FCB_TCP |
742 				    TSEC_TX_FCB_CSUM_TCP_UDP;
743 
744 			if (csum_flags & CSUM_UDP)
745 				tx_fcb->flags |= TSEC_TX_FCB_UDP |
746 				    TSEC_TX_FCB_CSUM_TCP_UDP;
747 
748 			fcb_inserted = 1;
749 		}
750 
751 		mtmp = m_defrag(m0, M_DONTWAIT);
752 		if (mtmp)
753 			m0 = mtmp;
754 
755 		if (tsec_encap(sc, m0, fcb_inserted)) {
756 			IFQ_DRV_PREPEND(&ifp->if_snd, m0);
757 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
758 			break;
759 		}
760 		queued++;
761 		BPF_MTAP(ifp, m0);
762 	}
763 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
764 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
765 
766 	if (queued) {
767 		/* Enable transmitter and watchdog timer */
768 		TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
769 		sc->tsec_watchdog = 5;
770 	}
771 }
772 
773 static int
774 tsec_encap(struct tsec_softc *sc, struct mbuf *m0, int fcb_inserted)
775 {
776 	struct tsec_desc *tx_desc = NULL;
777 	struct ifnet *ifp;
778 	bus_dma_segment_t segs[TSEC_TX_NUM_DESC];
779 	bus_dmamap_t *mapp;
780 	int csum_flag = 0, error, seg, nsegs;
781 
782 	TSEC_TRANSMIT_LOCK_ASSERT(sc);
783 
784 	ifp = sc->tsec_ifp;
785 
786 	if (TSEC_FREE_TX_DESC(sc) == 0) {
787 		/* No free descriptors */
788 		return (-1);
789 	}
790 
791 	/* Fetch unused map */
792 	mapp = TSEC_ALLOC_TX_MAP(sc);
793 
794 	/* Create mapping in DMA memory */
795 	error = bus_dmamap_load_mbuf_sg(sc->tsec_tx_mtag,
796 	    *mapp, m0, segs, &nsegs, BUS_DMA_NOWAIT);
797 	if (error != 0 || nsegs > TSEC_FREE_TX_DESC(sc) || nsegs <= 0) {
798 		bus_dmamap_unload(sc->tsec_tx_mtag, *mapp);
799 		TSEC_FREE_TX_MAP(sc, mapp);
800 		return ((error != 0) ? error : -1);
801 	}
802 	bus_dmamap_sync(sc->tsec_tx_mtag, *mapp, BUS_DMASYNC_PREWRITE);
803 
804 	if ((ifp->if_flags & IFF_DEBUG) && (nsegs > 1))
805 		if_printf(ifp, "TX buffer has %d segments\n", nsegs);
806 
807 	if (fcb_inserted)
808 		csum_flag = TSEC_TXBD_TOE;
809 
810 	/* Everything is ok, now we can send buffers */
811 	for (seg = 0; seg < nsegs; seg++) {
812 		tx_desc = TSEC_GET_CUR_TX_DESC(sc);
813 
814 		tx_desc->length = segs[seg].ds_len;
815 		tx_desc->bufptr = segs[seg].ds_addr;
816 
817 		/*
818 		 * Set flags:
819 		 *   - wrap
820 		 *   - checksum
821 		 *   - ready to send
822 		 *   - transmit the CRC sequence after the last data byte
823 		 *   - interrupt after the last buffer
824 		 */
825 		tx_desc->flags =
826 		    (tx_desc->flags & TSEC_TXBD_W) |
827 		    ((seg == 0) ? csum_flag : 0) | TSEC_TXBD_R | TSEC_TXBD_TC |
828 		    ((seg == nsegs - 1) ? TSEC_TXBD_L | TSEC_TXBD_I : 0);
829 	}
830 
831 	/* Save mbuf and DMA mapping for release at later stage */
832 	TSEC_PUT_TX_MBUF(sc, m0);
833 	TSEC_PUT_TX_MAP(sc, mapp);
834 
835 	return (0);
836 }
837 
838 static void
839 tsec_setfilter(struct tsec_softc *sc)
840 {
841 	struct ifnet *ifp;
842 	uint32_t flags;
843 
844 	ifp = sc->tsec_ifp;
845 	flags = TSEC_READ(sc, TSEC_REG_RCTRL);
846 
847 	/* Promiscuous mode */
848 	if (ifp->if_flags & IFF_PROMISC)
849 		flags |= TSEC_RCTRL_PROM;
850 	else
851 		flags &= ~TSEC_RCTRL_PROM;
852 
853 	TSEC_WRITE(sc, TSEC_REG_RCTRL, flags);
854 }
855 
856 #ifdef DEVICE_POLLING
857 static poll_handler_t tsec_poll;
858 
859 static int
860 tsec_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
861 {
862 	uint32_t ie;
863 	struct tsec_softc *sc = ifp->if_softc;
864 	int rx_npkts;
865 
866 	rx_npkts = 0;
867 
868 	TSEC_GLOBAL_LOCK(sc);
869 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
870 		TSEC_GLOBAL_UNLOCK(sc);
871 		return (rx_npkts);
872 	}
873 
874 	if (cmd == POLL_AND_CHECK_STATUS) {
875 		tsec_error_intr_locked(sc, count);
876 
877 		/* Clear all events reported */
878 		ie = TSEC_READ(sc, TSEC_REG_IEVENT);
879 		TSEC_WRITE(sc, TSEC_REG_IEVENT, ie);
880 	}
881 
882 	tsec_transmit_intr_locked(sc);
883 
884 	TSEC_GLOBAL_TO_RECEIVE_LOCK(sc);
885 
886 	rx_npkts = tsec_receive_intr_locked(sc, count);
887 
888 	TSEC_RECEIVE_UNLOCK(sc);
889 
890 	return (rx_npkts);
891 }
892 #endif /* DEVICE_POLLING */
893 
894 static int
895 tsec_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
896 {
897 	struct tsec_softc *sc = ifp->if_softc;
898 	struct ifreq *ifr = (struct ifreq *)data;
