xref: /freebsd/sys/dev/tsec/if_tsec.c (revision 3b8f08459569bf0faa21473e5cec2491e95c9349)
1 /*-
2  * Copyright (C) 2007-2008 Semihalf, Rafal Jaworowski
3  * Copyright (C) 2006-2007 Semihalf, Piotr Kruszynski
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /*
28  * Freescale integrated Three-Speed Ethernet Controller (TSEC) driver.
29  */
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #ifdef HAVE_KERNEL_OPTION_HEADERS
34 #include "opt_device_polling.h"
35 #endif
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/bus.h>
40 #include <sys/endian.h>
41 #include <sys/mbuf.h>
42 #include <sys/kernel.h>
43 #include <sys/module.h>
44 #include <sys/socket.h>
45 #include <sys/sockio.h>
46 #include <sys/sysctl.h>
47 
48 #include <net/bpf.h>
49 #include <net/ethernet.h>
50 #include <net/if.h>
51 #include <net/if_var.h>
52 #include <net/if_arp.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 #include <net/if_vlan_var.h>
57 
58 #include <netinet/in_systm.h>
59 #include <netinet/in.h>
60 #include <netinet/ip.h>
61 
62 #include <machine/bus.h>
63 
64 #include <dev/mii/mii.h>
65 #include <dev/mii/miivar.h>
66 
67 #include <dev/tsec/if_tsec.h>
68 #include <dev/tsec/if_tsecreg.h>
69 
70 static int	tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag,
71     bus_dmamap_t *dmap, bus_size_t dsize, void **vaddr, void *raddr,
72     const char *dname);
73 static void	tsec_dma_ctl(struct tsec_softc *sc, int state);
74 static int	tsec_encap(struct tsec_softc *sc, struct mbuf *m_head,
75     int fcb_inserted);
76 static void	tsec_free_dma(struct tsec_softc *sc);
77 static void	tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr);
78 static int	tsec_ifmedia_upd(struct ifnet *ifp);
79 static void	tsec_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
80 static int	tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map,
81     struct mbuf **mbufp, uint32_t *paddr);
82 static void	tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs,
83     int nseg, int error);
84 static void	tsec_intrs_ctl(struct tsec_softc *sc, int state);
85 static void	tsec_init(void *xsc);
86 static void	tsec_init_locked(struct tsec_softc *sc);
87 static int	tsec_ioctl(struct ifnet *ifp, u_long command, caddr_t data);
88 static void	tsec_reset_mac(struct tsec_softc *sc);
89 static void	tsec_setfilter(struct tsec_softc *sc);
90 static void	tsec_set_mac_address(struct tsec_softc *sc);
91 static void	tsec_start(struct ifnet *ifp);
92 static void	tsec_start_locked(struct ifnet *ifp);
93 static void	tsec_stop(struct tsec_softc *sc);
94 static void	tsec_tick(void *arg);
95 static void	tsec_watchdog(struct tsec_softc *sc);
96 static void	tsec_add_sysctls(struct tsec_softc *sc);
97 static int	tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS);
98 static int	tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS);
99 static void	tsec_set_rxic(struct tsec_softc *sc);
100 static void	tsec_set_txic(struct tsec_softc *sc);
101 static int	tsec_receive_intr_locked(struct tsec_softc *sc, int count);
102 static void	tsec_transmit_intr_locked(struct tsec_softc *sc);
103 static void	tsec_error_intr_locked(struct tsec_softc *sc, int count);
104 static void	tsec_offload_setup(struct tsec_softc *sc);
105 static void	tsec_offload_process_frame(struct tsec_softc *sc,
106     struct mbuf *m);
107 static void	tsec_setup_multicast(struct tsec_softc *sc);
108 static int	tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu);
109 
110 devclass_t tsec_devclass;
111 DRIVER_MODULE(miibus, tsec, miibus_driver, miibus_devclass, 0, 0);
112 MODULE_DEPEND(tsec, ether, 1, 1, 1);
113 MODULE_DEPEND(tsec, miibus, 1, 1, 1);
114 
115 struct mtx tsec_phy_mtx;
116 
117 int
118 tsec_attach(struct tsec_softc *sc)
119 {
120 	uint8_t hwaddr[ETHER_ADDR_LEN];
121 	struct ifnet *ifp;
122 	bus_dmamap_t *map_ptr;
123 	bus_dmamap_t **map_pptr;
124 	int error = 0;
125 	int i;
126 
127 	/* Initialize global (because potentially shared) MII lock */
128 	if (!mtx_initialized(&tsec_phy_mtx))
129 		mtx_init(&tsec_phy_mtx, "tsec mii", NULL, MTX_DEF);
130 
131 	/* Reset all TSEC counters */
132 	TSEC_TX_RX_COUNTERS_INIT(sc);
133 
134 	/* Stop DMA engine if enabled by firmware */
135 	tsec_dma_ctl(sc, 0);
136 
137 	/* Reset MAC */
138 	tsec_reset_mac(sc);
139 
140 	/* Disable interrupts for now */
141 	tsec_intrs_ctl(sc, 0);
142 
143 	/* Configure defaults for interrupts coalescing */
144 	sc->rx_ic_time = 768;
145 	sc->rx_ic_count = 16;
146 	sc->tx_ic_time = 768;
147 	sc->tx_ic_count = 16;
148 	tsec_set_rxic(sc);
149 	tsec_set_txic(sc);
150 	tsec_add_sysctls(sc);
151 
152 	/* Allocate a busdma tag and DMA safe memory for TX descriptors. */
153 	error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_tx_dtag,
154 	    &sc->tsec_tx_dmap, sizeof(*sc->tsec_tx_vaddr) * TSEC_TX_NUM_DESC,
155 	    (void **)&sc->tsec_tx_vaddr, &sc->tsec_tx_raddr, "TX");
156 
157 	if (error) {
158 		tsec_detach(sc);
159 		return (ENXIO);
160 	}
161 
162 	/* Allocate a busdma tag and DMA safe memory for RX descriptors. */
163 	error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_rx_dtag,
164 	    &sc->tsec_rx_dmap, sizeof(*sc->tsec_rx_vaddr) * TSEC_RX_NUM_DESC,
165 	    (void **)&sc->tsec_rx_vaddr, &sc->tsec_rx_raddr, "RX");
166 	if (error) {
167 		tsec_detach(sc);
168 		return (ENXIO);
169 	}
170 
171 	/* Allocate a busdma tag for TX mbufs. */
172 	error = bus_dma_tag_create(NULL,	/* parent */
173 	    TSEC_TXBUFFER_ALIGNMENT, 0,		/* alignment, boundary */
174 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
175 	    BUS_SPACE_MAXADDR,			/* highaddr */
176 	    NULL, NULL,				/* filtfunc, filtfuncarg */
177 	    MCLBYTES * (TSEC_TX_NUM_DESC - 1),	/* maxsize */
178 	    TSEC_TX_NUM_DESC - 1,		/* nsegments */
179 	    MCLBYTES, 0,			/* maxsegsz, flags */
180 	    NULL, NULL,				/* lockfunc, lockfuncarg */
181 	    &sc->tsec_tx_mtag);			/* dmat */
182 	if (error) {
183 		device_printf(sc->dev, "failed to allocate busdma tag "
184 		    "(tx mbufs)\n");
185 		tsec_detach(sc);
186 		return (ENXIO);
187 	}
188 
189 	/* Allocate a busdma tag for RX mbufs. */
190 	error = bus_dma_tag_create(NULL,	/* parent */
191 	    TSEC_RXBUFFER_ALIGNMENT, 0,		/* alignment, boundary */
192 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
193 	    BUS_SPACE_MAXADDR,			/* highaddr */
194 	    NULL, NULL,				/* filtfunc, filtfuncarg */
195 	    MCLBYTES,				/* maxsize */
196 	    1,					/* nsegments */
197 	    MCLBYTES, 0,			/* maxsegsz, flags */
198 	    NULL, NULL,				/* lockfunc, lockfuncarg */
199 	    &sc->tsec_rx_mtag);			/* dmat */
200 	if (error) {
201 		device_printf(sc->dev, "failed to allocate busdma tag "
202 		    "(rx mbufs)\n");
203 		tsec_detach(sc);
204 		return (ENXIO);
205 	}
206 
207 	/* Create TX busdma maps */
208 	map_ptr = sc->tx_map_data;
209 	map_pptr = sc->tx_map_unused_data;
210 
211 	for (i = 0; i < TSEC_TX_NUM_DESC; i++) {
212 		map_pptr[i] = &map_ptr[i];
213 		error = bus_dmamap_create(sc->tsec_tx_mtag, 0, map_pptr[i]);
214 		if (error) {
215 			device_printf(sc->dev, "failed to init TX ring\n");
216 			tsec_detach(sc);
217 			return (ENXIO);
218 		}
219 	}
220 
221 	/* Create RX busdma maps and zero mbuf handlers */
222 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
223 		error = bus_dmamap_create(sc->tsec_rx_mtag, 0,
224 		    &sc->rx_data[i].map);
