xref: /freebsd/sys/dev/tsec/if_tsec.c (revision 39beb93c3f8bdbf72a61fda42300b5ebed7390c8)
1 /*-
2  * Copyright (C) 2007-2008 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3  * Copyright (C) 2006-2007 Semihalf, Piotr Kruszynski <ppk@semihalf.com>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /*
28  * Freescale integrated Three-Speed Ethernet Controller (TSEC) driver.
29  */
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #ifdef HAVE_KERNEL_OPTION_HEADERS
34 #include "opt_device_polling.h"
35 #endif
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/bus.h>
40 #include <sys/endian.h>
41 #include <sys/mbuf.h>
42 #include <sys/kernel.h>
43 #include <sys/module.h>
44 #include <sys/socket.h>
45 #include <sys/sockio.h>
46 #include <sys/sysctl.h>
47 
48 #include <net/bpf.h>
49 #include <net/ethernet.h>
50 #include <net/if.h>
51 #include <net/if_arp.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 #include <net/if_vlan_var.h>
56 
57 #include <netinet/in_systm.h>
58 #include <netinet/in.h>
59 #include <netinet/ip.h>
60 
61 #include <machine/bus.h>
62 
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65 
66 #include <dev/tsec/if_tsec.h>
67 #include <dev/tsec/if_tsecreg.h>
68 
69 static int	tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag,
70     bus_dmamap_t *dmap, bus_size_t dsize, void **vaddr, void *raddr,
71     const char *dname);
72 static void	tsec_dma_ctl(struct tsec_softc *sc, int state);
73 static int	tsec_encap(struct tsec_softc *sc, struct mbuf *m_head,
74     int fcb_inserted);
75 static void	tsec_free_dma(struct tsec_softc *sc);
76 static void	tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr);
77 static int	tsec_ifmedia_upd(struct ifnet *ifp);
78 static void	tsec_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
79 static int	tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map,
80     struct mbuf **mbufp, uint32_t *paddr);
81 static void	tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs,
82     int nseg, int error);
83 static void	tsec_intrs_ctl(struct tsec_softc *sc, int state);
84 static void	tsec_init(void *xsc);
85 static void	tsec_init_locked(struct tsec_softc *sc);
86 static int	tsec_ioctl(struct ifnet *ifp, u_long command, caddr_t data);
87 static void	tsec_reset_mac(struct tsec_softc *sc);
88 static void	tsec_setfilter(struct tsec_softc *sc);
89 static void	tsec_set_mac_address(struct tsec_softc *sc);
90 static void	tsec_start(struct ifnet *ifp);
91 static void	tsec_start_locked(struct ifnet *ifp);
92 static void	tsec_stop(struct tsec_softc *sc);
93 static void	tsec_tick(void *arg);
94 static void	tsec_watchdog(struct tsec_softc *sc);
95 static void	tsec_add_sysctls(struct tsec_softc *sc);
96 static int	tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS);
97 static int	tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS);
98 static void	tsec_set_rxic(struct tsec_softc *sc);
99 static void	tsec_set_txic(struct tsec_softc *sc);
100 static void	tsec_receive_intr_locked(struct tsec_softc *sc, int count);
101 static void	tsec_transmit_intr_locked(struct tsec_softc *sc);
102 static void	tsec_error_intr_locked(struct tsec_softc *sc, int count);
103 static void	tsec_offload_setup(struct tsec_softc *sc);
104 static void	tsec_offload_process_frame(struct tsec_softc *sc,
105     struct mbuf *m);
106 static void	tsec_setup_multicast(struct tsec_softc *sc);
107 static int	tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu);
108 
109 struct tsec_softc *tsec0_sc = NULL; /* XXX ugly hack! */
110 
111 devclass_t tsec_devclass;
112 DRIVER_MODULE(miibus, tsec, miibus_driver, miibus_devclass, 0, 0);
113 MODULE_DEPEND(tsec, ether, 1, 1, 1);
114 MODULE_DEPEND(tsec, miibus, 1, 1, 1);
115 
116 int
117 tsec_attach(struct tsec_softc *sc)
118 {
119 	uint8_t hwaddr[ETHER_ADDR_LEN];
120 	struct ifnet *ifp;
121 	bus_dmamap_t *map_ptr;
122 	bus_dmamap_t **map_pptr;
123 	int error = 0;
124 	int i;
125 
126 	/* Reset all TSEC counters */
127 	TSEC_TX_RX_COUNTERS_INIT(sc);
128 
129 	/* Stop DMA engine if enabled by firmware */
130 	tsec_dma_ctl(sc, 0);
131 
132 	/* Reset MAC */
133 	tsec_reset_mac(sc);
134 
135 	/* Disable interrupts for now */
136 	tsec_intrs_ctl(sc, 0);
137 
138 	/* Configure defaults for interrupts coalescing */
139 	sc->rx_ic_time = 768;
140 	sc->rx_ic_count = 16;
141 	sc->tx_ic_time = 768;
142 	sc->tx_ic_count = 16;
143 	tsec_set_rxic(sc);
144 	tsec_set_txic(sc);
145 	tsec_add_sysctls(sc);
146 
147 	/* Allocate a busdma tag and DMA safe memory for TX descriptors. */
148 	error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_tx_dtag,
149 	    &sc->tsec_tx_dmap, sizeof(*sc->tsec_tx_vaddr) * TSEC_TX_NUM_DESC,
150 	    (void **)&sc->tsec_tx_vaddr, &sc->tsec_tx_raddr, "TX");
151 
152 	if (error) {
153 		tsec_detach(sc);
154 		return (ENXIO);
155 	}
156 
157 	/* Allocate a busdma tag and DMA safe memory for RX descriptors. */
158 	error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_rx_dtag,
159 	    &sc->tsec_rx_dmap, sizeof(*sc->tsec_rx_vaddr) * TSEC_RX_NUM_DESC,
160 	    (void **)&sc->tsec_rx_vaddr, &sc->tsec_rx_raddr, "RX");
161 	if (error) {
162 		tsec_detach(sc);
163 		return (ENXIO);
164 	}
165 
166 	/* Allocate a busdma tag for TX mbufs. */
167 	error = bus_dma_tag_create(NULL,	/* parent */
168 	    TSEC_TXBUFFER_ALIGNMENT, 0,		/* alignment, boundary */
169 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
170 	    BUS_SPACE_MAXADDR,			/* highaddr */
171 	    NULL, NULL,				/* filtfunc, filtfuncarg */
172 	    MCLBYTES * (TSEC_TX_NUM_DESC - 1),	/* maxsize */
173 	    TSEC_TX_NUM_DESC - 1,		/* nsegments */
174 	    MCLBYTES, 0,			/* maxsegsz, flags */
175 	    NULL, NULL,				/* lockfunc, lockfuncarg */
176 	    &sc->tsec_tx_mtag);			/* dmat */
177 	if (error) {
178 		device_printf(sc->dev, "failed to allocate busdma tag "
179 		    "(tx mbufs)\n");
180 		tsec_detach(sc);
181 		return (ENXIO);
182 	}
183 
184 	/* Allocate a busdma tag for RX mbufs. */
185 	error = bus_dma_tag_create(NULL,	/* parent */
186 	    TSEC_RXBUFFER_ALIGNMENT, 0,		/* alignment, boundary */
187 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
188 	    BUS_SPACE_MAXADDR,			/* highaddr */
189 	    NULL, NULL,				/* filtfunc, filtfuncarg */
190 	    MCLBYTES,				/* maxsize */
191 	    1,					/* nsegments */
192 	    MCLBYTES, 0,			/* maxsegsz, flags */
193 	    NULL, NULL,				/* lockfunc, lockfuncarg */
194 	    &sc->tsec_rx_mtag);			/* dmat */
195 	if (error) {
196 		device_printf(sc->dev, "failed to allocate busdma tag "
197 		    "(rx mbufs)\n");
198 		tsec_detach(sc);
199 		return (ENXIO);
200 	}
201 
202 	/* Create TX busdma maps */
203 	map_ptr = sc->tx_map_data;
204 	map_pptr = sc->tx_map_unused_data;
205 
206 	for (i = 0; i < TSEC_TX_NUM_DESC; i++) {
207 		map_pptr[i] = &map_ptr[i];
208 		error = bus_dmamap_create(sc->tsec_tx_mtag, 0, map_pptr[i]);
209 		if (error) {
210 			device_printf(sc->dev, "failed to init TX ring\n");
211 			tsec_detach(sc);
212 			return (ENXIO);
213 		}
214 	}
215 
216 	/* Create RX busdma maps and zero mbuf handlers */
217 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
218 		error = bus_dmamap_create(sc->tsec_rx_mtag, 0,
219 		    &sc->rx_data[i].map);