899 	device_t dev;
900 	int mask, error = 0;
901 
902 	dev = sc->dev;
903 
904 	switch (command) {
905 	case SIOCSIFMTU:
906 		TSEC_GLOBAL_LOCK(sc);
907 		if (tsec_set_mtu(sc, ifr->ifr_mtu))
908 			ifp->if_mtu = ifr->ifr_mtu;
909 		else
910 			error = EINVAL;
911 		TSEC_GLOBAL_UNLOCK(sc);
912 		break;
913 	case SIOCSIFFLAGS:
914 		TSEC_GLOBAL_LOCK(sc);
915 		if (ifp->if_flags & IFF_UP) {
916 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
917 				if ((sc->tsec_if_flags ^ ifp->if_flags) &
918 				    IFF_PROMISC)
919 					tsec_setfilter(sc);
920 
921 				if ((sc->tsec_if_flags ^ ifp->if_flags) &
922 				    IFF_ALLMULTI)
923 					tsec_setup_multicast(sc);
924 			} else
925 				tsec_init_locked(sc);
926 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
927 			tsec_stop(sc);
928 
929 		sc->tsec_if_flags = ifp->if_flags;
930 		TSEC_GLOBAL_UNLOCK(sc);
931 		break;
932 	case SIOCADDMULTI:
933 	case SIOCDELMULTI:
934 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
935 			TSEC_GLOBAL_LOCK(sc);
936 			tsec_setup_multicast(sc);
937 			TSEC_GLOBAL_UNLOCK(sc);
938 		}
939 	case SIOCGIFMEDIA:
940 	case SIOCSIFMEDIA:
941 		error = ifmedia_ioctl(ifp, ifr, &sc->tsec_mii->mii_media,
942 		    command);
943 		break;
944 	case SIOCSIFCAP:
945 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
946 		if ((mask & IFCAP_HWCSUM) && sc->is_etsec) {
947 			TSEC_GLOBAL_LOCK(sc);
948 			ifp->if_capenable &= ~IFCAP_HWCSUM;
949 			ifp->if_capenable |= IFCAP_HWCSUM & ifr->ifr_reqcap;
950 			tsec_offload_setup(sc);
951 			TSEC_GLOBAL_UNLOCK(sc);
952 		}
953 #ifdef DEVICE_POLLING
954 		if (mask & IFCAP_POLLING) {
955 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
956 				error = ether_poll_register(tsec_poll, ifp);
957 				if (error)
958 					return (error);
959 
960 				TSEC_GLOBAL_LOCK(sc);
961 				/* Disable interrupts */
962 				tsec_intrs_ctl(sc, 0);
963 				ifp->if_capenable |= IFCAP_POLLING;
964 				TSEC_GLOBAL_UNLOCK(sc);
965 			} else {
966 				error = ether_poll_deregister(ifp);
967 				TSEC_GLOBAL_LOCK(sc);
968 				/* Enable interrupts */
969 				tsec_intrs_ctl(sc, 1);
970 				ifp->if_capenable &= ~IFCAP_POLLING;
971 				TSEC_GLOBAL_UNLOCK(sc);
972 			}
973 		}
974 #endif
975 		break;
976 
977 	default:
978 		error = ether_ioctl(ifp, command, data);
979 	}
980 
981 	/* Flush buffers if not empty */
982 	if (ifp->if_flags & IFF_UP)
983 		tsec_start(ifp);
984 	return (error);
985 }
986 
987 static int
988 tsec_ifmedia_upd(struct ifnet *ifp)
989 {
990 	struct tsec_softc *sc = ifp->if_softc;
991 	struct mii_data *mii;
992 
993 	TSEC_TRANSMIT_LOCK(sc);
994 
995 	mii = sc->tsec_mii;
996 	mii_mediachg(mii);
997 
998 	TSEC_TRANSMIT_UNLOCK(sc);
999 	return (0);
1000 }
1001 
1002 static void
1003 tsec_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1004 {
1005 	struct tsec_softc *sc = ifp->if_softc;
1006 	struct mii_data *mii;
1007 
1008 	TSEC_TRANSMIT_LOCK(sc);
1009 
1010 	mii = sc->tsec_mii;
1011 	mii_pollstat(mii);
1012 
1013 	ifmr->ifm_active = mii->mii_media_active;
1014 	ifmr->ifm_status = mii->mii_media_status;
1015 
1016 	TSEC_TRANSMIT_UNLOCK(sc);
1017 }
1018 
1019 static int
1020 tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map, struct mbuf **mbufp,
1021     uint32_t *paddr)
1022 {
1023 	struct mbuf *new_mbuf;
1024 	bus_dma_segment_t seg[1];
1025 	int error, nsegs;
1026 
1027 	KASSERT(mbufp != NULL, ("NULL mbuf pointer!"));
1028 
1029 	new_mbuf = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MCLBYTES);
1030 	if (new_mbuf == NULL)
1031 		return (ENOBUFS);
1032 	new_mbuf->m_len = new_mbuf->m_pkthdr.len = new_mbuf->m_ext.ext_size;
1033 
1034 	if (*mbufp) {
1035 		bus_dmamap_sync(tag, map, BUS_DMASYNC_POSTREAD);
1036 		bus_dmamap_unload(tag, map);
1037 	}
1038 
1039 	error = bus_dmamap_load_mbuf_sg(tag, map, new_mbuf, seg, &nsegs,
1040 	    BUS_DMA_NOWAIT);
1041 	KASSERT(nsegs == 1, ("Too many segments returned!"));
1042 	if (nsegs != 1 || error)
1043 		panic("tsec_new_rxbuf(): nsegs(%d), error(%d)", nsegs, error);
1044 
1045 #if 0
1046 	if (error) {
1047 		printf("tsec: bus_dmamap_load_mbuf_sg() returned: %d!\n",
1048 			error);
1049 		m_freem(new_mbuf);
1050 		return (ENOBUFS);
