1 /*- 2 * Copyright (C) 2007-2008 Semihalf, Rafal Jaworowski 3 * Copyright (C) 2006-2007 Semihalf, Piotr Kruszynski 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 18 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 20 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 22 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 23 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 24 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 /* 28 * Freescale integrated Three-Speed Ethernet Controller (TSEC) driver. 29 */ 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #ifdef HAVE_KERNEL_OPTION_HEADERS 34 #include "opt_device_polling.h" 35 #endif 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/bus.h> 40 #include <sys/endian.h> 41 #include <sys/mbuf.h> 42 #include <sys/kernel.h> 43 #include <sys/module.h> 44 #include <sys/socket.h> 45 #include <sys/sockio.h> 46 #include <sys/sysctl.h> 47 48 #include <net/bpf.h> 49 #include <net/ethernet.h> 50 #include <net/if.h> 51 #include <net/if_arp.h> 52 #include <net/if_dl.h> 53 #include <net/if_media.h> 54 #include <net/if_types.h> 55 #include <net/if_vlan_var.h> 56 57 #include <netinet/in_systm.h> 58 #include <netinet/in.h> 59 #include <netinet/ip.h> 60 61 #include <machine/bus.h> 62 63 #include <dev/mii/mii.h> 64 #include <dev/mii/miivar.h> 65 66 #include <dev/tsec/if_tsec.h> 67 #include <dev/tsec/if_tsecreg.h> 68 69 static int tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag, 70 bus_dmamap_t *dmap, bus_size_t dsize, void **vaddr, void *raddr, 71 const char *dname); 72 static void tsec_dma_ctl(struct tsec_softc *sc, int state); 73 static int tsec_encap(struct tsec_softc *sc, struct mbuf *m_head, 74 int fcb_inserted); 75 static void tsec_free_dma(struct tsec_softc *sc); 76 static void tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr); 77 static int tsec_ifmedia_upd(struct ifnet *ifp); 78 static void tsec_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr); 79 static int tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map, 80 struct mbuf **mbufp, uint32_t *paddr); 81 static void tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs, 82 int nseg, int error); 83 static void tsec_intrs_ctl(struct tsec_softc *sc, int state); 84 static void tsec_init(void *xsc); 85 static void tsec_init_locked(struct tsec_softc *sc); 86 static int tsec_ioctl(struct ifnet *ifp, u_long command, caddr_t data); 87 static void tsec_reset_mac(struct tsec_softc *sc); 88 static void tsec_setfilter(struct tsec_softc *sc); 89 static void tsec_set_mac_address(struct tsec_softc *sc); 90 static void tsec_start(struct ifnet *ifp); 91 static void tsec_start_locked(struct ifnet *ifp); 92 static void tsec_stop(struct tsec_softc *sc); 93 static void tsec_tick(void *arg); 94 static void tsec_watchdog(struct tsec_softc *sc); 95 static void tsec_add_sysctls(struct tsec_softc *sc); 96 static int tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS); 97 static int tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS); 98 static void tsec_set_rxic(struct tsec_softc *sc); 99 static void tsec_set_txic(struct tsec_softc *sc); 100 static int tsec_receive_intr_locked(struct tsec_softc *sc, int count); 101 static void tsec_transmit_intr_locked(struct tsec_softc *sc); 102 static void tsec_error_intr_locked(struct tsec_softc *sc, int count); 103 static void tsec_offload_setup(struct tsec_softc *sc); 104 static void tsec_offload_process_frame(struct tsec_softc *sc, 105 struct mbuf *m); 106 static void tsec_setup_multicast(struct tsec_softc *sc); 107 static int tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu); 108 109 devclass_t tsec_devclass; 110 DRIVER_MODULE(miibus, tsec, miibus_driver, miibus_devclass, 0, 0); 111 MODULE_DEPEND(tsec, ether, 1, 1, 1); 112 MODULE_DEPEND(tsec, miibus, 1, 1, 1); 113 114 int 115 tsec_attach(struct tsec_softc *sc) 116 { 117 uint8_t hwaddr[ETHER_ADDR_LEN]; 118 struct ifnet *ifp; 119 bus_dmamap_t *map_ptr; 120 bus_dmamap_t **map_pptr; 121 int error = 0; 122 int i; 123 124 /* Reset all TSEC counters */ 125 TSEC_TX_RX_COUNTERS_INIT(sc); 126 127 /* Stop DMA engine if enabled by firmware */ 128 tsec_dma_ctl(sc, 0); 129 130 /* Reset MAC */ 131 tsec_reset_mac(sc); 132 133 /* Disable interrupts for now */ 134 tsec_intrs_ctl(sc, 0); 135 136 /* Configure defaults for interrupts coalescing */ 137 sc->rx_ic_time = 768; 138 sc->rx_ic_count = 16; 139 sc->tx_ic_time = 768; 140 sc->tx_ic_count = 16; 141 tsec_set_rxic(sc); 142 tsec_set_txic(sc); 143 tsec_add_sysctls(sc); 144 145 /* Allocate a busdma tag and DMA safe memory for TX descriptors. */ 146 error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_tx_dtag, 147 &sc->tsec_tx_dmap, sizeof(*sc->tsec_tx_vaddr) * TSEC_TX_NUM_DESC, 148 (void **)&sc->tsec_tx_vaddr, &sc->tsec_tx_raddr, "TX"); 149 150 if (error) { 151 tsec_detach(sc); 152 return (ENXIO); 153 } 154 155 /* Allocate a busdma tag and DMA safe memory for RX descriptors. */ 156 error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_rx_dtag, 157 &sc->tsec_rx_dmap, sizeof(*sc->tsec_rx_vaddr) * TSEC_RX_NUM_DESC, 158 (void **)&sc->tsec_rx_vaddr, &sc->tsec_rx_raddr, "RX"); 159 if (error) { 160 tsec_detach(sc); 161 return (ENXIO); 162 } 163 164 /* Allocate a busdma tag for TX mbufs. */ 165 error = bus_dma_tag_create(NULL, /* parent */ 166 TSEC_TXBUFFER_ALIGNMENT, 0, /* alignment, boundary */ 167 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 168 BUS_SPACE_MAXADDR, /* highaddr */ 169 NULL, NULL, /* filtfunc, filtfuncarg */ 170 MCLBYTES * (TSEC_TX_NUM_DESC - 1), /* maxsize */ 171 TSEC_TX_NUM_DESC - 1, /* nsegments */ 172 MCLBYTES, 0, /* maxsegsz, flags */ 173 NULL, NULL, /* lockfunc, lockfuncarg */ 174 &sc->tsec_tx_mtag); /* dmat */ 175 if (error) { 176 device_printf(sc->dev, "failed to allocate busdma tag " 177 "(tx mbufs)\n"); 178 tsec_detach(sc); 179 return (ENXIO); 180 } 181 182 /* Allocate a busdma tag for RX mbufs. */ 183 error = bus_dma_tag_create(NULL, /* parent */ 184 TSEC_RXBUFFER_ALIGNMENT, 0, /* alignment, boundary */ 185 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 186 BUS_SPACE_MAXADDR, /* highaddr */ 187 NULL, NULL, /* filtfunc, filtfuncarg */ 188 MCLBYTES, /* maxsize */ 189 1, /* nsegments */ 190 MCLBYTES, 0, /* maxsegsz, flags */ 191 NULL, NULL, /* lockfunc, lockfuncarg */ 192 &sc->tsec_rx_mtag); /* dmat */ 193 if (error) { 194 device_printf(sc->dev, "failed to allocate busdma tag " 195 "(rx mbufs)\n"); 196 tsec_detach(sc); 197 return (ENXIO); 198 } 199 200 /* Create TX busdma maps */ 201 map_ptr = sc->tx_map_data; 202 map_pptr = sc->tx_map_unused_data; 203 204 for (i = 0; i < TSEC_TX_NUM_DESC; i++) { 205 map_pptr[i] = &map_ptr[i]; 206 error = bus_dmamap_create(sc->tsec_tx_mtag, 0, map_pptr[i]); 207 if (error) { 208 device_printf(sc->dev, "failed to init TX ring\n"); 209 tsec_detach(sc); 210 return (ENXIO); 211 } 212 } 213 214 /* Create RX busdma maps and zero mbuf handlers */ 215 for (i = 0; i < TSEC_RX_NUM_DESC; i++) { 216 error = bus_dmamap_create(sc->tsec_rx_mtag, 0, 217 &sc->rx_data[i].map); 218 if (error) { 219 device_printf(sc->dev, "failed to init RX ring\n"); 220 tsec_detach(sc); 221 return (ENXIO); 222 } 223 sc->rx_data[i].mbuf = NULL; 224 } 225 226 /* Create mbufs for RX buffers */ 227 for (i = 0; i < TSEC_RX_NUM_DESC; i++) { 228 error = tsec_new_rxbuf(sc->tsec_rx_mtag, sc->rx_data[i].map, 229 &sc->rx_data[i].mbuf, &sc->rx_data[i].paddr); 230 if (error) { 231 device_printf(sc->dev, "can't load rx DMA map %d, " 232 "error = %d\n", i, error); 233 tsec_detach(sc); 234 return (error); 235 } 236 } 237 238 /* Create network interface for upper layers */ 239 ifp = sc->tsec_ifp = if_alloc(IFT_ETHER); 240 if (ifp == NULL) { 241 device_printf(sc->dev, "if_alloc() failed\n"); 242 tsec_detach(sc); 243 return (ENOMEM); 244 } 245 246 ifp->if_softc = sc; 247 if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev)); 248 ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST; 249 ifp->if_init = tsec_init; 250 ifp->if_start = tsec_start; 251 ifp->if_ioctl = tsec_ioctl; 252 253 IFQ_SET_MAXLEN(&ifp->if_snd, TSEC_TX_NUM_DESC - 1); 254 ifp->if_snd.ifq_drv_maxlen = TSEC_TX_NUM_DESC - 1; 255 IFQ_SET_READY(&ifp->if_snd); 256 257 ifp->if_capabilities = IFCAP_VLAN_MTU; 258 if (sc->is_etsec) 259 ifp->if_capabilities |= IFCAP_HWCSUM; 260 261 ifp->if_capenable = ifp->if_capabilities; 262 263 #ifdef DEVICE_POLLING 264 /* Advertise that polling is supported */ 265 ifp->if_capabilities |= IFCAP_POLLING; 266 #endif 267 268 /* Attach PHY(s) */ 269 error = mii_attach(sc->dev, &sc->tsec_miibus, ifp, tsec_ifmedia_upd, 270 tsec_ifmedia_sts, BMSR_DEFCAPMASK, sc->phyaddr, MII_OFFSET_ANY, 271 0); 272 if (error) { 273 device_printf(sc->dev, "attaching PHYs failed\n"); 274 if_free(ifp); 275 sc->tsec_ifp = NULL; 276 tsec_detach(sc); 277 return (error); 278 } 279 sc->tsec_mii = device_get_softc(sc->tsec_miibus); 280 281 /* Set MAC address */ 282 tsec_get_hwaddr(sc, hwaddr); 283 ether_ifattach(ifp, hwaddr); 284 285 return (0); 286 } 287 288 int 289 tsec_detach(struct tsec_softc *sc) 290 { 291 292 #ifdef DEVICE_POLLING 293 if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) 294 ether_poll_deregister(sc->tsec_ifp); 295 #endif 296 297 /* Stop TSEC controller and free TX queue */ 298 if (sc->sc_rres && sc->tsec_ifp) 299 tsec_shutdown(sc->dev); 300 301 /* Detach network interface */ 302 if (sc->tsec_ifp) { 303 ether_ifdetach(sc->tsec_ifp); 304 if_free(sc->tsec_ifp); 305 sc->tsec_ifp = NULL; 306 } 307 308 /* Free DMA resources */ 309 tsec_free_dma(sc); 310 311 return (0); 312 } 313 314 int 315 tsec_shutdown(device_t dev) 316 { 317 struct tsec_softc *sc; 318 319 sc = device_get_softc(dev); 320 321 TSEC_GLOBAL_LOCK(sc); 322 tsec_stop(sc); 323 TSEC_GLOBAL_UNLOCK(sc); 324 return (0); 325 } 326 327 int 328 tsec_suspend(device_t dev) 329 { 330 331 /* TODO not implemented! */ 332 return (0); 333 } 334 335 int 336 tsec_resume(device_t dev) 337 { 338 339 /* TODO not implemented! */ 340 return (0); 341 } 342 343 static void 344 tsec_init(void *xsc) 345 { 346 struct tsec_softc *sc = xsc; 347 348 TSEC_GLOBAL_LOCK(sc); 349 tsec_init_locked(sc); 350 TSEC_GLOBAL_UNLOCK(sc); 351 } 352 353 static void 354 tsec_init_locked(struct tsec_softc *sc) 355 { 356 struct tsec_desc *tx_desc = sc->tsec_tx_vaddr; 357 struct tsec_desc *rx_desc = sc->tsec_rx_vaddr; 358 struct ifnet *ifp = sc->tsec_ifp; 359 uint32_t timeout, val, i; 360 361 TSEC_GLOBAL_LOCK_ASSERT(sc); 362 tsec_stop(sc); 363 364 /* 365 * These steps are according to the MPC8555E PowerQUICCIII RM: 366 * 14.7 Initialization/Application Information 367 */ 368 369 /* Step 1: soft reset MAC */ 370 tsec_reset_mac(sc); 371 372 /* Step 2: Initialize MACCFG2 */ 373 TSEC_WRITE(sc, TSEC_REG_MACCFG2, 374 TSEC_MACCFG2_FULLDUPLEX | /* Full Duplex = 1 */ 375 TSEC_MACCFG2_PADCRC | /* PAD/CRC append */ 376 TSEC_MACCFG2_GMII | /* I/F Mode bit */ 377 TSEC_MACCFG2_PRECNT /* Preamble count = 7 */ 378 ); 379 380 /* Step 3: Initialize ECNTRL 381 * While the documentation states that R100M is ignored if RPM is 382 * not set, it does seem to be needed to get the orange boxes to 383 * work (which have a Marvell 88E1111 PHY). Go figure. 384 */ 385 386 /* 387 * XXX kludge - use circumstancial evidence to program ECNTRL 388 * correctly. Ideally we need some board information to guide 389 * us here. 390 */ 391 i = TSEC_READ(sc, TSEC_REG_ID2); 392 val = (i & 0xffff) 393 ? (TSEC_ECNTRL_TBIM | TSEC_ECNTRL_SGMIIM) /* Sumatra */ 394 : TSEC_ECNTRL_R100M; /* Orange + CDS */ 395 TSEC_WRITE(sc, TSEC_REG_ECNTRL, TSEC_ECNTRL_STEN | val); 396 397 /* Step 4: Initialize MAC station address */ 398 tsec_set_mac_address(sc); 399 400 /* 401 * Step 5: Assign a Physical address to the TBI so as to not conflict 402 * with the external PHY physical address 403 */ 404 TSEC_WRITE(sc, TSEC_REG_TBIPA, 5); 405 406 /* Step 6: Reset the management interface */ 407 TSEC_WRITE(sc->phy_sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_RESETMGMT); 408 409 /* Step 7: Setup the MII Mgmt clock speed */ 410 TSEC_WRITE(sc->phy_sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_CLKDIV28); 411 412 /* Step 8: Read MII Mgmt indicator register and check for Busy = 0 */ 413 timeout = TSEC_READ_RETRY; 414 while (--timeout && (TSEC_READ(sc->phy_sc, TSEC_REG_MIIMIND) & 415 TSEC_MIIMIND_BUSY)) 416 DELAY(TSEC_READ_DELAY); 417 if (timeout == 0) { 418 if_printf(ifp, "tsec_init_locked(): Mgmt busy timeout\n"); 419 return; 420 } 421 422 /* Step 9: Setup the MII Mgmt */ 423 mii_mediachg(sc->tsec_mii); 424 425 /* Step 10: Clear IEVENT register */ 426 TSEC_WRITE(sc, TSEC_REG_IEVENT, 0xffffffff); 427 428 /* Step 11: Enable interrupts */ 429 #ifdef DEVICE_POLLING 430 /* 431 * ...only if polling is not turned on. Disable interrupts explicitly 432 * if polling is enabled. 433 */ 434 if (ifp->if_capenable & IFCAP_POLLING ) 435 tsec_intrs_ctl(sc, 0); 436 else 437 #endif /* DEVICE_POLLING */ 438 tsec_intrs_ctl(sc, 1); 439 440 /* Step 12: Initialize IADDRn */ 441 TSEC_WRITE(sc, TSEC_REG_IADDR0, 0); 442 TSEC_WRITE(sc, TSEC_REG_IADDR1, 0); 443 TSEC_WRITE(sc, TSEC_REG_IADDR2, 0); 444 TSEC_WRITE(sc, TSEC_REG_IADDR3, 0); 445 TSEC_WRITE(sc, TSEC_REG_IADDR4, 0); 446 TSEC_WRITE(sc, TSEC_REG_IADDR5, 0); 447 TSEC_WRITE(sc, TSEC_REG_IADDR6, 0); 448 TSEC_WRITE(sc, TSEC_REG_IADDR7, 0); 449 450 /* Step 13: Initialize GADDRn */ 451 TSEC_WRITE(sc, TSEC_REG_GADDR0, 0); 452 TSEC_WRITE(sc, TSEC_REG_GADDR1, 0); 453 TSEC_WRITE(sc, TSEC_REG_GADDR2, 0); 454 TSEC_WRITE(sc, TSEC_REG_GADDR3, 0); 455 TSEC_WRITE(sc, TSEC_REG_GADDR4, 0); 456 TSEC_WRITE(sc, TSEC_REG_GADDR5, 0); 457 TSEC_WRITE(sc, TSEC_REG_GADDR6, 0); 458 TSEC_WRITE(sc, TSEC_REG_GADDR7, 0); 459 460 /* Step 14: Initialize RCTRL */ 461 TSEC_WRITE(sc, TSEC_REG_RCTRL, 0); 462 463 /* Step 15: Initialize DMACTRL */ 464 tsec_dma_ctl(sc, 1); 465 466 /* Step 16: Initialize FIFO_PAUSE_CTRL */ 467 TSEC_WRITE(sc, TSEC_REG_FIFO_PAUSE_CTRL, TSEC_FIFO_PAUSE_CTRL_EN); 468 469 /* 470 * Step 17: Initialize transmit/receive descriptor rings. 