xref: /freebsd/sys/dev/tsec/if_tsec.c (revision 1670a1c2a47d10ecccd001970b859caf93cd3b6e)
1 /*-
2  * Copyright (C) 2007-2008 Semihalf, Rafal Jaworowski
3  * Copyright (C) 2006-2007 Semihalf, Piotr Kruszynski
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /*
28  * Freescale integrated Three-Speed Ethernet Controller (TSEC) driver.
29  */
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #ifdef HAVE_KERNEL_OPTION_HEADERS
34 #include "opt_device_polling.h"
35 #endif
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/bus.h>
40 #include <sys/endian.h>
41 #include <sys/mbuf.h>
42 #include <sys/kernel.h>
43 #include <sys/module.h>
44 #include <sys/socket.h>
45 #include <sys/sockio.h>
46 #include <sys/sysctl.h>
47 
48 #include <net/bpf.h>
49 #include <net/ethernet.h>
50 #include <net/if.h>
51 #include <net/if_arp.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 #include <net/if_vlan_var.h>
56 
57 #include <netinet/in_systm.h>
58 #include <netinet/in.h>
59 #include <netinet/ip.h>
60 
61 #include <machine/bus.h>
62 
63 #include <dev/mii/mii.h>
64 #include <dev/mii/miivar.h>
65 
66 #include <dev/tsec/if_tsec.h>
67 #include <dev/tsec/if_tsecreg.h>
68 
69 static int	tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag,
70     bus_dmamap_t *dmap, bus_size_t dsize, void **vaddr, void *raddr,
71     const char *dname);
72 static void	tsec_dma_ctl(struct tsec_softc *sc, int state);
73 static int	tsec_encap(struct tsec_softc *sc, struct mbuf *m_head,
74     int fcb_inserted);
75 static void	tsec_free_dma(struct tsec_softc *sc);
76 static void	tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr);
77 static int	tsec_ifmedia_upd(struct ifnet *ifp);
78 static void	tsec_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
79 static int	tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map,
80     struct mbuf **mbufp, uint32_t *paddr);
81 static void	tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs,
82     int nseg, int error);
83 static void	tsec_intrs_ctl(struct tsec_softc *sc, int state);
84 static void	tsec_init(void *xsc);
85 static void	tsec_init_locked(struct tsec_softc *sc);
86 static int	tsec_ioctl(struct ifnet *ifp, u_long command, caddr_t data);
87 static void	tsec_reset_mac(struct tsec_softc *sc);
88 static void	tsec_setfilter(struct tsec_softc *sc);
89 static void	tsec_set_mac_address(struct tsec_softc *sc);
90 static void	tsec_start(struct ifnet *ifp);
91 static void	tsec_start_locked(struct ifnet *ifp);
92 static void	tsec_stop(struct tsec_softc *sc);
93 static void	tsec_tick(void *arg);
94 static void	tsec_watchdog(struct tsec_softc *sc);
95 static void	tsec_add_sysctls(struct tsec_softc *sc);
96 static int	tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS);
97 static int	tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS);
98 static void	tsec_set_rxic(struct tsec_softc *sc);
99 static void	tsec_set_txic(struct tsec_softc *sc);
100 static int	tsec_receive_intr_locked(struct tsec_softc *sc, int count);
101 static void	tsec_transmit_intr_locked(struct tsec_softc *sc);
102 static void	tsec_error_intr_locked(struct tsec_softc *sc, int count);
103 static void	tsec_offload_setup(struct tsec_softc *sc);
104 static void	tsec_offload_process_frame(struct tsec_softc *sc,
105     struct mbuf *m);
106 static void	tsec_setup_multicast(struct tsec_softc *sc);
107 static int	tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu);
108 
109 struct tsec_softc *tsec0_sc = NULL; /* XXX ugly hack! */
110 
111 devclass_t tsec_devclass;
112 DRIVER_MODULE(miibus, tsec, miibus_driver, miibus_devclass, 0, 0);
113 MODULE_DEPEND(tsec, ether, 1, 1, 1);
114 MODULE_DEPEND(tsec, miibus, 1, 1, 1);
115 
116 int
117 tsec_attach(struct tsec_softc *sc)
118 {
119 	uint8_t hwaddr[ETHER_ADDR_LEN];
120 	struct ifnet *ifp;
121 	bus_dmamap_t *map_ptr;
122 	bus_dmamap_t **map_pptr;
123 	int error = 0;
124 	int i;
125 
126 	/* Reset all TSEC counters */
127 	TSEC_TX_RX_COUNTERS_INIT(sc);
128 
129 	/* Stop DMA engine if enabled by firmware */
130 	tsec_dma_ctl(sc, 0);
131 
132 	/* Reset MAC */
133 	tsec_reset_mac(sc);
134 
135 	/* Disable interrupts for now */
136 	tsec_intrs_ctl(sc, 0);
137 
138 	/* Configure defaults for interrupts coalescing */
139 	sc->rx_ic_time = 768;
140 	sc->rx_ic_count = 16;
141 	sc->tx_ic_time = 768;
142 	sc->tx_ic_count = 16;
143 	tsec_set_rxic(sc);
144 	tsec_set_txic(sc);
145 	tsec_add_sysctls(sc);
146 
147 	/* Allocate a busdma tag and DMA safe memory for TX descriptors. */
148 	error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_tx_dtag,
149 	    &sc->tsec_tx_dmap, sizeof(*sc->tsec_tx_vaddr) * TSEC_TX_NUM_DESC,
150 	    (void **)&sc->tsec_tx_vaddr, &sc->tsec_tx_raddr, "TX");
151 
152 	if (error) {
153 		tsec_detach(sc);
154 		return (ENXIO);
155 	}
156 
157 	/* Allocate a busdma tag and DMA safe memory for RX descriptors. */
158 	error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_rx_dtag,
159 	    &sc->tsec_rx_dmap, sizeof(*sc->tsec_rx_vaddr) * TSEC_RX_NUM_DESC,
160 	    (void **)&sc->tsec_rx_vaddr, &sc->tsec_rx_raddr, "RX");
161 	if (error) {
162 		tsec_detach(sc);
163 		return (ENXIO);
164 	}
165 
166 	/* Allocate a busdma tag for TX mbufs. */
167 	error = bus_dma_tag_create(NULL,	/* parent */
168 	    TSEC_TXBUFFER_ALIGNMENT, 0,		/* alignment, boundary */
169 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
170 	    BUS_SPACE_MAXADDR,			/* highaddr */
171 	    NULL, NULL,				/* filtfunc, filtfuncarg */
172 	    MCLBYTES * (TSEC_TX_NUM_DESC - 1),	/* maxsize */
173 	    TSEC_TX_NUM_DESC - 1,		/* nsegments */
174 	    MCLBYTES, 0,			/* maxsegsz, flags */
175 	    NULL, NULL,				/* lockfunc, lockfuncarg */
176 	    &sc->tsec_tx_mtag);			/* dmat */
177 	if (error) {
178 		device_printf(sc->dev, "failed to allocate busdma tag "
179 		    "(tx mbufs)\n");
180 		tsec_detach(sc);
181 		return (ENXIO);
182 	}
183 
184 	/* Allocate a busdma tag for RX mbufs. */
185 	error = bus_dma_tag_create(NULL,	/* parent */
186 	    TSEC_RXBUFFER_ALIGNMENT, 0,		/* alignment, boundary */
187 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
188 	    BUS_SPACE_MAXADDR,			/* highaddr */
189 	    NULL, NULL,				/* filtfunc, filtfuncarg */
190 	    MCLBYTES,				/* maxsize */
191 	    1,					/* nsegments */
192 	    MCLBYTES, 0,			/* maxsegsz, flags */
193 	    NULL, NULL,				/* lockfunc, lockfuncarg */
194 	    &sc->tsec_rx_mtag);			/* dmat */
195 	if (error) {
196 		device_printf(sc->dev, "failed to allocate busdma tag "
197 		    "(rx mbufs)\n");
198 		tsec_detach(sc);
199 		return (ENXIO);
200 	}
201 
202 	/* Create TX busdma maps */
203 	map_ptr = sc->tx_map_data;
204 	map_pptr = sc->tx_map_unused_data;
205 
206 	for (i = 0; i < TSEC_TX_NUM_DESC; i++) {
207 		map_pptr[i] = &map_ptr[i];
208 		error = bus_dmamap_create(sc->tsec_tx_mtag, 0, map_pptr[i]);
209 		if (error) {
210 			device_printf(sc->dev, "failed to init TX ring\n");
211 			tsec_detach(sc);
212 			return (ENXIO);
213 		}
214 	}
215 
216 	/* Create RX busdma maps and zero mbuf handlers */
217 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
218 		error = bus_dmamap_create(sc->tsec_rx_mtag, 0,
219 		    &sc->rx_data[i].map);
220 		if (error) {