220 		if (error) {
221 			device_printf(sc->dev, "failed to init RX ring\n");
222 			tsec_detach(sc);
223 			return (ENXIO);
224 		}
225 		sc->rx_data[i].mbuf = NULL;
226 	}
227 
228 	/* Create mbufs for RX buffers */
229 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
230 		error = tsec_new_rxbuf(sc->tsec_rx_mtag, sc->rx_data[i].map,
231 		    &sc->rx_data[i].mbuf, &sc->rx_data[i].paddr);
232 		if (error) {
233 			device_printf(sc->dev, "can't load rx DMA map %d, "
234 			    "error = %d\n", i, error);
235 			tsec_detach(sc);
236 			return (error);
237 		}
238 	}
239 
240 	/* Create network interface for upper layers */
241 	ifp = sc->tsec_ifp = if_alloc(IFT_ETHER);
242 	if (ifp == NULL) {
243 		device_printf(sc->dev, "if_alloc() failed\n");
244 		tsec_detach(sc);
245 		return (ENOMEM);
246 	}
247 
248 	ifp->if_softc = sc;
249 	if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
250 	ifp->if_mtu = ETHERMTU;
251 	ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST;
252 	ifp->if_init = tsec_init;
253 	ifp->if_start = tsec_start;
254 	ifp->if_ioctl = tsec_ioctl;
255 
256 	IFQ_SET_MAXLEN(&ifp->if_snd, TSEC_TX_NUM_DESC - 1);
257 	ifp->if_snd.ifq_drv_maxlen = TSEC_TX_NUM_DESC - 1;
258 	IFQ_SET_READY(&ifp->if_snd);
259 
260 	ifp->if_capabilities = IFCAP_VLAN_MTU;
261 	if (sc->is_etsec)
262 		ifp->if_capabilities |= IFCAP_HWCSUM;
263 
264 	ifp->if_capenable = ifp->if_capabilities;
265 
266 #ifdef DEVICE_POLLING
267 	/* Advertise that polling is supported */
268 	ifp->if_capabilities |= IFCAP_POLLING;
269 #endif
270 
271 	/* Probe PHY(s) */
272 	error = mii_phy_probe(sc->dev, &sc->tsec_miibus, tsec_ifmedia_upd,
273 	    tsec_ifmedia_sts);
274 	if (error) {
275 		device_printf(sc->dev, "MII failed to find PHY!\n");
276 		if_free(ifp);
277 		sc->tsec_ifp = NULL;
278 		tsec_detach(sc);
279 		return (error);
280 	}
281 	sc->tsec_mii = device_get_softc(sc->tsec_miibus);
282 
283 	/* Set MAC address */
284 	tsec_get_hwaddr(sc, hwaddr);
285 	ether_ifattach(ifp, hwaddr);
286 
287 	return (0);
288 }
289 
290 int
291 tsec_detach(struct tsec_softc *sc)
292 {
293 
294 #ifdef DEVICE_POLLING
295 	if (sc->tsec_ifp->if_capenable & IFCAP_POLLING)
296 		ether_poll_deregister(sc->tsec_ifp);
297 #endif
298 
299 	/* Stop TSEC controller and free TX queue */
300 	if (sc->sc_rres && sc->tsec_ifp)
301 		tsec_shutdown(sc->dev);
302 
303 	/* Detach network interface */
304 	if (sc->tsec_ifp) {
305 		ether_ifdetach(sc->tsec_ifp);
306 		if_free(sc->tsec_ifp);
307 		sc->tsec_ifp = NULL;
308 	}
309 
310 	/* Free DMA resources */
311 	tsec_free_dma(sc);
312 
313 	return (0);
314 }
315 
316 void
317 tsec_shutdown(device_t dev)
318 {
319 	struct tsec_softc *sc;
320 
321 	sc = device_get_softc(dev);
322 
323 	TSEC_GLOBAL_LOCK(sc);
324 	tsec_stop(sc);
325 	TSEC_GLOBAL_UNLOCK(sc);
326 }
327 
328 int
329 tsec_suspend(device_t dev)
330 {
331 
332 	/* TODO not implemented! */
333 	return (0);
334 }
335 
336 int
337 tsec_resume(device_t dev)
338 {
339 
340 	/* TODO not implemented! */
341 	return (0);
342 }
343 
344 static void
345 tsec_init(void *xsc)
346 {
347 	struct tsec_softc *sc = xsc;
348 
349 	TSEC_GLOBAL_LOCK(sc);
350 	tsec_init_locked(sc);
351 	TSEC_GLOBAL_UNLOCK(sc);
352 }
353 
354 static void
355 tsec_init_locked(struct tsec_softc *sc)
356 {
357 	struct tsec_desc *tx_desc = sc->tsec_tx_vaddr;
358 	struct tsec_desc *rx_desc = sc->tsec_rx_vaddr;
359 	struct ifnet *ifp = sc->tsec_ifp;
360 	uint32_t timeout, val, i;
361 
362 	TSEC_GLOBAL_LOCK_ASSERT(sc);
363 	tsec_stop(sc);
364 
365 	/*
366 	 * These steps are according to the MPC8555E PowerQUICCIII RM:
367 	 * 14.7 Initialization/Application Information
368 	 */
369 
370 	/* Step 1: soft reset MAC */
371 	tsec_reset_mac(sc);
372 
373 	/* Step 2: Initialize MACCFG2 */
374 	TSEC_WRITE(sc, TSEC_REG_MACCFG2,
375 	    TSEC_MACCFG2_FULLDUPLEX |	/* Full Duplex = 1 */
376 	    TSEC_MACCFG2_PADCRC |	/* PAD/CRC append */
377 	    TSEC_MACCFG2_GMII |		/* I/F Mode bit */
378 	    TSEC_MACCFG2_PRECNT		/* Preamble count = 7 */
379 	);
380 
381 	/* Step 3: Initialize ECNTRL
382 	 * While the documentation states that R100M is ignored if RPM is
383 	 * not set, it does seem to be needed to get the orange boxes to
384 	 * work (which have a Marvell 88E1111 PHY). Go figure.
385 	 */
386 
387 	/*
388 	 * XXX kludge - use circumstancial evidence to program ECNTRL
389 	 * correctly. Ideally we need some board information to guide
390 	 * us here.
391 	 */
392 	i = TSEC_READ(sc, TSEC_REG_ID2);
393 	val = (i & 0xffff)
394 	    ? (TSEC_ECNTRL_TBIM | TSEC_ECNTRL_SGMIIM)	/* Sumatra */
395 	    : TSEC_ECNTRL_R100M;			/* Orange + CDS */
396 	TSEC_WRITE(sc, TSEC_REG_ECNTRL, TSEC_ECNTRL_STEN | val);
397 
398 	/* Step 4: Initialize MAC station address */
399 	tsec_set_mac_address(sc);
400 
401 	/*
402 	 * Step 5: Assign a Physical address to the TBI so as to not conflict
403 	 * with the external PHY physical address
404 	 */
405 	TSEC_WRITE(sc, TSEC_REG_TBIPA, 5);
406 
407 	/* Step 6: Reset the management interface */
408 	TSEC_WRITE(tsec0_sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_RESETMGMT);
409 
410 	/* Step 7: Setup the MII Mgmt clock speed */
411 	TSEC_WRITE(tsec0_sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_CLKDIV28);
412 
413 	/* Step 8: Read MII Mgmt indicator register and check for Busy = 0 */
414 	timeout = TSEC_READ_RETRY;
415 	while (--timeout && (TSEC_READ(tsec0_sc, TSEC_REG_MIIMIND) &
416 	    TSEC_MIIMIND_BUSY))
417 		DELAY(TSEC_READ_DELAY);
418 	if (timeout == 0) {
419 		if_printf(ifp, "tsec_init_locked(): Mgmt busy timeout\n");
420 		return;
421 	}
422 
423 	/* Step 9: Setup the MII Mgmt */
424 	mii_mediachg(sc->tsec_mii);
425 
426 	/* Step 10: Clear IEVENT register */
427 	TSEC_WRITE(sc, TSEC_REG_IEVENT, 0xffffffff);
428 
429 	/* Step 11: Enable interrupts */
430 #ifdef DEVICE_POLLING
431 	/*
432 	 * ...only if polling is not turned on. Disable interrupts explicitly
433 	 * if polling is enabled.
434 	 */
435 	if (ifp->if_capenable & IFCAP_POLLING )
436 		tsec_intrs_ctl(sc, 0);
437 	else
438 #endif /* DEVICE_POLLING */
439 	tsec_intrs_ctl(sc, 1);
440 
441 	/* Step 12: Initialize IADDRn */
442 	TSEC_WRITE(sc, TSEC_REG_IADDR0, 0);
443 	TSEC_WRITE(sc, TSEC_REG_IADDR1, 0);
444 	TSEC_WRITE(sc, TSEC_REG_IADDR2, 0);
445 	TSEC_WRITE(sc, TSEC_REG_IADDR3, 0);
446 	TSEC_WRITE(sc, TSEC_REG_IADDR4, 0);
447 	TSEC_WRITE(sc, TSEC_REG_IADDR5, 0);
448 	TSEC_WRITE(sc, TSEC_REG_IADDR6, 0);
449 	TSEC_WRITE(sc, TSEC_REG_IADDR7, 0);
450 
451 	/* Step 13: Initialize GADDRn */
452 	TSEC_WRITE(sc, TSEC_REG_GADDR0, 0);
453 	TSEC_WRITE(sc, TSEC_REG_GADDR1, 0);
454 	TSEC_WRITE(sc, TSEC_REG_GADDR2, 0);
455 	TSEC_WRITE(sc, TSEC_REG_GADDR3, 0);
456 	TSEC_WRITE(sc, TSEC_REG_GADDR4, 0);
457 	TSEC_WRITE(sc, TSEC_REG_GADDR5, 0);
458 	TSEC_WRITE(sc, TSEC_REG_GADDR6, 0);
459 	TSEC_WRITE(sc, TSEC_REG_GADDR7, 0);
460 
461 	/* Step 14: Initialize RCTRL */
462 	TSEC_WRITE(sc, TSEC_REG_RCTRL, 0);
463 
464 	/* Step 15: Initialize DMACTRL */
465 	tsec_dma_ctl(sc, 1);
466 
467 	/* Step 16: Initialize FIFO_PAUSE_CTRL */
468 	TSEC_WRITE(sc, TSEC_REG_FIFO_PAUSE_CTRL, TSEC_FIFO_PAUSE_CTRL_EN);
469 
470 	/*
471 	 * Step 17: Initialize transmit/receive descriptor rings.