471 * Initialize TBASE and RBASE. 472 */ 473 TSEC_WRITE(sc, TSEC_REG_TBASE, sc->tsec_tx_raddr); 474 TSEC_WRITE(sc, TSEC_REG_RBASE, sc->tsec_rx_raddr); 475 476 for (i = 0; i < TSEC_TX_NUM_DESC; i++) { 477 tx_desc[i].bufptr = 0; 478 tx_desc[i].length = 0; 479 tx_desc[i].flags = ((i == TSEC_TX_NUM_DESC - 1) ? 480 TSEC_TXBD_W : 0); 481 } 482 bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap, 483 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 484 485 for (i = 0; i < TSEC_RX_NUM_DESC; i++) { 486 rx_desc[i].bufptr = sc->rx_data[i].paddr; 487 rx_desc[i].length = 0; 488 rx_desc[i].flags = TSEC_RXBD_E | TSEC_RXBD_I | 489 ((i == TSEC_RX_NUM_DESC - 1) ? TSEC_RXBD_W : 0); 490 } 491 bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap, 492 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 493 494 /* Step 18: Initialize the maximum receive buffer length */ 495 TSEC_WRITE(sc, TSEC_REG_MRBLR, MCLBYTES); 496 497 /* Step 19: Configure ethernet frame sizes */ 498 TSEC_WRITE(sc, TSEC_REG_MINFLR, TSEC_MIN_FRAME_SIZE); 499 tsec_set_mtu(sc, ifp->if_mtu); 500 501 /* Step 20: Enable Rx and RxBD sdata snooping */ 502 TSEC_WRITE(sc, TSEC_REG_ATTR, TSEC_ATTR_RDSEN | TSEC_ATTR_RBDSEN); 503 TSEC_WRITE(sc, TSEC_REG_ATTRELI, 0); 504 505 /* Step 21: Reset collision counters in hardware */ 506 TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0); 507 TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0); 508 TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0); 509 TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0); 510 TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0); 511 512 /* Step 22: Mask all CAM interrupts */ 513 TSEC_WRITE(sc, TSEC_REG_MON_CAM1, 0xffffffff); 514 TSEC_WRITE(sc, TSEC_REG_MON_CAM2, 0xffffffff); 515 516 /* Step 23: Enable Rx and Tx */ 517 val = TSEC_READ(sc, TSEC_REG_MACCFG1); 518 val |= (TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN); 519 TSEC_WRITE(sc, TSEC_REG_MACCFG1, val); 520 521 /* Step 24: Reset TSEC counters for Tx and Rx rings */ 522 TSEC_TX_RX_COUNTERS_INIT(sc); 523 524 /* Step 25: Setup TCP/IP Off-Load engine */ 525 if (sc->is_etsec) 526 tsec_offload_setup(sc); 527 528 /* Step 26: Setup multicast filters */ 529 tsec_setup_multicast(sc); 530 531 /* Step 27: Activate network interface */ 532 ifp->if_drv_flags |= IFF_DRV_RUNNING; 533 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 534 sc->tsec_if_flags = ifp->if_flags; 535 sc->tsec_watchdog = 0; 536 537 /* Schedule watchdog timeout */ 538 callout_reset(&sc->tsec_callout, hz, tsec_tick, sc); 539 } 540 541 static void 542 tsec_set_mac_address(struct tsec_softc *sc) 543 { 544 uint32_t macbuf[2] = { 0, 0 }; 545 char *macbufp, *curmac; 546 int i; 547 548 TSEC_GLOBAL_LOCK_ASSERT(sc); 549 550 KASSERT((ETHER_ADDR_LEN <= sizeof(macbuf)), 551 ("tsec_set_mac_address: (%d <= %d", ETHER_ADDR_LEN, 552 sizeof(macbuf))); 553 554 macbufp = (char *)macbuf; 555 curmac = (char *)IF_LLADDR(sc->tsec_ifp); 556 557 /* Correct order of MAC address bytes */ 558 for (i = 1; i <= ETHER_ADDR_LEN; i++) 559 macbufp[ETHER_ADDR_LEN-i] = curmac[i-1]; 560 561 /* Initialize MAC station address MACSTNADDR2 and MACSTNADDR1 */ 562 TSEC_WRITE(sc, TSEC_REG_MACSTNADDR2, macbuf[1]); 563 TSEC_WRITE(sc, TSEC_REG_MACSTNADDR1, macbuf[0]); 564 } 565 566 /* 567 * DMA control function, if argument state is: 568 * 0 - DMA engine will be disabled 569 * 1 - DMA engine will be enabled 570 */ 571 static void 572 tsec_dma_ctl(struct tsec_softc *sc, int state) 573 { 574 device_t dev; 575 uint32_t dma_flags, timeout; 576 577 dev = sc->dev; 578 579 dma_flags = TSEC_READ(sc, TSEC_REG_DMACTRL); 580 581 switch (state) { 582 case 0: 583 /* Temporarily clear stop graceful stop bits. */ 584 tsec_dma_ctl(sc, 1000); 585 586 /* Set it again */ 587 dma_flags |= (TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS); 588 break; 589 case 1000: 590 case 1: 591 /* Set write with response (WWR), wait (WOP) and snoop bits */ 592 dma_flags |= (TSEC_DMACTRL_TDSEN | TSEC_DMACTRL_TBDSEN | 593 DMACTRL_WWR | DMACTRL_WOP); 594 595 /* Clear graceful stop bits */ 596 dma_flags &= ~(TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS); 597 break; 598 default: 599 device_printf(dev, "tsec_dma_ctl(): unknown state value: %d\n", 600 state); 601 } 602 603 TSEC_WRITE(sc, TSEC_REG_DMACTRL, dma_flags); 604 605 switch (state) { 606 case 0: 607 /* Wait for DMA stop */ 608 timeout = TSEC_READ_RETRY; 609 while (--timeout && (!(TSEC_READ(sc, TSEC_REG_IEVENT) & 610 (TSEC_IEVENT_GRSC | TSEC_IEVENT_GTSC)))) 611 DELAY(TSEC_READ_DELAY); 612 613 if (timeout == 0) 614 device_printf(dev, "tsec_dma_ctl(): timeout!\n"); 615 break; 616 case 1: 617 /* Restart transmission function */ 618 TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT); 619 } 620 } 621 622 /* 623 * Interrupts control function, if argument state is: 624 * 0 - all TSEC interrupts will be masked 625 * 1 - all TSEC interrupts will be unmasked 626 */ 627 static void 628 tsec_intrs_ctl(struct tsec_softc *sc, int state) 629 { 630 device_t dev; 631 632 dev = sc->dev; 633 634 switch (state) { 635 case 0: 636 TSEC_WRITE(sc, TSEC_REG_IMASK, 0); 637 break; 638 case 1: 639 TSEC_WRITE(sc, TSEC_REG_IMASK, TSEC_IMASK_BREN | 640 TSEC_IMASK_RXCEN | TSEC_IMASK_BSYEN | TSEC_IMASK_EBERREN | 641 TSEC_IMASK_BTEN | TSEC_IMASK_TXEEN | TSEC_IMASK_TXBEN | 642 TSEC_IMASK_TXFEN | TSEC_IMASK_XFUNEN | TSEC_IMASK_RXFEN); 643 break; 644 default: 645 device_printf(dev, "tsec_intrs_ctl(): unknown state value: %d\n", 646 state); 647 } 648 } 649 650 static void 651 tsec_reset_mac(struct tsec_softc *sc) 652 { 653 uint32_t maccfg1_flags; 654 655 /* Set soft reset bit */ 656 maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1); 657 maccfg1_flags |= TSEC_MACCFG1_SOFT_RESET; 658 TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags); 659 660 /* Clear soft reset bit */ 661 maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1); 662 maccfg1_flags &= ~TSEC_MACCFG1_SOFT_RESET; 663 TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags); 664 } 665 666 static void 667 tsec_watchdog(struct tsec_softc *sc) 668 { 669 