1 /*- 2 * Copyright (C) 2007-2008 Semihalf, Rafal Jaworowski 3 * Copyright (C) 2006-2007 Semihalf, Piotr Kruszynski 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 18 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 20 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 22 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 23 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 24 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 /* 28 * Freescale integrated Three-Speed Ethernet Controller (TSEC) driver. 29 */ 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #ifdef HAVE_KERNEL_OPTION_HEADERS 34 #include "opt_device_polling.h" 35 #endif 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/bus.h> 40 #include <sys/endian.h> 41 #include <sys/mbuf.h> 42 #include <sys/kernel.h> 43 #include <sys/module.h> 44 #include <sys/socket.h> 45 #include <sys/sockio.h> 46 #include <sys/sysctl.h> 47 48 #include <net/bpf.h> 49 #include <net/ethernet.h> 50 #include <net/if.h> 51 #include <net/if_arp.h> 52 #include <net/if_dl.h> 53 #include <net/if_media.h> 54 #include <net/if_types.h> 55 #include <net/if_vlan_var.h> 56 57 #include <netinet/in_systm.h> 58 #include <netinet/in.h> 59 #include <netinet/ip.h> 60 61 #include <machine/bus.h> 62 63 #include <dev/mii/mii.h> 64 #include <dev/mii/miivar.h> 65 66 #include <dev/tsec/if_tsec.h> 67 #include <dev/tsec/if_tsecreg.h> 68 69 static int tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag, 70 bus_dmamap_t *dmap, bus_size_t dsize, void **vaddr, void *raddr, 71 const char *dname); 72 static void tsec_dma_ctl(struct tsec_softc *sc, int state); 73 static int tsec_encap(struct tsec_softc *sc, struct mbuf *m_head, 74 int fcb_inserted); 75 static void tsec_free_dma(struct tsec_softc *sc); 76 static void tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr); 77 static int tsec_ifmedia_upd(struct ifnet *ifp); 78 static void tsec_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr); 79 static int tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map, 80 struct mbuf **mbufp, uint32_t *paddr); 81 static void tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs, 82 int nseg, int error); 83 static void tsec_intrs_ctl(struct tsec_softc *sc, int state); 84 static void tsec_init(void *xsc); 85 static void tsec_init_locked(struct tsec_softc *sc); 86 static int tsec_ioctl(struct ifnet *ifp, u_long command, caddr_t data); 87 static void tsec_reset_mac(struct tsec_softc *sc); 88 static void tsec_setfilter(struct tsec_softc *sc); 89 static void tsec_set_mac_address(struct tsec_softc *sc); 90 static void tsec_start(struct ifnet *ifp); 91 static void tsec_start_locked(struct ifnet *ifp); 92 static void tsec_stop(struct tsec_softc *sc); 93 static void tsec_tick(void *arg); 94 static void tsec_watchdog(struct tsec_softc *sc); 95 static void tsec_add_sysctls(struct tsec_softc *sc); 96 static int tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS); 