221 			device_printf(sc->dev, "failed to init RX ring\n");
222 			tsec_detach(sc);
223 			return (ENXIO);
224 		}
225 		sc->rx_data[i].mbuf = NULL;
226 	}
227 
228 	/* Create mbufs for RX buffers */
229 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
230 		error = tsec_new_rxbuf(sc->tsec_rx_mtag, sc->rx_data[i].map,
231 		    &sc->rx_data[i].mbuf, &sc->rx_data[i].paddr);
232 		if (error) {
233 			device_printf(sc->dev, "can't load rx DMA map %d, "
234 			    "error = %d\n", i, error);
235 			tsec_detach(sc);
236 			return (error);
237 		}
238 	}
239 
240 	/* Create network interface for upper layers */
241 	ifp = sc->tsec_ifp = if_alloc(IFT_ETHER);
242 	if (ifp == NULL) {
243 		device_printf(sc->dev, "if_alloc() failed\n");
244 		tsec_detach(sc);
245 		return (ENOMEM);
246 	}
247 
248 	ifp->if_softc = sc;
249 	if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
250 	ifp->if_mtu = ETHERMTU;
251 	ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST;
252 	ifp->if_init = tsec_init;
253 	ifp->if_start = tsec_start;
254 	ifp->if_ioctl = tsec_ioctl;
255 
256 	IFQ_SET_MAXLEN(&ifp->if_snd, TSEC_TX_NUM_DESC - 1);
257 	ifp->if_snd.ifq_drv_maxlen = TSEC_TX_NUM_DESC - 1;
258 	IFQ_SET_READY(&ifp->if_snd);
259 
260 	ifp->if_capabilities = IFCAP_VLAN_MTU;
261 	if (sc->is_etsec)
262 		ifp->if_capabilities |= IFCAP_HWCSUM;
263 
264 	ifp->if_capenable = ifp->if_capabilities;
265 
266 #ifdef DEVICE_POLLING
267 	/* Advertise that polling is supported */
268 	ifp->if_capabilities |= IFCAP_POLLING;
269 #endif
270 
271 	/* Probe PHY(s) */
272 	error = mii_phy_probe(sc->dev, &sc->tsec_miibus, tsec_ifmedia_upd,
273 	    tsec_ifmedia_sts);
274 	if (error) {
275 		device_printf(sc->dev, "MII failed to find PHY!\n");
276 		if_free(ifp);
277 		sc->tsec_ifp = NULL;
278 		tsec_detach(sc);
279 		return (error);
280 	}
281 	sc->tsec_mii = device_get_softc(sc->tsec_miibus);
282 
283 	/* Set MAC address */
284 	tsec_get_hwaddr(sc, hwaddr);
285 	ether_ifattach(ifp, hwaddr);
286 
287 	return (0);
288 }
289 
290 int
291 tsec_detach(struct tsec_softc *sc)
292 {
293 
294 #ifdef DEVICE_POLLING
295 	if (sc->tsec_ifp->if_capenable & IFCAP_POLLING)
296 		ether_poll_deregister(sc->tsec_ifp);
297 #endif
298 
299 	/* Stop TSEC controller and free TX queue */
300 	if (sc->sc_rres && sc->tsec_ifp)
301 		tsec_shutdown(sc->dev);
302 
303 	/* Detach network interface */
304 	if (sc->tsec_ifp) {
305 		ether_ifdetach(sc->tsec_ifp);
306 		if_free(sc->tsec_ifp);
307 		sc->tsec_ifp = NULL;
308 	}
309 
310 	/* Free DMA resources */
311 	tsec_free_dma(sc);
312 
313 	return (0);
314 }
315 
316 int
317 tsec_shutdown(device_t dev)
318 {
319 	struct tsec_softc *sc;
320 
321 	sc = device_get_softc(dev);
322 
323 	TSEC_GLOBAL_LOCK(sc);
324 	tsec_stop(sc);
325 	TSEC_GLOBAL_UNLOCK(sc);
326 	return (0);
327 }
328 
329 int
330 tsec_suspend(device_t dev)
331 {
332 
333 	/* TODO not implemented! */
334 	return (0);
335 }
336 
337 int
338 tsec_resume(device_t dev)
339 {
340 
341 	/* TODO not implemented! */
342 	return (0);
343 }
344 
345 static void
346 tsec_init(void *xsc)
347 {
348 	struct tsec_softc *sc = xsc;
349 
350 	TSEC_GLOBAL_LOCK(sc);
351 	tsec_init_locked(sc);
352 	TSEC_GLOBAL_UNLOCK(sc);
353 }
354 
355 static void
356 tsec_init_locked(struct tsec_softc *sc)
357 {
358 	struct tsec_desc *tx_desc = sc->tsec_tx_vaddr;
359 	struct tsec_desc *rx_desc = sc->tsec_rx_vaddr;
360 	struct ifnet *ifp = sc->tsec_ifp;
361 	uint32_t timeout, val, i;
362 
363 	TSEC_GLOBAL_LOCK_ASSERT(sc);
364 	tsec_stop(sc);
365 
366 	/*
367 	 * These steps are according to the MPC8555E PowerQUICCIII RM:
368 	 * 14.7 Initialization/Application Information
369 	 */
370 
371 	/* Step 1: soft reset MAC */
372 	tsec_reset_mac(sc);
373 
374 	/* Step 2: Initialize MACCFG2 */
375 	TSEC_WRITE(sc, TSEC_REG_MACCFG2,
376 	    TSEC_MACCFG2_FULLDUPLEX |	/* Full Duplex = 1 */
377 	    TSEC_MACCFG2_PADCRC |	/* PAD/CRC append */
378 	    TSEC_MACCFG2_GMII |		/* I/F Mode bit */
379 	    TSEC_MACCFG2_PRECNT		/* Preamble count = 7 */
380 	);
381 
382 	/* Step 3: Initialize ECNTRL
383 	 * While the documentation states that R100M is ignored if RPM is
384 	 * not set, it does seem to be needed to get the orange boxes to
385 	 * work (which have a Marvell 88E1111 PHY). Go figure.
386 	 */
387 
388 	/*
389 	 * XXX kludge - use circumstancial evidence to program ECNTRL
390 	 * correctly. Ideally we need some board information to guide
391 	 * us here.
392 	 */
393 	i = TSEC_READ(sc, TSEC_REG_ID2);
394 	val = (i & 0xffff)
395 	    ? (TSEC_ECNTRL_TBIM | TSEC_ECNTRL_SGMIIM)	/* Sumatra */
396 	    : TSEC_ECNTRL_R100M;			/* Orange + CDS */
397 	TSEC_WRITE(sc, TSEC_REG_ECNTRL, TSEC_ECNTRL_STEN | val);
398 
399 	/* Step 4: Initialize MAC station address */
400 	tsec_set_mac_address(sc);
401 
402 	/*
403 	 * Step 5: Assign a Physical address to the TBI so as to not conflict
404 	 * with the external PHY physical address
405 	 */
406 	TSEC_WRITE(sc, TSEC_REG_TBIPA, 5);
407 
408 	/* Step 6: Reset the management interface */
409 	TSEC_WRITE(tsec0_sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_RESETMGMT);
410 
411 	/* Step 7: Setup the MII Mgmt clock speed */
412 	TSEC_WRITE(tsec0_sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_CLKDIV28);
413 
414 	/* Step 8: Read MII Mgmt indicator register and check for Busy = 0 */
415 	timeout = TSEC_READ_RETRY;
416 	while (--timeout && (TSEC_READ(tsec0_sc, TSEC_REG_MIIMIND) &
417 	    TSEC_MIIMIND_BUSY))
418 		DELAY(TSEC_READ_DELAY);
419 	if (timeout == 0) {
420 		if_printf(ifp, "tsec_init_locked(): Mgmt busy timeout\n");
421 		return;
422 	}
423 
424 	/* Step 9: Setup the MII Mgmt */
425 	mii_mediachg(sc->tsec_mii);
426 
427 	/* Step 10: Clear IEVENT register */
428 	TSEC_WRITE(sc, TSEC_REG_IEVENT, 0xffffffff);
429 
430 	/* Step 11: Enable interrupts */
431 #ifdef DEVICE_POLLING
432 	/*
433 	 * ...only if polling is not turned on. Disable interrupts explicitly
434 	 * if polling is enabled.
435 	 */
436 	if (ifp->if_capenable & IFCAP_POLLING )
437 		tsec_intrs_ctl(sc, 0);
438 	else
439 #endif /* DEVICE_POLLING */
440 	tsec_intrs_ctl(sc, 1);
441 
442 	/* Step 12: Initialize IADDRn */
443 	TSEC_WRITE(sc, TSEC_REG_IADDR0, 0);
444 	TSEC_WRITE(sc, TSEC_REG_IADDR1, 0);
445 	TSEC_WRITE(sc, TSEC_REG_IADDR2, 0);
446 	TSEC_WRITE(sc, TSEC_REG_IADDR3, 0);
447 	TSEC_WRITE(sc, TSEC_REG_IADDR4, 0);
448 	TSEC_WRITE(sc, TSEC_REG_IADDR5, 0);
449 	TSEC_WRITE(sc, TSEC_REG_IADDR6, 0);
450 	TSEC_WRITE(sc, TSEC_REG_IADDR7, 0);
451 
452 	/* Step 13: Initialize GADDRn */
453 	TSEC_WRITE(sc, TSEC_REG_GADDR0, 0);
454 	TSEC_WRITE(sc, TSEC_REG_GADDR1, 0);
455 	TSEC_WRITE(sc, TSEC_REG_GADDR2, 0);
456 	TSEC_WRITE(sc, TSEC_REG_GADDR3, 0);
457 	TSEC_WRITE(sc, TSEC_REG_GADDR4, 0);
458 	TSEC_WRITE(sc, TSEC_REG_GADDR5, 0);
459 	TSEC_WRITE(sc, TSEC_REG_GADDR6, 0);
460 	TSEC_WRITE(sc, TSEC_REG_GADDR7, 0);
461 
462 	/* Step 14: Initialize RCTRL */
463 	TSEC_WRITE(sc, TSEC_REG_RCTRL, 0);
464 
465 	/* Step 15: Initialize DMACTRL */
466 	tsec_dma_ctl(sc, 1);
467 
468 	/* Step 16: Initialize FIFO_PAUSE_CTRL */
469 	TSEC_WRITE(sc, TSEC_REG_FIFO_PAUSE_CTRL, TSEC_FIFO_PAUSE_CTRL_EN);
470 
471 	/*
472 	 * Step 17: Initialize transmit/receive descriptor rings.