225 		if (error) {
226 			device_printf(sc->dev, "failed to init RX ring\n");
227 			tsec_detach(sc);
228 			return (ENXIO);
229 		}
230 		sc->rx_data[i].mbuf = NULL;
231 	}
232 
233 	/* Create mbufs for RX buffers */
234 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
235 		error = tsec_new_rxbuf(sc->tsec_rx_mtag, sc->rx_data[i].map,
236 		    &sc->rx_data[i].mbuf, &sc->rx_data[i].paddr);
237 		if (error) {
238 			device_printf(sc->dev, "can't load rx DMA map %d, "
239 			    "error = %d\n", i, error);
240 			tsec_detach(sc);
241 			return (error);
242 		}
243 	}
244 
245 	/* Create network interface for upper layers */
246 	ifp = sc->tsec_ifp = if_alloc(IFT_ETHER);
247 	if (ifp == NULL) {
248 		device_printf(sc->dev, "if_alloc() failed\n");
249 		tsec_detach(sc);
250 		return (ENOMEM);
251 	}
252 
253 	ifp->if_softc = sc;
254 	if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
255 	ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST;
256 	ifp->if_init = tsec_init;
257 	ifp->if_start = tsec_start;
258 	ifp->if_ioctl = tsec_ioctl;
259 
260 	IFQ_SET_MAXLEN(&ifp->if_snd, TSEC_TX_NUM_DESC - 1);
261 	ifp->if_snd.ifq_drv_maxlen = TSEC_TX_NUM_DESC - 1;
262 	IFQ_SET_READY(&ifp->if_snd);
263 
264 	ifp->if_capabilities = IFCAP_VLAN_MTU;
265 	if (sc->is_etsec)
266 		ifp->if_capabilities |= IFCAP_HWCSUM;
267 
268 	ifp->if_capenable = ifp->if_capabilities;
269 
270 #ifdef DEVICE_POLLING
271 	/* Advertise that polling is supported */
272 	ifp->if_capabilities |= IFCAP_POLLING;
273 #endif
274 
275 	/* Attach PHY(s) */
276 	error = mii_attach(sc->dev, &sc->tsec_miibus, ifp, tsec_ifmedia_upd,
277 	    tsec_ifmedia_sts, BMSR_DEFCAPMASK, sc->phyaddr, MII_OFFSET_ANY,
278 	    0);
279 	if (error) {
280 		device_printf(sc->dev, "attaching PHYs failed\n");
281 		if_free(ifp);
282 		sc->tsec_ifp = NULL;
283 		tsec_detach(sc);
284 		return (error);
285 	}
286 	sc->tsec_mii = device_get_softc(sc->tsec_miibus);
287 
288 	/* Set MAC address */
289 	tsec_get_hwaddr(sc, hwaddr);
290 	ether_ifattach(ifp, hwaddr);
291 
292 	return (0);
293 }
294 
295 int
296 tsec_detach(struct tsec_softc *sc)
297 {
298 
299 	if (sc->tsec_ifp != NULL) {
300 #ifdef DEVICE_POLLING
301 		if (sc->tsec_ifp->if_capenable & IFCAP_POLLING)
302 			ether_poll_deregister(sc->tsec_ifp);
303 #endif
304 
305 		/* Stop TSEC controller and free TX queue */
306 		if (sc->sc_rres)
307 			tsec_shutdown(sc->dev);
308 
309 		/* Detach network interface */
310 		ether_ifdetach(sc->tsec_ifp);
311 		if_free(sc->tsec_ifp);
312 		sc->tsec_ifp = NULL;
313 	}
314 
315 	/* Free DMA resources */
316 	tsec_free_dma(sc);
317 
318 	return (0);
319 }
320 
321 int
322 tsec_shutdown(device_t dev)
323 {
324 	struct tsec_softc *sc;
325 
326 	sc = device_get_softc(dev);
327 
328 	TSEC_GLOBAL_LOCK(sc);
329 	tsec_stop(sc);
330 	TSEC_GLOBAL_UNLOCK(sc);
331 	return (0);
332 }
333 
334 int
335 tsec_suspend(device_t dev)
336 {
337 
338 	/* TODO not implemented! */
339 	return (0);
340 }
341 
342 int
343 tsec_resume(device_t dev)
344 {
345 
346 	/* TODO not implemented! */
347 	return (0);
348 }
349 
350 static void
351 tsec_init(void *xsc)
352 {
353 	struct tsec_softc *sc = xsc;
354 
355 	TSEC_GLOBAL_LOCK(sc);
356 	tsec_init_locked(sc);
357 	TSEC_GLOBAL_UNLOCK(sc);
358 }
359 
360 static void
361 tsec_init_locked(struct tsec_softc *sc)
362 {
363 	struct tsec_desc *tx_desc = sc->tsec_tx_vaddr;
364 	struct tsec_desc *rx_desc = sc->tsec_rx_vaddr;
365 	struct ifnet *ifp = sc->tsec_ifp;
366 	uint32_t timeout, val, i;
367 
368 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
369 		return;
370 
371 	TSEC_GLOBAL_LOCK_ASSERT(sc);
372 	tsec_stop(sc);
373 
374 	/*
375 	 * These steps are according to the MPC8555E PowerQUICCIII RM:
376 	 * 14.7 Initialization/Application Information
377 	 */
378 
379 	/* Step 1: soft reset MAC */
380 	tsec_reset_mac(sc);
381 
382 	/* Step 2: Initialize MACCFG2 */
383 	TSEC_WRITE(sc, TSEC_REG_MACCFG2,
384 	    TSEC_MACCFG2_FULLDUPLEX |	/* Full Duplex = 1 */
385 	    TSEC_MACCFG2_PADCRC |	/* PAD/CRC append */
386 	    TSEC_MACCFG2_GMII |		/* I/F Mode bit */
387 	    TSEC_MACCFG2_PRECNT		/* Preamble count = 7 */
388 	);
389 
390 	/* Step 3: Initialize ECNTRL
391 	 * While the documentation states that R100M is ignored if RPM is
392 	 * not set, it does seem to be needed to get the orange boxes to
393 	 * work (which have a Marvell 88E1111 PHY). Go figure.
394 	 */
395 
396 	/*
397 	 * XXX kludge - use circumstancial evidence to program ECNTRL
398 	 * correctly. Ideally we need some board information to guide
399 	 * us here.
400 	 */
401 	i = TSEC_READ(sc, TSEC_REG_ID2);
402 	val = (i & 0xffff)
403 	    ? (TSEC_ECNTRL_TBIM | TSEC_ECNTRL_SGMIIM)	/* Sumatra */
404 	    : TSEC_ECNTRL_R100M;			/* Orange + CDS */
405 	TSEC_WRITE(sc, TSEC_REG_ECNTRL, TSEC_ECNTRL_STEN | val);
406 
407 	/* Step 4: Initialize MAC station address */
408 	tsec_set_mac_address(sc);
409 
410 	/*
411 	 * Step 5: Assign a Physical address to the TBI so as to not conflict
412 	 * with the external PHY physical address
413 	 */
414 	TSEC_WRITE(sc, TSEC_REG_TBIPA, 5);
415 
416 	TSEC_PHY_LOCK(sc);
417 
418 	/* Step 6: Reset the management interface */
419 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_RESETMGMT);
420 
421 	/* Step 7: Setup the MII Mgmt clock speed */
422 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_CLKDIV28);
423 
424 	/* Step 8: Read MII Mgmt indicator register and check for Busy = 0 */
425 	timeout = TSEC_READ_RETRY;
426 	while (--timeout && (TSEC_PHY_READ(sc, TSEC_REG_MIIMIND) &
427 	    TSEC_MIIMIND_BUSY))
428 		DELAY(TSEC_READ_DELAY);
429 	if (timeout == 0) {
430 		if_printf(ifp, "tsec_init_locked(): Mgmt busy timeout\n");
431 		return;
432 	}
433 	TSEC_PHY_UNLOCK(sc);
434 
435 	/* Step 9: Setup the MII Mgmt */
436 	mii_mediachg(sc->tsec_mii);
437 
438 	/* Step 10: Clear IEVENT register */
439 	TSEC_WRITE(sc, TSEC_REG_IEVENT, 0xffffffff);
440 
441 	/* Step 11: Enable interrupts */
442 #ifdef DEVICE_POLLING
443 	/*
444 	 * ...only if polling is not turned on. Disable interrupts explicitly
445 	 * if polling is enabled.
446 	 */
447 	if (ifp->if_capenable & IFCAP_POLLING )
448 		tsec_intrs_ctl(sc, 0);
449 	else
450 #endif /* DEVICE_POLLING */
451 	tsec_intrs_ctl(sc, 1);
452 
453 	/* Step 12: Initialize IADDRn */
454 	TSEC_WRITE(sc, TSEC_REG_IADDR0, 0);
455 	TSEC_WRITE(sc, TSEC_REG_IADDR1, 0);
456 	TSEC_WRITE(sc, TSEC_REG_IADDR2, 0);
457 	TSEC_WRITE(sc, TSEC_REG_IADDR3, 0);
458 	TSEC_WRITE(sc, TSEC_REG_IADDR4, 0);
459 	TSEC_WRITE(sc, TSEC_REG_IADDR5, 0);
460 	TSEC_WRITE(sc, TSEC_REG_IADDR6, 0);
461 	TSEC_WRITE(sc, TSEC_REG_IADDR7, 0);
462 
463 	/* Step 13: Initialize GADDRn */
464 	TSEC_WRITE(sc, TSEC_REG_GADDR0, 0);
465 	TSEC_WRITE(sc, TSEC_REG_GADDR1, 0);
466 	TSEC_WRITE(sc, TSEC_REG_GADDR2, 0);
467 	TSEC_WRITE(sc, TSEC_REG_GADDR3, 0);
468 	TSEC_WRITE(sc, TSEC_REG_GADDR4, 0);
469 	TSEC_WRITE(sc, TSEC_REG_GADDR5, 0);
470 	TSEC_WRITE(sc, TSEC_REG_GADDR6, 0);
471 	TSEC_WRITE(sc, TSEC_REG_GADDR7, 0);
472 
473 	/* Step 14: Initialize RCTRL */
474 	TSEC_WRITE(sc, TSEC_REG_RCTRL, 0);
475 
476 	/* Step 15: Initialize DMACTRL */
477 	tsec_dma_ctl(sc, 1);
478 
479 	/* Step 16: Initialize FIFO_PAUSE_CTRL */
480 	TSEC_WRITE(sc, TSEC_REG_FIFO_PAUSE_CTRL, TSEC_FIFO_PAUSE_CTRL_EN);
481 
482 	/*
483 	 * Step 17: Initialize transmit/receive descriptor rings.