97 static int tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS); 98 static void tsec_set_rxic(struct tsec_softc *sc); 99 static void tsec_set_txic(struct tsec_softc *sc); 100 static int tsec_receive_intr_locked(struct tsec_softc *sc, int count); 101 static void tsec_transmit_intr_locked(struct tsec_softc *sc); 102 static void tsec_error_intr_locked(struct tsec_softc *sc, int count); 103 static void tsec_offload_setup(struct tsec_softc *sc); 104 static void tsec_offload_process_frame(struct tsec_softc *sc, 105 struct mbuf *m); 106 static void tsec_setup_multicast(struct tsec_softc *sc); 107 static int tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu); 108 109 struct tsec_softc *tsec0_sc = NULL; /* XXX ugly hack! */ 110 111 devclass_t tsec_devclass; 112 DRIVER_MODULE(miibus, tsec, miibus_driver, miibus_devclass, 0, 0); 113 MODULE_DEPEND(tsec, ether, 1, 1, 1); 114 MODULE_DEPEND(tsec, miibus, 1, 1, 1); 115 116 int 117 tsec_attach(struct tsec_softc *sc) 118 { 119 uint8_t hwaddr[ETHER_ADDR_LEN]; 120 struct ifnet *ifp; 121 bus_dmamap_t *map_ptr; 122 bus_dmamap_t **map_pptr; 123 int error = 0; 124 int i; 125 126 /* Reset all TSEC counters */ 127 TSEC_TX_RX_COUNTERS_INIT(sc); 128 129 /* Stop DMA engine if enabled by firmware */ 130 tsec_dma_ctl(sc, 0); 131 132 /* Reset MAC */ 133 tsec_reset_mac(sc); 134 135 /* Disable interrupts for now */ 136 tsec_intrs_ctl(sc, 0); 137 138 /* Configure defaults for interrupts coalescing */ 139 sc->rx_ic_time = 768; 140 sc->rx_ic_count = 16; 141 sc->tx_ic_time = 768; 142 sc->tx_ic_count = 16; 143 tsec_set_rxic(sc); 144 tsec_set_txic(sc); 145 tsec_add_sysctls(sc); 146 147 /* Allocate a busdma tag and DMA safe memory for TX descriptors. */ 148 error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_tx_dtag, 149 &sc->tsec_tx_dmap, sizeof(*sc->tsec_tx_vaddr) * TSEC_TX_NUM_DESC, 150 (void **)&sc->tsec_tx_vaddr, &sc->tsec_tx_raddr, "TX"); 151 152 if (error) { 153 tsec_detach(sc); 154 return (ENXIO); 155 } 156 157 /* Allocate a busdma tag and DMA safe memory for RX descriptors. */ 158 error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_rx_dtag, 159 &sc->tsec_rx_dmap, sizeof(*sc->tsec_rx_vaddr) * TSEC_RX_NUM_DESC, 160 (void **)&sc->tsec_rx_vaddr, &sc->tsec_rx_raddr, "RX"); 161 if (error) { 162 tsec_detach(sc); 163 return (ENXIO); 164 } 165 166 /* Allocate a busdma tag for TX mbufs. */ 167 error = bus_dma_tag_create(NULL, /* parent */ 168 TSEC_TXBUFFER_ALIGNMENT, 0, /* alignment, boundary */ 169 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 170 BUS_SPACE_MAXADDR, /* highaddr */ 171 NULL, NULL, /* filtfunc, filtfuncarg */ 172 MCLBYTES * (TSEC_TX_NUM_DESC - 1), /* maxsize */ 173 TSEC_TX_NUM_DESC - 1, /* nsegments */ 174 MCLBYTES, 0, /* maxsegsz, flags */ 175 NULL, NULL, /* lockfunc, lockfuncarg */ 176 &sc->tsec_tx_mtag); /* dmat */ 177 if (error) { 178 device_printf(sc->dev, "failed to allocate busdma tag " 179 "(tx