473 	 * Initialize TBASE and RBASE.
474 	 */
475 	TSEC_WRITE(sc, TSEC_REG_TBASE, sc->tsec_tx_raddr);
476 	TSEC_WRITE(sc, TSEC_REG_RBASE, sc->tsec_rx_raddr);
477 
478 	for (i = 0; i < TSEC_TX_NUM_DESC; i++) {
479 		tx_desc[i].bufptr = 0;
480 		tx_desc[i].length = 0;
481 		tx_desc[i].flags = ((i == TSEC_TX_NUM_DESC - 1) ?
482 		    TSEC_TXBD_W : 0);
483 	}
484 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
485 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
486 
487 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
488 		rx_desc[i].bufptr = sc->rx_data[i].paddr;
489 		rx_desc[i].length = 0;
490 		rx_desc[i].flags = TSEC_RXBD_E | TSEC_RXBD_I |
491 		    ((i == TSEC_RX_NUM_DESC - 1) ? TSEC_RXBD_W : 0);
492 	}
493 	bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
494 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
495 
496 	/* Step 18: Initialize the maximum receive buffer length */
497 	TSEC_WRITE(sc, TSEC_REG_MRBLR, MCLBYTES);
498 
499 	/* Step 19: Configure ethernet frame sizes */
500 	TSEC_WRITE(sc, TSEC_REG_MINFLR, TSEC_MIN_FRAME_SIZE);
501 	tsec_set_mtu(sc, ifp->if_mtu);
502 
503 	/* Step 20: Enable Rx and RxBD sdata snooping */
504 	TSEC_WRITE(sc, TSEC_REG_ATTR, TSEC_ATTR_RDSEN | TSEC_ATTR_RBDSEN);
505 	TSEC_WRITE(sc, TSEC_REG_ATTRELI, 0);
506 
507 	/* Step 21: Reset collision counters in hardware */
508 	TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0);
509 	TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0);
510 	TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0);
511 	TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0);
512 	TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0);
513 
514 	/* Step 22: Mask all CAM interrupts */
515 	TSEC_WRITE(sc, TSEC_REG_MON_CAM1, 0xffffffff);
516 	TSEC_WRITE(sc, TSEC_REG_MON_CAM2, 0xffffffff);
517 
518 	/* Step 23: Enable Rx and Tx */
519 	val = TSEC_READ(sc, TSEC_REG_MACCFG1);
520 	val |= (TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN);
521 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, val);
522 
523 	/* Step 24: Reset TSEC counters for Tx and Rx rings */
524 	TSEC_TX_RX_COUNTERS_INIT(sc);
525 
526 	/* Step 25: Setup TCP/IP Off-Load engine */
527 	if (sc->is_etsec)
528 		tsec_offload_setup(sc);
529 
530 	/* Step 26: Setup multicast filters */
531 	tsec_setup_multicast(sc);
532 
533 	/* Step 27: Activate network interface */
534 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
535 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
536 	sc->tsec_if_flags = ifp->if_flags;
537 	sc->tsec_watchdog = 0;
538 
539 	/* Schedule watchdog timeout */
540 	callout_reset(&sc->tsec_callout, hz, tsec_tick, sc);
541 }
542 
543 static void
544 tsec_set_mac_address(struct tsec_softc *sc)
545 {
546 	uint32_t macbuf[2] = { 0, 0 };
547 	char *macbufp, *curmac;
548 	int i;
549 
550 	TSEC_GLOBAL_LOCK_ASSERT(sc);
551 
552 	KASSERT((ETHER_ADDR_LEN <= sizeof(macbuf)),
553 	    ("tsec_set_mac_address: (%d <= %d", ETHER_ADDR_LEN,
554 	    sizeof(macbuf)));
555 
556 	macbufp = (char *)macbuf;
557 	curmac = (char *)IF_LLADDR(sc->tsec_ifp);
558 
559 	/* Correct order of MAC address bytes */
560 	for (i = 1; i <= ETHER_ADDR_LEN; i++)
561 		macbufp[ETHER_ADDR_LEN-i] = curmac[i-1];
562 
563 	/* Initialize MAC station address MACSTNADDR2 and MACSTNADDR1 */
564 	TSEC_WRITE(sc, TSEC_REG_MACSTNADDR2, macbuf[1]);
565 	TSEC_WRITE(sc, TSEC_REG_MACSTNADDR1, macbuf[0]);
566 }
567 
568 /*
569  * DMA control function, if argument state is:
570  * 0 - DMA engine will be disabled
571  * 1 - DMA engine will be enabled
572  */
573 static void
574 tsec_dma_ctl(struct tsec_softc *sc, int state)
575 {
576 	device_t dev;
577 	uint32_t dma_flags, timeout;
578 
579 	dev = sc->dev;
580 
581 	dma_flags = TSEC_READ(sc, TSEC_REG_DMACTRL);
582 
583 	switch (state) {
584 	case 0:
585 		/* Temporarily clear stop graceful stop bits. */
586 		tsec_dma_ctl(sc, 1000);
587 
588 		/* Set it again */
589 		dma_flags |= (TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS);
590 		break;
591 	case 1000:
592 	case 1:
593 		/* Set write with response (WWR), wait (WOP) and snoop bits */
594 		dma_flags |= (TSEC_DMACTRL_TDSEN | TSEC_DMACTRL_TBDSEN |
595 		    DMACTRL_WWR | DMACTRL_WOP);
596 
597 		/* Clear graceful stop bits */
598 		dma_flags &= ~(TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS);
599 		break;
600 	default:
601 		device_printf(dev, "tsec_dma_ctl(): unknown state value: %d\n",
602 		    state);
603 	}
604 
605 	TSEC_WRITE(sc, TSEC_REG_DMACTRL, dma_flags);
606 
607 	switch (state) {
608 	case 0:
609 		/* Wait for DMA stop */
610 		timeout = TSEC_READ_RETRY;
611 		while (--timeout && (!(TSEC_READ(sc, TSEC_REG_IEVENT) &
612 		    (TSEC_IEVENT_GRSC | TSEC_IEVENT_GTSC))))
613 			DELAY(TSEC_READ_DELAY);
614 
615 		if (timeout == 0)
616 			device_printf(dev, "tsec_dma_ctl(): timeout!\n");
617 		break;
618 	case 1:
619 		/* Restart transmission function */
620 		TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
621 	}
622 }
623 
624 /*
625  * Interrupts control function, if argument state is:
626  * 0 - all TSEC interrupts will be masked
627  * 1 - all TSEC interrupts will be unmasked
628  */
629 static void
630 tsec_intrs_ctl(struct tsec_softc *sc, int state)
631 {
632 	device_t dev;
633 
634 	dev = sc->dev;
635 
636 	switch (state) {
637 	case 0:
638 		TSEC_WRITE(sc, TSEC_REG_IMASK, 0);
639 		break;
640 	case 1:
641 		TSEC_WRITE(sc, TSEC_REG_IMASK, TSEC_IMASK_BREN |
642 		    TSEC_IMASK_RXCEN | TSEC_IMASK_BSYEN | TSEC_IMASK_EBERREN |
643 		    TSEC_IMASK_BTEN | TSEC_IMASK_TXEEN | TSEC_IMASK_TXBEN |
644 		    TSEC_IMASK_TXFEN | TSEC_IMASK_XFUNEN | TSEC_IMASK_RXFEN);
645 		break;
646 	default:
647 		device_printf(dev, "tsec_intrs_ctl(): unknown state value: %d\n",
648 		    state);
649 	}
650 }
651 
652 static void
653 tsec_reset_mac(struct tsec_softc *sc)
654 {
655 	uint32_t maccfg1_flags;
656 
657 	/* Set soft reset bit */
658 	maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1);
659 	maccfg1_flags |= TSEC_MACCFG1_SOFT_RESET;
660 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags);
661 
662 	/* Clear soft reset bit */
663 	maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1);
664 	maccfg1_flags &= ~TSEC_MACCFG1_SOFT_RESET;
665 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags);
666 }
667 
668 static void
669 tsec_watchdog(struct tsec_softc *sc)
670 {
671 	struct ifnet *ifp;
672 
673 	TSEC_GLOBAL_LOCK_ASSERT(sc);
674 
675 	if (sc->tsec_watchdog == 0 || --sc->tsec_watchdog > 0)
676 		return;
677 
678 	ifp = sc->tsec_ifp;
679 	ifp->if_oerrors++;
680 	if_printf(ifp, "watchdog timeout\n");
681 
682 	tsec_stop(sc);
683 	tsec_init_locked(sc);
684 }
685 
686 static void
687 tsec_start(struct ifnet *ifp)
688 {
689 	struct tsec_softc *sc = ifp->if_softc;
690 
691 	TSEC_TRANSMIT_LOCK(sc);
692 	tsec_start_locked(ifp);
693 	TSEC_TRANSMIT_UNLOCK(sc);
694 }
695 
696 static void
697 tsec_start_locked(struct ifnet *ifp)
698 {
699 	struct tsec_softc *sc;
700 	struct mbuf *m0, *mtmp;
701 	struct tsec_tx_fcb *tx_fcb;
702 	unsigned int queued = 0;
703 	int csum_flags, fcb_inserted = 0;
704 
705 	sc = ifp->if_softc;
706 
707 	TSEC_TRANSMIT_LOCK_ASSERT(sc);
708 
709 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
710 	    IFF_DRV_RUNNING)
711 		return;
712 
713 	if (sc->tsec_link == 0)
714 		return;
715 
716 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
717 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
718 
719 	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