1051 	}
1052 #endif
1053 
1054 #if 0
1055 	KASSERT(((seg->ds_addr) & (TSEC_RXBUFFER_ALIGNMENT-1)) == 0,
1056 		("Wrong alignment of RX buffer!"));
1057 #endif
1058 	bus_dmamap_sync(tag, map, BUS_DMASYNC_PREREAD);
1059 
1060 	(*mbufp) = new_mbuf;
1061 	(*paddr) = seg->ds_addr;
1062 	return (0);
1063 }
1064 
1065 static void
1066 tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1067 {
1068 	u_int32_t *paddr;
1069 
1070 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
1071 	paddr = arg;
1072 	*paddr = segs->ds_addr;
1073 }
1074 
1075 static int
1076 tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag, bus_dmamap_t *dmap,
1077     bus_size_t dsize, void **vaddr, void *raddr, const char *dname)
1078 {
1079 	int error;
1080 
1081 	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
1082 	error = bus_dma_tag_create(NULL,	/* parent */
1083 	    PAGE_SIZE, 0,			/* alignment, boundary */
1084 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
1085 	    BUS_SPACE_MAXADDR,			/* highaddr */
1086 	    NULL, NULL,				/* filtfunc, filtfuncarg */
1087 	    dsize, 1,				/* maxsize, nsegments */
1088 	    dsize, 0,				/* maxsegsz, flags */
1089 	    NULL, NULL,				/* lockfunc, lockfuncarg */
1090 	    dtag);				/* dmat */
1091 
1092 	if (error) {
1093 		device_printf(dev, "failed to allocate busdma %s tag\n",
1094 		    dname);
1095 		(*vaddr) = NULL;
1096 		return (ENXIO);
1097 	}
1098 
1099 	error = bus_dmamem_alloc(*dtag, vaddr, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1100 	    dmap);
1101 	if (error) {
1102 		device_printf(dev, "failed to allocate %s DMA safe memory\n",
1103 		    dname);
1104 		bus_dma_tag_destroy(*dtag);
1105 		(*vaddr) = NULL;
1106 		return (ENXIO);
1107 	}
1108 
1109 	error = bus_dmamap_load(*dtag, *dmap, *vaddr, dsize,
1110 	    tsec_map_dma_addr, raddr, BUS_DMA_NOWAIT);
1111 	if (error) {
1112 		device_printf(dev, "cannot get address of the %s "
1113 		    "descriptors\n", dname);
1114 		bus_dmamem_free(*dtag, *vaddr, *dmap);
1115 		bus_dma_tag_destroy(*dtag);
1116 		(*vaddr) = NULL;
1117 		return (ENXIO);
1118 	}
1119 
1120 	return (0);
1121 }
1122 
1123 static void
1124 tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr)
1125 {
1126 
1127 	if (vaddr == NULL)
1128 		return;
1129 
1130 	/* Unmap descriptors from DMA memory */
1131 	bus_dmamap_sync(dtag, dmap, BUS_DMASYNC_POSTREAD |
1132 	    BUS_DMASYNC_POSTWRITE);
1133 	bus_dmamap_unload(dtag, dmap);
1134 
1135 	/* Free descriptors memory */
1136 	bus_dmamem_free(dtag, vaddr, dmap);
1137 
1138 	/* Destroy descriptors tag */
1139 	bus_dma_tag_destroy(dtag);
1140 }
1141 
1142 static void
1143 tsec_free_dma(struct tsec_softc *sc)
1144 {
1145 	int i;
1146 
1147 	/* Free TX maps */
1148 	for (i = 0; i < TSEC_TX_NUM_DESC; i++)
1149 		if (sc->tx_map_data[i] != NULL)
1150 			bus_dmamap_destroy(sc->tsec_tx_mtag,
1151 			    sc->tx_map_data[i]);
1152 	/* Destroy tag for TX mbufs */
1153 	bus_dma_tag_destroy(sc->tsec_tx_mtag);
1154 
1155 	/* Free RX mbufs and maps */
1156 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
1157 		if (sc->rx_data[i].mbuf) {
1158 			/* Unload buffer from DMA */
1159 			bus_dmamap_sync(sc->tsec_rx_mtag, sc->rx_data[i].map,
1160 			    BUS_DMASYNC_POSTREAD);
1161 			bus_dmamap_unload(sc->tsec_rx_mtag,
1162 			    sc->rx_data[i].map);
1163 
1164 			/* Free buffer */
1165 			m_freem(sc->rx_data[i].mbuf);
1166 		}
1167 		/* Destroy map for this buffer */
1168 		if (sc->rx_data[i].map != NULL)
1169 			bus_dmamap_destroy(sc->tsec_rx_mtag,
1170 			    sc->rx_data[i].map);
1171 	}
1172 	/* Destroy tag for RX mbufs */
1173 	bus_dma_tag_destroy(sc->tsec_rx_mtag);
1174 
1175 	/* Unload TX/RX descriptors */
1176 	tsec_free_dma_desc(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1177 	    sc->tsec_tx_vaddr);
1178 	tsec_free_dma_desc(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1179 	    sc->tsec_rx_vaddr);
1180 }
1181 
1182 static void
1183 tsec_stop(struct tsec_softc *sc)
1184 {
1185 	struct ifnet *ifp;
1186 	struct mbuf *m0;
1187 	bus_dmamap_t *mapp;
1188 	uint32_t tmpval;
1189 
1190 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1191 
1192 	ifp = sc->tsec_ifp;
1193 