mbufs)\n"); 180 tsec_detach(sc); 181 return (ENXIO); 182 } 183 184 /* Allocate a busdma tag for RX mbufs. */ 185 error = bus_dma_tag_create(NULL, /* parent */ 186 TSEC_RXBUFFER_ALIGNMENT, 0, /* alignment, boundary */ 187 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 188 BUS_SPACE_MAXADDR, /* highaddr */ 189 NULL, NULL, /* filtfunc, filtfuncarg */ 190 MCLBYTES, /* maxsize */ 191 1, /* nsegments */ 192 MCLBYTES, 0, /* maxsegsz, flags */ 193 NULL, NULL, /* lockfunc, lockfuncarg */ 194 &sc->tsec_rx_mtag); /* dmat */ 195 if (error) { 196 device_printf(sc->dev, "failed to allocate busdma tag " 197 "(rx mbufs)\n"); 198 tsec_detach(sc); 199 return (ENXIO); 200 } 201 202 /* Create TX busdma maps */ 203 map_ptr = sc->tx_map_data; 204 map_pptr = sc->tx_map_unused_data; 205 206 for (i = 0; i < TSEC_TX_NUM_DESC; i++) { 207 map_pptr[i] = &map_ptr[i]; 208 error = bus_dmamap_create(sc->tsec_tx_mtag, 0, map_pptr[i]); 209 if (error) { 210 device_printf(sc->dev, "failed to init TX ring\n"); 211 tsec_detach(sc); 212 return (ENXIO); 213 } 214 } 215 216 /* Create RX busdma maps and zero mbuf handlers */ 217 for (i = 0; i < TSEC_RX_NUM_DESC; i++) { 218 error = bus_dmamap_create(sc->tsec_rx_mtag, 0, 219 &sc->rx_data[i].map); 220 if (error) { 221 device_printf(sc->dev, "failed to init RX ring\n"); 222 tsec_detach(sc); 223 return (ENXIO); 224 } 225 sc->rx_data[i].mbuf = NULL; 226 } 227 228 /* Create mbufs for RX buffers */ 229 for (i = 0; i < TSEC_RX_NUM_DESC; i++) { 230 error = tsec_new_rxbuf(sc->tsec_rx_mtag, sc->rx_data[i].map, 231 &sc->rx_data[i].mbuf, &sc->rx_data[i].paddr); 232 if (error) { 233 device_printf(sc->dev, "can't load rx DMA map %d, " 234 "error = %d\n", i, error); 235 tsec_detach(sc); 236 return (error); 237 } 238 } 239 240 /* Create network interface for upper layers */ 241 ifp = sc->tsec_ifp = if_alloc(IFT_ETHER); 242 if (ifp == NULL) { 243 device_printf(sc->dev, "if_alloc() failed\n"); 244 tsec_detach(sc); 245 return (ENOMEM); 246 } 247 248 ifp->if_softc = sc; 249 if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev)); 250 ifp->if_mtu = ETHERMTU; 251 ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST; 252 ifp->if_init = tsec_init; 253 ifp->if_start = tsec_start; 254 ifp->if_ioctl = tsec_ioctl; 255 256 IFQ_SET_MAXLEN(&ifp->if_snd, TSEC_TX_NUM_DESC - 1); 257 ifp->if_snd.ifq_drv_maxlen = TSEC_TX_NUM_DESC - 1; 258 IFQ_SET_READY(&ifp->if_snd); 259 260 ifp->if_capabilities = IFCAP_VLAN_MTU; 261 if (sc->is_etsec) 262 ifp->if_capabilities |= IFCAP_HWCSUM; 263 264 ifp->if_capenable = ifp->if_capabilities; 265 266 #ifdef DEVICE_POLLING 267 /* Advertise that polling is supported */ 268 ifp->if_capabilities |= IFCAP_POLLING; 269 #endif 270 271 /* Probe PHY(s) */ 272 error = mii_phy_probe(sc->dev, &sc->tsec_miibus, tsec_ifmedia_upd, 273 tsec_ifmedia_sts); 274 if (error) { 275 device_printf(sc->dev, "MII failed to find PHY!