720 		/* Get packet from the queue */
721 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
722 		if (m0 == NULL)
723 			break;
724 
725 		/* Insert TCP/IP Off-load frame control block */
726 		csum_flags = m0->m_pkthdr.csum_flags;
727 		if (csum_flags) {
728 
729 			M_PREPEND(m0, sizeof(struct tsec_tx_fcb), M_DONTWAIT);
730 			if (m0 == NULL)
731 				break;
732 
733 			tx_fcb = mtod(m0, struct tsec_tx_fcb *);
734 			tx_fcb->flags = 0;
735 			tx_fcb->l3_offset = ETHER_HDR_LEN;
736 			tx_fcb->l4_offset = sizeof(struct ip);
737 
738 			if (csum_flags & CSUM_IP)
739 				tx_fcb->flags |= TSEC_TX_FCB_IP4 |
740 				    TSEC_TX_FCB_CSUM_IP;
741 
742 			if (csum_flags & CSUM_TCP)
743 				tx_fcb->flags |= TSEC_TX_FCB_TCP |
744 				    TSEC_TX_FCB_CSUM_TCP_UDP;
745 
746 			if (csum_flags & CSUM_UDP)
747 				tx_fcb->flags |= TSEC_TX_FCB_UDP |
748 				    TSEC_TX_FCB_CSUM_TCP_UDP;
749 
750 			fcb_inserted = 1;
751 		}
752 
753 		mtmp = m_defrag(m0, M_DONTWAIT);
754 		if (mtmp)
755 			m0 = mtmp;
756 
757 		if (tsec_encap(sc, m0, fcb_inserted)) {
758 			IFQ_DRV_PREPEND(&ifp->if_snd, m0);
759 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
760 			break;
761 		}
762 		queued++;
763 		BPF_MTAP(ifp, m0);
764 	}
765 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
766 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
767 
768 	if (queued) {
769 		/* Enable transmitter and watchdog timer */
770 		TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
771 		sc->tsec_watchdog = 5;
772 	}
773 }
774 
775 static int
776 tsec_encap(struct tsec_softc *sc, struct mbuf *m0, int fcb_inserted)
777 {
778 	struct tsec_desc *tx_desc = NULL;
779 	struct ifnet *ifp;
780 	bus_dma_segment_t segs[TSEC_TX_NUM_DESC];
781 	bus_dmamap_t *mapp;
782 	int csum_flag = 0, error, seg, nsegs;
783 
784 	TSEC_TRANSMIT_LOCK_ASSERT(sc);
785 
786 	ifp = sc->tsec_ifp;
787 
788 	if (TSEC_FREE_TX_DESC(sc) == 0) {
789 		/* No free descriptors */
790 		return (-1);
791 	}
792 
793 	/* Fetch unused map */
794 	mapp = TSEC_ALLOC_TX_MAP(sc);
795 
796 	/* Create mapping in DMA memory */
797 	error = bus_dmamap_load_mbuf_sg(sc->tsec_tx_mtag,
798 	    *mapp, m0, segs, &nsegs, BUS_DMA_NOWAIT);
799 	if (error != 0 || nsegs > TSEC_FREE_TX_DESC(sc) || nsegs <= 0) {
800 		bus_dmamap_unload(sc->tsec_tx_mtag, *mapp);
801 		TSEC_FREE_TX_MAP(sc, mapp);
802 		return ((error != 0) ? error : -1);
803 	}
804 	bus_dmamap_sync(sc->tsec_tx_mtag, *mapp, BUS_DMASYNC_PREWRITE);
805 
806 	if ((ifp->if_flags & IFF_DEBUG) && (nsegs > 1))
807 		if_printf(ifp, "TX buffer has %d segments\n", nsegs);
808 
809 	if (fcb_inserted)
810 		csum_flag = TSEC_TXBD_TOE;
811 
812 	/* Everything is ok, now we can send buffers */
813 	for (seg = 0; seg < nsegs; seg++) {
814 		tx_desc = TSEC_GET_CUR_TX_DESC(sc);
815 
816 		tx_desc->length = segs[seg].ds_len;
817 		tx_desc->bufptr = segs[seg].ds_addr;
818 
819 		/*
820 		 * Set flags:
821 		 *   - wrap
822 		 *   - checksum
823 		 *   - ready to send
824 		 *   - transmit the CRC sequence after the last data byte
825 		 *   - interrupt after the last buffer
826 		 */
827 		tx_desc->flags =
828 		    (tx_desc->flags & TSEC_TXBD_W) |
829 		    ((seg == 0) ? csum_flag : 0) | TSEC_TXBD_R | TSEC_TXBD_TC |
830 		    ((seg == nsegs - 1) ? TSEC_TXBD_L | TSEC_TXBD_I : 0);
831 	}
832 
833 	/* Save mbuf and DMA mapping for release at later stage */
834 	TSEC_PUT_TX_MBUF(sc, m0);
835 	TSEC_PUT_TX_MAP(sc, mapp);
836 
837 	return (0);
838 }
839 
840 static void
841 tsec_setfilter(struct tsec_softc *sc)
842 {
843 	struct ifnet *ifp;
844 	uint32_t flags;
845 
846 	ifp = sc->tsec_ifp;
847 	flags = TSEC_READ(sc, TSEC_REG_RCTRL);
848 
849 	/* Promiscuous mode */
850 	if (ifp->if_flags & IFF_PROMISC)
851 		flags |= TSEC_RCTRL_PROM;
852 	else
853 		flags &= ~TSEC_RCTRL_PROM;
854 
855 	TSEC_WRITE(sc, TSEC_REG_RCTRL, flags);
856 }
857 
858 #ifdef DEVICE_POLLING
859 static poll_handler_t tsec_poll;
860 
861 static int
862 tsec_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
863 {
864 	uint32_t ie;
865 	struct tsec_softc *sc = ifp->if_softc;
866 	int rx_npkts;
867 
868 	rx_npkts = 0;
869 
870 	TSEC_GLOBAL_LOCK(sc);
871 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
872 		TSEC_GLOBAL_UNLOCK(sc);
873 		return (rx_npkts);
874 	}
875 
876 	if (cmd == POLL_AND_CHECK_STATUS) {
877 		tsec_error_intr_locked(sc, count);
878 
879 		/* Clear all events reported */
880 		ie = TSEC_READ(sc, TSEC_REG_IEVENT);
881 		TSEC_WRITE(sc, TSEC_REG_IEVENT, ie);
882 	}
883 
884 	tsec_transmit_intr_locked(sc);
885 
886 	TSEC_GLOBAL_TO_RECEIVE_LOCK(sc);
887 
888 	rx_npkts = tsec_receive_intr_locked(sc, count);
889 
890 	TSEC_RECEIVE_UNLOCK(sc);
891 
892 	return (rx_npkts);
893 }
894 #endif /* DEVICE_POLLING */
895 
896 static int
897 tsec_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
898 {
899 	struct tsec_softc *sc = ifp->if_softc;
900 	struct ifreq *ifr = (struct ifreq *)data;
901 	device_t dev;
902 	int mask, error = 0;
903 
904 	dev = sc->dev;
905 
906 	switch (command) {
907 	case SIOCSIFMTU:
908 		TSEC_GLOBAL_LOCK(sc);
909 		if (tsec_set_mtu(sc, ifr->ifr_mtu))
910 			ifp->if_mtu = ifr->ifr_mtu;
911 		else
912 			error = EINVAL;
913 		TSEC_GLOBAL_UNLOCK(sc);
914 		break;
915 	case SIOCSIFFLAGS:
916 		TSEC_GLOBAL_LOCK(sc);
917 		if (ifp->if_flags & IFF_UP) {
918 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
919 				if ((sc->tsec_if_flags ^ ifp->if_flags) &
920 				    IFF_PROMISC)
921 					tsec_setfilter(sc);
922 
923 				if ((sc->tsec_if_flags ^ ifp->if_flags) &
924 				    IFF_ALLMULTI)
925 					tsec_setup_multicast(sc);
926 			} else
927 				tsec_init_locked(sc);
928 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
929 			tsec_stop(sc);
930 
931 		sc->tsec_if_flags = ifp->if_flags;
932 		TSEC_GLOBAL_UNLOCK(sc);
933 		break;
934 	case SIOCADDMULTI:
935 	case SIOCDELMULTI:
936 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
937 			TSEC_GLOBAL_LOCK(sc);
938 			tsec_setup_multicast(sc);
939 			TSEC_GLOBAL_UNLOCK(sc);
940 		}
941 	case SIOCGIFMEDIA:
942 	case SIOCSIFMEDIA:
943 		error = ifmedia_ioctl(ifp, ifr, &sc->tsec_mii->mii_media,
944 		    command);
945 		break;
946 	case SIOCSIFCAP:
947 		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
948 		if ((mask & IFCAP_HWCSUM) && sc->is_etsec) {
949 			TSEC_GLOBAL_LOCK(sc);
950 			ifp->if_capenable &= ~IFCAP_HWCSUM;
951 			ifp->if_capenable |= IFCAP_HWCSUM & ifr->ifr_reqcap;
952 			tsec_offload_setup(sc);
953 			TSEC_GLOBAL_UNLOCK(sc);
954 		}
955 #ifdef DEVICE_POLLING
956 		if (mask & IFCAP_POLLING) {
957 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
958 				error = ether_poll_register(tsec_poll, ifp);
959 				if (error)
960 					return (error);
961 
962 				TSEC_GLOBAL_LOCK(sc);
963 				/* Disable interrupts */
964 				tsec_intrs_ctl(sc, 0);
965 				ifp->if_capenable |= IFCAP_POLLING;
966 				TSEC_GLOBAL_UNLOCK(sc);
967 			} else {
968 				error = ether_poll_deregister(ifp);
969 				TSEC_GLOBAL_LOCK(sc);
970 				/* Enable interrupts */
971 				tsec_intrs_ctl(sc, 1);
972 				ifp->if_capenable &= ~IFCAP_POLLING;
973 				TSEC_GLOBAL_UNLOCK(sc);
974 			}
975 		}
976 #endif
977 		break;
978 
979 	default:
980 		error = ether_ioctl(ifp, command, data);
981 	}
982 
983 	/* Flush buffers if not empty */
984 	if (ifp->if_flags & IFF_UP)
985 		tsec_start(ifp);
986 	return (error);
987 }
988 
989 static int
990 tsec_ifmedia_upd(struct ifnet *ifp)
991 {
992 	struct tsec_softc *sc = ifp->if_softc;