1194 	/* Disable interface and watchdog timer */
1195 	callout_stop(&sc->tsec_callout);
1196 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1197 	sc->tsec_watchdog = 0;
1198 
1199 	/* Disable all interrupts and stop DMA */
1200 	tsec_intrs_ctl(sc, 0);
1201 	tsec_dma_ctl(sc, 0);
1202 
1203 	/* Remove pending data from TX queue */
1204 	while (!TSEC_EMPTYQ_TX_MBUF(sc)) {
1205 		m0 = TSEC_GET_TX_MBUF(sc);
1206 		mapp = TSEC_GET_TX_MAP(sc);
1207 
1208 		bus_dmamap_sync(sc->tsec_tx_mtag, *mapp,
1209 		    BUS_DMASYNC_POSTWRITE);
1210 		bus_dmamap_unload(sc->tsec_tx_mtag, *mapp);
1211 
1212 		TSEC_FREE_TX_MAP(sc, mapp);
1213 		m_freem(m0);
1214 	}
1215 
1216 	/* Disable RX and TX */
1217 	tmpval = TSEC_READ(sc, TSEC_REG_MACCFG1);
1218 	tmpval &= ~(TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN);
1219 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, tmpval);
1220 	DELAY(10);
1221 }
1222 
1223 static void
1224 tsec_tick(void *arg)
1225 {
1226 	struct tsec_softc *sc = arg;
1227 	struct ifnet *ifp;
1228 	int link;
1229 
1230 	TSEC_GLOBAL_LOCK(sc);
1231 
1232 	tsec_watchdog(sc);
1233 
1234 	ifp = sc->tsec_ifp;
1235 	link = sc->tsec_link;
1236 
1237 	mii_tick(sc->tsec_mii);
1238 
1239 	if (link == 0 && sc->tsec_link == 1 &&
1240 	    (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)))
1241 		tsec_start_locked(ifp);
1242 
1243 	/* Schedule another timeout one second from now. */
1244 	callout_reset(&sc->tsec_callout, hz, tsec_tick, sc);
1245 
1246 	TSEC_GLOBAL_UNLOCK(sc);
1247 }
1248 
1249 /*
1250  *  This is the core RX routine. It replenishes mbufs in the descriptor and
1251  *  sends data which have been dma'ed into host memory to upper layer.
1252  *
1253  *  Loops at most count times if count is > 0, or until done if count < 0.
1254  */
1255 static int
1256 tsec_receive_intr_locked(struct tsec_softc *sc, int count)
1257 {
1258 	struct tsec_desc *rx_desc;
1259 	struct ifnet *ifp;
1260 	struct rx_data_type *rx_data;
1261 	struct mbuf *m;
1262 	device_t dev;
1263 	uint32_t i;
1264 	int c, rx_npkts;
1265 	uint16_t flags;
1266 
1267 	TSEC_RECEIVE_LOCK_ASSERT(sc);
1268 
1269 	ifp = sc->tsec_ifp;
1270 	rx_data = sc->rx_data;
1271 	dev = sc->dev;
1272 	rx_npkts = 0;
1273 
1274 	bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1275 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1276 
1277 	for (c = 0; ; c++) {
1278 		if (count >= 0 && count-- == 0)
1279 			break;
1280 
1281 		rx_desc = TSEC_GET_CUR_RX_DESC(sc);
1282 		flags = rx_desc->flags;
1283 
1284 		/* Check if there is anything to receive */
1285 		if ((flags & TSEC_RXBD_E) || (c >= TSEC_RX_NUM_DESC)) {
1286 			/*
1287 			 * Avoid generating another interrupt
1288 			 */
1289 			if (flags & TSEC_RXBD_E)
1290 				TSEC_WRITE(sc, TSEC_REG_IEVENT,
1291 				    TSEC_IEVENT_RXB | TSEC_IEVENT_RXF);
1292 			/*
1293 			 * We didn't consume current descriptor and have to
1294 			 * return it to the queue
1295 			 */
1296 			TSEC_BACK_CUR_RX_DESC(sc);
1297 			break;
1298 		}
1299 
1300 		if (flags & (TSEC_RXBD_LG | TSEC_RXBD_SH | TSEC_RXBD_NO |
1301 		    TSEC_RXBD_CR | TSEC_RXBD_OV | TSEC_RXBD_TR)) {
1302 
1303 			rx_desc->length = 0;
1304 			rx_desc->flags = (rx_desc->flags &
1305 			    ~TSEC_RXBD_ZEROONINIT) | TSEC_RXBD_E | TSEC_RXBD_I;
1306 
1307 			if (sc->frame != NULL) {
1308 				m_free(sc->frame);
1309 				sc->frame = NULL;
1310 			}
1311 
1312 			continue;
1313 		}
1314 
1315 		/* Ok... process frame */
1316 		i = TSEC_GET_CUR_RX_DESC_CNT(sc);
1317 		m = rx_data[i].mbuf;
1318 		m->m_len = rx_desc->length;
1319 
1320 		if (sc->frame != NULL) {
1321 			if ((flags & TSEC_RXBD_L) != 0)
1322 				m->m_len -= m_length(sc->frame, NULL);
1323 
1324 			m->m_flags &= ~M_PKTHDR;
1325 			m_cat(sc->frame, m);
1326 		} else {
1327 			sc->frame = m;
1328 		}
1329 
1330 		m = NULL;
1331 
1332 		if ((flags & TSEC_RXBD_L) != 0) {
1333 			m = sc->frame;
1334 			sc->frame = NULL;
1335 		}
1336 
1337 		if (tsec_new_rxbuf(sc->tsec_rx_mtag, rx_data[i].map,
1338 		    &rx_data[i].mbuf, &rx_data[i].paddr)) {
1339 			ifp->if_ierrors++;
1340 			/*
1341 			 * We ran out of mbufs; didn't consume current
1342 			 * descriptor and have to return it to the queue.