\n"); 276 if_free(ifp); 277 sc->tsec_ifp = NULL; 278 tsec_detach(sc); 279 return (error); 280 } 281 sc->tsec_mii = device_get_softc(sc->tsec_miibus); 282 283 /* Set MAC address */ 284 tsec_get_hwaddr(sc, hwaddr); 285 ether_ifattach(ifp, hwaddr); 286 287 return (0); 288 } 289 290 int 291 tsec_detach(struct tsec_softc *sc) 292 { 293 294 #ifdef DEVICE_POLLING 295 if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) 296 ether_poll_deregister(sc->tsec_ifp); 297 #endif 298 299 /* Stop TSEC controller and free TX queue */ 300 if (sc->sc_rres && sc->tsec_ifp) 301 tsec_shutdown(sc->dev); 302 303 /* Detach network interface */ 304 if (sc->tsec_ifp) { 305 ether_ifdetach(sc->tsec_ifp); 306 if_free(sc->tsec_ifp); 307 sc->tsec_ifp = NULL; 308 } 309 310 /* Free DMA resources */ 311 tsec_free_dma(sc); 312 313 return (0); 314 } 315 316 int 317 tsec_shutdown(device_t dev) 318 { 319 struct tsec_softc *sc; 320 321 sc = device_get_softc(dev); 322 323 TSEC_GLOBAL_LOCK(sc); 324 tsec_stop(sc); 325 TSEC_GLOBAL_UNLOCK(sc); 326 return (0); 327 } 328 329 int 330 tsec_suspend(device_t dev) 331 { 332 333 /* TODO not implemented! */ 334 return (0); 335 } 336 337 int 338 tsec_resume(device_t dev) 339 { 340 341 /* TODO not implemented! */ 342 return (0); 343 } 344 345 static void 346 tsec_init(void *xsc) 347 { 348 struct tsec_softc *sc = xsc; 349 350 TSEC_GLOBAL_LOCK(sc); 351 tsec_init_locked(sc); 352 TSEC_GLOBAL_UNLOCK(sc); 353 } 354 355 static void 356 tsec_init_locked(struct tsec_softc *sc) 357 { 358 struct tsec_desc *tx_desc = sc->tsec_tx_vaddr; 359 struct tsec_desc *rx_desc = sc->tsec_rx_vaddr; 360 struct ifnet *ifp = sc->tsec_ifp; 361 uint32_t timeout, val, i; 362 363 TSEC_GLOBAL_LOCK_ASSERT(sc); 364 tsec_stop(sc); 365 366 /* 367 * These steps are according to the MPC8555E PowerQUICCIII RM: 368 * 14.7 Initialization/Application Information 369 */ 370 371 /* Step 1: soft reset MAC */ 372 tsec_reset_mac(sc); 373 374 /* Step 2: Initialize MACCFG2 */ 375 TSEC_WRITE(sc, TSEC_REG_MACCFG2, 376 TSEC_MACCFG2_FULLDUPLEX | /* Full Duplex = 1 */ 377 TSEC_MACCFG2_PADCRC | /* PAD/CRC append */ 378 TSEC_MACCFG2_GMII | /* I/F Mode bit */ 379 TSEC_MACCFG2_PRECNT /* Preamble count = 7 */ 380 ); 381 382 /* Step 3: Initialize ECNTRL 383 * While the documentation states that R100M is ignored if RPM is 384 * not set, it does seem to be needed to get the orange boxes to 385 * work (which have a Marvell 88E1111 PHY). Go figure. 386 */ 387 388 /* 389 * XXX kludge - use circumstancial evidence to program ECNTRL 390 * correctly. Ideally we need some board information to guide 391 * us here. 392 */ 393 i = TSEC_READ(sc, TSEC_REG_ID2); 394 val = (i & 0xffff) 395 ? (TSEC_ECNTRL_TBIM | TSEC_ECNTRL_SGMIIM) /* Sumatra */ 396 : TSEC_ECNTRL_R100M; /* Orange + CDS */ 397 TSEC_WRITE(sc, TSEC_REG_ECNTRL, TSEC_ECNTRL_STEN | val); 398 399 /* Step 4: Initialize MAC station address */ 400 tsec_set_mac_address(sc); 401 402 /* 403 * Step 5: Assign a Physical address to the TBI so as to not conflict 