472 	 * Initialize TBASE and RBASE.
473 	 */
474 	TSEC_WRITE(sc, TSEC_REG_TBASE, sc->tsec_tx_raddr);
475 	TSEC_WRITE(sc, TSEC_REG_RBASE, sc->tsec_rx_raddr);
476 
477 	for (i = 0; i < TSEC_TX_NUM_DESC; i++) {
478 		tx_desc[i].bufptr = 0;
479 		tx_desc[i].length = 0;
480 		tx_desc[i].flags = ((i == TSEC_TX_NUM_DESC - 1) ?
481 		    TSEC_TXBD_W : 0);
482 	}
483 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
484 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
485 
486 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
487 		rx_desc[i].bufptr = sc->rx_data[i].paddr;
488 		rx_desc[i].length = 0;
489 		rx_desc[i].flags = TSEC_RXBD_E | TSEC_RXBD_I |
490 		    ((i == TSEC_RX_NUM_DESC - 1) ? TSEC_RXBD_W : 0);
491 	}
492 	bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
493 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
494 
495 	/* Step 18: Initialize the maximum receive buffer length */
496 	TSEC_WRITE(sc, TSEC_REG_MRBLR, MCLBYTES);
497 
498 	/* Step 19: Configure ethernet frame sizes */
499 	TSEC_WRITE(sc, TSEC_REG_MINFLR, TSEC_MIN_FRAME_SIZE);
500 	tsec_set_mtu(sc, ifp->if_mtu);
501 
502 	/* Step 20: Enable Rx and RxBD sdata snooping */
503 	TSEC_WRITE(sc, TSEC_REG_ATTR, TSEC_ATTR_RDSEN | TSEC_ATTR_RBDSEN);
504 	TSEC_WRITE(sc, TSEC_REG_ATTRELI, 0);
505 
506 	/* Step 21: Reset collision counters in hardware */
507 	TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0);
508 	TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0);
509 	TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0);
510 	TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0);
511 	TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0);
512 
513 	/* Step 22: Mask all CAM interrupts */
514 	TSEC_WRITE(sc, TSEC_REG_MON_CAM1, 0xffffffff);
515 	TSEC_WRITE(sc, TSEC_REG_MON_CAM2, 0xffffffff);
516 
517 	/* Step 23: Enable Rx and Tx */
518 	val = TSEC_READ(sc, TSEC_REG_MACCFG1);
519 	val |= (TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN);
520 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, val);
521 
522 	/* Step 24: Reset TSEC counters for Tx and Rx rings */
523 	TSEC_TX_RX_COUNTERS_INIT(sc);
524 
525 	/* Step 25: Setup TCP/IP Off-Load engine */
526 	if (sc->is_etsec)
527 		tsec_offload_setup(sc);
528 
529 	/* Step 26: Setup multicast filters */
530 	tsec_setup_multicast(sc);
531 
532 	/* Step 27: Activate network interface */
533 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
534 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
535 	sc->tsec_if_flags = ifp->if_flags;
536 	sc->tsec_watchdog = 0;
537 
538 	/* Schedule watchdog timeout */
539 	callout_reset(&sc->tsec_callout, hz, tsec_tick, sc);
540 }
541 
542 static void
543 tsec_set_mac_address(struct tsec_softc *sc)
544 {
545 	uint32_t macbuf[2] = { 0, 0 };
546 	char *macbufp, *curmac;
547 	int i;
548 
549 	TSEC_GLOBAL_LOCK_ASSERT(sc);
550 
551 	KASSERT((ETHER_ADDR_LEN <= sizeof(macbuf)),
552 	    ("tsec_set_mac_address: (%d <= %d", ETHER_ADDR_LEN,
553 	    sizeof(macbuf)));
554 
555 	macbufp = (char *)macbuf;
556 	curmac = (char *)IF_LLADDR(sc->tsec_ifp);
557 
558 	/* Correct order of MAC address bytes */
559 	for (i = 1; i <= ETHER_ADDR_LEN; i++)
560 		macbufp[ETHER_ADDR_LEN-i] = curmac[i-1];
561 
562 	/* Initialize MAC station address MACSTNADDR2 and MACSTNADDR1 */
563 	TSEC_WRITE(sc, TSEC_REG_MACSTNADDR2, macbuf[1]);
564 	TSEC_WRITE(sc, TSEC_REG_MACSTNADDR1, macbuf[0]);
565 }
566 
567 /*
568  * DMA control function, if argument state is:
569  * 0 - DMA engine will be disabled
570  * 1 - DMA engine will be enabled
571  */
572 static void
573 tsec_dma_ctl(struct tsec_softc *sc, int state)
574 {
575 	device_t dev;
576 	uint32_t dma_flags, timeout;
577 
578 	dev = sc->dev;
579 
580 	dma_flags = TSEC_READ(sc, TSEC_REG_DMACTRL);
581 
582 	switch (state) {
583 	case 0:
584 		/* Temporarily clear stop graceful stop bits. */
585 		tsec_dma_ctl(sc, 1000);
586 
587 		/* Set it again */
588 		dma_flags |= (TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS);
589 		break;
590 	case 1000:
591 	case 1:
592 		/* Set write with response (WWR), wait (WOP) and snoop bits */
593 		dma_flags |= (TSEC_DMACTRL_TDSEN | TSEC_DMACTRL_TBDSEN |
594 		    DMACTRL_WWR | DMACTRL_WOP);
595 
596 		/* Clear graceful stop bits */
597 		dma_flags &= ~(TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS);
598 		break;
599 	default:
600 		device_printf(dev, "tsec_dma_ctl(): unknown state value: %d\n",
601 		    state);
602 	}
603 
604 	TSEC_WRITE(sc, TSEC_REG_DMACTRL, dma_flags);
605 
606 	switch (state) {
607 	case 0:
608 		/* Wait for DMA stop */
609 		timeout = TSEC_READ_RETRY;
610 		while (--timeout && (!(TSEC_READ(sc, TSEC_REG_IEVENT) &
611 		    (TSEC_IEVENT_GRSC | TSEC_IEVENT_GTSC))))
612 			DELAY(TSEC_READ_DELAY);
613 
614 		if (timeout == 0)
615 			device_printf(dev, "tsec_dma_ctl(): timeout!\n");
616 		break;
617 	case 1:
618 		/* Restart transmission function */
619 		TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
620 	}
621 }
622 
623 /*
624  * Interrupts control function, if argument state is:
625  * 0 - all TSEC interrupts will be masked
626  * 1 - all TSEC interrupts will be unmasked
627  */
628 static void
629 tsec_intrs_ctl(struct tsec_softc *sc, int state)
630 {
631 	device_t dev;
632 
633 	dev = sc->dev;
634 
635 	switch (state) {
636 	case 0:
637 		TSEC_WRITE(sc, TSEC_REG_IMASK, 0);
638 		break;
639 	case 1:
640 		TSEC_WRITE(sc, TSEC_REG_IMASK, TSEC_IMASK_BREN |
641 		    TSEC_IMASK_RXCEN | TSEC_IMASK_BSYEN | TSEC_IMASK_EBERREN |
642 		    TSEC_IMASK_BTEN | TSEC_IMASK_TXEEN | TSEC_IMASK_TXBEN |
643 		    TSEC_IMASK_TXFEN | TSEC_IMASK_XFUNEN | TSEC_IMASK_RXFEN);
644 		break;
645 	default:
646 		device_printf(dev, "tsec_intrs_ctl(): unknown state value: %d\n",
647 		    state);
648 	}
649 }
650 
651 static void
652 tsec_reset_mac(struct tsec_softc *sc)
653 {
654 	uint32_t maccfg1_flags;
655 
656 	/* Set soft reset bit */
657 	maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1);
658 	maccfg1_flags |= TSEC_MACCFG1_SOFT_RESET;
659 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags);
660 
661 	/* Clear soft reset bit */
662 	maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1);
663 	maccfg1_flags &= ~TSEC_MACCFG1_SOFT_RESET;
664 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags);
665 }
666 
667 static void
668 tsec_watchdog(struct tsec_softc *sc)
669 {
670 	struct ifnet *ifp;
671 
672 	TSEC_GLOBAL_LOCK_ASSERT(sc);
673 
674 	if (sc->tsec_watchdog == 0 || --sc->tsec_watchdog > 0)
675 		return;
676 
677 	ifp = sc->tsec_ifp;
678 	ifp->if_oerrors++;
679 	if_printf(ifp, "watchdog timeout\n");
680 
681 	tsec_stop(sc);
682 	tsec_init_locked(sc);
683 }
684 
685 static void
686 tsec_start(struct ifnet *ifp)
687 {
688 	struct tsec_softc *sc = ifp->if_softc;
689 
690 	TSEC_TRANSMIT_LOCK(sc);
691 	tsec_start_locked(ifp);
692 	TSEC_TRANSMIT_UNLOCK(sc);
693 }
694 
695 static void
696 tsec_start_locked(struct ifnet *ifp)
697 {
698 	struct tsec_softc *sc;
699 	struct mbuf *m0, *mtmp;
700 	struct tsec_tx_fcb *tx_fcb;
701 	unsigned int queued = 0;
702 	int csum_flags, fcb_inserted = 0;
703 
704 	sc = ifp->if_softc;
705 
706 	TSEC_TRANSMIT_LOCK_ASSERT(sc);
707 
708 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
709 	    IFF_DRV_RUNNING)
710 		return;
711 
712 	if (sc->tsec_link == 0)
713 		return;
714 
715 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
716 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