484 	 * Initialize TBASE and RBASE.
485 	 */
486 	TSEC_WRITE(sc, TSEC_REG_TBASE, sc->tsec_tx_raddr);
487 	TSEC_WRITE(sc, TSEC_REG_RBASE, sc->tsec_rx_raddr);
488 
489 	for (i = 0; i < TSEC_TX_NUM_DESC; i++) {
490 		tx_desc[i].bufptr = 0;
491 		tx_desc[i].length = 0;
492 		tx_desc[i].flags = ((i == TSEC_TX_NUM_DESC - 1) ?
493 		    TSEC_TXBD_W : 0);
494 	}
495 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
496 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
497 
498 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
499 		rx_desc[i].bufptr = sc->rx_data[i].paddr;
500 		rx_desc[i].length = 0;
501 		rx_desc[i].flags = TSEC_RXBD_E | TSEC_RXBD_I |
502 		    ((i == TSEC_RX_NUM_DESC - 1) ? TSEC_RXBD_W : 0);
503 	}
504 	bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
505 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
506 
507 	/* Step 18: Initialize the maximum receive buffer length */
508 	TSEC_WRITE(sc, TSEC_REG_MRBLR, MCLBYTES);
509 
510 	/* Step 19: Configure ethernet frame sizes */
511 	TSEC_WRITE(sc, TSEC_REG_MINFLR, TSEC_MIN_FRAME_SIZE);
512 	tsec_set_mtu(sc, ifp->if_mtu);
513 
514 	/* Step 20: Enable Rx and RxBD sdata snooping */
515 	TSEC_WRITE(sc, TSEC_REG_ATTR, TSEC_ATTR_RDSEN | TSEC_ATTR_RBDSEN);
516 	TSEC_WRITE(sc, TSEC_REG_ATTRELI, 0);
517 
518 	/* Step 21: Reset collision counters in hardware */
519 	TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0);
520 	TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0);
521 	TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0);
522 	TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0);
523 	TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0);
524 
525 	/* Step 22: Mask all CAM interrupts */
526 	TSEC_WRITE(sc, TSEC_REG_MON_CAM1, 0xffffffff);
527 	TSEC_WRITE(sc, TSEC_REG_MON_CAM2, 0xffffffff);
528 
529 	/* Step 23: Enable Rx and Tx */
530 	val = TSEC_READ(sc, TSEC_REG_MACCFG1);
531 	val |= (TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN);
532 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, val);
533 
534 	/* Step 24: Reset TSEC counters for Tx and Rx rings */
535 	TSEC_TX_RX_COUNTERS_INIT(sc);
536 
537 	/* Step 25: Setup TCP/IP Off-Load engine */
538 	if (sc->is_etsec)
539 		tsec_offload_setup(sc);
540 
541 	/* Step 26: Setup multicast filters */
542 	tsec_setup_multicast(sc);
543 
544 	/* Step 27: Activate network interface */
545 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
546 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
547 	sc->tsec_if_flags = ifp->if_flags;
548 	sc->tsec_watchdog = 0;
549 
550 	/* Schedule watchdog timeout */
551 	callout_reset(&sc->tsec_callout, hz, tsec_tick, sc);
552 }
553 
554 static void
555 tsec_set_mac_address(struct tsec_softc *sc)
556 {
557 	uint32_t macbuf[2] = { 0, 0 };
558 	char *macbufp, *curmac;
559 	int i;
560 
561 	TSEC_GLOBAL_LOCK_ASSERT(sc);
562 
563 	KASSERT((ETHER_ADDR_LEN <= sizeof(macbuf)),
564 	    ("tsec_set_mac_address: (%d <= %d", ETHER_ADDR_LEN,
565 	    sizeof(macbuf)));
566 
567 	macbufp = (char *)macbuf;
568 	curmac = (char *)IF_LLADDR(sc->tsec_ifp);
569 
570 	/* Correct order of MAC address bytes */
571 	for (i = 1; i <= ETHER_ADDR_LEN; i++)
572 		macbufp[ETHER_ADDR_LEN-i] = curmac[i-1];
573 
574 	/* Initialize MAC station address MACSTNADDR2 and MACSTNADDR1 */
575 	TSEC_WRITE(sc, TSEC_REG_MACSTNADDR2, macbuf[1]);
576 	TSEC_WRITE(sc, TSEC_REG_MACSTNADDR1, macbuf[0]);
577 }
578 
579 /*
580  * DMA control function, if argument state is:
581  * 0 - DMA engine will be disabled
582  * 1 - DMA engine will be enabled
583  */
584 static void
585 tsec_dma_ctl(struct tsec_softc *sc, int state)
586 {
587 	device_t dev;
588 	uint32_t dma_flags, timeout;
589 
590 	dev = sc->dev;
591 
592 	dma_flags = TSEC_READ(sc, TSEC_REG_DMACTRL);
593 
594 	switch (state) {
595 	case 0:
596 		/* Temporarily clear stop graceful stop bits. */
597 		tsec_dma_ctl(sc, 1000);
598 
599 		/* Set it again */
600 		dma_flags |= (TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS);
601 		break;
602 	case 1000:
603 	case 1:
604 		/* Set write with response (WWR), wait (WOP) and snoop bits */
605 		dma_flags |= (TSEC_DMACTRL_TDSEN | TSEC_DMACTRL_TBDSEN |
606 		    DMACTRL_WWR | DMACTRL_WOP);
607 
608 		/* Clear graceful stop bits */
609 		dma_flags &= ~(TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS);
610 		break;
611 	default:
612 		device_printf(dev, "tsec_dma_ctl(): unknown state value: %d\n",
613 		    state);
614 	}
615 
616 	TSEC_WRITE(sc, TSEC_REG_DMACTRL, dma_flags);
617 
618 	switch (state) {
619 	case 0:
620 		/* Wait for DMA stop */
621 		timeout = TSEC_READ_RETRY;
622 		while (--timeout && (!(TSEC_READ(sc, TSEC_REG_IEVENT) &
623 		    (TSEC_IEVENT_GRSC | TSEC_IEVENT_GTSC))))
624 			DELAY(TSEC_READ_DELAY);
625 
626 		if (timeout == 0)
627 			device_printf(dev, "tsec_dma_ctl(): timeout!\n");
628 		break;
629 	case 1:
630 		/* Restart transmission function */
631 		TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
632 	}
633 }
634 
635 /*
636  * Interrupts control function, if argument state is:
637  * 0 - all TSEC interrupts will be masked
638  * 1 - all TSEC interrupts will be unmasked
639  */
640 static void
641 tsec_intrs_ctl(struct tsec_softc *sc, int state)
642 {
643 	device_t dev;
644 
645 	dev = sc->dev;
646 
647 	switch (state) {
648 	case 0:
649 		TSEC_WRITE(sc, TSEC_REG_IMASK, 0);
650 		break;
651 	case 1:
652 		TSEC_WRITE(sc, TSEC_REG_IMASK, TSEC_IMASK_BREN |
653 		    TSEC_IMASK_RXCEN | TSEC_IMASK_BSYEN | TSEC_IMASK_EBERREN |
654 		    TSEC_IMASK_BTEN | TSEC_IMASK_TXEEN | TSEC_IMASK_TXBEN |
655 		    TSEC_IMASK_TXFEN | TSEC_IMASK_XFUNEN | TSEC_IMASK_RXFEN);
656 		break;
657 	default:
658 		device_printf(dev, "tsec_intrs_ctl(): unknown state value: %d\n",
659 		    state);
660 	}
661 }
662 
663 static void
664 tsec_reset_mac(struct tsec_softc *sc)
665 {
666 	uint32_t maccfg1_flags;
667 
668 	/* Set soft reset bit */
669 	maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1);
670 	maccfg1_flags |= TSEC_MACCFG1_SOFT_RESET;
671 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags);
672 
673 	/* Clear soft reset bit */
674 	maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1);
675 	maccfg1_flags &= ~TSEC_MACCFG1_SOFT_RESET;
676 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags);
677 }
678 
679 static void
680 tsec_watchdog(struct tsec_softc *sc)
681 {
682 	struct ifnet *ifp;
683 
684 	TSEC_GLOBAL_LOCK_ASSERT(sc);
685 
686 	if (sc->tsec_watchdog == 0 || --sc->tsec_watchdog > 0)
687 		return;
688 
689 	ifp = sc->tsec_ifp;
690 	ifp->if_oerrors++;
691 	if_printf(ifp, "watchdog timeout\n");
692 
693 	tsec_stop(sc);
694 	tsec_init_locked(sc);
695 }
696 
697 static void
698 tsec_start(struct ifnet *ifp)
699 {
700 	struct tsec_softc *sc = ifp->if_softc;
701 
702 	TSEC_TRANSMIT_LOCK(sc);
703 	tsec_start_locked(ifp);
704 	TSEC_TRANSMIT_UNLOCK(sc);
705 }
706 
707 static void
708 tsec_start_locked(struct ifnet *ifp)
709 {
710 	struct tsec_softc *sc;
711 	struct mbuf *m0, *mtmp;
712 	struct tsec_tx_fcb *tx_fcb;
713 	unsigned int queued = 0;
714 	int csum_flags, fcb_inserted = 0;
715 
716 	sc = ifp->if_softc;
717 
718 	TSEC_TRANSMIT_LOCK_ASSERT(sc);
719 
720 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
721 	    IFF_DRV_RUNNING)
722 		return;
723 
724 	if (sc->tsec_link == 0)
725 		return;
726 
727 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
728 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
729 
730 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