struct ifnet *ifp; 670 671 TSEC_GLOBAL_LOCK_ASSERT(sc); 672 673 if (sc->tsec_watchdog == 0 || --sc->tsec_watchdog > 0) 674 return; 675 676 ifp = sc->tsec_ifp; 677 ifp->if_oerrors++; 678 if_printf(ifp, "watchdog timeout\n"); 679 680 tsec_stop(sc); 681 tsec_init_locked(sc); 682 } 683 684 static void 685 tsec_start(struct ifnet *ifp) 686 { 687 struct tsec_softc *sc = ifp->if_softc; 688 689 TSEC_TRANSMIT_LOCK(sc); 690 tsec_start_locked(ifp); 691 TSEC_TRANSMIT_UNLOCK(sc); 692 } 693 694 static void 695 tsec_start_locked(struct ifnet *ifp) 696 { 697 struct tsec_softc *sc; 698 struct mbuf *m0, *mtmp; 699 struct tsec_tx_fcb *tx_fcb; 700 unsigned int queued = 0; 701 int csum_flags, fcb_inserted = 0; 702 703 sc = ifp->if_softc; 704 705 TSEC_TRANSMIT_LOCK_ASSERT(sc); 706 707 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 708 IFF_DRV_RUNNING) 709 return; 710 711 if (sc->tsec_link == 0) 712 return; 713 714 bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap, 715 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 716 717 while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 718 /* Get packet from the queue */ 719 IFQ_DRV_DEQUEUE(&ifp->if_snd, m0); 720 if (m0 == NULL) 721 break; 722 723 /* Insert TCP/IP Off-load frame control block */ 724 csum_flags = m0->m_pkthdr.csum_flags; 725 if (csum_flags) { 726 727 M_PREPEND(m0, sizeof(struct tsec_tx_fcb), M_DONTWAIT); 728 if (m0 == NULL) 729 break; 730 731 tx_fcb = mtod(m0, struct tsec_tx_fcb *); 732 tx_fcb->flags = 0; 733 tx_fcb->l3_offset = ETHER_HDR_LEN; 734 tx_fcb->l4_offset = sizeof(struct ip); 735 736 if (csum_flags & CSUM_IP) 737 tx_fcb->flags |= TSEC_TX_FCB_IP4 | 738 TSEC_TX_FCB_CSUM_IP; 739 740 if (csum_flags & CSUM_TCP) 741 tx_fcb->flags |= TSEC_TX_FCB_TCP | 742 TSEC_TX_FCB_CSUM_TCP_UDP; 743 744 if (csum_flags & CSUM_UDP) 745 tx_fcb->flags |= TSEC_TX_FCB_UDP | 746 TSEC_TX_FCB_CSUM_TCP_UDP; 747 748 fcb_inserted = 1; 749 } 750 751 mtmp = m_defrag(m0, M_DONTWAIT); 752 if (mtmp) 753 m0 = mtmp; 754 755 if (tsec_encap(sc, m0, fcb_inserted)) { 756 IFQ_DRV_PREPEND(&ifp->if_snd, m0); 757 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 758 break; 759 } 760 queued++; 761 BPF_MTAP(ifp, m0); 762 } 763 bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap, 764 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 765 766 if (queued) { 767 /* Enable transmitter and watchdog timer */ 768 TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT); 769 sc->tsec_watchdog = 5; 770 } 771 } 772 773 static int 774 tsec_encap(struct tsec_softc *sc, struct mbuf *m0, int fcb_inserted) 775 { 776 struct tsec_desc *tx_desc = NULL; 777 struct ifnet *ifp; 778 bus_dma_segment_t segs[TSEC_TX_NUM_DESC]; 779 bus_dmamap_t *mapp; 780 int csum_flag = 0, error, seg, nsegs; 781 782 TSEC_TRANSMIT_LOCK_ASSERT(sc); 783 784 ifp = sc->tsec_ifp; 785 786 if (TSEC_FREE_TX_DESC(sc) == 0) { 787 /* No free descriptors */ 788 return (-1); 789 } 790 791 /* Fetch unused map */ 792 mapp = TSEC_ALLOC_TX_MAP(sc); 793 794 /* Create mapping in DMA memory */ 795 error = bus_dmamap_load_mbuf_sg(sc->tsec_tx_mtag, 796 *mapp, m0, segs, &nsegs, BUS_DMA_NOWAIT); 797 if (error != 0 || nsegs > TSEC_FREE_TX_DESC(sc) || nsegs <= 0) { 798 bus_dmamap_unload(sc->tsec_tx_mtag, *mapp); 799 TSEC_FREE_TX_MAP(sc, mapp); 800 return ((error != 0) ? error : -1); 801 } 802 bus_dmamap_sync(sc->tsec_tx_mtag, *mapp, BUS_DMASYNC_PREWRITE); 803 804 if ((ifp->if_flags & IFF_DEBUG) && (nsegs > 1)) 805 if_printf(ifp, "TX buffer has %d segments\n", nsegs); 806 807 if (fcb_inserted) 808 csum_flag = TSEC_TXBD_TOE; 809 810 /* Everything is ok, now we can send buffers */ 811 for (seg = 0; seg < nsegs; seg++) { 812 tx_desc = TSEC_GET_CUR_TX_DESC(sc); 813 814 tx_desc->length = segs[seg].ds_len; 815 tx_desc->bufptr = segs[seg].ds_addr; 816 817 /* 818 * Set flags: 819 * - wrap 820 * - checksum 821 * - ready to send 822 * - transmit the CRC sequence after the last data byte 823 * - interrupt after the last buffer 824 */ 825 tx_desc->flags = 826 (tx_desc->flags & TSEC_TXBD_W) | 827 ((seg == 0) ? csum_flag : 0) | TSEC_TXBD_R | TSEC_TXBD_TC | 828 ((seg == nsegs - 1) ? TSEC_TXBD_L | TSEC_TXBD_I : 0); 829 } 830 831 /* Save mbuf and DMA mapping for release at later stage */ 832 TSEC_PUT_TX_MBUF(sc, m0); 833 TSEC_PUT_TX_MAP(sc, mapp); 834 835 return (0); 836 } 837 838 static void 839 tsec_setfilter(struct tsec_softc *sc) 840 { 841 struct ifnet *ifp; 842 uint32_t flags; 843 844 ifp = sc->tsec_ifp; 845 flags = TSEC_READ(sc, TSEC_REG_RCTRL); 846 847 /* Promiscuous mode */ 848 if (ifp->if_flags & IFF_PROMISC) 849 flags |= TSEC_RCTRL_PROM; 850 else 851 flags &= ~TSEC_RCTRL_PROM; 852 853 TSEC_WRITE(sc, TSEC_REG_RCTRL, flags); 854 } 855 856 #ifdef DEVICE_POLLING 857 static poll_handler_t tsec_poll; 858 859 static int 860 tsec_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 861 { 862 uint32_t ie; 863 struct tsec_softc *sc = ifp->if_softc; 864 int rx_npkts; 865 866 rx_npkts = 0; 867 868 TSEC_GLOBAL_LOCK(sc); 869 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 870 TSEC_GLOBAL_UNLOCK(sc); 871 return (rx_npkts); 872 } 873 874 if (cmd == POLL_AND_CHECK_STATUS) { 875 tsec_error_intr_locked(sc, count); 876 877 /* Clear all events reported */ 878 ie = TSEC_READ(sc, TSEC_REG_IEVENT); 879 TSEC_WRITE(sc, TSEC_REG_IEVENT, ie); 880 } 881 882 tsec_transmit_intr_locked(sc); 883 884 TSEC_GLOBAL_TO_RECEIVE_LOCK(sc); 885 886 rx_npkts = tsec_receive_intr_locked(sc, count); 887 888 TSEC_RECEIVE_UNLOCK(sc); 889 890 return (rx_npkts); 891 } 892 #endif /* DEVICE_POLLING */ 893 894 static int 895 tsec_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 896 { 897 struct tsec_softc *sc = ifp->if_softc; 898 struct ifreq *ifr = (struct ifreq *)data; 899 device_t dev; 900 int mask, error = 0; 901 902 dev = sc->dev; 903 904 switch (command) { 905 case SIOCSIFMTU: 906 TSEC_GLOBAL_LOCK(sc); 907 if (tsec_set_mtu(sc, ifr->ifr_mtu)) 908 ifp->if_mtu = ifr->ifr_mtu; 909 else 910 error = EINVAL; 911 TSEC_GLOBAL_UNLOCK(sc); 912 break; 913 case SIOCSIFFLAGS: 914 TSEC_GLOBAL_LOCK(sc); 915 if (ifp->if_flags & IFF_UP) { 916 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 917 if ((sc->tsec_if_flags ^ ifp->if_flags) & 918 IFF_PROMISC) 919 tsec_setfilter(sc); 920 921 if ((sc->tsec_if_flags ^ ifp->if_flags) & 922 IFF_ALLMULTI) 923 tsec_setup_multicast(sc); 924 } else 925 tsec_init_locked(sc); 926 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) 927 tsec_stop(sc); 928 929 sc->tsec_if_flags = ifp->if_flags; 930 TSEC_GLOBAL_UNLOCK(sc); 931 break; 932 case SIOCADDMULTI: 933 case SIOCDELMULTI: 934 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 935 TSEC_GLOBAL_LOCK(sc); 936 tsec_setup_multicast(sc); 937 TSEC_GLOBAL_UNLOCK(sc); 