717 
718 	for (;;) {
719 		/* Get packet from the queue */
720 		IF_DEQUEUE(&ifp->if_snd, m0);
721 		if (m0 == NULL)
722 			break;
723 
724 		/* Insert TCP/IP Off-load frame control block */
725 		csum_flags = m0->m_pkthdr.csum_flags;
726 		if (csum_flags) {
727 
728 			M_PREPEND(m0, sizeof(struct tsec_tx_fcb), M_DONTWAIT);
729 			if (m0 == NULL)
730 				break;
731 
732 			tx_fcb = mtod(m0, struct tsec_tx_fcb *);
733 			tx_fcb->flags = 0;
734 			tx_fcb->l3_offset = ETHER_HDR_LEN;
735 			tx_fcb->l4_offset = sizeof(struct ip);
736 
737 			if (csum_flags & CSUM_IP)
738 				tx_fcb->flags |= TSEC_TX_FCB_IP4 |
739 				    TSEC_TX_FCB_CSUM_IP;
740 
741 			if (csum_flags & CSUM_TCP)
742 				tx_fcb->flags |= TSEC_TX_FCB_TCP |
743 				    TSEC_TX_FCB_CSUM_TCP_UDP;
744 
745 			if (csum_flags & CSUM_UDP)
746 				tx_fcb->flags |= TSEC_TX_FCB_UDP |
747 				    TSEC_TX_FCB_CSUM_TCP_UDP;
748 
749 			fcb_inserted = 1;
750 		}
751 
752 		mtmp = m_defrag(m0, M_DONTWAIT);
753 		if (mtmp)
754 			m0 = mtmp;
755 
756 		if (tsec_encap(sc, m0, fcb_inserted)) {
757 			IF_PREPEND(&ifp->if_snd, m0);
758 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
759 			break;
760 		}
761 		queued++;
762 		BPF_MTAP(ifp, m0);
763 	}
764 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
765 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
766 
767 	if (queued) {
768 		/* Enable transmitter and watchdog timer */
769 		TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
770 		sc->tsec_watchdog = 5;
771 	}
772 }
773 
774 static int
775 tsec_encap(struct tsec_softc *sc, struct mbuf *m0, int fcb_inserted)
776 {
777 	struct tsec_desc *tx_desc = NULL;
778 	struct ifnet *ifp;
779 	bus_dma_segment_t segs[TSEC_TX_NUM_DESC];
780 	bus_dmamap_t *mapp;
781 	int csum_flag = 0, error, seg, nsegs;
782 
783 	TSEC_TRANSMIT_LOCK_ASSERT(sc);
784 
785 	ifp = sc->tsec_ifp;
786 
787 	if (TSEC_FREE_TX_DESC(sc) == 0) {
788 		/* No free descriptors */
789 		return (-1);
790 	}
791 
792 	/* Fetch unused map */
793 	mapp = TSEC_ALLOC_TX_MAP(sc);
794 
795 	/* Create mapping in DMA memory */
796 	error = bus_dmamap_load_mbuf_sg(sc->tsec_tx_mtag,
797 	    *mapp, m0, segs, &nsegs, BUS_DMA_NOWAIT);
798 	if (error != 0 || nsegs > TSEC_FREE_TX_DESC(sc) || nsegs <= 0) {
799 		bus_dmamap_unload(sc->tsec_tx_mtag, *mapp);
800 		TSEC_FREE_TX_MAP(sc, mapp);
801 		return ((error != 0) ? error : -1);
802 	}
803 	bus_dmamap_sync(sc->tsec_tx_mtag, *mapp, BUS_DMASYNC_PREWRITE);
804 
805 	if ((ifp->if_flags & IFF_DEBUG) && (nsegs > 1))
806 		if_printf(ifp, "TX buffer has %d segments\n", nsegs);
807 
808 	if (fcb_inserted)
809 		csum_flag = TSEC_TXBD_TOE;
810 
811 	/* Everything is ok, now we can send buffers */
812 	for (seg = 0; seg < nsegs; seg++) {
813 		tx_desc = TSEC_GET_CUR_TX_DESC(sc);
814 
815 		tx_desc->length = segs[seg].ds_len;
816 		tx_desc->bufptr = segs[seg].ds_addr;
817 
818 		/*
819 		 * Set flags:
820 		 *   - wrap
821 		 *   - checksum
822 		 *   - ready to send
823 		 *   - transmit the CRC sequence after the last data byte
824 		 *   - interrupt after the last buffer
825 		 */
826 		tx_desc->flags =
827 		    (tx_desc->flags & TSEC_TXBD_W) |
828 		    ((seg == 0) ? csum_flag : 0) | TSEC_TXBD_R | TSEC_TXBD_TC |
829 		    ((seg == nsegs - 1) ? TSEC_TXBD_L | TSEC_TXBD_I : 0);
830 	}
831 
832 	/* Save mbuf and DMA mapping for release at later stage */
833 	TSEC_PUT_TX_MBUF(sc, m0);
834 	TSEC_PUT_TX_MAP(sc, mapp);
835 
836 	return (0);
837 }
838 
839 static void
840 tsec_setfilter(struct tsec_softc *sc)
841 {
842 	struct ifnet *ifp;
843 	uint32_t flags;
844 
845 	ifp = sc->tsec_ifp;
846 	flags = TSEC_READ(sc, TSEC_REG_RCTRL);
847 
848 	/* Promiscuous mode */
849 	if (ifp->if_flags & IFF_PROMISC)
850 		flags |= TSEC_RCTRL_PROM;
851 	else
852 		flags &= ~TSEC_RCTRL_PROM;
853 
854 	TSEC_WRITE(sc, TSEC_REG_RCTRL, flags);
855 }
856 
857 #ifdef DEVICE_POLLING
858 static poll_handler_t tsec_poll;
859 
860 static void
861 tsec_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
862 {
863 	uint32_t ie;
864 	struct tsec_softc *sc = ifp->if_softc;
865 
866 	TSEC_GLOBAL_LOCK(sc);
867 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
868 		TSEC_GLOBAL_UNLOCK(sc);
869 		return;
870 	}
871 
872 	if (cmd == POLL_AND_CHECK_STATUS) {
873 		tsec_error_intr_locked(sc, count);
874 
875 		/* Clear all events reported */
876 		ie = TSEC_READ(sc, TSEC_REG_IEVENT);
877 		TSEC_WRITE(sc, TSEC_REG_IEVENT, ie);
878 	}
879 
880 	tsec_transmit_intr_locked(sc);
881 
882 	TSEC_GLOBAL_TO_RECEIVE_LOCK(sc);
883 
884 	tsec_receive_intr_locked(sc, count);
885 
886 	TSEC_RECEIVE_UNLOCK(sc);
887 }
888 #endif /* DEVICE_POLLING */
889 
890 static int
891 tsec_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
892 {
893 	struct tsec_softc *sc = ifp->if_softc;
894 	struct ifreq *ifr = (struct ifreq *)data;
895 	device_t dev;
896 	int mask, error = 0;
897 
898 	dev = sc->dev;
899 
900 	switch (command) {
901 	case SIOCSIFMTU:
902 		TSEC_GLOBAL_LOCK(sc);
903 		if (tsec_set_mtu(sc, ifr->ifr_mtu))
904 			ifp->if_mtu = ifr->ifr_mtu;
905 		else
906 			error = EINVAL;
907 		TSEC_GLOBAL_UNLOCK(sc);
908 		break;
909 	case SIOCSIFFLAGS:
910 		TSEC_GLOBAL_LOCK(sc);
911 		if (ifp->if_flags & IFF_UP) {
912 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
913 				if ((sc->tsec_if_flags ^ ifp->if_flags) &
914 				    IFF_PROMISC)
915 					tsec_setfilter(sc);
916 
917 				if ((sc->tsec_if_flags ^ ifp->if_flags) &
918 				    IFF_ALLMULTI)
919 					tsec_setup_multicast(sc);
920 			} else
921 				tsec_init_locked(sc);
922 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
923 			tsec_stop(sc);
924 
925 		sc->tsec_if_flags = ifp->if_flags;
926 		TSEC_GLOBAL_UNLOCK(sc);
927 		break;
928 	case SIOCADDMULTI:
929 	case SIOCDELMULTI:
930 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
931 			TSEC_GLOBAL_LOCK(sc);
932 			tsec_setup_multicast(sc);
933 			TSEC_GLOBAL_UNLOCK(sc);
934 		}
935 	case SIOCGIFMEDIA:
936 	case SIOCSIFMEDIA:
937 		error = ifmedia_ioctl(ifp, ifr, &sc->tsec_mii->mii_media,
938 		    command);
939 		break;
940 	case SIOCSIFCAP:
941 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
942 		if ((mask & IFCAP_HWCSUM) && sc->is_etsec) {
943 			TSEC_GLOBAL_LOCK(sc);
944 			ifp->if_capenable &= ~IFCAP_HWCSUM;
945 			ifp->if_capenable |= IFCAP_HWCSUM & ifr->ifr_reqcap;
946 			tsec_offload_setup(sc);
947 			TSEC_GLOBAL_UNLOCK(sc);
948 		}
949 #ifdef DEVICE_POLLING
950 		if (mask & IFCAP_POLLING) {
951 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
952 				error = ether_poll_register(tsec_poll, ifp);
953 				if (error)
954 					return (error);
955 
956 				TSEC_GLOBAL_LOCK(sc);
957 				/* Disable interrupts */
958 				tsec_intrs_ctl(sc, 0);
959 				ifp->if_capenable |= IFCAP_POLLING;
960 				TSEC_GLOBAL_UNLOCK(sc);
961 			} else {
962 				error = ether_poll_deregister(ifp);
963 				TSEC_GLOBAL_LOCK(sc);
964 				/* Enable interrupts */
965 				tsec_intrs_ctl(sc, 1);
966 				ifp->if_capenable &= ~IFCAP_POLLING;
967 				TSEC_GLOBAL_UNLOCK(sc);
968 			}
969 		}
970 #endif
971 		break;
972 
973 	default:
974 		error = ether_ioctl(ifp, command, data);
975 	}
976 
977 	/* Flush buffers if not empty */
978 	if (ifp->if_flags & IFF_UP)
979 		tsec_start(ifp);
980 	return (error);
981 }
982 
983 static int
984 tsec_ifmedia_upd(struct ifnet *ifp)
985 {
986 	struct tsec_softc *sc = ifp->if_softc;
987 	struct mii_data *mii;
988 
989 	TSEC_TRANSMIT_LOCK(sc);
990 