993 	struct mii_data *mii;
994 
995 	TSEC_TRANSMIT_LOCK(sc);
996 
997 	mii = sc->tsec_mii;
998 	mii_mediachg(mii);
999 
1000 	TSEC_TRANSMIT_UNLOCK(sc);
1001 	return (0);
1002 }
1003 
1004 static void
1005 tsec_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1006 {
1007 	struct tsec_softc *sc = ifp->if_softc;
1008 	struct mii_data *mii;
1009 
1010 	TSEC_TRANSMIT_LOCK(sc);
1011 
1012 	mii = sc->tsec_mii;
1013 	mii_pollstat(mii);
1014 
1015 	ifmr->ifm_active = mii->mii_media_active;
1016 	ifmr->ifm_status = mii->mii_media_status;
1017 
1018 	TSEC_TRANSMIT_UNLOCK(sc);
1019 }
1020 
1021 static int
1022 tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map, struct mbuf **mbufp,
1023     uint32_t *paddr)
1024 {
1025 	struct mbuf *new_mbuf;
1026 	bus_dma_segment_t seg[1];
1027 	int error, nsegs;
1028 
1029 	KASSERT(mbufp != NULL, ("NULL mbuf pointer!"));
1030 
1031 	new_mbuf = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MCLBYTES);
1032 	if (new_mbuf == NULL)
1033 		return (ENOBUFS);
1034 	new_mbuf->m_len = new_mbuf->m_pkthdr.len = new_mbuf->m_ext.ext_size;
1035 
1036 	if (*mbufp) {
1037 		bus_dmamap_sync(tag, map, BUS_DMASYNC_POSTREAD);
1038 		bus_dmamap_unload(tag, map);
1039 	}
1040 
1041 	error = bus_dmamap_load_mbuf_sg(tag, map, new_mbuf, seg, &nsegs,
1042 	    BUS_DMA_NOWAIT);
1043 	KASSERT(nsegs == 1, ("Too many segments returned!"));
1044 	if (nsegs != 1 || error)
1045 		panic("tsec_new_rxbuf(): nsegs(%d), error(%d)", nsegs, error);
1046 
1047 #if 0
1048 	if (error) {
1049 		printf("tsec: bus_dmamap_load_mbuf_sg() returned: %d!\n",
1050 			error);
1051 		m_freem(new_mbuf);
1052 		return (ENOBUFS);
1053 	}
1054 #endif
1055 
1056 #if 0
1057 	KASSERT(((seg->ds_addr) & (TSEC_RXBUFFER_ALIGNMENT-1)) == 0,
1058 		("Wrong alignment of RX buffer!"));
1059 #endif
1060 	bus_dmamap_sync(tag, map, BUS_DMASYNC_PREREAD);
1061 
1062 	(*mbufp) = new_mbuf;
1063 	(*paddr) = seg->ds_addr;
1064 	return (0);
1065 }
1066 
1067 static void
1068 tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1069 {
1070 	u_int32_t *paddr;
1071 
1072 	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
1073 	paddr = arg;
1074 	*paddr = segs->ds_addr;
1075 }
1076 
1077 static int
1078 tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag, bus_dmamap_t *dmap,
1079     bus_size_t dsize, void **vaddr, void *raddr, const char *dname)
1080 {
1081 	int error;
1082 
1083 	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
1084 	error = bus_dma_tag_create(NULL,	/* parent */
1085 	    PAGE_SIZE, 0,			/* alignment, boundary */
1086 	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
1087 	    BUS_SPACE_MAXADDR,			/* highaddr */
1088 	    NULL, NULL,				/* filtfunc, filtfuncarg */
1089 	    dsize, 1,				/* maxsize, nsegments */
1090 	    dsize, 0,				/* maxsegsz, flags */
1091 	    NULL, NULL,				/* lockfunc, lockfuncarg */
1092 	    dtag);				/* dmat */
1093 
1094 	if (error) {
1095 		device_printf(dev, "failed to allocate busdma %s tag\n",
1096 		    dname);
1097 		(*vaddr) = NULL;
1098 		return (ENXIO);
1099 	}
1100 
1101 	error = bus_dmamem_alloc(*dtag, vaddr, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1102 	    dmap);
1103 	if (error) {
1104 		device_printf(dev, "failed to allocate %s DMA safe memory\n",
1105 		    dname);
1106 		bus_dma_tag_destroy(*dtag);
1107 		(*vaddr) = NULL;
1108 		return (ENXIO);
1109 	}
1110 
1111 	error = bus_dmamap_load(*dtag, *dmap, *vaddr, dsize,
1112 	    tsec_map_dma_addr, raddr, BUS_DMA_NOWAIT);
1113 	if (error) {
1114 		device_printf(dev, "cannot get address of the %s "
1115 		    "descriptors\n", dname);
1116 		bus_dmamem_free(*dtag, *vaddr, *dmap);
1117 		bus_dma_tag_destroy(*dtag);
1118 		(*vaddr) = NULL;
1119 		return (ENXIO);
1120 	}
1121 
1122 	return (0);
1123 }
1124 
1125 static void
1126 tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr)
1127 {
1128 
1129 	if (vaddr == NULL)
1130 		return;
1131 
1132 	/* Unmap descriptors from DMA memory */
1133 	bus_dmamap_sync(dtag, dmap, BUS_DMASYNC_POSTREAD |
1134 	    BUS_DMASYNC_POSTWRITE);
1135 	bus_dmamap_unload(dtag, dmap);
1136 
1137 	/* Free descriptors memory */
1138 	bus_dmamem_free(dtag, vaddr, dmap);
1139 
1140 	/* Destroy descriptors tag */
1141 	bus_dma_tag_destroy(dtag);
1142 }
1143 
1144 static void
1145 tsec_free_dma(struct tsec_softc *sc)
1146 {
1147 	int i;
1148 
1149 	/* Free TX maps */
1150 	for (i = 0; i < TSEC_TX_NUM_DESC; i++)
1151 		if (sc->tx_map_data[i] != NULL)
1152 			bus_dmamap_destroy(sc->tsec_tx_mtag,
1153 			    sc->tx_map_data[i]);
1154 	/* Destroy tag for TX mbufs */
1155 	bus_dma_tag_destroy(sc->tsec_tx_mtag);
1156 
1157 	/* Free RX mbufs and maps */
1158 	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
1159 		if (sc->rx_data[i].mbuf) {
1160 			/* Unload buffer from DMA */
1161 			bus_dmamap_sync(sc->tsec_rx_mtag, sc->rx_data[i].map,
1162 			    BUS_DMASYNC_POSTREAD);
1163 			bus_dmamap_unload(sc->tsec_rx_mtag,
1164 			    sc->rx_data[i].map);
1165 
1166 			/* Free buffer */
1167 			m_freem(sc->rx_data[i].mbuf);
1168 		}
1169 		/* Destroy map for this buffer */
1170 		if (sc->rx_data[i].map != NULL)
1171 			bus_dmamap_destroy(sc->tsec_rx_mtag,
1172 			    sc->rx_data[i].map);
1173 	}
1174 	/* Destroy tag for RX mbufs */
1175 	bus_dma_tag_destroy(sc->tsec_rx_mtag);
1176 
1177 	/* Unload TX/RX descriptors */
1178 	tsec_free_dma_desc(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1179 	    sc->tsec_tx_vaddr);
1180 	tsec_free_dma_desc(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1181 	    sc->tsec_rx_vaddr);
1182 }
1183 
1184 static void
1185 tsec_stop(struct tsec_softc *sc)
1186 {
1187 	struct ifnet *ifp;
1188 	struct mbuf *m0;
1189 	bus_dmamap_t *mapp;
1190 	uint32_t tmpval;
1191 
1192 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1193 
1194 	ifp = sc->tsec_ifp;
1195 
1196 	/* Disable interface and watchdog timer */
1197 	callout_stop(&sc->tsec_callout);
1198 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1199 	sc->tsec_watchdog = 0;
1200 
1201 	/* Disable all interrupts and stop DMA */
1202 	tsec_intrs_ctl(sc, 0);
1203 	tsec_dma_ctl(sc, 0);
1204 
1205 	/* Remove pending data from TX queue */
1206 	while (!TSEC_EMPTYQ_TX_MBUF(sc)) {
1207 		m0 = TSEC_GET_TX_MBUF(sc);
1208 		mapp = TSEC_GET_TX_MAP(sc);
1209 
1210 		bus_dmamap_sync(sc->tsec_tx_mtag, *mapp,
1211 		    BUS_DMASYNC_POSTWRITE);
1212 		bus_dmamap_unload(sc->tsec_tx_mtag, *mapp);
1213 
1214 		TSEC_FREE_TX_MAP(sc, mapp);
1215 		m_freem(m0);
1216 	}
1217 
1218 	/* Disable RX and TX */
1219 	tmpval = TSEC_READ(sc, TSEC_REG_MACCFG1);
1220 	tmpval &= ~(TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN);
1221 	TSEC_WRITE(sc, TSEC_REG_MACCFG1, tmpval);
1222 	DELAY(10);
1223 }
1224 
1225 static void
1226 tsec_tick(void *arg)
1227 {
1228 	struct tsec_softc *sc = arg;
1229 	struct ifnet *ifp;
1230 	int link;
1231 
1232 	TSEC_GLOBAL_LOCK(sc);
1233 
1234 	tsec_watchdog(sc);
1235 
1236 	ifp = sc->tsec_ifp;
1237 	link = sc->tsec_link;
1238 
1239 	mii_tick(sc->tsec_mii);
1240 
1241 	if (link == 0 && sc->tsec_link == 1 &&
1242 	    (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)))
1243 		tsec_start_locked(ifp);
1244 
1245 	/* Schedule another timeout one second from now. */
1246 	callout_reset(&sc->tsec_callout, hz, tsec_tick, sc);
1247 
1248 	TSEC_GLOBAL_UNLOCK(sc);
1249 }
1250 
1251 /*
1252  *  This is the core RX routine. It replenishes mbufs in the descriptor and
1253  *  sends data which have been dma'ed into host memory to upper layer.