1343 			 */
1344 			TSEC_BACK_CUR_RX_DESC(sc);
1345 			break;
1346 		}
1347 
1348 		/* Attach new buffer to descriptor and clear flags */
1349 		rx_desc->bufptr = rx_data[i].paddr;
1350 		rx_desc->length = 0;
1351 		rx_desc->flags = (rx_desc->flags & ~TSEC_RXBD_ZEROONINIT) |
1352 		    TSEC_RXBD_E | TSEC_RXBD_I;
1353 
1354 		if (m != NULL) {
1355 			m->m_pkthdr.rcvif = ifp;
1356 
1357 			m_fixhdr(m);
1358 			m_adj(m, -ETHER_CRC_LEN);
1359 
1360 			if (sc->is_etsec)
1361 				tsec_offload_process_frame(sc, m);
1362 
1363 			TSEC_RECEIVE_UNLOCK(sc);
1364 			(*ifp->if_input)(ifp, m);
1365 			TSEC_RECEIVE_LOCK(sc);
1366 			rx_npkts++;
1367 		}
1368 	}
1369 
1370 	bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1371 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1372 
1373 	/*
1374 	 * Make sure TSEC receiver is not halted.
1375 	 *
1376 	 * Various conditions can stop the TSEC receiver, but not all are
1377 	 * signaled and handled by error interrupt, so make sure the receiver
1378 	 * is running. Writing to TSEC_REG_RSTAT restarts the receiver when
1379 	 * halted, and is harmless if already running.
1380 	 */
1381 	TSEC_WRITE(sc, TSEC_REG_RSTAT, TSEC_RSTAT_QHLT);
1382 	return (rx_npkts);
1383 }
1384 
1385 void
1386 tsec_receive_intr(void *arg)
1387 {
1388 	struct tsec_softc *sc = arg;
1389 
1390 	TSEC_RECEIVE_LOCK(sc);
1391 
1392 #ifdef DEVICE_POLLING
1393 	if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) {
1394 		TSEC_RECEIVE_UNLOCK(sc);
1395 		return;
1396 	}
1397 #endif
1398 
1399 	/* Confirm the interrupt was received by driver */
1400 	TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXB | TSEC_IEVENT_RXF);
1401 	tsec_receive_intr_locked(sc, -1);
1402 
1403 	TSEC_RECEIVE_UNLOCK(sc);
1404 }
1405 
1406 static void
1407 tsec_transmit_intr_locked(struct tsec_softc *sc)
1408 {
1409 	struct tsec_desc *tx_desc;
1410 	struct ifnet *ifp;
1411 	struct mbuf *m0;
1412 	bus_dmamap_t *mapp;
1413 	int send = 0;
1414 
1415 	TSEC_TRANSMIT_LOCK_ASSERT(sc);
1416 
1417 	ifp = sc->tsec_ifp;
1418 
1419 	/* Update collision statistics */
1420 	ifp->if_collisions += TSEC_READ(sc, TSEC_REG_MON_TNCL);
1421 
1422 	/* Reset collision counters in hardware */
1423 	TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0);
1424 	TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0);
1425 	TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0);
1426 	TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0);
1427 	TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0);
1428 
1429 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1430 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1431 
1432 	while (TSEC_CUR_DIFF_DIRTY_TX_DESC(sc)) {
1433 		tx_desc = TSEC_GET_DIRTY_TX_DESC(sc);
1434 		if (tx_desc->flags & TSEC_TXBD_R) {
1435 			TSEC_BACK_DIRTY_TX_DESC(sc);
1436 			break;
1437 		}
1438 
1439 		if ((tx_desc->flags & TSEC_TXBD_L) == 0)
1440 			continue;
1441 
1442 		/*
1443 		 * This is the last buf in this packet, so unmap and free it.
1444 		 */
1445 		m0 = TSEC_GET_TX_MBUF(sc);
1446 		mapp = TSEC_GET_TX_MAP(sc);
1447 
1448 		bus_dmamap_sync(sc->tsec_tx_mtag, *mapp,
1449 		    BUS_DMASYNC_POSTWRITE);
1450 		bus_dmamap_unload(sc->tsec_tx_mtag, *mapp);
1451 
1452 		TSEC_FREE_TX_MAP(sc, mapp);
1453 		m_freem(m0);
1454 
1455 		ifp->if_opackets++;
1456 		send = 1;
1457 	}
1458 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1459 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1460 
1461 	if (send) {
1462 		/* Now send anything that was pending */
1463 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1464 		tsec_start_locked(ifp);
1465 
1466 		/* Stop wathdog if all sent */
1467 		if (TSEC_EMPTYQ_TX_MBUF(sc))
1468 			sc->tsec_watchdog = 0;
1469 	}
1470 }
1471 
1472 void
1473 tsec_transmit_intr(void *arg)
1474 {
1475 	struct tsec_softc *sc = arg;
1476 
1477 	TSEC_TRANSMIT_LOCK(sc);
1478 
1479 #ifdef DEVICE_POLLING
1480 	if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) {
1481 		TSEC_TRANSMIT_UNLOCK(sc);
1482 		return;
1483 	}
1484 #endif
1485 	/* Confirm the interrupt was received by driver */
1486 	TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_TXB | TSEC_IEVENT_TXF);
1487 	tsec_transmit_intr_locked(sc);
1488 