991 	mii = sc->tsec_mii;
992 	mii_mediachg(mii);
993 
994 	TSEC_TRANSMIT_UNLOCK(sc);
995 	return (0);
996 }
997 
998 static void
999 tsec_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1000 {
1001 	struct tsec_softc *sc = ifp->if_softc;
1002 	struct mii_data *mii;
1003 
1004 	TSEC_TRANSMIT_LOCK(sc);
1005 
1006 	mii = sc->tsec_mii;
1007 	mii_pollstat(mii);
1008 
1009 	ifmr->ifm_active = mii->mii_media_active;
1010 	ifmr->ifm_status = mii->mii_media_status;
1011 
1012 	TSEC_TRANSMIT_UNLOCK(sc);
1013 }
1014 
1015 static int
1016 tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map, struct mbuf **mbufp,
1017     uint32_t *paddr)
1018 {
1019 	struct mbuf *new_mbuf;
1020 	bus_dma_segment_t seg[1];
1021 	int error, nsegs;
1022 
1023 	KASSERT(mbufp != NULL, ("NULL mbuf pointer!"));
1024 
1025 	new_mbuf = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MCLBYTES);
1026 	if (new_mbuf == NULL)
1027 		return (ENOBUFS);
1028 	new_mbuf->m_len = new_mbuf->m_pkthdr.len = new_mbuf->m_ext.ext_size;
1029 
1030 	if (*mbufp) {
1031 		bus_dmamap_sync(tag, map, BUS_DMASYNC_POSTREAD);
1032 		bus_dmamap_unload(tag, map);
1033 	}
1034 
1035 	error = bus_dmamap_load_mbuf_sg(tag, map, new_mbuf, seg, &nsegs,
1036 	    BUS_DMA_NOWAIT);
1037 	KASSERT(nsegs == 1, ("Too many segments returned!"));
1038 	if (nsegs != 1 || error)
1039 		panic("tsec_new_rxbuf(): nsegs(%d), error(%d)", nsegs, error);
1040 
1041 #if 0
1042 	if (error) {
1043 		printf("tsec: bus_dmamap_load_mbuf_sg() returned: %d!\n",
1044 			error);
1045 		m_freem(new_mbuf);
1046 		return (ENOBUFS);
1047 	}
1048 #endif
1049 
1050 #if 0
1051 	KASSERT(((seg->ds_addr) & (TSEC_RXBUFFER_ALIGNMENT-1)) == 0,
1052 		("Wrong alignment of RX buffer!"));
1053 #endif
1054 	bus_dmamap_sync(tag, map, BUS_DMASYNC_PREREAD);
1055 
1056 	(*mbufp) = new_mbuf;
1057 	(*paddr) = seg->ds_addr;
1058 	return (0);
1059 }
1060 
1061 static void
1062 tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1063 {
1064 	u_int32_t *paddr;
1065 
1066 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
1067 	paddr = arg;
1068 	*paddr = segs->ds_addr;
1069 }
1070 
1071 static int
1072 tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag, bus_dmamap_t *dmap,
1073     bus_size_t dsize, void **vaddr, void *raddr, const char *dname)
1074 {
1075 	int error;
1076 
1077 	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
1078 	error = bus_dma_tag_create(NULL,	/* parent */
1079 	    PAGE_SIZE, 0,			/* alignment, boundary */
1080 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
1081 	    BUS_SPACE_MAXADDR,			/* highaddr */
1082 	    NULL, NULL,				/* filtfunc, filtfuncarg */
1083 	    dsize, 1,				/* maxsize, nsegments */
1084 	    dsize, 0,				/* maxsegsz, flags */
1085 	    NULL, NULL,				/* lockfunc, lockfuncarg */
1086 	    dtag);				/* dmat */
1087 
1088 	if (error) {
1089 		device_printf(dev, "failed to allocate busdma %s tag\n",
1090 		    dname);
1091 		(*vaddr) = NULL;
1092 		return (ENXIO);
1093 	}
1094 
1095 	error = bus_dmamem_alloc(*dtag, vaddr, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1096 	    dmap);
1097 	if (error) {
1098 		device_printf(dev, "failed to allocate %s DMA safe memory\n",
1099 		    dname);
1100 		bus_dma_tag_destroy(*dtag);
1101 		(*vaddr) = NULL;
1102 		return (ENXIO);
1103 	}
1104 
1105 	error = bus_dmamap_load(*dtag, *dmap, *vaddr, dsize,
1106 	    tsec_map_dma_addr, raddr, BUS_DMA_NOWAIT);
1107 	if (error) {
1108 		device_printf(dev, "cannot get address of the %s "
1109 		    "descriptors\n", dname);
1110 		bus_dmamem_free(*dtag, *vaddr, *dmap);
1111 		bus_dma_tag_destroy(*dtag);
1112 		(*vaddr) = NULL;
1113 		return (ENXIO);
1114 	}
1115 
1116 	return (0);
1117 }
1118 
1119 static void
1120 tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr)
1121 {
1122 
1123 	if (vaddr == NULL)
1124 		return;
1125 
1126 	/* Unmap descriptors from DMA memory */
1127 	bus_dmamap_sync(dtag, dmap, BUS_DMASYNC_POSTREAD |
1128 	    BUS_DMASYNC_POSTWRITE);
1129 	bus_dmamap_unload(dtag, dmap);
1130 
1131 	/* Free descriptors memory */
1132 	bus_dmamem_free(dtag, vaddr, dmap);
1133 
1134 	/* Destroy descriptors tag */
1135 	bus_dma_tag_destroy(dtag);
1136 }
1137 
1138 static void
1139 tsec_free_dma(struct tsec_softc *sc)
1140 {
1141 	int i;
1142 
1143 	/* Free TX maps */
1144 	for (i = 0; i < TSEC_TX_NUM_DESC; i++)
1145 		if (sc->tx_map_data[i] != NULL)
1146 			bus_dmamap_destroy(sc->tsec_tx_mtag,
1147 			    sc->tx_map_data[i]);
1148 	/* Destroy tag for TX mbufs */
1149 	bus_dma_tag_destroy(sc->tsec_tx_mtag);
1150 
1151 	/* Free RX mbufs and maps */
1152 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
1153 		if (sc->rx_data[i].mbuf) {
1154 			/* Unload buffer from DMA */
1155 			bus_dmamap_sync(sc->tsec_rx_mtag, sc->rx_data[i].map,
1156 			    BUS_DMASYNC_POSTREAD);
1157 			bus_dmamap_unload(sc->tsec_rx_mtag,
1158 			    sc->rx_data[i].map);
1159 
1160 			/* Free buffer */
1161 			m_freem(sc->rx_data[i].mbuf);
1162 		}
1163 		/* Destroy map for this buffer */
1164 		if (sc->rx_data[i].map != NULL)
1165 			bus_dmamap_destroy(sc->tsec_rx_mtag,
1166 			    sc->rx_data[i].map);
1167 	}
1168 	/* Destroy tag for RX mbufs */
1169 	bus_dma_tag_destroy(sc->tsec_rx_mtag);
1170 
1171 	/* Unload TX/RX descriptors */
1172 	tsec_free_dma_desc(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1173 	    sc->tsec_tx_vaddr);
1174 	tsec_free_dma_desc(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1175 	    sc->tsec_rx_vaddr);
1176 }
1177 
1178 static void
1179 tsec_stop(struct tsec_softc *sc)
1180 {
1181 	struct ifnet *ifp;
1182 	struct mbuf *m0;
1183 	bus_dmamap_t *mapp;
1184 	uint32_t tmpval;
1185 
1186 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1187 
1188 	ifp = sc->tsec_ifp;
1189 
1190 	/* Disable interface and watchdog timer */
1191 	callout_stop(&sc->tsec_callout);
1192 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1193 	sc->tsec_watchdog = 0;
1194 
1195 	/* Disable all interrupts and stop DMA */
1196 	tsec_intrs_ctl(sc, 0);
1197 	tsec_dma_ctl(sc, 0);
1198 
1199 	/* Remove pending data from TX queue */
1200 	while (!TSEC_EMPTYQ_TX_MBUF(sc)) {
1201 		m0 = TSEC_GET_TX_MBUF(sc);
1202 		mapp = TSEC_GET_TX_MAP(sc);
1203 
1204 		bus_dmamap_sync(sc->tsec_tx_mtag, *mapp,
1205 		    BUS_DMASYNC_POSTWRITE);
1206 		bus_dmamap_unload(sc->tsec_tx_mtag, *mapp);
1207 
1208 		TSEC_FREE_TX_MAP(sc, mapp);
1209 		m_freem(m0);
1210 	}
1211 
1212 	/* Disable RX and TX */
1213 	tmpval = TSEC_READ(sc, TSEC_REG_MACCFG1);
1214 	tmpval &= ~(TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN);
1215 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, tmpval);
1216 	DELAY(10);
1217 }
1218 
1219 static void
1220 tsec_tick(void *arg)
1221 {
1222 	struct tsec_softc *sc = arg;
1223 	struct ifnet *ifp;
1224 	int link;
1225 
1226 	TSEC_GLOBAL_LOCK(sc);
1227 
1228 	tsec_watchdog(sc);
1229 
1230 	ifp = sc->tsec_ifp;
1231 	link = sc->tsec_link;
1232 
1233 	mii_tick(sc->tsec_mii);
1234 
1235 	if (link == 0 && sc->tsec_link == 1 &&
1236 	    (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)))
1237 		tsec_start_locked(ifp);
1238 
1239 	/* Schedule another timeout one second from now. */
1240 	callout_reset(&sc->tsec_callout, hz, tsec_tick, sc);
1241 
1242 	TSEC_GLOBAL_UNLOCK(sc);
1243 }
1244 
1245 /*
1246  *  This is the core RX routine. It replenishes mbufs in the descriptor and
1247  *  sends data which have been dma'ed into host memory to upper layer.