938 } 939 case SIOCGIFMEDIA: 940 case SIOCSIFMEDIA: 941 error = ifmedia_ioctl(ifp, ifr, &sc->tsec_mii->mii_media, 942 command); 943 break; 944 case SIOCSIFCAP: 945 mask = ifp->if_capenable ^ ifr->ifr_reqcap; 946 if ((mask & IFCAP_HWCSUM) && sc->is_etsec) { 947 TSEC_GLOBAL_LOCK(sc); 948 ifp->if_capenable &= ~IFCAP_HWCSUM; 949 ifp->if_capenable |= IFCAP_HWCSUM & ifr->ifr_reqcap; 950 tsec_offload_setup(sc); 951 TSEC_GLOBAL_UNLOCK(sc); 952 } 953 #ifdef DEVICE_POLLING 954 if (mask & IFCAP_POLLING) { 955 if (ifr->ifr_reqcap & IFCAP_POLLING) { 956 error = ether_poll_register(tsec_poll, ifp); 957 if (error) 958 return (error); 959 960 TSEC_GLOBAL_LOCK(sc); 961 /* Disable interrupts */ 962 tsec_intrs_ctl(sc, 0); 963 ifp->if_capenable |= IFCAP_POLLING; 964 TSEC_GLOBAL_UNLOCK(sc); 965 } else { 966 error = ether_poll_deregister(ifp); 967 TSEC_GLOBAL_LOCK(sc); 968 /* Enable interrupts */ 969 tsec_intrs_ctl(sc, 1); 970 ifp->if_capenable &= ~IFCAP_POLLING; 971 TSEC_GLOBAL_UNLOCK(sc); 972 } 973 } 974 #endif 975 break; 976 977 default: 978 error = ether_ioctl(ifp, command, data); 979 } 980 981 /* Flush buffers if not empty */ 982 if (ifp->if_flags & IFF_UP) 983 tsec_start(ifp); 984 return (error); 985 } 986 987 static int 988 tsec_ifmedia_upd(struct ifnet *ifp) 989 { 990 struct tsec_softc *sc = ifp->if_softc; 991 struct mii_data *mii; 992 993 TSEC_TRANSMIT_LOCK(sc); 994 995 mii = sc->tsec_mii; 996 mii_mediachg(mii); 997 998 TSEC_TRANSMIT_UNLOCK(sc); 999 return (0); 1000 } 1001 1002 static void 1003 tsec_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 1004 { 1005 struct tsec_softc *sc = ifp->if_softc; 1006 struct mii_data *mii; 1007 1008 TSEC_TRANSMIT_LOCK(sc); 1009 1010 mii = sc->tsec_mii; 1011 mii_pollstat(mii); 1012 1013 ifmr->ifm_active = mii->mii_media_active; 1014 ifmr->ifm_status = mii->mii_media_status; 1015 1016 TSEC_TRANSMIT_UNLOCK(sc); 1017 } 1018 1019 static int 1020 tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map, struct mbuf **mbufp, 1021 uint32_t *paddr) 1022 { 1023 struct mbuf *new_mbuf; 1024 bus_dma_segment_t seg[1]; 1025 int error, nsegs; 1026 1027 KASSERT(mbufp != NULL, ("NULL mbuf pointer!")); 1028 1029 new_mbuf = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MCLBYTES); 1030 if (new_mbuf == NULL) 1031 return (ENOBUFS); 1032 new_mbuf->m_len = new_mbuf->m_pkthdr.len = new_mbuf->m_ext.ext_size; 1033 1034 if (*mbufp) { 1035 bus_dmamap_sync(tag, map, BUS_DMASYNC_POSTREAD); 1036 bus_dmamap_unload(tag, map); 1037 } 1038 1039 error = bus_dmamap_load_mbuf_sg(tag, map, new_mbuf, seg, &nsegs, 1040 BUS_DMA_NOWAIT); 1041 KASSERT(nsegs == 1, ("Too many segments returned!")); 1042 if (nsegs != 1 || error) 1043 panic("tsec_new_rxbuf(): nsegs(%d), error(%d)", nsegs, error); 1044 1045 #if 0 1046 if (error) { 1047 printf("tsec: bus_dmamap_load_mbuf_sg() returned: %d!\n", 1048 error); 1049 m_freem(new_mbuf); 1050 return (ENOBUFS); 1051 } 1052 #endif 1053 1054 #if 0 1055 KASSERT(((seg->ds_addr) & (TSEC_RXBUFFER_ALIGNMENT-1)) == 0, 1056 ("Wrong alignment of RX buffer!")); 1057 #endif 1058 bus_dmamap_sync(tag, map, BUS_DMASYNC_PREREAD); 1059 1060 (*mbufp) = new_mbuf; 1061 (*paddr) = seg->ds_addr; 1062 return (0); 1063 } 1064 1065 static void 1066 tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1067 { 1068 u_int32_t *paddr; 1069 1070 KASSERT(nseg == 1, ("wrong number of segments, should be 1")); 1071 paddr = arg; 1072 *paddr = segs->ds_addr; 1073 } 1074 1075 static int 1076 tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag, bus_dmamap_t *dmap, 1077 bus_size_t dsize, void **vaddr, void *raddr, const char *dname) 1078 { 1079 int error; 1080 1081 /* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */ 1082 error = bus_dma_tag_create(NULL, /* parent */ 1083 PAGE_SIZE, 0, /* alignment, boundary */ 1084 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1085 BUS_SPACE_MAXADDR, /* highaddr */ 1086 NULL, NULL, /* filtfunc, filtfuncarg */ 1087 dsize, 1, /* maxsize, nsegments */ 1088 dsize, 0, /* maxsegsz, flags */ 1089 NULL, NULL, /* lockfunc, lockfuncarg */ 1090 dtag); /* dmat */ 1091 1092 if (error) { 1093 device_printf(dev, "failed to allocate busdma %s tag\n", 1094 dname); 1095 (*vaddr) = NULL; 1096 return (ENXIO); 1097 } 1098 1099 error = bus_dmamem_alloc(*dtag, vaddr, BUS_DMA_NOWAIT | BUS_DMA_ZERO, 1100 dmap); 1101 if (error) { 1102 device_printf(dev, "failed to allocate %s DMA safe memory\n", 1103 dname); 1104 bus_dma_tag_destroy(*dtag); 1105 (*vaddr) = NULL; 1106 return (ENXIO); 1107 } 1108 1109 error = bus_dmamap_load(*dtag, *dmap, *vaddr, dsize, 1110 tsec_map_dma_addr, raddr, BUS_DMA_NOWAIT); 1111 if (error) { 1112 device_printf(dev, "cannot get address of the %s " 1113 "descriptors\n", dname); 1114 bus_dmamem_free(*dtag, *vaddr, *dmap); 1115 bus_dma_tag_destroy(*dtag); 1116 (*vaddr) = NULL; 1117 return (ENXIO); 1118 } 1119 1120 return (0); 1121 } 1122 1123 static void 1124 tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr) 1125 { 1126 1127 if (vaddr == NULL) 1128 return; 1129 1130 /* Unmap descriptors from DMA memory */ 1131 bus_dmamap_sync(dtag, dmap, BUS_DMASYNC_POSTREAD | 1132 BUS_DMASYNC_POSTWRITE); 1133 bus_dmamap_unload(dtag, dmap); 1134 1135 /* Free descriptors memory */ 1136 bus_dmamem_free(dtag, vaddr, dmap); 1137 1138 /* Destroy descriptors tag */ 1139 bus_dma_tag_destroy(dtag); 1140 } 1141 1142 static void 1143 tsec_free_dma(struct tsec_softc *sc) 1144 { 1145 int i; 1146 1147 /* Free TX maps */ 1148 for (i = 0; i < TSEC_TX_NUM_DESC; i++) 1149 if (sc->tx_map_data[i] != NULL) 1150 bus_dmamap_destroy(sc->tsec_tx_mtag, 1151 sc->tx_map_data[i]); 1152 /* Destroy tag for TX mbufs */ 1153 bus_dma_tag_destroy(sc->tsec_tx_mtag); 1154 1155 /* Free RX mbufs and maps */ 1156 for (i = 0; i < TSEC_RX_NUM_DESC; i++) { 1157 if (sc->rx_data[i].mbuf) { 1158 /* Unload buffer from DMA */ 1159 bus_dmamap_sync(sc->tsec_rx_mtag, sc->rx_data[i].map, 1160 BUS_DMASYNC_POSTREAD); 1161 bus_dmamap_unload(sc->tsec_rx_mtag, 1162 sc->rx_data[i].map); 1163 1164 /* Free buffer */ 1165 m_freem(sc->rx_data[i].mbuf); 1166 } 1167 /* Destroy map for this buffer */ 1168 if (sc->rx_data[i].map != NULL) 1169 bus_dmamap_destroy(sc->tsec_rx_mtag, 1170 sc->rx_data[i].map); 1171 } 1172 /* Destroy tag for RX mbufs */ 1173 bus_dma_tag_destroy(sc->tsec_rx_mtag); 1174 1175 /* Unload TX/RX descriptors */ 1176 tsec_free_dma_desc(sc->tsec_tx_dtag, sc->tsec_tx_dmap, 1177 sc->tsec_tx_vaddr); 1178 tsec_free_dma_desc(sc->tsec_rx_dtag, sc->tsec_rx_dmap, 1179 sc->tsec_rx_vaddr); 1180 } 1181 1182 static void 1183 tsec_stop(struct tsec_softc *sc) 1184 { 1185 struct ifnet *ifp; 1186 struct mbuf *m0; 1187 bus_dmamap_t *mapp; 1188 uint32_t tmpval; 1189 1190 