1489 	TSEC_TRANSMIT_UNLOCK(sc);
1490 }
1491 
1492 static void
1493 tsec_error_intr_locked(struct tsec_softc *sc, int count)
1494 {
1495 	struct ifnet *ifp;
1496 	uint32_t eflags;
1497 
1498 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1499 
1500 	ifp = sc->tsec_ifp;
1501 
1502 	eflags = TSEC_READ(sc, TSEC_REG_IEVENT);
1503 
1504 	/* Clear events bits in hardware */
1505 	TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXC | TSEC_IEVENT_BSY |
1506 	    TSEC_IEVENT_EBERR | TSEC_IEVENT_MSRO | TSEC_IEVENT_BABT |
1507 	    TSEC_IEVENT_TXC | TSEC_IEVENT_TXE | TSEC_IEVENT_LC |
1508 	    TSEC_IEVENT_CRL | TSEC_IEVENT_XFUN);
1509 
1510 	/* Check transmitter errors */
1511 	if (eflags & TSEC_IEVENT_TXE) {
1512 		ifp->if_oerrors++;
1513 
1514 		if (eflags & TSEC_IEVENT_LC)
1515 			ifp->if_collisions++;
1516 
1517 		TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
1518 	}
1519 
1520 	/* Check receiver errors */
1521 	if (eflags & TSEC_IEVENT_BSY) {
1522 		ifp->if_ierrors++;
1523 		ifp->if_iqdrops++;
1524 
1525 		/* Get data from RX buffers */
1526 		tsec_receive_intr_locked(sc, count);
1527 	}
1528 
1529 	if (ifp->if_flags & IFF_DEBUG)
1530 		if_printf(ifp, "tsec_error_intr(): event flags: 0x%x\n",
1531 		    eflags);
1532 
1533 	if (eflags & TSEC_IEVENT_EBERR) {
1534 		if_printf(ifp, "System bus error occurred during"
1535 		    "DMA transaction (flags: 0x%x)\n", eflags);
1536 		tsec_init_locked(sc);
1537 	}
1538 
1539 	if (eflags & TSEC_IEVENT_BABT)
1540 		ifp->if_oerrors++;
1541 
1542 	if (eflags & TSEC_IEVENT_BABR)
1543 		ifp->if_ierrors++;
1544 }
1545 
1546 void
1547 tsec_error_intr(void *arg)
1548 {
1549 	struct tsec_softc *sc = arg;
1550 
1551 	TSEC_GLOBAL_LOCK(sc);
1552 	tsec_error_intr_locked(sc, -1);
1553 	TSEC_GLOBAL_UNLOCK(sc);
1554 }
1555 
1556 int
1557 tsec_miibus_readreg(device_t dev, int phy, int reg)
1558 {
1559 	struct tsec_softc *sc;
1560 	uint32_t timeout;
1561 
1562 	sc = device_get_softc(dev);
1563 
1564 	TSEC_WRITE(sc->phy_sc, TSEC_REG_MIIMADD, (phy << 8) | reg);
1565 	TSEC_WRITE(sc->phy_sc, TSEC_REG_MIIMCOM, 0);
1566 	TSEC_WRITE(sc->phy_sc, TSEC_REG_MIIMCOM, TSEC_MIIMCOM_READCYCLE);
1567 
1568 	timeout = TSEC_READ_RETRY;
1569 	while (--timeout && TSEC_READ(sc->phy_sc, TSEC_REG_MIIMIND) &
1570 	    (TSEC_MIIMIND_NOTVALID | TSEC_MIIMIND_BUSY))
1571 		DELAY(TSEC_READ_DELAY);
1572 
1573 	if (timeout == 0)
1574 		device_printf(dev, "Timeout while reading from PHY!\n");
1575 
1576 	return (TSEC_READ(sc->phy_sc, TSEC_REG_MIIMSTAT));
1577 }
1578 
1579 int
1580 tsec_miibus_writereg(device_t dev, int phy, int reg, int value)
1581 {
1582 	struct tsec_softc *sc;
1583 	uint32_t timeout;
1584 
1585 	sc = device_get_softc(dev);
1586 
1587 	TSEC_WRITE(sc->phy_sc, TSEC_REG_MIIMADD, (phy << 8) | reg);
1588 	TSEC_WRITE(sc->phy_sc, TSEC_REG_MIIMCON, value);
1589 
1590 	timeout = TSEC_READ_RETRY;
1591 	while (--timeout && (TSEC_READ(sc->phy_sc, TSEC_REG_MIIMIND) &
1592 	    TSEC_MIIMIND_BUSY))
1593 		DELAY(TSEC_READ_DELAY);
1594 
1595 	if (timeout == 0)
1596 		device_printf(dev, "Timeout while writing to PHY!\n");
1597 
1598 	return (0);
1599 }
1600 
1601 void
1602 tsec_miibus_statchg(device_t dev)
1603 {
1604 	struct tsec_softc *sc;
1605 	struct mii_data *mii;
1606 	uint32_t ecntrl, id, tmp;
1607 	int link;
1608 
1609 	sc = device_get_softc(dev);
1610 	mii = sc->tsec_mii;
1611 	link = ((mii->mii_media_status & IFM_ACTIVE) ? 1 : 0);
1612 
1613 	tmp = TSEC_READ(sc, TSEC_REG_MACCFG2) & ~TSEC_MACCFG2_IF;
1614 
1615 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
1616 		tmp |= TSEC_MACCFG2_FULLDUPLEX;
1617 	else
1618 		tmp &= ~TSEC_MACCFG2_FULLDUPLEX;
1619 
1620 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1621 	case IFM_1000_T:
1622 	case IFM_1000_SX:
1623 		tmp |= TSEC_MACCFG2_GMII;
1624 		sc->tsec_link = link;
1625 		break;
1626 	case IFM_100_TX:
1627 	case IFM_10_T:
1628 		tmp |= TSEC_MACCFG2_MII;
1629 		sc->tsec_link = link;
1630 		break;
1631 	case IFM_NONE:
1632 		if (link)
1633 			device_printf(dev, "No speed selected but link "
1634 			    "active!\n");
1635 		sc->tsec_link = 0;
1636 		return;
1637 	default:
1638 		sc->tsec_link = 0;
1639 		device_printf(dev, "Unknown speed (%d), link %s!\n",
1640 		    IFM_SUBTYPE(mii->mii_media_active),