1248  *
1249  *  Loops at most count times if count is > 0, or until done if count < 0.
1250  */
1251 static void
1252 tsec_receive_intr_locked(struct tsec_softc *sc, int count)
1253 {
1254 	struct tsec_desc *rx_desc;
1255 	struct ifnet *ifp;
1256 	struct rx_data_type *rx_data;
1257 	struct mbuf *m;
1258 	device_t dev;
1259 	uint32_t i;
1260 	int c;
1261 	uint16_t flags;
1262 
1263 	TSEC_RECEIVE_LOCK_ASSERT(sc);
1264 
1265 	ifp = sc->tsec_ifp;
1266 	rx_data = sc->rx_data;
1267 	dev = sc->dev;
1268 
1269 	bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1270 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1271 
1272 	for (c = 0; ; c++) {
1273 		if (count >= 0 && count-- == 0)
1274 			break;
1275 
1276 		rx_desc = TSEC_GET_CUR_RX_DESC(sc);
1277 		flags = rx_desc->flags;
1278 
1279 		/* Check if there is anything to receive */
1280 		if ((flags & TSEC_RXBD_E) || (c >= TSEC_RX_NUM_DESC)) {
1281 			/*
1282 			 * Avoid generating another interrupt
1283 			 */
1284 			if (flags & TSEC_RXBD_E)
1285 				TSEC_WRITE(sc, TSEC_REG_IEVENT,
1286 				    TSEC_IEVENT_RXB | TSEC_IEVENT_RXF);
1287 			/*
1288 			 * We didn't consume current descriptor and have to
1289 			 * return it to the queue
1290 			 */
1291 			TSEC_BACK_CUR_RX_DESC(sc);
1292 			break;
1293 		}
1294 
1295 		if (flags & (TSEC_RXBD_LG | TSEC_RXBD_SH | TSEC_RXBD_NO |
1296 		    TSEC_RXBD_CR | TSEC_RXBD_OV | TSEC_RXBD_TR)) {
1297 
1298 			rx_desc->length = 0;
1299 			rx_desc->flags = (rx_desc->flags &
1300 			    ~TSEC_RXBD_ZEROONINIT) | TSEC_RXBD_E | TSEC_RXBD_I;
1301 
1302 			if (sc->frame != NULL) {
1303 				m_free(sc->frame);
1304 				sc->frame = NULL;
1305 			}
1306 
1307 			continue;
1308 		}
1309 
1310 		/* Ok... process frame */
1311 		i = TSEC_GET_CUR_RX_DESC_CNT(sc);
1312 		m = rx_data[i].mbuf;
1313 		m->m_len = rx_desc->length;
1314 
1315 		if (sc->frame != NULL) {
1316 			if ((flags & TSEC_RXBD_L) != 0)
1317 				m->m_len -= m_length(sc->frame, NULL);
1318 
1319 			m->m_flags &= ~M_PKTHDR;
1320 			m_cat(sc->frame, m);
1321 		} else {
1322 			sc->frame = m;
1323 		}
1324 
1325 		m = NULL;
1326 
1327 		if ((flags & TSEC_RXBD_L) != 0) {
1328 			m = sc->frame;
1329 			sc->frame = NULL;
1330 		}
1331 
1332 		if (tsec_new_rxbuf(sc->tsec_rx_mtag, rx_data[i].map,
1333 		    &rx_data[i].mbuf, &rx_data[i].paddr)) {
1334 			ifp->if_ierrors++;
1335 			/*
1336 			 * We ran out of mbufs; didn't consume current
1337 			 * descriptor and have to return it to the queue.
1338 			 */
1339 			TSEC_BACK_CUR_RX_DESC(sc);
1340 			break;
1341 		}
1342 
1343 		/* Attach new buffer to descriptor and clear flags */
1344 		rx_desc->bufptr = rx_data[i].paddr;
1345 		rx_desc->length = 0;
1346 		rx_desc->flags = (rx_desc->flags & ~TSEC_RXBD_ZEROONINIT) |
1347 		    TSEC_RXBD_E | TSEC_RXBD_I;
1348 
1349 		if (m != NULL) {
1350 			m->m_pkthdr.rcvif = ifp;
1351 
1352 			m_fixhdr(m);
1353 			m_adj(m, -ETHER_CRC_LEN);
1354 
1355 			if (sc->is_etsec)
1356 				tsec_offload_process_frame(sc, m);
1357 
1358 			TSEC_RECEIVE_UNLOCK(sc);
1359 			(*ifp->if_input)(ifp, m);
1360 			TSEC_RECEIVE_LOCK(sc);
1361 		}
1362 	}
1363 
1364 	bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1365 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1366 
1367 	/*
1368 	 * Make sure TSEC receiver is not halted.
1369 	 *
1370 	 * Various conditions can stop the TSEC receiver, but not all are
1371 	 * signaled and handled by error interrupt, so make sure the receiver
1372 	 * is running. Writing to TSEC_REG_RSTAT restarts the receiver when
1373 	 * halted, and is harmless if already running.
1374 	 */
1375 	TSEC_WRITE(sc, TSEC_REG_RSTAT, TSEC_RSTAT_QHLT);
1376 }
1377 
1378 void
1379 tsec_receive_intr(void *arg)
1380 {
1381 	struct tsec_softc *sc = arg;
1382 
1383 	TSEC_RECEIVE_LOCK(sc);
1384 
1385 #ifdef DEVICE_POLLING
1386 	if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) {
1387 		TSEC_RECEIVE_UNLOCK(sc);
1388 		return;
1389 	}
1390 #endif
1391 
1392 	/* Confirm the interrupt was received by driver */
1393 	TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXB | TSEC_IEVENT_RXF);
1394 	tsec_receive_intr_locked(sc, -1);
1395 
1396 	TSEC_RECEIVE_UNLOCK(sc);
1397 }
1398 
1399 static void
1400 tsec_transmit_intr_locked(struct tsec_softc *sc)
1401 {
1402 	struct tsec_desc *tx_desc;
1403 	struct ifnet *ifp;
1404 	struct mbuf *m0;
1405 	bus_dmamap_t *mapp;
1406 	int send = 0;
1407 
1408 	TSEC_TRANSMIT_LOCK_ASSERT(sc);
1409 
1410 	ifp = sc->tsec_ifp;
1411 
1412 	/* Update collision statistics */
1413 	ifp->if_collisions += TSEC_READ(sc, TSEC_REG_MON_TNCL);
1414 
1415 	/* Reset collision counters in hardware */
1416 	TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0);
1417 	TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0);
1418 	TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0);
1419 	TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0);
1420 	TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0);
1421 
1422 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1423 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1424 
1425 	while (TSEC_CUR_DIFF_DIRTY_TX_DESC(sc)) {
1426 		tx_desc = TSEC_GET_DIRTY_TX_DESC(sc);
1427 		if (tx_desc->flags & TSEC_TXBD_R) {
1428 			TSEC_BACK_DIRTY_TX_DESC(sc);
1429 			break;
1430 		}
1431 
1432 		if ((tx_desc->flags & TSEC_TXBD_L) == 0)
1433 			continue;
1434 
1435 		/*
1436 		 * This is the last buf in this packet, so unmap and free it.