TSEC_GLOBAL_LOCK_ASSERT(sc); 1191 1192 ifp = sc->tsec_ifp; 1193 1194 /* Disable interface and watchdog timer */ 1195 callout_stop(&sc->tsec_callout); 1196 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 1197 sc->tsec_watchdog = 0; 1198 1199 /* Disable all interrupts and stop DMA */ 1200 tsec_intrs_ctl(sc, 0); 1201 tsec_dma_ctl(sc, 0); 1202 1203 /* Remove pending data from TX queue */ 1204 while (!TSEC_EMPTYQ_TX_MBUF(sc)) { 1205 m0 = TSEC_GET_TX_MBUF(sc); 1206 mapp = TSEC_GET_TX_MAP(sc); 1207 1208 bus_dmamap_sync(sc->tsec_tx_mtag, *mapp, 1209 BUS_DMASYNC_POSTWRITE); 1210 bus_dmamap_unload(sc->tsec_tx_mtag, *mapp); 1211 1212 TSEC_FREE_TX_MAP(sc, mapp); 1213 m_freem(m0); 1214 } 1215 1216 /* Disable RX and TX */ 1217 tmpval = TSEC_READ(sc, TSEC_REG_MACCFG1); 1218 tmpval &= ~(TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN); 1219 TSEC_WRITE(sc, TSEC_REG_MACCFG1, tmpval); 1220 DELAY(10); 1221 } 1222 1223 static void 1224 tsec_tick(void *arg) 1225 { 1226 struct tsec_softc *sc = arg; 1227 struct ifnet *ifp; 1228 int link; 1229 1230 TSEC_GLOBAL_LOCK(sc); 1231 1232 tsec_watchdog(sc); 1233 1234 ifp = sc->tsec_ifp; 1235 link = sc->tsec_link; 1236 1237 mii_tick(sc->tsec_mii); 1238 1239 if (link == 0 && sc->tsec_link == 1 && 1240 (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))) 1241 tsec_start_locked(ifp); 1242 1243 /* Schedule another timeout one second from now. */ 1244 callout_reset(&sc->tsec_callout, hz, tsec_tick, sc); 1245 1246 TSEC_GLOBAL_UNLOCK(sc); 1247 } 1248 1249 /* 1250 * This is the core RX routine. It replenishes mbufs in the descriptor and 1251 * sends data which have been dma'ed into host memory to upper layer. 1252 * 1253 * Loops at most count times if count is > 0, or until done if count < 0. 1254 */ 1255 static int 1256 tsec_receive_intr_locked(struct tsec_softc *sc, int count) 1257 { 1258 struct tsec_desc *rx_desc; 1259 struct ifnet *ifp; 1260 struct rx_data_type *rx_data; 1261 struct mbuf *m; 1262 device_t dev; 1263 uint32_t i; 1264 int c, rx_npkts; 1265 uint16_t flags; 1266 1267 TSEC_RECEIVE_LOCK_ASSERT(sc); 1268 1269 ifp = sc->tsec_ifp; 1270 rx_data = sc->rx_data; 1271 dev = sc->dev; 1272 rx_npkts = 0; 1273 1274 bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap, 1275 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1276 1277 for (c = 0; ; c++) { 1278 if (count >= 0 && count-- == 0) 1279 break; 1280 1281 rx_desc = TSEC_GET_CUR_RX_DESC(sc); 1282 flags = rx_desc->flags; 1283 1284 /* Check if there is anything to receive */ 1285 if ((flags & TSEC_RXBD_E) || (c >= TSEC_RX_NUM_DESC)) { 1286 /* 1287 * Avoid generating another interrupt 1288 */ 1289 if (flags & TSEC_RXBD_E) 1290 TSEC_WRITE(sc, TSEC_REG_IEVENT, 1291 TSEC_IEVENT_RXB | TSEC_IEVENT_RXF); 1292 /* 1293 * We didn't consume current descriptor and have to 1294 * return it to the queue 1295 */ 1296 TSEC_BACK_CUR_RX_DESC(sc); 1297 break; 1298 } 1299 1300 if (flags & (TSEC_RXBD_LG | TSEC_RXBD_SH | TSEC_RXBD_NO | 1301 TSEC_RXBD_CR | TSEC_RXBD_OV | TSEC_RXBD_TR)) { 1302 1303 rx_desc->length = 0; 1304 rx_desc->flags = (rx_desc->flags & 1305 ~TSEC_RXBD_ZEROONINIT) | TSEC_RXBD_E | TSEC_RXBD_I; 1306 1307 if (sc->frame != NULL) { 1308 m_free(sc->frame); 1309 sc->frame = NULL; 1310 } 1311 1312 continue; 1313 } 1314 1315 /* Ok... process frame */ 1316 i = TSEC_GET_CUR_RX_DESC_CNT(sc); 1317 m = rx_data[i].mbuf; 1318 m->m_len = rx_desc->length; 1319 1320 if (sc->frame != NULL) { 1321 if ((flags & TSEC_RXBD_L) != 0) 1322 m->m_len -= m_length(sc->frame, NULL); 1323 1324 m->m_flags &= ~M_PKTHDR; 1325 m_cat(sc->frame, m); 1326 } else { 1327 sc->frame = m; 1328 } 1329 1330 m = NULL; 1331 1332 if ((flags & TSEC_RXBD_L) != 0) { 1333 m = sc->frame; 1334 sc->frame = NULL; 1335 } 1336 1337 if (tsec_new_rxbuf(sc->tsec_rx_mtag, rx_data[i].map, 1338 &rx_data[i].mbuf, &rx_data[i].paddr)) { 1339 ifp->if_ierrors++; 1340 /* 1341 * We ran out of mbufs; didn't consume current 1342 * descriptor and have to return it to the queue. 1343 */ 1344 TSEC_BACK_CUR_RX_DESC(sc); 1345 break; 1346 } 1347 1348 /* Attach new buffer to descriptor and clear flags */ 1349 rx_desc->bufptr = rx_data[i].paddr; 1350 rx_desc->length = 0; 1351 rx_desc->flags = (rx_desc->flags & ~TSEC_RXBD_ZEROONINIT) | 1352 TSEC_RXBD_E | TSEC_RXBD_I; 1353 1354 if (m != NULL) { 1355 m->m_pkthdr.rcvif = ifp; 1356 1357 m_fixhdr(m); 1358 m_adj(m, -ETHER_CRC_LEN); 1359 1360 if (sc->is_etsec) 1361 tsec_offload_process_frame(sc, m); 1362 1363 TSEC_RECEIVE_UNLOCK(sc); 1364 (*ifp->if_input)(ifp, m); 1365 TSEC_RECEIVE_LOCK(sc); 1366 rx_npkts++; 1367 } 1368 } 1369 1370 bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap, 1371 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1372 1373 /* 1374 * Make sure TSEC receiver is not halted. 1375 * 1376 * Various conditions can stop the TSEC receiver, but not all are 1377 * signaled and handled by error interrupt, so make sure the receiver 1378 * is running. Writing to TSEC_REG_RSTAT restarts the receiver when 1379 * halted, and is harmless if already running. 1380 */ 1381 TSEC_WRITE(sc, TSEC_REG_RSTAT, TSEC_RSTAT_QHLT); 1382 return (rx_npkts); 1383 } 1384 1385 void 1386 tsec_receive_intr(void *arg) 1387 { 1388 struct tsec_softc *sc = arg; 1389 1390 TSEC_RECEIVE_LOCK(sc); 1391 1392 #ifdef DEVICE_POLLING 1393 if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) { 1394 TSEC_RECEIVE_UNLOCK(sc); 1395 return; 1396 } 1397 #endif 1398 1399 /* Confirm the interrupt was received by driver */ 1400 TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXB | TSEC_IEVENT_RXF); 1401 tsec_receive_intr_locked(sc, -1); 1402 1403 TSEC_RECEIVE_UNLOCK(sc); 1404 } 1405 1406 static void 1407 tsec_transmit_intr_locked(struct tsec_softc *sc) 1408 { 1409 struct tsec_desc *tx_desc; 1410 struct ifnet *ifp; 1411 struct mbuf *m0; 1412 bus_dmamap_t *mapp; 1413 int send = 0; 1414 1415 TSEC_TRANSMIT_LOCK_ASSERT(sc); 1416 1417 ifp = sc->tsec_ifp; 1418 1419 /* Update collision statistics */ 1420 ifp->if_collisions += TSEC_READ(sc, TSEC_REG_MON_TNCL); 1421 1422 /* Reset collision counters in hardware */ 1423 TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0); 1424 TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0); 1425 TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0); 1426 TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0); 1427 TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0); 1428 1429 bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap, 1430 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1431 1432 while (TSEC_CUR_DIFF_DIRTY_TX_DESC(sc)) { 1433 tx_desc = TSEC_GET_DIRTY_TX_DESC(sc); 1434 if (tx_desc->flags & TSEC_TXBD_R) { 1435 TSEC_BACK_DIRTY_TX_DESC(sc); 1436 break; 1437 } 1438 1439 