404 * with the external PHY physical address 405 */ 406 TSEC_WRITE(sc, TSEC_REG_TBIPA, 5); 407 408 /* Step 6: Reset the management interface */ 409 TSEC_WRITE(tsec0_sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_RESETMGMT); 410 411 /* Step 7: Setup the MII Mgmt clock speed */ 412 TSEC_WRITE(tsec0_sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_CLKDIV28); 413 414 /* Step 8: Read MII Mgmt indicator register and check for Busy = 0 */ 415 timeout = TSEC_READ_RETRY; 416 while (--timeout && (TSEC_READ(tsec0_sc, TSEC_REG_MIIMIND) & 417 TSEC_MIIMIND_BUSY)) 418 DELAY(TSEC_READ_DELAY); 419 if (timeout == 0) { 420 if_printf(ifp, "tsec_init_locked(): Mgmt busy timeout\n"); 421 return; 422 } 423 424 /* Step 9: Setup the MII Mgmt */ 425 mii_mediachg(sc->tsec_mii); 426 427 /* Step 10: Clear IEVENT register */ 428 TSEC_WRITE(sc, TSEC_REG_IEVENT, 0xffffffff); 429 430 /* Step 11: Enable interrupts */ 431 #ifdef DEVICE_POLLING 432 /* 433 * ...only if polling is not turned on. Disable interrupts explicitly 434 * if polling is enabled. 435 */ 436 if (ifp->if_capenable & IFCAP_POLLING ) 437 tsec_intrs_ctl(sc, 0); 438 else 439 #endif /* DEVICE_POLLING */ 440 tsec_intrs_ctl(sc, 1); 441 442 /* Step 12: Initialize IADDRn */ 443 TSEC_WRITE(sc, TSEC_REG_IADDR0, 0); 444 TSEC_WRITE(sc, TSEC_REG_IADDR1, 0); 445 TSEC_WRITE(sc, TSEC_REG_IADDR2, 0); 446 TSEC_WRITE(sc, TSEC_REG_IADDR3, 0); 447 TSEC_WRITE(sc, TSEC_REG_IADDR4, 0); 448 TSEC_WRITE(sc, TSEC_REG_IADDR5, 0); 449 TSEC_WRITE(sc, TSEC_REG_IADDR6, 0); 450 TSEC_WRITE(sc, TSEC_REG_IADDR7, 0); 451 452 /* Step 13: Initialize GADDRn */ 453 TSEC_WRITE(sc, TSEC_REG_GADDR0, 0); 454 TSEC_WRITE(sc, TSEC_REG_GADDR1, 0); 455 TSEC_WRITE(sc, TSEC_REG_GADDR2, 0); 456 TSEC_WRITE(sc, TSEC_REG_GADDR3, 0); 457 TSEC_WRITE(sc, TSEC_REG_GADDR4, 0); 458 TSEC_WRITE(sc, TSEC_REG_GADDR5, 0); 459 TSEC_WRITE(sc, TSEC_REG_GADDR6, 0); 460 TSEC_WRITE(sc, TSEC_REG_GADDR7, 0); 461 462 /* Step 14: Initialize RCTRL */ 463 TSEC_WRITE(sc, TSEC_REG_RCTRL, 0); 464 465 /* Step 15: Initialize DMACTRL */ 466 tsec_dma_ctl(sc, 1); 467 468 /* Step 16: Initialize FIFO_PAUSE_CTRL */ 469 TSEC_WRITE(sc, TSEC_REG_FIFO_PAUSE_CTRL, TSEC_FIFO_PAUSE_CTRL_EN); 470 471 /* 472 * Step 17: Initialize transmit/receive descriptor rings. 473 * Initialize TBASE and RBASE. 474 */ 475 TSEC_WRITE(sc, TSEC_REG_TBASE, sc->tsec_tx_raddr); 476 TSEC_WRITE(sc, TSEC_REG_RBASE, sc->tsec_rx_raddr); 477 478 for (i = 0; i < TSEC_TX_NUM_DESC; i++) { 479 tx_desc[i].bufptr = 0; 480 tx_desc[i].length = 0; 481 tx_desc[i].flags = ((i == TSEC_TX_NUM_DESC - 1) ? 