731 		/* Get packet from the queue */
732 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
733 		if (m0 == NULL)
734 			break;
735 
736 		/* Insert TCP/IP Off-load frame control block */
737 		csum_flags = m0->m_pkthdr.csum_flags;
738 		if (csum_flags) {
739 
740 			M_PREPEND(m0, sizeof(struct tsec_tx_fcb), M_NOWAIT);
741 			if (m0 == NULL)
742 				break;
743 
744 			tx_fcb = mtod(m0, struct tsec_tx_fcb *);
745 			tx_fcb->flags = 0;
746 			tx_fcb->l3_offset = ETHER_HDR_LEN;
747 			tx_fcb->l4_offset = sizeof(struct ip);
748 
749 			if (csum_flags & CSUM_IP)
750 				tx_fcb->flags |= TSEC_TX_FCB_IP4 |
751 				    TSEC_TX_FCB_CSUM_IP;
752 
753 			if (csum_flags & CSUM_TCP)
754 				tx_fcb->flags |= TSEC_TX_FCB_TCP |
755 				    TSEC_TX_FCB_CSUM_TCP_UDP;
756 
757 			if (csum_flags & CSUM_UDP)
758 				tx_fcb->flags |= TSEC_TX_FCB_UDP |
759 				    TSEC_TX_FCB_CSUM_TCP_UDP;
760 
761 			fcb_inserted = 1;
762 		}
763 
764 		mtmp = m_defrag(m0, M_NOWAIT);
765 		if (mtmp)
766 			m0 = mtmp;
767 
768 		if (tsec_encap(sc, m0, fcb_inserted)) {
769 			IFQ_DRV_PREPEND(&ifp->if_snd, m0);
770 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
771 			break;
772 		}
773 		queued++;
774 		BPF_MTAP(ifp, m0);
775 	}
776 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
777 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
778 
779 	if (queued) {
780 		/* Enable transmitter and watchdog timer */
781 		TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
782 		sc->tsec_watchdog = 5;
783 	}
784 }
785 
786 static int
787 tsec_encap(struct tsec_softc *sc, struct mbuf *m0, int fcb_inserted)
788 {
789 	struct tsec_desc *tx_desc = NULL;
790 	struct ifnet *ifp;
791 	bus_dma_segment_t segs[TSEC_TX_NUM_DESC];
792 	bus_dmamap_t *mapp;
793 	int csum_flag = 0, error, seg, nsegs;
794 
795 	TSEC_TRANSMIT_LOCK_ASSERT(sc);
796 
797 	ifp = sc->tsec_ifp;
798 
799 	if (TSEC_FREE_TX_DESC(sc) == 0) {
800 		/* No free descriptors */
801 		return (-1);
802 	}
803 
804 	/* Fetch unused map */
805 	mapp = TSEC_ALLOC_TX_MAP(sc);
806 
807 	/* Create mapping in DMA memory */
808 	error = bus_dmamap_load_mbuf_sg(sc->tsec_tx_mtag,
809 	    *mapp, m0, segs, &nsegs, BUS_DMA_NOWAIT);
810 	if (error != 0 || nsegs > TSEC_FREE_TX_DESC(sc) || nsegs <= 0) {
811 		bus_dmamap_unload(sc->tsec_tx_mtag, *mapp);
812 		TSEC_FREE_TX_MAP(sc, mapp);
813 		return ((error != 0) ? error : -1);
814 	}
815 	bus_dmamap_sync(sc->tsec_tx_mtag, *mapp, BUS_DMASYNC_PREWRITE);
816 
817 	if ((ifp->if_flags & IFF_DEBUG) && (nsegs > 1))
818 		if_printf(ifp, "TX buffer has %d segments\n", nsegs);
819 
820 	if (fcb_inserted)
821 		csum_flag = TSEC_TXBD_TOE;
822 
823 	/* Everything is ok, now we can send buffers */
824 	for (seg = 0; seg < nsegs; seg++) {
825 		tx_desc = TSEC_GET_CUR_TX_DESC(sc);
826 
827 		tx_desc->length = segs[seg].ds_len;
828 		tx_desc->bufptr = segs[seg].ds_addr;
829 
830 		/*
831 		 * Set flags:
832 		 *   - wrap
833 		 *   - checksum
834 		 *   - ready to send
835 		 *   - transmit the CRC sequence after the last data byte
836 		 *   - interrupt after the last buffer
837 		 */
838 		tx_desc->flags =
839 		    (tx_desc->flags & TSEC_TXBD_W) |
840 		    ((seg == 0) ? csum_flag : 0) | TSEC_TXBD_R | TSEC_TXBD_TC |
841 		    ((seg == nsegs - 1) ? TSEC_TXBD_L | TSEC_TXBD_I : 0);
842 	}
843 
844 	/* Save mbuf and DMA mapping for release at later stage */
845 	TSEC_PUT_TX_MBUF(sc, m0);
846 	TSEC_PUT_TX_MAP(sc, mapp);
847 
848 	return (0);
849 }
850 
851 static void
852 tsec_setfilter(struct tsec_softc *sc)
853 {
854 	struct ifnet *ifp;
855 	uint32_t flags;
856 
857 	ifp = sc->tsec_ifp;
858 	flags = TSEC_READ(sc, TSEC_REG_RCTRL);
859 
860 	/* Promiscuous mode */
861 	if (ifp->if_flags & IFF_PROMISC)
862 		flags |= TSEC_RCTRL_PROM;
863 	else
864 		flags &= ~TSEC_RCTRL_PROM;
865 
866 	TSEC_WRITE(sc, TSEC_REG_RCTRL, flags);
867 }
868 
869 #ifdef DEVICE_POLLING
870 static poll_handler_t tsec_poll;
871 
872 static int
873 tsec_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
874 {
875 	uint32_t ie;
876 	struct tsec_softc *sc = ifp->if_softc;
877 	int rx_npkts;
878 
879 	rx_npkts = 0;
880 
881 	TSEC_GLOBAL_LOCK(sc);
882 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
883 		TSEC_GLOBAL_UNLOCK(sc);
884 		return (rx_npkts);
885 	}
886 
887 	if (cmd == POLL_AND_CHECK_STATUS) {
888 		tsec_error_intr_locked(sc, count);
889 
890 		/* Clear all events reported */
891 		ie = TSEC_READ(sc, TSEC_REG_IEVENT);
892 		TSEC_WRITE(sc, TSEC_REG_IEVENT, ie);
893 	}
894 
895 	tsec_transmit_intr_locked(sc);
896 
897 	TSEC_GLOBAL_TO_RECEIVE_LOCK(sc);
898 
899 	rx_npkts = tsec_receive_intr_locked(sc, count);
900 
901 	TSEC_RECEIVE_UNLOCK(sc);
902 
903 	return (rx_npkts);
904 }
905 #endif /* DEVICE_POLLING */
906 
907 static int
908 tsec_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
909 {
910 	struct tsec_softc *sc = ifp->if_softc;
911 	struct ifreq *ifr = (struct ifreq *)data;
912 	device_t dev;
913 	int mask, error = 0;
914 
915 	dev = sc->dev;
916 
917 	switch (command) {
918 	case SIOCSIFMTU:
919 		TSEC_GLOBAL_LOCK(sc);
920 		if (tsec_set_mtu(sc, ifr->ifr_mtu))
921 			ifp->if_mtu = ifr->ifr_mtu;
922 		else
923 			error = EINVAL;
924 		TSEC_GLOBAL_UNLOCK(sc);
925 		break;
926 	case SIOCSIFFLAGS:
927 		TSEC_GLOBAL_LOCK(sc);
928 		if (ifp->if_flags & IFF_UP) {
929 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
930 				if ((sc->tsec_if_flags ^ ifp->if_flags) &
931 				    IFF_PROMISC)
932 					tsec_setfilter(sc);
933 
934 				if ((sc->tsec_if_flags ^ ifp->if_flags) &
935 				    IFF_ALLMULTI)
936 					tsec_setup_multicast(sc);
937 			} else
938 				tsec_init_locked(sc);
939 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
940 			tsec_stop(sc);
941 
942 		sc->tsec_if_flags = ifp->if_flags;
943 		TSEC_GLOBAL_UNLOCK(sc);
944 		break;
945 	case SIOCADDMULTI:
946 	case SIOCDELMULTI:
947 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
948 			TSEC_GLOBAL_LOCK(sc);
949 			tsec_setup_multicast(sc);
950 			TSEC_GLOBAL_UNLOCK(sc);
951 		}
952 	case SIOCGIFMEDIA:
953 	case SIOCSIFMEDIA:
954 		error = ifmedia_ioctl(ifp, ifr, &sc->tsec_mii->mii_media,
955 		    command);
956 		break;
957 	case SIOCSIFCAP:
958 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
959 		if ((mask & IFCAP_HWCSUM) && sc->is_etsec) {
960 			TSEC_GLOBAL_LOCK(sc);
961 			ifp->if_capenable &= ~IFCAP_HWCSUM;
962 			ifp->if_capenable |= IFCAP_HWCSUM & ifr->ifr_reqcap;
963 			tsec_offload_setup(sc);
964 			TSEC_GLOBAL_UNLOCK(sc);
965 		}
966 #ifdef DEVICE_POLLING
967 		if (mask & IFCAP_POLLING) {
968 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
969 				error = ether_poll_register(tsec_poll, ifp);
970 				if (error)
971 					return (error);
972 
973 				TSEC_GLOBAL_LOCK(sc);
974 				/* Disable interrupts */
975 				tsec_intrs_ctl(sc, 0);
976 				ifp->if_capenable |= IFCAP_POLLING;
977 				TSEC_GLOBAL_UNLOCK(sc);
978 			} else {
979 				error = ether_poll_deregister(ifp);
980 				TSEC_GLOBAL_LOCK(sc);
981 				/* Enable interrupts */
982 				tsec_intrs_ctl(sc, 1);
983 				ifp->if_capenable &= ~IFCAP_POLLING;
984 				TSEC_GLOBAL_UNLOCK(sc);
985 			}
986 		}
987 #endif
988 		break;
989 
990 	default:
991 		error = ether_ioctl(ifp, command, data);
992 	}
993 
994 	/* Flush buffers if not empty */
995 	if (ifp->if_flags & IFF_UP)
996 		tsec_start(ifp);
997 	return (error);
998 }
999 
1000 static int
1001 tsec_ifmedia_upd(struct ifnet *ifp)
1002 {
1003 	struct tsec_softc *sc = ifp->if_softc;
1004 	struct mii_data *mii;