1437 		 */
1438 		m0 = TSEC_GET_TX_MBUF(sc);
1439 		mapp = TSEC_GET_TX_MAP(sc);
1440 
1441 		bus_dmamap_sync(sc->tsec_tx_mtag, *mapp,
1442 		    BUS_DMASYNC_POSTWRITE);
1443 		bus_dmamap_unload(sc->tsec_tx_mtag, *mapp);
1444 
1445 		TSEC_FREE_TX_MAP(sc, mapp);
1446 		m_freem(m0);
1447 
1448 		ifp->if_opackets++;
1449 		send = 1;
1450 	}
1451 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1452 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1453 
1454 	if (send) {
1455 		/* Now send anything that was pending */
1456 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1457 		tsec_start_locked(ifp);
1458 
1459 		/* Stop wathdog if all sent */
1460 		if (TSEC_EMPTYQ_TX_MBUF(sc))
1461 			sc->tsec_watchdog = 0;
1462 	}
1463 }
1464 
1465 void
1466 tsec_transmit_intr(void *arg)
1467 {
1468 	struct tsec_softc *sc = arg;
1469 
1470 	TSEC_TRANSMIT_LOCK(sc);
1471 
1472 #ifdef DEVICE_POLLING
1473 	if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) {
1474 		TSEC_TRANSMIT_UNLOCK(sc);
1475 		return;
1476 	}
1477 #endif
1478 	/* Confirm the interrupt was received by driver */
1479 	TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_TXB | TSEC_IEVENT_TXF);
1480 	tsec_transmit_intr_locked(sc);
1481 
1482 	TSEC_TRANSMIT_UNLOCK(sc);
1483 }
1484 
1485 static void
1486 tsec_error_intr_locked(struct tsec_softc *sc, int count)
1487 {
1488 	struct ifnet *ifp;
1489 	uint32_t eflags;
1490 
1491 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1492 
1493 	ifp = sc->tsec_ifp;
1494 
1495 	eflags = TSEC_READ(sc, TSEC_REG_IEVENT);
1496 
1497 	/* Clear events bits in hardware */
1498 	TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXC | TSEC_IEVENT_BSY |
1499 	    TSEC_IEVENT_EBERR | TSEC_IEVENT_MSRO | TSEC_IEVENT_BABT |
1500 	    TSEC_IEVENT_TXC | TSEC_IEVENT_TXE | TSEC_IEVENT_LC |
1501 	    TSEC_IEVENT_CRL | TSEC_IEVENT_XFUN);
1502 
1503 	/* Check transmitter errors */
1504 	if (eflags & TSEC_IEVENT_TXE) {
1505 		ifp->if_oerrors++;
1506 
1507 		if (eflags & TSEC_IEVENT_LC)
1508 			ifp->if_collisions++;
1509 
1510 		TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
1511 	}
1512 
1513 	/* Check receiver errors */
1514 	if (eflags & TSEC_IEVENT_BSY) {
1515 		ifp->if_ierrors++;
1516 		ifp->if_iqdrops++;
1517 
1518 		/* Get data from RX buffers */
1519 		tsec_receive_intr_locked(sc, count);
1520 	}
1521 
1522 	if (ifp->if_flags & IFF_DEBUG)
1523 		if_printf(ifp, "tsec_error_intr(): event flags: 0x%x\n",
1524 		    eflags);
1525 
1526 	if (eflags & TSEC_IEVENT_EBERR) {
1527 		if_printf(ifp, "System bus error occurred during"
1528 		    "DMA transaction (flags: 0x%x)\n", eflags);
1529 		tsec_init_locked(sc);
1530 	}
1531 
1532 	if (eflags & TSEC_IEVENT_BABT)
1533 		ifp->if_oerrors++;
1534 
1535 	if (eflags & TSEC_IEVENT_BABR)
1536 		ifp->if_ierrors++;
1537 }
1538 
1539 void
1540 tsec_error_intr(void *arg)
1541 {
1542 	struct tsec_softc *sc = arg;
1543 
1544 	TSEC_GLOBAL_LOCK(sc);
1545 	tsec_error_intr_locked(sc, -1);
1546 	TSEC_GLOBAL_UNLOCK(sc);
1547 }
1548 
1549 int
1550 tsec_miibus_readreg(device_t dev, int phy, int reg)
1551 {
1552 	struct tsec_softc *sc;
1553 	uint32_t timeout;
1554 
1555 	sc = device_get_softc(dev);
1556 
1557 	if (device_get_unit(dev) != phy)
1558 		return (0);
1559 
1560 	sc = tsec0_sc;
1561 
1562 	TSEC_WRITE(sc, TSEC_REG_MIIMADD, (phy << 8) | reg);
1563 	TSEC_WRITE(sc, TSEC_REG_MIIMCOM, 0);
1564 	TSEC_WRITE(sc, TSEC_REG_MIIMCOM, TSEC_MIIMCOM_READCYCLE);
1565 
1566 	timeout = TSEC_READ_RETRY;
1567 	while (--timeout && TSEC_READ(sc, TSEC_REG_MIIMIND) &
1568 	    (TSEC_MIIMIND_NOTVALID | TSEC_MIIMIND_BUSY))
1569 		DELAY(TSEC_READ_DELAY);
1570 
1571 	if (timeout == 0)
1572 		device_printf(dev, "Timeout while reading from PHY!\n");
1573 
1574 	return (TSEC_READ(sc, TSEC_REG_MIIMSTAT));
1575 }
1576 
1577 void
1578 tsec_miibus_writereg(device_t dev, int phy, int reg, int value)
1579 {
1580 	struct tsec_softc *sc;
1581 	uint32_t timeout;
1582 
1583 	sc = device_get_softc(dev);
1584 
1585 	if (device_get_unit(dev) != phy)
1586 		device_printf(dev, "Trying to write to an alien PHY(%d)\n",
1587 		    phy);
1588 
1589 	sc = tsec0_sc;
1590 
1591 	TSEC_WRITE(sc, TSEC_REG_MIIMADD, (phy << 8) | reg);
1592 	TSEC_WRITE(sc, TSEC_REG_MIIMCON, value);
1593 
1594 	timeout = TSEC_READ_RETRY;
1595 	while (--timeout && (TSEC_READ(sc, TSEC_REG_MIIMIND) &
1596 	    TSEC_MIIMIND_BUSY))
1597 		DELAY(TSEC_READ_DELAY);
1598 
1599 	if (timeout == 0)
1600 		device_printf(dev, "Timeout while writing to PHY!\n");
1601 }
1602 
1603 void
1604 tsec_miibus_statchg(device_t dev)
1605 {
1606 	struct tsec_softc *sc;
1607 	struct mii_data *mii;
1608 	uint32_t ecntrl, id, tmp;
1609 	int link;
1610 
1611 	sc = device_get_softc(dev);
1612 	mii = sc->tsec_mii;
1613 	link = ((mii->mii_media_status & IFM_ACTIVE) ? 1 : 0);
1614 
1615 	tmp = TSEC_READ(sc, TSEC_REG_MACCFG2) & ~TSEC_MACCFG2_IF;
1616 
1617 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
1618 		tmp |= TSEC_MACCFG2_FULLDUPLEX;
1619 	else
1620 		tmp &= ~TSEC_MACCFG2_FULLDUPLEX;
1621 
1622 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1623 	case IFM_1000_T:
1624 	case IFM_1000_SX:
1625 		tmp |= TSEC_MACCFG2_GMII;
1626 		sc->tsec_link = link;
1627 		break;
1628 	case IFM_100_TX:
1629 	case IFM_10_T:
1630 		tmp |= TSEC_MACCFG2_MII;
1631 		sc->tsec_link = link;
1632 		break;
1633 	case IFM_NONE:
1634 		if (link)
1635 			device_printf(dev, "No speed selected but link "
1636 			    "active!\n");
1637 		sc->tsec_link = 0;
1638 		return;
1639 	default:
1640 		sc->tsec_link = 0;
1641 		device_printf(dev, "Unknown speed (%d), link %s!\n",
1642 		    IFM_SUBTYPE(mii->mii_media_active),
1643 		        ((link) ? "up" : "down"));
1644 		return;
1645 	}
1646 	TSEC_WRITE(sc, TSEC_REG_MACCFG2, tmp);
1647 
1648 	/* XXX kludge - use circumstantial evidence for reduced mode. */
1649 	id = TSEC_READ(sc, TSEC_REG_ID2);
1650 	if (id & 0xffff) {
1651 		ecntrl = TSEC_READ(sc, TSEC_REG_ECNTRL) & ~TSEC_ECNTRL_R100M;
1652 		ecntrl |= (tmp & TSEC_MACCFG2_MII) ? TSEC_ECNTRL_R100M : 0;
1653 		TSEC_WRITE(sc, TSEC_REG_ECNTRL, ecntrl);
1654 	}
1655 }
1656 
1657 static void
1658 tsec_add_sysctls(struct tsec_softc *sc)
1659 {
1660 	struct sysctl_ctx_list *ctx;
1661 	struct sysctl_oid_list *children;
1662 	struct sysctl_oid *tree;
1663 
1664 	ctx = device_get_sysctl_ctx(sc->dev);
1665 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
1666 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "int_coal",
1667 	    CTLFLAG_RD, 0, "TSEC Interrupts coalescing");
1668 	children = SYSCTL_CHILDREN(tree);
1669 
1670 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_time",
1671 	    CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_RX, tsec_sysctl_ic_time,
1672 	    "I", "IC RX time threshold (0-65535)");
1673 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_count",
1674 	    CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_RX, tsec_sysctl_ic_count,
1675 	    "I", "IC RX frame count threshold (0-255)");
1676 
1677 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_time",
1678 	    CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_TX, tsec_sysctl_ic_time,
1679 	    "I", "IC TX time threshold (0-65535)");
1680 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_count",
1681 	    CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_TX, tsec_sysctl_ic_count,
1682 	    "I", "IC TX frame count threshold (0-255)");
1683 }
1684 
1685 /*
1686  * With Interrupt Coalescing (IC) active, a transmit/receive frame
1687  * interrupt is raised either upon:
1688  *
1689  * - threshold-defined period of time elapsed, or
1690  * - threshold-defined number of frames is received/transmitted,
1691  *   whichever occurs first.