if ((tx_desc->flags & TSEC_TXBD_L) == 0) 1440 continue; 1441 1442 /* 1443 * This is the last buf in this packet, so unmap and free it. 1444 */ 1445 m0 = TSEC_GET_TX_MBUF(sc); 1446 mapp = TSEC_GET_TX_MAP(sc); 1447 1448 bus_dmamap_sync(sc->tsec_tx_mtag, *mapp, 1449 BUS_DMASYNC_POSTWRITE); 1450 bus_dmamap_unload(sc->tsec_tx_mtag, *mapp); 1451 1452 TSEC_FREE_TX_MAP(sc, mapp); 1453 m_freem(m0); 1454 1455 ifp->if_opackets++; 1456 send = 1; 1457 } 1458 bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap, 1459 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1460 1461 if (send) { 1462 /* Now send anything that was pending */ 1463 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1464 tsec_start_locked(ifp); 1465 1466 /* Stop wathdog if all sent */ 1467 if (TSEC_EMPTYQ_TX_MBUF(sc)) 1468 sc->tsec_watchdog = 0; 1469 } 1470 } 1471 1472 void 1473 tsec_transmit_intr(void *arg) 1474 { 1475 struct tsec_softc *sc = arg; 1476 1477 TSEC_TRANSMIT_LOCK(sc); 1478 1479 #ifdef DEVICE_POLLING 1480 if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) { 1481 TSEC_TRANSMIT_UNLOCK(sc); 1482 return; 1483 } 1484 #endif 1485 /* Confirm the interrupt was received by driver */ 1486 TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_TXB | TSEC_IEVENT_TXF); 1487 tsec_transmit_intr_locked(sc); 1488 1489 TSEC_TRANSMIT_UNLOCK(sc); 1490 } 1491 1492 static void 1493 tsec_error_intr_locked(struct tsec_softc *sc, int count) 1494 { 1495 struct ifnet *ifp; 1496 uint32_t eflags; 1497 1498 TSEC_GLOBAL_LOCK_ASSERT(sc); 1499 1500 ifp = sc->tsec_ifp; 1501 1502 eflags = TSEC_READ(sc, TSEC_REG_IEVENT); 1503 1504 /* Clear events bits in hardware */ 1505 TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXC | TSEC_IEVENT_BSY | 1506 TSEC_IEVENT_EBERR | TSEC_IEVENT_MSRO | TSEC_IEVENT_BABT | 1507 TSEC_IEVENT_TXC | TSEC_IEVENT_TXE | TSEC_IEVENT_LC | 1508 TSEC_IEVENT_CRL | TSEC_IEVENT_XFUN); 1509 1510 /* Check transmitter errors */ 1511 if (eflags & TSEC_IEVENT_TXE) { 1512 ifp->if_oerrors++; 1513 1514 if (eflags & TSEC_IEVENT_LC) 1515 ifp->if_collisions++; 1516 1517 TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT); 1518 } 1519 1520 /* Check receiver errors */ 1521 if (eflags & TSEC_IEVENT_BSY) { 1522 ifp->if_ierrors++; 1523 ifp->if_iqdrops++; 1524 1525 /* Get data from RX buffers */ 1526 tsec_receive_intr_locked(sc, count); 1527 } 1528 1529 if (ifp->if_flags & IFF_DEBUG) 1530 if_printf(ifp, "tsec_error_intr(): event flags: 0x%x\n", 1531 eflags); 1532 1533 if (eflags & TSEC_IEVENT_EBERR) { 1534 if_printf(ifp, "System bus error occurred during" 1535 "DMA transaction (flags: 0x%x)\n", eflags); 1536 tsec_init_locked(sc); 1537 } 1538 1539 if (eflags & TSEC_IEVENT_BABT) 1540 ifp->if_oerrors++; 1541 1542 if (eflags & TSEC_IEVENT_BABR) 1543 ifp->if_ierrors++; 1544 } 1545 1546 void 1547 tsec_error_intr(void *arg) 1548 { 1549 struct tsec_softc *sc = arg; 1550 1551 TSEC_GLOBAL_LOCK(sc); 1552 tsec_error_intr_locked(sc, -1); 1553 TSEC_GLOBAL_UNLOCK(sc); 1554 } 1555 1556 int 1557 tsec_miibus_readreg(device_t dev, int phy, int reg) 1558 { 1559 struct tsec_softc *sc; 1560 uint32_t timeout; 1561 1562 sc = device_get_softc(dev); 1563 1564 TSEC_WRITE(sc->phy_sc, TSEC_REG_MIIMADD, (phy << 8) | reg); 1565 TSEC_WRITE(sc->phy_sc, TSEC_REG_MIIMCOM, 0); 1566 TSEC_WRITE(sc->phy_sc, TSEC_REG_MIIMCOM, TSEC_MIIMCOM_READCYCLE); 1567 1568 timeout = TSEC_READ_RETRY; 1569 while (--timeout && TSEC_READ(sc->phy_sc, TSEC_REG_MIIMIND) & 1570 (TSEC_MIIMIND_NOTVALID | TSEC_MIIMIND_BUSY)) 1571 DELAY(TSEC_READ_DELAY); 1572 1573 if (timeout == 0) 1574 device_printf(dev, "Timeout while reading from PHY!\n"); 1575 1576 return (TSEC_READ(sc->phy_sc, TSEC_REG_MIIMSTAT)); 1577 } 1578 1579 int 1580 tsec_miibus_writereg(device_t dev, int phy, int reg, int value) 1581 { 1582 struct tsec_softc *sc; 1583 uint32_t timeout; 1584 1585 sc = device_get_softc(dev); 1586 1587 TSEC_WRITE(sc->phy_sc, TSEC_REG_MIIMADD, (phy << 8) | reg); 1588 TSEC_WRITE(sc->phy_sc, TSEC_REG_MIIMCON, value); 1589 1590 timeout = TSEC_READ_RETRY; 1591 while (--timeout && (TSEC_READ(sc->phy_sc, TSEC_REG_MIIMIND) & 1592 TSEC_MIIMIND_BUSY)) 1593 DELAY(TSEC_READ_DELAY); 1594 1595 if (timeout == 0) 1596 device_printf(dev, "Timeout while writing to PHY!\n"); 1597 1598 return (0); 1599 } 1600 1601 void 1602 tsec_miibus_statchg(device_t dev) 1603 { 1604 struct tsec_softc *sc; 1605 struct mii_data *mii; 1606 uint32_t ecntrl, id, tmp; 1607 int link; 1608 1609 sc = device_get_softc(dev); 1610 mii = sc->tsec_mii; 1611 link = ((mii->mii_media_status & IFM_ACTIVE) ? 1 : 0); 1612 1613 tmp = TSEC_READ(sc, TSEC_REG_MACCFG2) & ~TSEC_MACCFG2_IF; 1614 1615 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) 1616 tmp |= TSEC_MACCFG2_FULLDUPLEX; 1617 else 1618 tmp &= ~TSEC_MACCFG2_FULLDUPLEX; 1619 1620 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1621 case IFM_1000_T: 1622 case IFM_1000_SX: 1623 tmp |= TSEC_MACCFG2_GMII; 1624 sc->tsec_link = link; 1625 break; 1626 case IFM_100_TX: 1627 case IFM_10_T: 1628 tmp |= TSEC_MACCFG2_MII; 1629 sc->tsec_link = link; 1630 break; 1631 case IFM_NONE: 1632 if (link) 1633 device_printf(dev, "No speed selected but link " 1634 "active!\n"); 1635 sc->tsec_link = 0; 1636 return; 1637 default: 1638 sc->tsec_link = 0; 1639 device_printf(dev, "Unknown speed (%d), link %s!\n", 1640 IFM_SUBTYPE(mii->mii_media_active), 1641 ((link) ? "up" : "down")); 1642 return; 1643 } 1644 TSEC_WRITE(sc, TSEC_REG_MACCFG2, tmp); 1645 1646 /* XXX kludge - use circumstantial evidence for reduced mode. */ 1647 id = TSEC_READ(sc, TSEC_REG_ID2); 1648 if (id & 0xffff) { 1649 ecntrl = TSEC_READ(sc, TSEC_REG_ECNTRL) & ~TSEC_ECNTRL_R100M; 1650 ecntrl |= (tmp & TSEC_MACCFG2_MII) ? TSEC_ECNTRL_R100M : 0; 1651 TSEC_WRITE(sc, TSEC_REG_ECNTRL, ecntrl); 1652 } 1653 } 1654 1655 static void 1656 tsec_add_sysctls(struct tsec_softc *sc) 1657 { 1658 struct sysctl_ctx_list *ctx; 1659 struct sysctl_oid_list *children; 1660 struct sysctl_oid *tree; 1661 1662 ctx = device_get_sysctl_ctx(sc->dev); 1663 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 1664 tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "int_coal", 1665 CTLFLAG_RD, 0, "TSEC Interrupts coalescing"); 1666 children = SYSCTL_CHILDREN(tree); 1667 1668 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_time", 1669 CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_RX, tsec_sysctl_ic_time, 1670 "I", "IC RX time threshold (0-65535)"); 1671 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_count", 1672 CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_RX, tsec_sysctl_ic_count, 1673 "I", "IC RX frame count threshold (0-255)"); 1674 1675 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_time", 1676 CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_TX, tsec_sysctl_ic_time, 1677 "I", "IC TX time threshold (0-65535)"); 1678 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_count", 1679 CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_TX, tsec_sysctl_ic_count, 1680 "I", "IC TX frame count threshold (0-255)"); 1681 } 1682 1683 /* 1684 * With Interrupt Coalescing (IC) active, a transmit/receive frame 1685 * interrupt is raised either upon: 1686 * 1687 * - threshold-defined period of time elapsed, or 1688 * - threshold-defined number of frames is received/transmitted, 1689 * whichever occurs first. 