1005 
1006 	TSEC_TRANSMIT_LOCK(sc);
1007 
1008 	mii = sc->tsec_mii;
1009 	mii_mediachg(mii);
1010 
1011 	TSEC_TRANSMIT_UNLOCK(sc);
1012 	return (0);
1013 }
1014 
1015 static void
1016 tsec_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1017 {
1018 	struct tsec_softc *sc = ifp->if_softc;
1019 	struct mii_data *mii;
1020 
1021 	TSEC_TRANSMIT_LOCK(sc);
1022 
1023 	mii = sc->tsec_mii;
1024 	mii_pollstat(mii);
1025 
1026 	ifmr->ifm_active = mii->mii_media_active;
1027 	ifmr->ifm_status = mii->mii_media_status;
1028 
1029 	TSEC_TRANSMIT_UNLOCK(sc);
1030 }
1031 
1032 static int
1033 tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map, struct mbuf **mbufp,
1034     uint32_t *paddr)
1035 {
1036 	struct mbuf *new_mbuf;
1037 	bus_dma_segment_t seg[1];
1038 	int error, nsegs;
1039 
1040 	KASSERT(mbufp != NULL, ("NULL mbuf pointer!"));
1041 
1042 	new_mbuf = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MCLBYTES);
1043 	if (new_mbuf == NULL)
1044 		return (ENOBUFS);
1045 	new_mbuf->m_len = new_mbuf->m_pkthdr.len = new_mbuf->m_ext.ext_size;
1046 
1047 	if (*mbufp) {
1048 		bus_dmamap_sync(tag, map, BUS_DMASYNC_POSTREAD);
1049 		bus_dmamap_unload(tag, map);
1050 	}
1051 
1052 	error = bus_dmamap_load_mbuf_sg(tag, map, new_mbuf, seg, &nsegs,
1053 	    BUS_DMA_NOWAIT);
1054 	KASSERT(nsegs == 1, ("Too many segments returned!"));
1055 	if (nsegs != 1 || error)
1056 		panic("tsec_new_rxbuf(): nsegs(%d), error(%d)", nsegs, error);
1057 
1058 #if 0
1059 	if (error) {
1060 		printf("tsec: bus_dmamap_load_mbuf_sg() returned: %d!\n",
1061 			error);
1062 		m_freem(new_mbuf);
1063 		return (ENOBUFS);
1064 	}
1065 #endif
1066 
1067 #if 0
1068 	KASSERT(((seg->ds_addr) & (TSEC_RXBUFFER_ALIGNMENT-1)) == 0,
1069 		("Wrong alignment of RX buffer!"));
1070 #endif
1071 	bus_dmamap_sync(tag, map, BUS_DMASYNC_PREREAD);
1072 
1073 	(*mbufp) = new_mbuf;
1074 	(*paddr) = seg->ds_addr;
1075 	return (0);
1076 }
1077 
1078 static void
1079 tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1080 {
1081 	u_int32_t *paddr;
1082 
1083 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
1084 	paddr = arg;
1085 	*paddr = segs->ds_addr;
1086 }
1087 
1088 static int
1089 tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag, bus_dmamap_t *dmap,
1090     bus_size_t dsize, void **vaddr, void *raddr, const char *dname)
1091 {
1092 	int error;
1093 
1094 	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
1095 	error = bus_dma_tag_create(NULL,	/* parent */
1096 	    PAGE_SIZE, 0,			/* alignment, boundary */
1097 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
1098 	    BUS_SPACE_MAXADDR,			/* highaddr */
1099 	    NULL, NULL,				/* filtfunc, filtfuncarg */
1100 	    dsize, 1,				/* maxsize, nsegments */
1101 	    dsize, 0,				/* maxsegsz, flags */
1102 	    NULL, NULL,				/* lockfunc, lockfuncarg */
1103 	    dtag);				/* dmat */
1104 
1105 	if (error) {
1106 		device_printf(dev, "failed to allocate busdma %s tag\n",
1107 		    dname);
1108 		(*vaddr) = NULL;
1109 		return (ENXIO);
1110 	}
1111 
1112 	error = bus_dmamem_alloc(*dtag, vaddr, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1113 	    dmap);
1114 	if (error) {
1115 		device_printf(dev, "failed to allocate %s DMA safe memory\n",
1116 		    dname);
1117 		bus_dma_tag_destroy(*dtag);
1118 		(*vaddr) = NULL;
1119 		return (ENXIO);
1120 	}
1121 
1122 	error = bus_dmamap_load(*dtag, *dmap, *vaddr, dsize,
1123 	    tsec_map_dma_addr, raddr, BUS_DMA_NOWAIT);
1124 	if (error) {
1125 		device_printf(dev, "cannot get address of the %s "
1126 		    "descriptors\n", dname);
1127 		bus_dmamem_free(*dtag, *vaddr, *dmap);
1128 		bus_dma_tag_destroy(*dtag);
1129 		(*vaddr) = NULL;
1130 		return (ENXIO);
1131 	}
1132 
1133 	return (0);
1134 }
1135 
1136 static void
1137 tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr)
1138 {
1139 
1140 	if (vaddr == NULL)
1141 		return;
1142 
1143 	/* Unmap descriptors from DMA memory */
1144 	bus_dmamap_sync(dtag, dmap, BUS_DMASYNC_POSTREAD |
1145 	    BUS_DMASYNC_POSTWRITE);
1146 	bus_dmamap_unload(dtag, dmap);
1147 
1148 	/* Free descriptors memory */
1149 	bus_dmamem_free(dtag, vaddr, dmap);
1150 
1151 	/* Destroy descriptors tag */
1152 	bus_dma_tag_destroy(dtag);
1153 }
1154 
1155 static void
1156 tsec_free_dma(struct tsec_softc *sc)
1157 {
1158 	int i;
1159 
1160 	/* Free TX maps */
1161 	for (i = 0; i < TSEC_TX_NUM_DESC; i++)
1162 		if (sc->tx_map_data[i] != NULL)
1163 			bus_dmamap_destroy(sc->tsec_tx_mtag,
1164 			    sc->tx_map_data[i]);
1165 	/* Destroy tag for TX mbufs */
1166 	bus_dma_tag_destroy(sc->tsec_tx_mtag);
1167 
1168 	/* Free RX mbufs and maps */
1169 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
1170 		if (sc->rx_data[i].mbuf) {
1171 			/* Unload buffer from DMA */
1172 			bus_dmamap_sync(sc->tsec_rx_mtag, sc->rx_data[i].map,
1173 			    BUS_DMASYNC_POSTREAD);
1174 			bus_dmamap_unload(sc->tsec_rx_mtag,
1175 			    sc->rx_data[i].map);
1176 
1177 			/* Free buffer */
1178 			m_freem(sc->rx_data[i].mbuf);
1179 		}
1180 		/* Destroy map for this buffer */
1181 		if (sc->rx_data[i].map != NULL)
1182 			bus_dmamap_destroy(sc->tsec_rx_mtag,
1183 			    sc->rx_data[i].map);
1184 	}
1185 	/* Destroy tag for RX mbufs */
1186 	bus_dma_tag_destroy(sc->tsec_rx_mtag);
1187 
1188 	/* Unload TX/RX descriptors */
1189 	tsec_free_dma_desc(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1190 	    sc->tsec_tx_vaddr);
1191 	tsec_free_dma_desc(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1192 	    sc->tsec_rx_vaddr);
1193 }
1194 
1195 static void
1196 tsec_stop(struct tsec_softc *sc)
1197 {
1198 	struct ifnet *ifp;
1199 	struct mbuf *m0;
1200 	bus_dmamap_t *mapp;
1201 	uint32_t tmpval;
1202 
1203 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1204 
1205 	ifp = sc->tsec_ifp;
1206 
1207 	/* Disable interface and watchdog timer */
1208 	callout_stop(&sc->tsec_callout);
1209 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1210 	sc->tsec_watchdog = 0;
1211 
1212 	/* Disable all interrupts and stop DMA */
1213 	tsec_intrs_ctl(sc, 0);
1214 	tsec_dma_ctl(sc, 0);
1215 
1216 	/* Remove pending data from TX queue */
1217 	while (!TSEC_EMPTYQ_TX_MBUF(sc)) {
1218 		m0 = TSEC_GET_TX_MBUF(sc);
1219 		mapp = TSEC_GET_TX_MAP(sc);
1220 
1221 		bus_dmamap_sync(sc->tsec_tx_mtag, *mapp,
1222 		    BUS_DMASYNC_POSTWRITE);
1223 		bus_dmamap_unload(sc->tsec_tx_mtag, *mapp);
1224 
1225 		TSEC_FREE_TX_MAP(sc, mapp);
1226 		m_freem(m0);
1227 	}
1228 
1229 	/* Disable RX and TX */
1230 	tmpval = TSEC_READ(sc, TSEC_REG_MACCFG1);
1231 	tmpval &= ~(TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN);
1232 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, tmpval);
1233 	DELAY(10);
1234 }
1235 
1236 static void
1237 tsec_tick(void *arg)
1238 {
1239 	struct tsec_softc *sc = arg;
1240 	struct ifnet *ifp;
1241 	int link;
1242 
1243 	TSEC_GLOBAL_LOCK(sc);
1244 
1245 	tsec_watchdog(sc);
1246 
1247 	ifp = sc->tsec_ifp;
1248 	link = sc->tsec_link;
1249 
1250 	mii_tick(sc->tsec_mii);
1251 
1252 	if (link == 0 && sc->tsec_link == 1 &&
1253 	    (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)))
1254 		tsec_start_locked(ifp);
1255 
1256 	/* Schedule another timeout one second from now. */
1257 	callout_reset(&sc->tsec_callout, hz, tsec_tick, sc);
1258 
1259 	TSEC_GLOBAL_UNLOCK(sc);
1260 }
1261 
1262 /*
1263  *  This is the core RX routine. It replenishes mbufs in the descriptor and
1264  *  sends data which have been dma'ed into host memory to upper layer.