1254  *
1255  *  Loops at most count times if count is > 0, or until done if count < 0.
1256  */
1257 static int
1258 tsec_receive_intr_locked(struct tsec_softc *sc, int count)
1259 {
1260 	struct tsec_desc *rx_desc;
1261 	struct ifnet *ifp;
1262 	struct rx_data_type *rx_data;
1263 	struct mbuf *m;
1264 	device_t dev;
1265 	uint32_t i;
1266 	int c, rx_npkts;
1267 	uint16_t flags;
1268 
1269 	TSEC_RECEIVE_LOCK_ASSERT(sc);
1270 
1271 	ifp = sc->tsec_ifp;
1272 	rx_data = sc->rx_data;
1273 	dev = sc->dev;
1274 	rx_npkts = 0;
1275 
1276 	bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1277 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1278 
1279 	for (c = 0; ; c++) {
1280 		if (count >= 0 && count-- == 0)
1281 			break;
1282 
1283 		rx_desc = TSEC_GET_CUR_RX_DESC(sc);
1284 		flags = rx_desc->flags;
1285 
1286 		/* Check if there is anything to receive */
1287 		if ((flags & TSEC_RXBD_E) || (c >= TSEC_RX_NUM_DESC)) {
1288 			/*
1289 			 * Avoid generating another interrupt
1290 			 */
1291 			if (flags & TSEC_RXBD_E)
1292 				TSEC_WRITE(sc, TSEC_REG_IEVENT,
1293 				    TSEC_IEVENT_RXB | TSEC_IEVENT_RXF);
1294 			/*
1295 			 * We didn't consume current descriptor and have to
1296 			 * return it to the queue
1297 			 */
1298 			TSEC_BACK_CUR_RX_DESC(sc);
1299 			break;
1300 		}
1301 
1302 		if (flags & (TSEC_RXBD_LG | TSEC_RXBD_SH | TSEC_RXBD_NO |
1303 		    TSEC_RXBD_CR | TSEC_RXBD_OV | TSEC_RXBD_TR)) {
1304 
1305 			rx_desc->length = 0;
1306 			rx_desc->flags = (rx_desc->flags &
1307 			    ~TSEC_RXBD_ZEROONINIT) | TSEC_RXBD_E | TSEC_RXBD_I;
1308 
1309 			if (sc->frame != NULL) {
1310 				m_free(sc->frame);
1311 				sc->frame = NULL;
1312 			}
1313 
1314 			continue;
1315 		}
1316 
1317 		/* Ok... process frame */
1318 		i = TSEC_GET_CUR_RX_DESC_CNT(sc);
1319 		m = rx_data[i].mbuf;
1320 		m->m_len = rx_desc->length;
1321 
1322 		if (sc->frame != NULL) {
1323 			if ((flags & TSEC_RXBD_L) != 0)
1324 				m->m_len -= m_length(sc->frame, NULL);
1325 
1326 			m->m_flags &= ~M_PKTHDR;
1327 			m_cat(sc->frame, m);
1328 		} else {
1329 			sc->frame = m;
1330 		}
1331 
1332 		m = NULL;
1333 
1334 		if ((flags & TSEC_RXBD_L) != 0) {
1335 			m = sc->frame;
1336 			sc->frame = NULL;
1337 		}
1338 
1339 		if (tsec_new_rxbuf(sc->tsec_rx_mtag, rx_data[i].map,
1340 		    &rx_data[i].mbuf, &rx_data[i].paddr)) {
1341 			ifp->if_ierrors++;
1342 			/*
1343 			 * We ran out of mbufs; didn't consume current
1344 			 * descriptor and have to return it to the queue.
1345 			 */
1346 			TSEC_BACK_CUR_RX_DESC(sc);
1347 			break;
1348 		}
1349 
1350 		/* Attach new buffer to descriptor and clear flags */
1351 		rx_desc->bufptr = rx_data[i].paddr;
1352 		rx_desc->length = 0;
1353 		rx_desc->flags = (rx_desc->flags & ~TSEC_RXBD_ZEROONINIT) |
1354 		    TSEC_RXBD_E | TSEC_RXBD_I;
1355 
1356 		if (m != NULL) {
1357 			m->m_pkthdr.rcvif = ifp;
1358 
1359 			m_fixhdr(m);
1360 			m_adj(m, -ETHER_CRC_LEN);
1361 
1362 			if (sc->is_etsec)
1363 				tsec_offload_process_frame(sc, m);
1364 
1365 			TSEC_RECEIVE_UNLOCK(sc);
1366 			(*ifp->if_input)(ifp, m);
1367 			TSEC_RECEIVE_LOCK(sc);
1368 			rx_npkts++;
1369 		}
1370 	}
1371 
1372 	bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1373 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1374 
1375 	/*
1376 	 * Make sure TSEC receiver is not halted.
1377 	 *
1378 	 * Various conditions can stop the TSEC receiver, but not all are
1379 	 * signaled and handled by error interrupt, so make sure the receiver
1380 	 * is running. Writing to TSEC_REG_RSTAT restarts the receiver when
1381 	 * halted, and is harmless if already running.
1382 	 */
1383 	TSEC_WRITE(sc, TSEC_REG_RSTAT, TSEC_RSTAT_QHLT);
1384 	return (rx_npkts);
1385 }
1386 
1387 void
1388 tsec_receive_intr(void *arg)
1389 {
1390 	struct tsec_softc *sc = arg;
1391 
1392 	TSEC_RECEIVE_LOCK(sc);
1393 
1394 #ifdef DEVICE_POLLING
1395 	if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) {
1396 		TSEC_RECEIVE_UNLOCK(sc);
1397 		return;
1398 	}
1399 #endif
1400 
1401 	/* Confirm the interrupt was received by driver */
1402 	TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXB | TSEC_IEVENT_RXF);
1403 	tsec_receive_intr_locked(sc, -1);
1404 
1405 	TSEC_RECEIVE_UNLOCK(sc);
1406 }
1407 
1408 static void
1409 tsec_transmit_intr_locked(struct tsec_softc *sc)
1410 {
1411 	struct tsec_desc *tx_desc;
1412 	struct ifnet *ifp;
1413 	struct mbuf *m0;
1414 	bus_dmamap_t *mapp;
1415 	int send = 0;
1416 
1417 	TSEC_TRANSMIT_LOCK_ASSERT(sc);
1418 
1419 	ifp = sc->tsec_ifp;
1420 
1421 	/* Update collision statistics */
1422 	ifp->if_collisions += TSEC_READ(sc, TSEC_REG_MON_TNCL);
1423 
1424 	/* Reset collision counters in hardware */
1425 	TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0);
1426 	TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0);
1427 	TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0);
1428 	TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0);
1429 	TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0);
1430 
1431 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1432 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1433 
1434 	while (TSEC_CUR_DIFF_DIRTY_TX_DESC(sc)) {
1435 		tx_desc = TSEC_GET_DIRTY_TX_DESC(sc);
1436 		if (tx_desc->flags & TSEC_TXBD_R) {
1437 			TSEC_BACK_DIRTY_TX_DESC(sc);
1438 			break;
1439 		}
1440 
1441 		if ((tx_desc->flags & TSEC_TXBD_L) == 0)
1442 			continue;
1443 
1444 		/*
1445 		 * This is the last buf in this packet, so unmap and free it.