482 TSEC_TXBD_W : 0); 483 } 484 bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap, 485 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 486 487 for (i = 0; i < TSEC_RX_NUM_DESC; i++) { 488 rx_desc[i].bufptr = sc->rx_data[i].paddr; 489 rx_desc[i].length = 0; 490 rx_desc[i].flags = TSEC_RXBD_E | TSEC_RXBD_I | 491 ((i == TSEC_RX_NUM_DESC - 1) ? TSEC_RXBD_W : 0); 492 } 493 bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap, 494 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 495 496 /* Step 18: Initialize the maximum receive buffer length */ 497 TSEC_WRITE(sc, TSEC_REG_MRBLR, MCLBYTES); 498 499 /* Step 19: Configure ethernet frame sizes */ 500 TSEC_WRITE(sc, TSEC_REG_MINFLR, TSEC_MIN_FRAME_SIZE); 501 tsec_set_mtu(sc, ifp->if_mtu); 502 503 /* Step 20: Enable Rx and RxBD sdata snooping */ 504 TSEC_WRITE(sc, TSEC_REG_ATTR, TSEC_ATTR_RDSEN | TSEC_ATTR_RBDSEN); 505 TSEC_WRITE(sc, TSEC_REG_ATTRELI, 0); 506 507 /* Step 21: Reset collision counters in hardware */ 508 TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0); 509 TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0); 510 TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0); 511 TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0); 512 TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0); 513 514 /* Step 22: Mask all CAM interrupts */ 515 TSEC_WRITE(sc, TSEC_REG_MON_CAM1, 0xffffffff); 516 TSEC_WRITE(sc, TSEC_REG_MON_CAM2, 0xffffffff); 517 518 /* Step 23: Enable Rx and Tx */ 519 val = TSEC_READ(sc, TSEC_REG_MACCFG1); 520 val |= (TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN); 521 TSEC_WRITE(sc, TSEC_REG_MACCFG1, val); 522 523 /* Step 24: Reset TSEC counters for Tx and Rx rings */ 524 TSEC_TX_RX_COUNTERS_INIT(sc); 525 526 /* Step 25: Setup TCP/IP Off-Load engine */ 527 if (sc->is_etsec) 528 tsec_offload_setup(sc); 529 530 /* Step 26: Setup multicast filters */ 531 tsec_setup_multicast(sc); 532 533 /* Step 27: Activate network interface */ 534 ifp->if_drv_flags |= IFF_DRV_RUNNING; 535 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 536 sc->tsec_if_flags = ifp->if_flags; 537 sc->tsec_watchdog = 0; 538 539 /* Schedule watchdog timeout */ 540 callout_reset(&sc->tsec_callout, hz, tsec_tick, sc); 541 } 542 543 static void 544 tsec_set_mac_address(struct tsec_softc *sc) 545 { 546 uint32_t macbuf[2] = { 0, 0 }; 547 char *macbufp, *curmac; 548 int i; 549 550 TSEC_GLOBAL_LOCK_ASSERT(sc); 551 552 KASSERT((ETHER_ADDR_LEN <= sizeof(macbuf)), 553 ("tsec_set_mac_address: (%d <= %d", ETHER_ADDR_LEN, 554 sizeof(macbuf))); 555 556 macbufp = (char *)macbuf; 557 curmac = (char *)IF_LLADDR(sc->tsec_ifp); 558 559 /* Correct order of MAC address bytes */ 560 for (i = 1; i <= ETHER_ADDR_LEN; i++) 561 macbufp[ETHER_ADDR_LEN-i] = curmac[i-1]; 562 563 /* Initialize MAC station address MACSTNADDR2 and MACSTNADDR1 */ 564 TSEC_WRITE(sc, TSEC_REG_MACSTNADDR2, macbuf[1]); 565 TSEC_WRITE(sc, TSEC_REG_MACSTNADDR1, macbuf[0]); 566 } 567 568 /* 569 * DMA control function, if argument state is: 570 * 0 - DMA engine will be disabled 571 * 1 - DMA engine will be enabled 572 */ 573 static void 574 tsec_dma_ctl(struct tsec_softc *sc, int state) 575 { 576 device_t dev; 577 uint32_t dma_flags, timeout; 578 579 dev = sc->dev; 580 581 dma_flags = TSEC_READ(sc, TSEC_REG_DMACTRL); 