1690 * 1691 * The following sysctls regulate IC behaviour (for TX/RX separately): 1692 * 1693 * dev.tsec.<unit>.int_coal.rx_time 1694 * dev.tsec.<unit>.int_coal.rx_count 1695 * dev.tsec.<unit>.int_coal.tx_time 1696 * dev.tsec.<unit>.int_coal.tx_count 1697 * 1698 * Values: 1699 * 1700 * - 0 for either time or count disables IC on the given TX/RX path 1701 * 1702 * - count: 1-255 (expresses frame count number; note that value of 1 is 1703 * effectively IC off) 1704 * 1705 * - time: 1-65535 (value corresponds to a real time period and is 1706 * expressed in units equivalent to 64 TSEC interface clocks, i.e. one timer 1707 * threshold unit is 26.5 us, 2.56 us, or 512 ns, corresponding to 10 Mbps, 1708 * 100 Mbps, or 1Gbps, respectively. For detailed discussion consult the 1709 * TSEC reference manual. 1710 */ 1711 static int 1712 tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS) 1713 { 1714 int error; 1715 uint32_t time; 1716 struct tsec_softc *sc = (struct tsec_softc *)arg1; 1717 1718 time = (arg2 == TSEC_IC_RX) ? sc->rx_ic_time : sc->tx_ic_time; 1719 1720 error = sysctl_handle_int(oidp, &time, 0, req); 1721 if (error != 0) 1722 return (error); 1723 1724 if (time > 65535) 1725 return (EINVAL); 1726 1727 TSEC_IC_LOCK(sc); 1728 if (arg2 == TSEC_IC_RX) { 1729 sc->rx_ic_time = time; 1730 tsec_set_rxic(sc); 1731 } else { 1732 sc->tx_ic_time = time; 1733 tsec_set_txic(sc); 1734 } 1735 TSEC_IC_UNLOCK(sc); 1736 1737 return (0); 1738 } 1739 1740 static int 1741 tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS) 1742 { 1743 int error; 1744 uint32_t count; 1745 struct tsec_softc *sc = (struct tsec_softc *)arg1; 1746 1747 count = (arg2 == TSEC_IC_RX) ? sc->rx_ic_count : sc->tx_ic_count; 1748 1749 error = sysctl_handle_int(oidp, &count, 0, req); 1750 if (error != 0) 1751 return (error); 1752 1753 if (count > 255) 1754 return (EINVAL); 1755 1756 TSEC_IC_LOCK(sc); 1757 if (arg2 == TSEC_IC_RX) { 1758 sc->rx_ic_count = count; 1759 tsec_set_rxic(sc); 1760 } else { 1761 sc->tx_ic_count = count; 1762 tsec_set_txic(sc); 1763 } 1764 TSEC_IC_UNLOCK(sc); 1765 1766 return (0); 1767 } 1768 1769 static void 1770 tsec_set_rxic(struct tsec_softc *sc) 1771 { 1772 uint32_t rxic_val; 1773 1774 if (sc->rx_ic_count == 0 || sc->rx_ic_time == 0) 1775 /* Disable RX IC */ 1776 rxic_val = 0; 1777 else { 1778 rxic_val = 0x80000000; 1779 rxic_val |= (sc->rx_ic_count << 21); 1780 rxic_val |= sc->rx_ic_time; 1781 } 1782 1783 TSEC_WRITE(sc, TSEC_REG_RXIC, rxic_val); 1784 } 1785 1786 static void 1787 tsec_set_txic(struct tsec_softc *sc) 1788 { 1789 uint32_t txic_val; 1790 1791 if (sc->tx_ic_count == 0 || sc->tx_ic_time == 0) 1792 /* Disable TX IC */ 1793 txic_val = 0; 1794 else { 1795 txic_val = 0x80000000; 1796 txic_val |= (sc->tx_ic_count << 21); 1797 txic_val |= sc->tx_ic_time; 1798 } 1799 1800 TSEC_WRITE(sc, TSEC_REG_TXIC, txic_val); 1801 } 1802 1803 static void 1804 tsec_offload_setup(struct tsec_softc *sc) 1805 { 1806 struct ifnet *ifp = sc->tsec_ifp; 1807 uint32_t reg; 1808 1809 TSEC_GLOBAL_LOCK_ASSERT(sc); 1810 1811 reg = TSEC_READ(sc, TSEC_REG_TCTRL); 1812 reg |= TSEC_TCTRL_IPCSEN | TSEC_TCTRL_TUCSEN; 1813 1814 if (ifp->if_capenable & IFCAP_TXCSUM) 1815 ifp->if_hwassist = TSEC_CHECKSUM_FEATURES; 1816 else 1817 ifp->if_hwassist = 0; 1818 1819 TSEC_WRITE(sc, TSEC_REG_TCTRL, reg); 1820 1821 reg = TSEC_READ(sc, TSEC_REG_RCTRL); 1822 reg &= ~(TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN | TSEC_RCTRL_PRSDEP); 1823 reg |= TSEC_RCTRL_PRSDEP_PARSE_L2 | TSEC_RCTRL_VLEX; 1824 1825 if (ifp->if_capenable & IFCAP_RXCSUM) 1826 reg |= TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN | 1827 TSEC_RCTRL_PRSDEP_PARSE_L234; 1828 1829 TSEC_WRITE(sc, TSEC_REG_RCTRL, reg); 1830 } 1831 1832 1833 static void 1834 tsec_offload_process_frame(struct tsec_softc *sc, struct mbuf *m) 1835 { 1836 struct tsec_rx_fcb rx_fcb; 1837 int csum_flags = 0; 1838 int protocol, flags; 1839 1840 TSEC_RECEIVE_LOCK_ASSERT(sc); 1841 1842 m_copydata(m, 0, sizeof(struct tsec_rx_fcb), (caddr_t)(&rx_fcb)); 1843 flags = rx_fcb.flags; 1844 protocol = rx_fcb.protocol; 1845 1846 if (TSEC_RX_FCB_IP_CSUM_CHECKED(flags)) { 1847 csum_flags |= CSUM_IP_CHECKED; 1848 1849 if ((flags & TSEC_RX_FCB_IP_CSUM_ERROR) == 0) 1850 csum_flags |= CSUM_IP_VALID; 1851 } 1852 1853 if ((protocol == IPPROTO_TCP || protocol == IPPROTO_UDP) && 1854 TSEC_RX_FCB_TCP_UDP_CSUM_CHECKED(flags) && 1855 (flags & TSEC_RX_FCB_TCP_UDP_CSUM_ERROR) == 0) { 1856 1857 csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1858 m->m_pkthdr.csum_data = 0xFFFF; 1859 } 1860 1861 m->m_pkthdr.csum_flags = csum_flags; 1862 1863 if (flags & TSEC_RX_FCB_VLAN) { 1864 m->m_pkthdr.ether_vtag = rx_fcb.vlan; 1865 m->m_flags |= M_VLANTAG; 1866 } 1867 1868 m_adj(m, sizeof(struct tsec_rx_fcb)); 1869 } 1870 1871 static void 1872 tsec_setup_multicast(struct tsec_softc *sc) 1873 { 1874 uint32_t hashtable[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; 1875 struct ifnet *ifp = sc->tsec_ifp; 1876 struct ifmultiaddr *ifma; 1877 uint32_t h; 1878 int i; 1879 1880 TSEC_GLOBAL_LOCK_ASSERT(sc); 1881 1882 if (ifp->if_flags & IFF_ALLMULTI) { 1883 for (i = 0; i < 8; i++) 1884 TSEC_WRITE(sc, TSEC_REG_GADDR(i), 0xFFFFFFFF); 1885 1886 return; 1887 } 1888 1889 if_maddr_rlock(ifp); 1890 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1891 1892 if (ifma->ifma_addr->sa_family != AF_LINK) 1893 continue; 1894 1895 h = (ether_crc32_be(LLADDR((struct sockaddr_dl *) 1896 ifma->ifma_addr), ETHER_ADDR_LEN) >> 24) & 0xFF; 1897 1898 hashtable[(h >> 5)] |= 1 << (0x1F - (h & 0x1F)); 1899 } 1900 if_maddr_runlock(ifp); 1901 1902 for (i = 0; i < 8; i++) 1903 TSEC_WRITE(sc, TSEC_REG_GADDR(i), hashtable[i]); 1904 } 1905 1906 static int 1907 tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu) 1908 { 1909 1910 mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN; 1911 1912 TSEC_GLOBAL_LOCK_ASSERT(sc); 1913 1914 if (mtu >= TSEC_MIN_FRAME_SIZE && mtu <= TSEC_MAX_FRAME_SIZE) { 1915 TSEC_WRITE(sc, TSEC_REG_MAXFRM, mtu); 1916 return (mtu); 1917 } 1918 1919 return (0); 1920 } 1921