1641 		        ((link) ? "up" : "down"));
1642 		return;
1643 	}
1644 	TSEC_WRITE(sc, TSEC_REG_MACCFG2, tmp);
1645 
1646 	/* XXX kludge - use circumstantial evidence for reduced mode. */
1647 	id = TSEC_READ(sc, TSEC_REG_ID2);
1648 	if (id & 0xffff) {
1649 		ecntrl = TSEC_READ(sc, TSEC_REG_ECNTRL) & ~TSEC_ECNTRL_R100M;
1650 		ecntrl |= (tmp & TSEC_MACCFG2_MII) ? TSEC_ECNTRL_R100M : 0;
1651 		TSEC_WRITE(sc, TSEC_REG_ECNTRL, ecntrl);
1652 	}
1653 }
1654 
1655 static void
1656 tsec_add_sysctls(struct tsec_softc *sc)
1657 {
1658 	struct sysctl_ctx_list *ctx;
1659 	struct sysctl_oid_list *children;
1660 	struct sysctl_oid *tree;
1661 
1662 	ctx = device_get_sysctl_ctx(sc->dev);
1663 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
1664 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "int_coal",
1665 	    CTLFLAG_RD, 0, "TSEC Interrupts coalescing");
1666 	children = SYSCTL_CHILDREN(tree);
1667 
1668 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_time",
1669 	    CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_RX, tsec_sysctl_ic_time,
1670 	    "I", "IC RX time threshold (0-65535)");
1671 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_count",
1672 	    CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_RX, tsec_sysctl_ic_count,
1673 	    "I", "IC RX frame count threshold (0-255)");
1674 
1675 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_time",
1676 	    CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_TX, tsec_sysctl_ic_time,
1677 	    "I", "IC TX time threshold (0-65535)");
1678 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_count",
1679 	    CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_TX, tsec_sysctl_ic_count,
1680 	    "I", "IC TX frame count threshold (0-255)");
1681 }
1682 
1683 /*
1684  * With Interrupt Coalescing (IC) active, a transmit/receive frame
1685  * interrupt is raised either upon:
1686  *
1687  * - threshold-defined period of time elapsed, or
1688  * - threshold-defined number of frames is received/transmitted,
1689  *   whichever occurs first.
1690  *
1691  * The following sysctls regulate IC behaviour (for TX/RX separately):
1692  *
1693  * dev.tsec.<unit>.int_coal.rx_time
1694  * dev.tsec.<unit>.int_coal.rx_count
1695  * dev.tsec.<unit>.int_coal.tx_time
1696  * dev.tsec.<unit>.int_coal.tx_count
1697  *
1698  * Values:
1699  *
1700  * - 0 for either time or count disables IC on the given TX/RX path
1701  *
1702  * - count: 1-255 (expresses frame count number; note that value of 1 is
1703  *   effectively IC off)
1704  *
1705  * - time: 1-65535 (value corresponds to a real time period and is
1706  *   expressed in units equivalent to 64 TSEC interface clocks, i.e. one timer
1707  *   threshold unit is 26.5 us, 2.56 us, or 512 ns, corresponding to 10 Mbps,
1708  *   100 Mbps, or 1Gbps, respectively. For detailed discussion consult the
1709  *   TSEC reference manual.
1710  */
1711 static int
1712 tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS)
1713 {
1714 	int error;
1715 	uint32_t time;
1716 	struct tsec_softc *sc = (struct tsec_softc *)arg1;
1717 
1718 	time = (arg2 == TSEC_IC_RX) ? sc->rx_ic_time : sc->tx_ic_time;
1719 
1720 	error = sysctl_handle_int(oidp, &time, 0, req);
1721 	if (error != 0)
1722 		return (error);
1723 
1724 	if (time > 65535)
1725 		return (EINVAL);
1726 
1727 	TSEC_IC_LOCK(sc);
1728 	if (arg2 == TSEC_IC_RX) {
1729 		sc->rx_ic_time = time;
1730 		tsec_set_rxic(sc);
1731 	} else {
1732 		sc->tx_ic_time = time;
1733 		tsec_set_txic(sc);
1734 	}
1735 	TSEC_IC_UNLOCK(sc);
1736 
1737 	return (0);
1738 }
1739 
1740 static int
1741 tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS)
1742 {
1743 	int error;
1744 	uint32_t count;
1745 	struct tsec_softc *sc = (struct tsec_softc *)arg1;
1746 
1747 	count = (arg2 == TSEC_IC_RX) ? sc->rx_ic_count : sc->tx_ic_count;
1748 
1749 	error = sysctl_handle_int(oidp, &count, 0, req);
1750 	if (error != 0)
1751 		return (error);
1752 
1753 	if (count > 255)
1754 		return (EINVAL);
1755 
1756 	TSEC_IC_LOCK(sc);
1757 	if (arg2 == TSEC_IC_RX) {
1758 		sc->rx_ic_count = count;
1759 		tsec_set_rxic(sc);
1760 	} else {
1761 		sc->tx_ic_count = count;
1762 		tsec_set_txic(sc);
1763 	}
1764 	TSEC_IC_UNLOCK(sc);