1446 		 */
1447 		m0 = TSEC_GET_TX_MBUF(sc);
1448 		mapp = TSEC_GET_TX_MAP(sc);
1449 
1450 		bus_dmamap_sync(sc->tsec_tx_mtag, *mapp,
1451 		    BUS_DMASYNC_POSTWRITE);
1452 		bus_dmamap_unload(sc->tsec_tx_mtag, *mapp);
1453 
1454 		TSEC_FREE_TX_MAP(sc, mapp);
1455 		m_freem(m0);
1456 
1457 		ifp->if_opackets++;
1458 		send = 1;
1459 	}
1460 	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1461 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1462 
1463 	if (send) {
1464 		/* Now send anything that was pending */
1465 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1466 		tsec_start_locked(ifp);
1467 
1468 		/* Stop wathdog if all sent */
1469 		if (TSEC_EMPTYQ_TX_MBUF(sc))
1470 			sc->tsec_watchdog = 0;
1471 	}
1472 }
1473 
1474 void
1475 tsec_transmit_intr(void *arg)
1476 {
1477 	struct tsec_softc *sc = arg;
1478 
1479 	TSEC_TRANSMIT_LOCK(sc);
1480 
1481 #ifdef DEVICE_POLLING
1482 	if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) {
1483 		TSEC_TRANSMIT_UNLOCK(sc);
1484 		return;
1485 	}
1486 #endif
1487 	/* Confirm the interrupt was received by driver */
1488 	TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_TXB | TSEC_IEVENT_TXF);
1489 	tsec_transmit_intr_locked(sc);
1490 
1491 	TSEC_TRANSMIT_UNLOCK(sc);
1492 }
1493 
1494 static void
1495 tsec_error_intr_locked(struct tsec_softc *sc, int count)
1496 {
1497 	struct ifnet *ifp;
1498 	uint32_t eflags;
1499 
1500 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1501 
1502 	ifp = sc->tsec_ifp;
1503 
1504 	eflags = TSEC_READ(sc, TSEC_REG_IEVENT);
1505 
1506 	/* Clear events bits in hardware */
1507 	TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXC | TSEC_IEVENT_BSY |
1508 	    TSEC_IEVENT_EBERR | TSEC_IEVENT_MSRO | TSEC_IEVENT_BABT |
1509 	    TSEC_IEVENT_TXC | TSEC_IEVENT_TXE | TSEC_IEVENT_LC |
1510 	    TSEC_IEVENT_CRL | TSEC_IEVENT_XFUN);
1511 
1512 	/* Check transmitter errors */
1513 	if (eflags & TSEC_IEVENT_TXE) {
1514 		ifp->if_oerrors++;
1515 
1516 		if (eflags & TSEC_IEVENT_LC)
1517 			ifp->if_collisions++;
1518 
1519 		TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
1520 	}
1521 
1522 	/* Check receiver errors */
1523 	if (eflags & TSEC_IEVENT_BSY) {
1524 		ifp->if_ierrors++;
1525 		ifp->if_iqdrops++;
1526 
1527 		/* Get data from RX buffers */
1528 		tsec_receive_intr_locked(sc, count);
1529 	}
1530 
1531 	if (ifp->if_flags & IFF_DEBUG)
1532 		if_printf(ifp, "tsec_error_intr(): event flags: 0x%x\n",
1533 		    eflags);
1534 
1535 	if (eflags & TSEC_IEVENT_EBERR) {
1536 		if_printf(ifp, "System bus error occurred during"
1537 		    "DMA transaction (flags: 0x%x)\n", eflags);
1538 		tsec_init_locked(sc);
1539 	}
1540 
1541 	if (eflags & TSEC_IEVENT_BABT)
1542 		ifp->if_oerrors++;
1543 
1544 	if (eflags & TSEC_IEVENT_BABR)
1545 		ifp->if_ierrors++;
1546 }
1547 
1548 void
1549 tsec_error_intr(void *arg)
1550 {
1551 	struct tsec_softc *sc = arg;
1552 
1553 	TSEC_GLOBAL_LOCK(sc);
1554 	tsec_error_intr_locked(sc, -1);
1555 	TSEC_GLOBAL_UNLOCK(sc);
1556 }
1557 
1558 int
1559 tsec_miibus_readreg(device_t dev, int phy, int reg)
1560 {
1561 	struct tsec_softc *sc;
1562 	uint32_t timeout;
1563 
1564 	sc = device_get_softc(dev);
1565 
1566 	if (sc->phyaddr != phy)
1567 		return (0);
1568 
1569 	sc = tsec0_sc;
1570 
1571 	TSEC_WRITE(sc, TSEC_REG_MIIMADD, (phy << 8) | reg);
1572 	TSEC_WRITE(sc, TSEC_REG_MIIMCOM, 0);
1573 	TSEC_WRITE(sc, TSEC_REG_MIIMCOM, TSEC_MIIMCOM_READCYCLE);
1574 
1575 	timeout = TSEC_READ_RETRY;
1576 	while (--timeout && TSEC_READ(sc, TSEC_REG_MIIMIND) &
1577 	    (TSEC_MIIMIND_NOTVALID | TSEC_MIIMIND_BUSY))
1578 		DELAY(TSEC_READ_DELAY);
1579 
1580 	if (timeout == 0)
1581 		device_printf(dev, "Timeout while reading from PHY!\n");
1582 
1583 	return (TSEC_READ(sc, TSEC_REG_MIIMSTAT));
1584 }
1585 
1586 int
1587 tsec_miibus_writereg(device_t dev, int phy, int reg, int value)
1588 {
1589 	struct tsec_softc *sc;
1590 	uint32_t timeout;
1591 
1592 	sc = device_get_softc(dev);
1593 
1594 	if (sc->phyaddr != phy)
1595 		return (0);
1596 
1597 	sc = tsec0_sc;
1598 
1599 	TSEC_WRITE(sc, TSEC_REG_MIIMADD, (phy << 8) | reg);
1600 	TSEC_WRITE(sc, TSEC_REG_MIIMCON, value);
1601 
1602 	timeout = TSEC_READ_RETRY;
1603 	while (--timeout && (TSEC_READ(sc, TSEC_REG_MIIMIND) &
1604 	    TSEC_MIIMIND_BUSY))
1605 		DELAY(TSEC_READ_DELAY);
1606 
1607 	if (timeout == 0)
1608 		device_printf(dev, "Timeout while writing to PHY!\n");
1609 
1610 	return (0);
1611 }
1612 
1613 void
1614 tsec_miibus_statchg(device_t dev)
1615 {
1616 	struct tsec_softc *sc;
1617 	struct mii_data *mii;
1618 	uint32_t ecntrl, id, tmp;
1619 	int link;
1620 
1621 	sc = device_get_softc(dev);
1622 	mii = sc->tsec_mii;
1623 	link = ((mii->mii_media_status & IFM_ACTIVE) ? 1 : 0);
1624 
1625 	tmp = TSEC_READ(sc, TSEC_REG_MACCFG2) & ~TSEC_MACCFG2_IF;
1626 
1627 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
1628 		tmp |= TSEC_MACCFG2_FULLDUPLEX;
1629 	else
1630 		tmp &= ~TSEC_MACCFG2_FULLDUPLEX;
1631 
1632 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1633 	case IFM_1000_T:
1634 	case IFM_1000_SX:
1635 		tmp |= TSEC_MACCFG2_GMII;
1636 		sc->tsec_link = link;
1637 		break;
1638 	case IFM_100_TX:
1639 	case IFM_10_T:
1640 		tmp |= TSEC_MACCFG2_MII;
1641 		sc->tsec_link = link;
1642 		break;
1643 	case IFM_NONE:
1644 		if (link)
1645 			device_printf(dev, "No speed selected but link "
1646 			    "active!\n");
1647 		sc->tsec_link = 0;
1648 		return;
1649 	default:
1650 		sc->tsec_link = 0;
1651 		device_printf(dev, "Unknown speed (%d), link %s!\n",
1652 		    IFM_SUBTYPE(mii->mii_media_active),
1653 		        ((link) ? "up" : "down"));
1654 		return;
1655 	}
1656 	TSEC_WRITE(sc, TSEC_REG_MACCFG2, tmp);
1657 
1658 	/* XXX kludge - use circumstantial evidence for reduced mode. */
1659 	id = TSEC_READ(sc, TSEC_REG_ID2);
1660 	if (id & 0xffff) {
1661 		ecntrl = TSEC_READ(sc, TSEC_REG_ECNTRL) & ~TSEC_ECNTRL_R100M;
1662 		ecntrl |= (tmp & TSEC_MACCFG2_MII) ? TSEC_ECNTRL_R100M : 0;
1663 		TSEC_WRITE(sc, TSEC_REG_ECNTRL, ecntrl);
1664 	}
1665 }
1666 
1667 static void
1668 tsec_add_sysctls(struct tsec_softc *sc)
1669 {
1670 	struct sysctl_ctx_list *ctx;
1671 	struct sysctl_oid_list *children;
1672 	struct sysctl_oid *tree;
1673 
1674 	ctx = device_get_sysctl_ctx(sc->dev);
1675 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
1676 	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "int_coal",
1677 	    CTLFLAG_RD, 0, "TSEC Interrupts coalescing");
1678 	children = SYSCTL_CHILDREN(tree);
1679 
1680 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_time",
1681 	    CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_RX, tsec_sysctl_ic_time,
1682 	    "I", "IC RX time threshold (0-65535)");
1683 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_count",
1684 	    CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_RX, tsec_sysctl_ic_count,
1685 	    "I", "IC RX frame count threshold (0-255)");
1686 
1687 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_time",
1688 	    CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_TX, tsec_sysctl_ic_time,
1689 	    "I", "IC TX time threshold (0-65535)");
1690 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_count",
1691 	    CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_TX, tsec_sysctl_ic_count,
1692 	    "I", "IC TX frame count threshold (0-255)");
1693 }
1694 
1695 /*
1696  * With Interrupt Coalescing (IC) active, a transmit/receive frame
1697  * interrupt is raised either upon:
1698  *
1699  * - threshold-defined period of time elapsed, or
1700  * - threshold-defined number of frames is received/transmitted,
1701  *   whichever occurs first.