582 583 switch (state) { 584 case 0: 585 /* Temporarily clear stop graceful stop bits. */ 586 tsec_dma_ctl(sc, 1000); 587 588 /* Set it again */ 589 dma_flags |= (TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS); 590 break; 591 case 1000: 592 case 1: 593 /* Set write with response (WWR), wait (WOP) and snoop bits */ 594 dma_flags |= (TSEC_DMACTRL_TDSEN | TSEC_DMACTRL_TBDSEN | 595 DMACTRL_WWR | DMACTRL_WOP); 596 597 /* Clear graceful stop bits */ 598 dma_flags &= ~(TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS); 599 break; 600 default: 601 device_printf(dev, "tsec_dma_ctl(): unknown state value: %d\n", 602 state); 603 } 604 605 TSEC_WRITE(sc, TSEC_REG_DMACTRL, dma_flags); 606 607 switch (state) { 608 case 0: 609 /* Wait for DMA stop */ 610 timeout = TSEC_READ_RETRY; 611 while (--timeout && (!(TSEC_READ(sc, TSEC_REG_IEVENT) & 612 (TSEC_IEVENT_GRSC | TSEC_IEVENT_GTSC)))) 613 DELAY(TSEC_READ_DELAY); 614 615 if (timeout == 0) 616 device_printf(dev, "tsec_dma_ctl(): timeout!\n"); 617 break; 618 case 1: 619 /* Restart transmission function */ 620 TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT); 621 } 622 } 623 624 /* 625 * Interrupts control function, if argument state is: 626 * 0 - all TSEC interrupts will be masked 627 * 1 - all TSEC interrupts will be unmasked 628 */ 629 static void 630 tsec_intrs_ctl(struct tsec_softc *sc, int state) 631 { 632 device_t dev; 633 634 dev = sc->dev; 635 636 switch (state) { 637 case 0: 638 TSEC_WRITE(sc, TSEC_REG_IMASK, 0); 639 break; 640 case 1: 641 TSEC_WRITE(sc, TSEC_REG_IMASK, TSEC_IMASK_BREN | 642 TSEC_IMASK_RXCEN | TSEC_IMASK_BSYEN | TSEC_IMASK_EBERREN | 643 TSEC_IMASK_BTEN | TSEC_IMASK_TXEEN | TSEC_IMASK_TXBEN | 644 TSEC_IMASK_TXFEN | TSEC_IMASK_XFUNEN | TSEC_IMASK_RXFEN); 645 break; 646 default: 647 device_printf(dev, "tsec_intrs_ctl(): unknown state value: %d\n", 648 state); 649 } 650 } 651 652 static void 653 tsec_reset_mac(struct tsec_softc *sc) 654 { 655 uint32_t maccfg1_flags; 656 657 /* Set soft reset bit */ 658 maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1); 659 maccfg1_flags |= TSEC_MACCFG1_SOFT_RESET; 660 TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags); 661 662 /* Clear soft reset bit */ 663 maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1); 664 maccfg1_flags &= ~TSEC_MACCFG1_SOFT_RESET; 665 TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags); 666 } 667 668 static void 669 tsec_watchdog(struct tsec_softc *sc) 670 { 671 struct ifnet *ifp; 672 673 TSEC_GLOBAL_LOCK_ASSERT(sc); 674 675 if (sc->tsec_watchdog == 0 || --sc->tsec_watchdog > 0) 676 return; 677 678 ifp = sc->tsec_ifp; 679 ifp->if_oerrors++; 680 if_printf(ifp, "watchdog timeout\n"); 681 682 tsec_stop(sc); 683 tsec_init_locked(sc); 684 } 685 686 static void 687 tsec_start(struct ifnet *ifp) 688 { 689 struct tsec_softc *sc = ifp->if_softc; 690 691 TSEC_TRANSMIT_LOCK(sc); 692 tsec_start_locked(ifp); 693 TSEC_TRANSMIT_UNLOCK(sc); 