1265  *
1266  *  Loops at most count times if count is > 0, or until done if count < 0.
1267  */
1268 static int
1269 tsec_receive_intr_locked(struct tsec_softc *sc, int count)
1270 {
1271 	struct tsec_desc *rx_desc;
1272 	struct ifnet *ifp;
1273 	struct rx_data_type *rx_data;
1274 	struct mbuf *m;
1275 	device_t dev;
1276 	uint32_t i;
1277 	int c, rx_npkts;
1278 	uint16_t flags;
1279 
1280 	TSEC_RECEIVE_LOCK_ASSERT(sc);
1281 
1282 	ifp = sc->tsec_ifp;
1283 	rx_data = sc->rx_data;
1284 	dev = sc->dev;
1285 	rx_npkts = 0;
1286 
1287 	bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1288 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1289 
1290 	for (c = 0; ; c++) {
1291 		if (count >= 0 && count-- == 0)
1292 			break;
1293 
1294 		rx_desc = TSEC_GET_CUR_RX_DESC(sc);
1295 		flags = rx_desc->flags;
1296 
1297 		/* Check if there is anything to receive */
1298 		if ((flags & TSEC_RXBD_E) || (c >= TSEC_RX_NUM_DESC)) {
1299 			/*
1300 			 * Avoid generating another interrupt
1301 			 */
1302 			if (flags & TSEC_RXBD_E)
1303 				TSEC_WRITE(sc, TSEC_REG_IEVENT,
1304 				    TSEC_IEVENT_RXB | TSEC_IEVENT_RXF);
1305 			/*
1306 			 * We didn't consume current descriptor and have to
1307 			 * return it to the queue
1308 			 */
1309 			TSEC_BACK_CUR_RX_DESC(sc);
1310 			break;
1311 		}
1312 
1313 		if (flags & (TSEC_RXBD_LG | TSEC_RXBD_SH | TSEC_RXBD_NO |
1314 		    TSEC_RXBD_CR | TSEC_RXBD_OV | TSEC_RXBD_TR)) {
1315 
1316 			rx_desc->length = 0;
1317 			rx_desc->flags = (rx_desc->flags &
1318 			    ~TSEC_RXBD_ZEROONINIT) | TSEC_RXBD_E | TSEC_RXBD_I;
1319 
1320 			if (sc->frame != NULL) {
1321 				m_free(sc->frame);
1322 				sc->frame = NULL;
1323 			}
1324 
1325 			continue;
1326 		}
1327 
1328 		/* Ok... process frame */
1329 		i = TSEC_GET_CUR_RX_DESC_CNT(sc);
1330 		m = rx_data[i].mbuf;
1331 		m->m_len = rx_desc->length;
1332 
1333 		if (sc->frame != NULL) {
1334 			if ((flags & TSEC_RXBD_L) != 0)
1335 				m->m_len -= m_length(sc->frame, NULL);
1336 
1337 			m->m_flags &= ~M_PKTHDR;
1338 			m_cat(sc->frame, m);
1339 		} else {
1340 			sc->frame = m;
1341 		}
1342 
1343 		m = NULL;
1344 
1345 		if ((flags & TSEC_RXBD_L) != 0) {
1346 			m = sc->frame;
1347 			sc->frame = NULL;
1348 		}
1349 
1350 		if (tsec_new_rxbuf(sc->tsec_rx_mtag, rx_data[i].map,
1351 		    &rx_data[i].mbuf, &rx_data[i].paddr)) {
1352 			ifp->if_ierrors++;
1353 			/*
1354 			 * We ran out of mbufs; didn't consume current
1355 			 * descriptor and have to return it to the queue.
1356 			 */
1357 			TSEC_BACK_CUR_RX_DESC(sc);
1358 			break;
1359 		}
1360 
1361 		/* Attach new buffer to descriptor and clear flags */
1362 		rx_desc->bufptr = rx_data[i].paddr;
1363 		rx_desc->length = 0;
1364 		rx_desc->flags = (rx_desc->flags & ~TSEC_RXBD_ZEROONINIT) |
1365 		    TSEC_RXBD_E | TSEC_RXBD_I;
1366 
1367 		if (m != NULL) {
1368 			m->m_pkthdr.rcvif = ifp;
1369 
1370 			m_fixhdr(m);
1371 			m_adj(m, -ETHER_CRC_LEN);
1372 
1373 			if (sc->is_etsec)
1374 				tsec_offload_process_frame(sc, m);
1375 
1376 			TSEC_RECEIVE_UNLOCK(sc);
1377 			(*ifp->if_input)(ifp, m);
1378 			TSEC_RECEIVE_LOCK(sc);
1379 			rx_npkts++;
1380 		}
1381 	}
1382 
1383 	bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1384 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1385 
1386 	/*
1387 	 * Make sure TSEC receiver is not halted.
1388 	 *
1389 	 * Various conditions can stop the TSEC receiver, but not all are
1390 	 * signaled and handled by error interrupt, so make sure the receiver
1391 	 * is running. Writing to TSEC_REG_RSTAT restarts the receiver when
1392 	 * halted, and is harmless if already running.
1393 	 */
1394 	TSEC_WRITE(sc, TSEC_REG_RSTAT, TSEC_RSTAT_QHLT);
1395 	return (rx_npkts);
1396 }
1397 
1398 void
1399 tsec_receive_intr(void *arg)
1400 {
1401 	struct tsec_softc *sc = arg;
1402 
1403 	TSEC_RECEIVE_LOCK(sc);
1404 
1405 #ifdef DEVICE_POLLING
1406 	if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) {
1407 		TSEC_RECEIVE_UNLOCK(sc);
1408 		return;
1409 	}
1410 #endif
1411 
1412 	/* Confirm the interrupt was received by driver */
1413 	TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXB | TSEC_IEVENT_RXF);
1414 	tsec_receive_intr_locked(sc, -1);
1415 
1416 	TSEC_RECEIVE_UNLOCK(sc);
1417 }
1418 
1419 static void
1420 tsec_transmit_intr_locked(struct tsec_softc *sc)
1421 {
1422 	struct tsec_desc *tx_desc;
1423 	struct ifnet *ifp;
1424 	struct mbuf *m0;
1425 	bus_dmamap_t *mapp;
1426 	int send = 0;
1427 
1428 	TSEC_TRANSMIT_LOCK_ASSERT(sc);
1429 
1430 	ifp = sc->tsec_ifp;
1431 
1432 	/* Update collision statistics */
1433 	ifp->if_collisions += TSEC_READ(sc, TSEC_REG_MON_TNCL);
1434 
1435 	/* Reset collision counters in hardware */
1436 	TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0);
1437 	TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0);
1438 	TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0);
1439 	TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0);
1440 	TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0);
1441 
1442 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1443 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1444 
1445 	while (TSEC_CUR_DIFF_DIRTY_TX_DESC(sc)) {
1446 		tx_desc = TSEC_GET_DIRTY_TX_DESC(sc);
1447 		if (tx_desc->flags & TSEC_TXBD_R) {
1448 			TSEC_BACK_DIRTY_TX_DESC(sc);
1449 			break;
1450 		}
1451 
1452 		if ((tx_desc->flags & TSEC_TXBD_L) == 0)
1453 			continue;
1454 
1455 		/*
1456 		 * This is the last buf in this packet, so unmap and free it.