1702  *
1703  * The following sysctls regulate IC behaviour (for TX/RX separately):
1704  *
1705  * dev.tsec.<unit>.int_coal.rx_time
1706  * dev.tsec.<unit>.int_coal.rx_count
1707  * dev.tsec.<unit>.int_coal.tx_time
1708  * dev.tsec.<unit>.int_coal.tx_count
1709  *
1710  * Values:
1711  *
1712  * - 0 for either time or count disables IC on the given TX/RX path
1713  *
1714  * - count: 1-255 (expresses frame count number; note that value of 1 is
1715  *   effectively IC off)
1716  *
1717  * - time: 1-65535 (value corresponds to a real time period and is
1718  *   expressed in units equivalent to 64 TSEC interface clocks, i.e. one timer
1719  *   threshold unit is 26.5 us, 2.56 us, or 512 ns, corresponding to 10 Mbps,
1720  *   100 Mbps, or 1Gbps, respectively. For detailed discussion consult the
1721  *   TSEC reference manual.
1722  */
1723 static int
1724 tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS)
1725 {
1726 	int error;
1727 	uint32_t time;
1728 	struct tsec_softc *sc = (struct tsec_softc *)arg1;
1729 
1730 	time = (arg2 == TSEC_IC_RX) ? sc->rx_ic_time : sc->tx_ic_time;
1731 
1732 	error = sysctl_handle_int(oidp, &time, 0, req);
1733 	if (error != 0)
1734 		return (error);
1735 
1736 	if (time > 65535)
1737 		return (EINVAL);
1738 
1739 	TSEC_IC_LOCK(sc);
1740 	if (arg2 == TSEC_IC_RX) {
1741 		sc->rx_ic_time = time;
1742 		tsec_set_rxic(sc);
1743 	} else {
1744 		sc->tx_ic_time = time;
1745 		tsec_set_txic(sc);
1746 	}
1747 	TSEC_IC_UNLOCK(sc);
1748 
1749 	return (0);
1750 }
1751 
1752 static int
1753 tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS)
1754 {
1755 	int error;
1756 	uint32_t count;
1757 	struct tsec_softc *sc = (struct tsec_softc *)arg1;
1758 
1759 	count = (arg2 == TSEC_IC_RX) ? sc->rx_ic_count : sc->tx_ic_count;
1760 
1761 	error = sysctl_handle_int(oidp, &count, 0, req);
1762 	if (error != 0)
1763 		return (error);
1764 
1765 	if (count > 255)
1766 		return (EINVAL);
1767 
1768 	TSEC_IC_LOCK(sc);
1769 	if (arg2 == TSEC_IC_RX) {
1770 		sc->rx_ic_count = count;
1771 		tsec_set_rxic(sc);
1772 	} else {
1773 		sc->tx_ic_count = count;
1774 		tsec_set_txic(sc);
1775 	}
1776 	TSEC_IC_UNLOCK(sc);
1777 
1778 	return (0);
1779 }
1780 
1781 static void
1782 tsec_set_rxic(struct tsec_softc *sc)
1783 {
1784 	uint32_t rxic_val;
1785 
1786 	if (sc->rx_ic_count == 0 || sc->rx_ic_time == 0)
1787 		/* Disable RX IC */
1788 		rxic_val = 0;
1789 	else {
1790 		rxic_val = 0x80000000;
1791 		rxic_val |= (sc->rx_ic_count << 21);
1792 		rxic_val |= sc->rx_ic_time;
1793 	}
1794 
1795 	TSEC_WRITE(sc, TSEC_REG_RXIC, rxic_val);
1796 }
1797 
1798 static void
1799 tsec_set_txic(struct tsec_softc *sc)
1800 {
1801 	uint32_t txic_val;
1802 
1803 	if (sc->tx_ic_count == 0 || sc->tx_ic_time == 0)
1804 		/* Disable TX IC */
1805 		txic_val = 0;
1806 	else {
1807 		txic_val = 0x80000000;
1808 		txic_val |= (sc->tx_ic_count << 21);
1809 		txic_val |= sc->tx_ic_time;
1810 	}
1811 
1812 	TSEC_WRITE(sc, TSEC_REG_TXIC, txic_val);
1813 }
1814 
1815 static void
1816 tsec_offload_setup(struct tsec_softc *sc)
1817 {
1818 	struct ifnet *ifp = sc->tsec_ifp;
1819 	uint32_t reg;
1820 
1821 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1822 
1823 	reg = TSEC_READ(sc, TSEC_REG_TCTRL);
1824 	reg |= TSEC_TCTRL_IPCSEN | TSEC_TCTRL_TUCSEN;
1825 
1826 	if (ifp->if_capenable & IFCAP_TXCSUM)
1827 		ifp->if_hwassist = TSEC_CHECKSUM_FEATURES;
1828 	else
1829 		ifp->if_hwassist = 0;
1830 
1831 	TSEC_WRITE(sc, TSEC_REG_TCTRL, reg);
1832 
1833 	reg = TSEC_READ(sc, TSEC_REG_RCTRL);
1834 	reg &= ~(TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN | TSEC_RCTRL_PRSDEP);
1835 	reg |= TSEC_RCTRL_PRSDEP_PARSE_L2 | TSEC_RCTRL_VLEX;
1836 
1837 	if (ifp->if_capenable & IFCAP_RXCSUM)
1838 		reg |= TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN |
1839 		    TSEC_RCTRL_PRSDEP_PARSE_L234;
1840 
1841 	TSEC_WRITE(sc, TSEC_REG_RCTRL, reg);
1842 }
1843 
1844 
1845 static void
1846 tsec_offload_process_frame(struct tsec_softc *sc, struct mbuf *m)
1847 {
1848 	struct tsec_rx_fcb rx_fcb;
1849 	int csum_flags = 0;
1850 	int protocol, flags;
1851 
1852 	TSEC_RECEIVE_LOCK_ASSERT(sc);
1853 
1854 	m_copydata(m, 0, sizeof(struct tsec_rx_fcb), (caddr_t)(&rx_fcb));
1855 	flags = rx_fcb.flags;
1856 	protocol = rx_fcb.protocol;
1857 
1858 	if (TSEC_RX_FCB_IP_CSUM_CHECKED(flags)) {
1859 		csum_flags |= CSUM_IP_CHECKED;
1860 
1861 		if ((flags & TSEC_RX_FCB_IP_CSUM_ERROR) == 0)
1862 			csum_flags |= CSUM_IP_VALID;
1863 	}
1864 
1865 	if ((protocol == IPPROTO_TCP || protocol == IPPROTO_UDP) &&
1866 	    TSEC_RX_FCB_TCP_UDP_CSUM_CHECKED(flags) &&
1867 	    (flags & TSEC_RX_FCB_TCP_UDP_CSUM_ERROR) == 0) {
1868 
1869 		csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1870 		m->m_pkthdr.csum_data = 0xFFFF;
1871 	}
1872 
1873 	m->m_pkthdr.csum_flags = csum_flags;
1874 
1875 	if (flags & TSEC_RX_FCB_VLAN) {
1876 		m->m_pkthdr.ether_vtag = rx_fcb.vlan;
1877 		m->m_flags |= M_VLANTAG;
1878 	}
1879 
1880 	m_adj(m, sizeof(struct tsec_rx_fcb));
1881 }
1882 
1883 static void
1884 tsec_setup_multicast(struct tsec_softc *sc)
1885 {
1886 	uint32_t hashtable[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
1887 	struct ifnet *ifp = sc->tsec_ifp;
1888 	struct ifmultiaddr *ifma;
1889 	uint32_t h;
1890 	int i;
1891 
1892 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1893 
1894 	if (ifp->if_flags & IFF_ALLMULTI) {
1895 		for (i = 0; i < 8; i++)
1896 			TSEC_WRITE(sc, TSEC_REG_GADDR(i), 0xFFFFFFFF);
1897 
1898 		return;
1899 	}
1900 
1901 	if_maddr_rlock(ifp);
1902 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1903 
1904 		if (ifma->ifma_addr->sa_family != AF_LINK)
1905 			continue;
1906 
1907 		h = (ether_crc32_be(LLADDR((struct sockaddr_dl *)
1908 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 24) & 0xFF;
1909 
1910 		hashtable[(h >> 5)] |= 1 << (0x1F - (h & 0x1F));
1911 	}
1912 	if_maddr_runlock(ifp);
1913 
1914 	for (i = 0; i < 8; i++)
1915 		TSEC_WRITE(sc, TSEC_REG_GADDR(i), hashtable[i]);
1916 }
1917 
1918 static int
1919 tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu)
1920 {
1921 
1922 	mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
1923 
1924 	TSEC_GLOBAL_LOCK_ASSERT(sc);
1925 
1926 	if (mtu >= TSEC_MIN_FRAME_SIZE && mtu <= TSEC_MAX_FRAME_SIZE) {
1927 		TSEC_WRITE(sc, TSEC_REG_MAXFRM, mtu);
1928 		return (mtu);
1929 	}
1930 
1931 	return (0);
1932 }
1933