1765 
1766 	return (0);
1767 }
1768 
1769 static void
1770 tsec_set_rxic(struct tsec_softc *sc)
1771 {
1772 	uint32_t rxic_val;
1773 
1774 	if (sc->rx_ic_count == 0 || sc->rx_ic_time == 0)
1775 		/* Disable RX IC */
1776 		rxic_val = 0;
1777 	else {
1778 		rxic_val = 0x80000000;
1779 		rxic_val |= (sc->rx_ic_count << 21);
1780 		rxic_val |= sc->rx_ic_time;
1781 	}
1782 
1783 	TSEC_WRITE(sc, TSEC_REG_RXIC, rxic_val);
1784 }
1785 
1786 static void
1787 tsec_set_txic(struct tsec_softc *sc)
1788 {
1789 	uint32_t txic_val;
1790 
1791 	if (sc->tx_ic_count == 0 || sc->tx_ic_time == 0)
1792 		/* Disable TX IC */
1793 		txic_val = 0;
1794 	else {
1795 		txic_val = 0x80000000;
1796 		txic_val |= (sc->tx_ic_count << 21);
1797 		txic_val |= sc->tx_ic_time;
1798 	}
1799 
1800 	TSEC_WRITE(sc, TSEC_REG_TXIC, txic_val);
1801 }
1802 
1803 static void
1804 tsec_offload_setup(struct tsec_softc *sc)
1805 {
1806 	struct ifnet *ifp = sc->tsec_ifp;
1807 	uint32_t reg;
1808 
1809 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1810 
1811 	reg = TSEC_READ(sc, TSEC_REG_TCTRL);
1812 	reg |= TSEC_TCTRL_IPCSEN | TSEC_TCTRL_TUCSEN;
1813 
1814 	if (ifp->if_capenable & IFCAP_TXCSUM)
1815 		ifp->if_hwassist = TSEC_CHECKSUM_FEATURES;
1816 	else
1817 		ifp->if_hwassist = 0;
1818 
1819 	TSEC_WRITE(sc, TSEC_REG_TCTRL, reg);
1820 
1821 	reg = TSEC_READ(sc, TSEC_REG_RCTRL);
1822 	reg &= ~(TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN | TSEC_RCTRL_PRSDEP);
1823 	reg |= TSEC_RCTRL_PRSDEP_PARSE_L2 | TSEC_RCTRL_VLEX;
1824 
1825 	if (ifp->if_capenable & IFCAP_RXCSUM)
1826 		reg |= TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN |
1827 		    TSEC_RCTRL_PRSDEP_PARSE_L234;
1828 
1829 	TSEC_WRITE(sc, TSEC_REG_RCTRL, reg);
1830 }
1831 
1832 
1833 static void
1834 tsec_offload_process_frame(struct tsec_softc *sc, struct mbuf *m)
1835 {
1836 	struct tsec_rx_fcb rx_fcb;
1837 	int csum_flags = 0;
1838 	int protocol, flags;
1839 
1840 	TSEC_RECEIVE_LOCK_ASSERT(sc);
1841 
1842 	m_copydata(m, 0, sizeof(struct tsec_rx_fcb), (caddr_t)(&rx_fcb));
1843 	flags = rx_fcb.flags;
1844 	protocol = rx_fcb.protocol;
1845 
1846 	if (TSEC_RX_FCB_IP_CSUM_CHECKED(flags)) {
1847 		csum_flags |= CSUM_IP_CHECKED;
1848 
1849 		if ((flags & TSEC_RX_FCB_IP_CSUM_ERROR) == 0)
1850 			csum_flags |= CSUM_IP_VALID;
1851 	}
1852 
1853 	if ((protocol == IPPROTO_TCP || protocol == IPPROTO_UDP) &&
1854 	    TSEC_RX_FCB_TCP_UDP_CSUM_CHECKED(flags) &&
1855 	    (flags & TSEC_RX_FCB_TCP_UDP_CSUM_ERROR) == 0) {
1856 
1857 		csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1858 		m->m_pkthdr.csum_data = 0xFFFF;
1859 	}
1860 
1861 	m->m_pkthdr.csum_flags = csum_flags;
1862 
1863 	if (flags & TSEC_RX_FCB_VLAN) {
1864 		m->m_pkthdr.ether_vtag = rx_fcb.vlan;
1865 		m->m_flags |= M_VLANTAG;
1866 	}
1867 
1868 	m_adj(m, sizeof(struct tsec_rx_fcb));
1869 }
1870 
1871 static void
1872 tsec_setup_multicast(struct tsec_softc *sc)
1873 {
1874 	uint32_t hashtable[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
1875 	struct ifnet *ifp = sc->tsec_ifp;
1876 	struct ifmultiaddr *ifma;
1877 	uint32_t h;
1878 	int i;
1879 
1880 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1881 
1882 	if (ifp->if_flags & IFF_ALLMULTI) {
1883 		for (i = 0; i < 8; i++)
1884 			TSEC_WRITE(sc, TSEC_REG_GADDR(i), 0xFFFFFFFF);
1885 
1886 		return;
1887 	}
1888 
1889 	if_maddr_rlock(ifp);
1890 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1891 
1892 		if (ifma->ifma_addr->sa_family != AF_LINK)
1893 			continue;
1894 
1895 		h = (ether_crc32_be(LLADDR((struct sockaddr_dl *)
1896 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 24) & 0xFF;
1897 
1898 		hashtable[(h >> 5)] |= 1 << (0x1F - (h & 0x1F));
1899 	}
1900 	if_maddr_runlock(ifp);
1901 
1902 	for (i = 0; i < 8; i++)
1903 		TSEC_WRITE(sc, TSEC_REG_GADDR(i), hashtable[i]);
1904 }
1905 
1906 static int
1907 tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu)
1908 {
1909 
1910 	mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
1911 
1912 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1913 
1914 	if (mtu >= TSEC_MIN_FRAME_SIZE && mtu <= TSEC_MAX_FRAME_SIZE) {
1915 		TSEC_WRITE(sc, TSEC_REG_MAXFRM, mtu);
1916 		return (mtu);
1917 	}
1918 
1919 	return (0);
1920 }
1921