1457 		 */
1458 		m0 = TSEC_GET_TX_MBUF(sc);
1459 		mapp = TSEC_GET_TX_MAP(sc);
1460 
1461 		bus_dmamap_sync(sc->tsec_tx_mtag, *mapp,
1462 		    BUS_DMASYNC_POSTWRITE);
1463 		bus_dmamap_unload(sc->tsec_tx_mtag, *mapp);
1464 
1465 		TSEC_FREE_TX_MAP(sc, mapp);
1466 		m_freem(m0);
1467 
1468 		ifp->if_opackets++;
1469 		send = 1;
1470 	}
1471 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1472 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1473 
1474 	if (send) {
1475 		/* Now send anything that was pending */
1476 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1477 		tsec_start_locked(ifp);
1478 
1479 		/* Stop wathdog if all sent */
1480 		if (TSEC_EMPTYQ_TX_MBUF(sc))
1481 			sc->tsec_watchdog = 0;
1482 	}
1483 }
1484 
1485 void
1486 tsec_transmit_intr(void *arg)
1487 {
1488 	struct tsec_softc *sc = arg;
1489 
1490 	TSEC_TRANSMIT_LOCK(sc);
1491 
1492 #ifdef DEVICE_POLLING
1493 	if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) {
1494 		TSEC_TRANSMIT_UNLOCK(sc);
1495 		return;
1496 	}
1497 #endif
1498 	/* Confirm the interrupt was received by driver */
1499 	TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_TXB | TSEC_IEVENT_TXF);
1500 	tsec_transmit_intr_locked(sc);
1501 
1502 	TSEC_TRANSMIT_UNLOCK(sc);
1503 }
1504 
1505 static void
1506 tsec_error_intr_locked(struct tsec_softc *sc, int count)
1507 {
1508 	struct ifnet *ifp;
1509 	uint32_t eflags;
1510 
1511 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1512 
1513 	ifp = sc->tsec_ifp;
1514 
1515 	eflags = TSEC_READ(sc, TSEC_REG_IEVENT);
1516 
1517 	/* Clear events bits in hardware */
1518 	TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXC | TSEC_IEVENT_BSY |
1519 	    TSEC_IEVENT_EBERR | TSEC_IEVENT_MSRO | TSEC_IEVENT_BABT |
1520 	    TSEC_IEVENT_TXC | TSEC_IEVENT_TXE | TSEC_IEVENT_LC |
1521 	    TSEC_IEVENT_CRL | TSEC_IEVENT_XFUN);
1522 
1523 	/* Check transmitter errors */
1524 	if (eflags & TSEC_IEVENT_TXE) {
1525 		ifp->if_oerrors++;
1526 
1527 		if (eflags & TSEC_IEVENT_LC)
1528 			ifp->if_collisions++;
1529 
1530 		TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
1531 	}
1532 
1533 	/* Check receiver errors */
1534 	if (eflags & TSEC_IEVENT_BSY) {
1535 		ifp->if_ierrors++;
1536 		ifp->if_iqdrops++;
1537 
1538 		/* Get data from RX buffers */
1539 		tsec_receive_intr_locked(sc, count);
1540 	}
1541 
1542 	if (ifp->if_flags & IFF_DEBUG)
1543 		if_printf(ifp, "tsec_error_intr(): event flags: 0x%x\n",
1544 		    eflags);
1545 
1546 	if (eflags & TSEC_IEVENT_EBERR) {
1547 		if_printf(ifp, "System bus error occurred during"
1548 		    "DMA transaction (flags: 0x%x)\n", eflags);
1549 		tsec_init_locked(sc);
1550 	}
1551 
1552 	if (eflags & TSEC_IEVENT_BABT)
1553 		ifp->if_oerrors++;
1554 
1555 	if (eflags & TSEC_IEVENT_BABR)
1556 		ifp->if_ierrors++;
1557 }
1558 
1559 void
1560 tsec_error_intr(void *arg)
1561 {
1562 	struct tsec_softc *sc = arg;
1563 
1564 	TSEC_GLOBAL_LOCK(sc);
1565 	tsec_error_intr_locked(sc, -1);
1566 	TSEC_GLOBAL_UNLOCK(sc);
1567 }
1568 
1569 int
1570 tsec_miibus_readreg(device_t dev, int phy, int reg)
1571 {
1572 	struct tsec_softc *sc;
1573 	uint32_t timeout;
1574 	int rv;
1575 
1576 	sc = device_get_softc(dev);
1577 
1578 	TSEC_PHY_LOCK();
1579 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMADD, (phy << 8) | reg);
1580 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCOM, 0);
1581 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCOM, TSEC_MIIMCOM_READCYCLE);
1582 
1583 	timeout = TSEC_READ_RETRY;
1584 	while (--timeout && TSEC_PHY_READ(sc, TSEC_REG_MIIMIND) &
1585 	    (TSEC_MIIMIND_NOTVALID | TSEC_MIIMIND_BUSY))
1586 		DELAY(TSEC_READ_DELAY);
1587 
1588 	if (timeout == 0)
1589 		device_printf(dev, "Timeout while reading from PHY!\n");
1590 
1591 	rv = TSEC_PHY_READ(sc, TSEC_REG_MIIMSTAT);
1592 	TSEC_PHY_UNLOCK();
1593 
1594 	return (rv);
1595 }
1596 
1597 int
1598 tsec_miibus_writereg(device_t dev, int phy, int reg, int value)
1599 {
1600 	struct tsec_softc *sc;
1601 	uint32_t timeout;
1602 
1603 	sc = device_get_softc(dev);
1604 
1605 	TSEC_PHY_LOCK();
1606 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMADD, (phy << 8) | reg);
1607 	TSEC_PHY_WRITE(sc, TSEC_REG_MIIMCON, value);
1608 
1609 	timeout = TSEC_READ_RETRY;
1610 	while (--timeout && (TSEC_READ(sc, TSEC_REG_MIIMIND) &
1611 	    TSEC_MIIMIND_BUSY))
1612 		DELAY(TSEC_READ_DELAY);
1613 	TSEC_PHY_UNLOCK();
1614 
1615 	if (timeout == 0)
1616 		device_printf(dev, "Timeout while writing to PHY!\n");
1617 
1618 	return (0);
1619 }
1620 
1621 void
1622 tsec_miibus_statchg(device_t dev)
1623 {
1624 	struct tsec_softc *sc;
1625 	struct mii_data *mii;
1626 	uint32_t ecntrl, id, tmp;
1627 	int link;
1628 
1629 	sc = device_get_softc(dev);
1630 	mii = sc->tsec_mii;
1631 	link = ((mii->mii_media_status & IFM_ACTIVE) ? 1 : 0);
1632 
1633 	tmp = TSEC_READ(sc, TSEC_REG_MACCFG2) & ~TSEC_MACCFG2_IF;
1634 
1635 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
1636 		tmp |= TSEC_MACCFG2_FULLDUPLEX;
1637 	else
1638 		tmp &= ~TSEC_MACCFG2_FULLDUPLEX;
1639 
1640 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1641 	case IFM_1000_T:
1642 	case IFM_1000_SX:
1643 		tmp |= TSEC_MACCFG2_GMII;
1644 		sc->tsec_link = link;
1645 		break;
1646 	case IFM_100_TX:
1647 	case IFM_10_T:
1648 		tmp |= TSEC_MACCFG2_MII;
1649 		sc->tsec_link = link;
1650 		break;
1651 	case IFM_NONE:
1652 		if (link)
1653 			device_printf(dev, "No speed selected but link "
1654 			    "active!\n");
1655 		sc->tsec_link = 0;
1656 		return;
1657 	default:
1658 		sc->tsec_link = 0;
1659 		device_printf(dev, "Unknown speed (%d), link %s!\n",
1660 		    IFM_SUBTYPE(mii->mii_media_active),
1661 		        ((link) ? "up" : "down"));
1662 		return;
1663 	}
1664 	TSEC_WRITE(sc, TSEC_REG_MACCFG2, tmp);
1665 
1666 	/* XXX kludge - use circumstantial evidence for reduced mode. */
1667 	id = TSEC_READ(sc, TSEC_REG_ID2);
1668 	if (id & 0xffff) {
1669 		ecntrl = TSEC_READ(sc, TSEC_REG_ECNTRL) & ~TSEC_ECNTRL_R100M;
1670 		ecntrl |= (tmp & TSEC_MACCFG2_MII) ? TSEC_ECNTRL_R100M : 0;
1671 		TSEC_WRITE(sc, TSEC_REG_ECNTRL, ecntrl);
1672 	}
1673 }
1674 
1675 static void
1676 tsec_add_sysctls(struct tsec_softc *sc)
1677 {
1678 	struct sysctl_ctx_list *ctx;
1679 	struct sysctl_oid_list *children;
1680 	struct sysctl_oid *tree;
1681 
1682 	ctx = device_get_sysctl_ctx(sc->dev);
1683 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
1684 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "int_coal",
1685 	    CTLFLAG_RD, 0, "TSEC Interrupts coalescing");
1686 	children = SYSCTL_CHILDREN(tree);
1687 
1688 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_time",
1689 	    CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_RX, tsec_sysctl_ic_time,
1690 	    "I", "IC RX time threshold (0-65535)");
1691 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_count",
1692 	    CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_RX, tsec_sysctl_ic_count,
1693 	    "I", "IC RX frame count threshold (0-255)");
1694 
1695 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_time",
1696 	    CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_TX, tsec_sysctl_ic_time,
1697 	    "I", "IC TX time threshold (0-65535)");
1698 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_count",
1699 	    CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_TX, tsec_sysctl_ic_count,
1700 	    "I", "IC TX frame count threshold (0-255)");
1701 }
1702 
1703 /*
1704  * With Interrupt Coalescing (IC) active, a transmit/receive frame
1705  * interrupt is raised either upon:
1706  *
1707  * - threshold-defined period of time elapsed, or
1708  * - threshold-defined number of frames is received/transmitted,
1709  *   whichever occurs first.