1692  *
1693  * The following sysctls regulate IC behaviour (for TX/RX separately):
1694  *
1695  * dev.tsec.<unit>.int_coal.rx_time
1696  * dev.tsec.<unit>.int_coal.rx_count
1697  * dev.tsec.<unit>.int_coal.tx_time
1698  * dev.tsec.<unit>.int_coal.tx_count
1699  *
1700  * Values:
1701  *
1702  * - 0 for either time or count disables IC on the given TX/RX path
1703  *
1704  * - count: 1-255 (expresses frame count number; note that value of 1 is
1705  *   effectively IC off)
1706  *
1707  * - time: 1-65535 (value corresponds to a real time period and is
1708  *   expressed in units equivalent to 64 TSEC interface clocks, i.e. one timer
1709  *   threshold unit is 26.5 us, 2.56 us, or 512 ns, corresponding to 10 Mbps,
1710  *   100 Mbps, or 1Gbps, respectively. For detailed discussion consult the
1711  *   TSEC reference manual.
1712  */
1713 static int
1714 tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS)
1715 {
1716 	int error;
1717 	uint32_t time;
1718 	struct tsec_softc *sc = (struct tsec_softc *)arg1;
1719 
1720 	time = (arg2 == TSEC_IC_RX) ? sc->rx_ic_time : sc->tx_ic_time;
1721 
1722 	error = sysctl_handle_int(oidp, &time, 0, req);
1723 	if (error != 0)
1724 		return (error);
1725 
1726 	if (time > 65535)
1727 		return (EINVAL);
1728 
1729 	TSEC_IC_LOCK(sc);
1730 	if (arg2 == TSEC_IC_RX) {
1731 		sc->rx_ic_time = time;
1732 		tsec_set_rxic(sc);
1733 	} else {
1734 		sc->tx_ic_time = time;
1735 		tsec_set_txic(sc);
1736 	}
1737 	TSEC_IC_UNLOCK(sc);
1738 
1739 	return (0);
1740 }
1741 
1742 static int
1743 tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS)
1744 {
1745 	int error;
1746 	uint32_t count;
1747 	struct tsec_softc *sc = (struct tsec_softc *)arg1;
1748 
1749 	count = (arg2 == TSEC_IC_RX) ? sc->rx_ic_count : sc->tx_ic_count;
1750 
1751 	error = sysctl_handle_int(oidp, &count, 0, req);
1752 	if (error != 0)
1753 		return (error);
1754 
1755 	if (count > 255)
1756 		return (EINVAL);
1757 
1758 	TSEC_IC_LOCK(sc);
1759 	if (arg2 == TSEC_IC_RX) {
1760 		sc->rx_ic_count = count;
1761 		tsec_set_rxic(sc);
1762 	} else {
1763 		sc->tx_ic_count = count;
1764 		tsec_set_txic(sc);
1765 	}
1766 	TSEC_IC_UNLOCK(sc);
1767 
1768 	return (0);
1769 }
1770 
1771 static void
1772 tsec_set_rxic(struct tsec_softc *sc)
1773 {
1774 	uint32_t rxic_val;
1775 
1776 	if (sc->rx_ic_count == 0 || sc->rx_ic_time == 0)
1777 		/* Disable RX IC */
1778 		rxic_val = 0;
1779 	else {
1780 		rxic_val = 0x80000000;
1781 		rxic_val |= (sc->rx_ic_count << 21);
1782 		rxic_val |= sc->rx_ic_time;
1783 	}
1784 
1785 	TSEC_WRITE(sc, TSEC_REG_RXIC, rxic_val);
1786 }
1787 
1788 static void
1789 tsec_set_txic(struct tsec_softc *sc)
1790 {
1791 	uint32_t txic_val;
1792 
1793 	if (sc->tx_ic_count == 0 || sc->tx_ic_time == 0)
1794 		/* Disable TX IC */
1795 		txic_val = 0;
1796 	else {
1797 		txic_val = 0x80000000;
1798 		txic_val |= (sc->tx_ic_count << 21);
1799 		txic_val |= sc->tx_ic_time;
1800 	}
1801 
1802 	TSEC_WRITE(sc, TSEC_REG_TXIC, txic_val);
1803 }
1804 
1805 static void
1806 tsec_offload_setup(struct tsec_softc *sc)
1807 {
1808 	struct ifnet *ifp = sc->tsec_ifp;
1809 	uint32_t reg;
1810 
1811 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1812 
1813 	reg = TSEC_READ(sc, TSEC_REG_TCTRL);
1814 	reg |= TSEC_TCTRL_IPCSEN | TSEC_TCTRL_TUCSEN;
1815 
1816 	if (ifp->if_capenable & IFCAP_TXCSUM)
1817 		ifp->if_hwassist = TSEC_CHECKSUM_FEATURES;
1818 	else
1819 		ifp->if_hwassist = 0;
1820 
1821 	TSEC_WRITE(sc, TSEC_REG_TCTRL, reg);
1822 
1823 	reg = TSEC_READ(sc, TSEC_REG_RCTRL);
1824 	reg &= ~(TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN | TSEC_RCTRL_PRSDEP);
1825 	reg |= TSEC_RCTRL_PRSDEP_PARSE_L2 | TSEC_RCTRL_VLEX;
1826 
1827 	if (ifp->if_capenable & IFCAP_RXCSUM)
1828 		reg |= TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN |
1829 		    TSEC_RCTRL_PRSDEP_PARSE_L234;
1830 
1831 	TSEC_WRITE(sc, TSEC_REG_RCTRL, reg);
1832 }
1833 
1834 
1835 static void
1836 tsec_offload_process_frame(struct tsec_softc *sc, struct mbuf *m)
1837 {
1838 	struct tsec_rx_fcb rx_fcb;
1839 	int csum_flags = 0;
1840 	int protocol, flags;
1841 
1842 	TSEC_RECEIVE_LOCK_ASSERT(sc);
1843 
1844 	m_copydata(m, 0, sizeof(struct tsec_rx_fcb), (caddr_t)(&rx_fcb));
1845 	flags = rx_fcb.flags;
1846 	protocol = rx_fcb.protocol;
1847 
1848 	if (TSEC_RX_FCB_IP_CSUM_CHECKED(flags)) {
1849 		csum_flags |= CSUM_IP_CHECKED;
1850 
1851 		if ((flags & TSEC_RX_FCB_IP_CSUM_ERROR) == 0)
1852 			csum_flags |= CSUM_IP_VALID;
1853 	}
1854 
1855 	if ((protocol == IPPROTO_TCP || protocol == IPPROTO_UDP) &&
1856 	    TSEC_RX_FCB_TCP_UDP_CSUM_CHECKED(flags) &&
1857 	    (flags & TSEC_RX_FCB_TCP_UDP_CSUM_ERROR) == 0) {
1858 
1859 		csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1860 		m->m_pkthdr.csum_data = 0xFFFF;
1861 	}
1862 
1863 	m->m_pkthdr.csum_flags = csum_flags;
1864 
1865 	if (flags & TSEC_RX_FCB_VLAN) {
1866 		m->m_pkthdr.ether_vtag = rx_fcb.vlan;
1867 		m->m_flags |= M_VLANTAG;
1868 	}
1869 
1870 	m_adj(m, sizeof(struct tsec_rx_fcb));
1871 }
1872 
1873 static void
1874 tsec_setup_multicast(struct tsec_softc *sc)
1875 {
1876 	uint32_t hashtable[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
1877 	struct ifnet *ifp = sc->tsec_ifp;
1878 	struct ifmultiaddr *ifma;
1879 	uint32_t h;
1880 	int i;
1881 
1882 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1883 
1884 	if (ifp->if_flags & IFF_ALLMULTI) {
1885 		for (i = 0; i < 8; i++)
1886 			TSEC_WRITE(sc, TSEC_REG_GADDR(i), 0xFFFFFFFF);
1887 
1888 		return;
1889 	}
1890 
1891 	IF_ADDR_LOCK(ifp);
1892 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1893 
1894 		if (ifma->ifma_addr->sa_family != AF_LINK)
1895 			continue;
1896 
1897 		h = (ether_crc32_be(LLADDR((struct sockaddr_dl *)
1898 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 24) & 0xFF;
1899 
1900 		hashtable[(h >> 5)] |= 1 << (0x1F - (h & 0x1F));
1901 	}
1902 	IF_ADDR_UNLOCK(ifp);
1903 
1904 	for (i = 0; i < 8; i++)
1905 		TSEC_WRITE(sc, TSEC_REG_GADDR(i), hashtable[i]);
1906 }
1907 
1908 static int
1909 tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu)
1910 {
1911 
1912 	mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
1913 
1914 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1915 
1916 	if (mtu >= TSEC_MIN_FRAME_SIZE && mtu <= TSEC_MAX_FRAME_SIZE) {
1917 		TSEC_WRITE(sc, TSEC_REG_MAXFRM, mtu);
1918 		return (mtu);
1919 	}
1920 
1921 	return (0);
1922 }
1923