1710  *
1711  * The following sysctls regulate IC behaviour (for TX/RX separately):
1712  *
1713  * dev.tsec.<unit>.int_coal.rx_time
1714  * dev.tsec.<unit>.int_coal.rx_count
1715  * dev.tsec.<unit>.int_coal.tx_time
1716  * dev.tsec.<unit>.int_coal.tx_count
1717  *
1718  * Values:
1719  *
1720  * - 0 for either time or count disables IC on the given TX/RX path
1721  *
1722  * - count: 1-255 (expresses frame count number; note that value of 1 is
1723  *   effectively IC off)
1724  *
1725  * - time: 1-65535 (value corresponds to a real time period and is
1726  *   expressed in units equivalent to 64 TSEC interface clocks, i.e. one timer
1727  *   threshold unit is 26.5 us, 2.56 us, or 512 ns, corresponding to 10 Mbps,
1728  *   100 Mbps, or 1Gbps, respectively. For detailed discussion consult the
1729  *   TSEC reference manual.
1730  */
1731 static int
1732 tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS)
1733 {
1734 	int error;
1735 	uint32_t time;
1736 	struct tsec_softc *sc = (struct tsec_softc *)arg1;
1737 
1738 	time = (arg2 == TSEC_IC_RX) ? sc->rx_ic_time : sc->tx_ic_time;
1739 
1740 	error = sysctl_handle_int(oidp, &time, 0, req);
1741 	if (error != 0)
1742 		return (error);
1743 
1744 	if (time > 65535)
1745 		return (EINVAL);
1746 
1747 	TSEC_IC_LOCK(sc);
1748 	if (arg2 == TSEC_IC_RX) {
1749 		sc->rx_ic_time = time;
1750 		tsec_set_rxic(sc);
1751 	} else {
1752 		sc->tx_ic_time = time;
1753 		tsec_set_txic(sc);
1754 	}
1755 	TSEC_IC_UNLOCK(sc);
1756 
1757 	return (0);
1758 }
1759 
1760 static int
1761 tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS)
1762 {
1763 	int error;
1764 	uint32_t count;
1765 	struct tsec_softc *sc = (struct tsec_softc *)arg1;
1766 
1767 	count = (arg2 == TSEC_IC_RX) ? sc->rx_ic_count : sc->tx_ic_count;
1768 
1769 	error = sysctl_handle_int(oidp, &count, 0, req);
1770 	if (error != 0)
1771 		return (error);
1772 
1773 	if (count > 255)
1774 		return (EINVAL);
1775 
1776 	TSEC_IC_LOCK(sc);
1777 	if (arg2 == TSEC_IC_RX) {
1778 		sc->rx_ic_count = count;
1779 		tsec_set_rxic(sc);
1780 	} else {
1781 		sc->tx_ic_count = count;
1782 		tsec_set_txic(sc);
1783 	}
1784 	TSEC_IC_UNLOCK(sc);
1785 
1786 	return (0);
1787 }
1788 
1789 static void
1790 tsec_set_rxic(struct tsec_softc *sc)
1791 {
1792 	uint32_t rxic_val;
1793 
1794 	if (sc->rx_ic_count == 0 || sc->rx_ic_time == 0)
1795 		/* Disable RX IC */
1796 		rxic_val = 0;
1797 	else {
1798 		rxic_val = 0x80000000;
1799 		rxic_val |= (sc->rx_ic_count << 21);
1800 		rxic_val |= sc->rx_ic_time;
1801 	}
1802 
1803 	TSEC_WRITE(sc, TSEC_REG_RXIC, rxic_val);
1804 }
1805 
1806 static void
1807 tsec_set_txic(struct tsec_softc *sc)
1808 {
1809 	uint32_t txic_val;
1810 
1811 	if (sc->tx_ic_count == 0 || sc->tx_ic_time == 0)
1812 		/* Disable TX IC */
1813 		txic_val = 0;
1814 	else {
1815 		txic_val = 0x80000000;
1816 		txic_val |= (sc->tx_ic_count << 21);
1817 		txic_val |= sc->tx_ic_time;
1818 	}
1819 
1820 	TSEC_WRITE(sc, TSEC_REG_TXIC, txic_val);
1821 }
1822 
1823 static void
1824 tsec_offload_setup(struct tsec_softc *sc)
1825 {
1826 	struct ifnet *ifp = sc->tsec_ifp;
1827 	uint32_t reg;
1828 
1829 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1830 
1831 	reg = TSEC_READ(sc, TSEC_REG_TCTRL);
1832 	reg |= TSEC_TCTRL_IPCSEN | TSEC_TCTRL_TUCSEN;
1833 
1834 	if (ifp->if_capenable & IFCAP_TXCSUM)
1835 		ifp->if_hwassist = TSEC_CHECKSUM_FEATURES;
1836 	else
1837 		ifp->if_hwassist = 0;
1838 
1839 	TSEC_WRITE(sc, TSEC_REG_TCTRL, reg);
1840 
1841 	reg = TSEC_READ(sc, TSEC_REG_RCTRL);
1842 	reg &= ~(TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN | TSEC_RCTRL_PRSDEP);
1843 	reg |= TSEC_RCTRL_PRSDEP_PARSE_L2 | TSEC_RCTRL_VLEX;
1844 
1845 	if (ifp->if_capenable & IFCAP_RXCSUM)
1846 		reg |= TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN |
1847 		    TSEC_RCTRL_PRSDEP_PARSE_L234;
1848 
1849 	TSEC_WRITE(sc, TSEC_REG_RCTRL, reg);
1850 }
1851 
1852 
1853 static void
1854 tsec_offload_process_frame(struct tsec_softc *sc, struct mbuf *m)
1855 {
1856 	struct tsec_rx_fcb rx_fcb;
1857 	int csum_flags = 0;
1858 	int protocol, flags;
1859 
1860 	TSEC_RECEIVE_LOCK_ASSERT(sc);
1861 
1862 	m_copydata(m, 0, sizeof(struct tsec_rx_fcb), (caddr_t)(&rx_fcb));
1863 	flags = rx_fcb.flags;
1864 	protocol = rx_fcb.protocol;
1865 
1866 	if (TSEC_RX_FCB_IP_CSUM_CHECKED(flags)) {
1867 		csum_flags |= CSUM_IP_CHECKED;
1868 
1869 		if ((flags & TSEC_RX_FCB_IP_CSUM_ERROR) == 0)
1870 			csum_flags |= CSUM_IP_VALID;
1871 	}
1872 
1873 	if ((protocol == IPPROTO_TCP || protocol == IPPROTO_UDP) &&
1874 	    TSEC_RX_FCB_TCP_UDP_CSUM_CHECKED(flags) &&
1875 	    (flags & TSEC_RX_FCB_TCP_UDP_CSUM_ERROR) == 0) {
1876 
1877 		csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1878 		m->m_pkthdr.csum_data = 0xFFFF;
1879 	}
1880 
1881 	m->m_pkthdr.csum_flags = csum_flags;
1882 
1883 	if (flags & TSEC_RX_FCB_VLAN) {
1884 		m->m_pkthdr.ether_vtag = rx_fcb.vlan;
1885 		m->m_flags |= M_VLANTAG;
1886 	}
1887 
1888 	m_adj(m, sizeof(struct tsec_rx_fcb));
1889 }
1890 
1891 static void
1892 tsec_setup_multicast(struct tsec_softc *sc)
1893 {
1894 	uint32_t hashtable[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
1895 	struct ifnet *ifp = sc->tsec_ifp;
1896 	struct ifmultiaddr *ifma;
1897 	uint32_t h;
1898 	int i;
1899 
1900 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1901 
1902 	if (ifp->if_flags & IFF_ALLMULTI) {
1903 		for (i = 0; i < 8; i++)
1904 			TSEC_WRITE(sc, TSEC_REG_GADDR(i), 0xFFFFFFFF);
1905 
1906 		return;
1907 	}
1908 
1909 	if_maddr_rlock(ifp);
1910 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1911 
1912 		if (ifma->ifma_addr->sa_family != AF_LINK)
1913 			continue;
1914 
1915 		h = (ether_crc32_be(LLADDR((struct sockaddr_dl *)
1916 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 24) & 0xFF;
1917 
1918 		hashtable[(h >> 5)] |= 1 << (0x1F - (h & 0x1F));
1919 	}
1920 	if_maddr_runlock(ifp);
1921 
1922 	for (i = 0; i < 8; i++)
1923 		TSEC_WRITE(sc, TSEC_REG_GADDR(i), hashtable[i]);
1924 }
1925 
1926 static int
1927 tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu)
1928 {
1929 
1930 	mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
1931 
1932 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1933 
1934 	if (mtu >= TSEC_MIN_FRAME_SIZE && mtu <= TSEC_MAX_FRAME_SIZE) {
1935 		TSEC_WRITE(sc, TSEC_REG_MAXFRM, mtu);
1936 		return (mtu);
1937 	}
1938 
1939 	return (0);
1940 }
1941