694 } 695 696 static void 697 tsec_start_locked(struct ifnet *ifp) 698 { 699 struct tsec_softc *sc; 700 struct mbuf *m0, *mtmp; 701 struct tsec_tx_fcb *tx_fcb; 702 unsigned int queued = 0; 703 int csum_flags, fcb_inserted = 0; 704 705 sc = ifp->if_softc; 706 707 TSEC_TRANSMIT_LOCK_ASSERT(sc); 708 709 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 710 IFF_DRV_RUNNING) 711 return; 712 713 if (sc->tsec_link == 0) 714 return; 715 716 bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap, 717 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 718 719 while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 720 /* Get packet from the queue */ 721 IFQ_DRV_DEQUEUE(&ifp->if_snd, m0); 722 if (m0 == NULL) 723 break; 724 725 /* Insert TCP/IP Off-load frame control block */ 726 csum_flags = m0->m_pkthdr.csum_flags; 727 if (csum_flags) { 728 729 M_PREPEND(m0, sizeof(struct tsec_tx_fcb), M_DONTWAIT); 730 if (m0 == NULL) 731 break; 732 733 tx_fcb = mtod(m0, struct tsec_tx_fcb *); 734 tx_fcb->flags = 0; 735 tx_fcb->l3_offset = ETHER_HDR_LEN; 736 tx_fcb->l4_offset = sizeof(struct ip); 737 738 if (csum_flags & CSUM_IP) 739 tx_fcb->flags |= TSEC_TX_FCB_IP4 | 740 TSEC_TX_FCB_CSUM_IP; 741 742 if (csum_flags & CSUM_TCP) 743 tx_fcb->flags |= TSEC_TX_FCB_TCP | 744 TSEC_TX_FCB_CSUM_TCP_UDP; 745 746 if (csum_flags & CSUM_UDP) 747 tx_fcb->flags |= TSEC_TX_FCB_UDP | 748 TSEC_TX_FCB_CSUM_TCP_UDP; 749 750 fcb_inserted = 1; 751 } 752 753 mtmp = m_defrag(m0, M_DONTWAIT); 754 if (mtmp) 755 m0 = mtmp; 756 757 if (tsec_encap(sc, m0, fcb_inserted)) { 758 IFQ_DRV_PREPEND(&ifp->if_snd, m0); 759 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 760 break; 761 } 762 queued++; 763 BPF_MTAP(ifp, m0); 764 } 765 bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap, 766 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 767 768 if (queued) { 769 /* Enable transmitter and watchdog timer */ 770 TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT); 771 sc->tsec_watchdog = 5; 772 } 773 } 774 775 static int 776 tsec_encap(struct tsec_softc *sc, struct mbuf *m0, int fcb_inserted) 777 { 778 struct tsec_desc *tx_desc = NULL; 779 struct ifnet *ifp; 780 bus_dma_segment_t segs[TSEC_TX_NUM_DESC]; 781 bus_dmamap_t *mapp; 782 int csum_flag = 0, error, seg, nsegs; 783 784 TSEC_TRANSMIT_LOCK_ASSERT(sc); 785 786 ifp = sc->tsec_ifp; 787 788 if (TSEC_FREE_TX_DESC(sc) == 0) { 789 /* No free descriptors */ 790 return (-1); 791 } 792 793 /* Fetch unused map */ 794 mapp = TSEC_ALLOC_TX_MAP(sc); 795 796 /* Create mapping in DMA memory */ 797 error = bus_dmamap_load_mbuf_sg(sc->tsec_tx_mtag, 798 *mapp, m0, segs, &nsegs, BUS_DMA_NOWAIT); 799 if (error != 0 || nsegs > TSEC_FREE_TX_DESC(sc) || nsegs <= 0) { 800 bus_dmamap_unload(sc->tsec_tx_mtag, *mapp); 801 TSEC_FREE_TX_MAP(sc, mapp); 802 return ((error != 0) ? error : -1); 803 } 804 bus_dmamap_sync(sc->tsec_tx_mtag, *mapp, BUS_DMASYNC_PREWRITE); 805 806 if ((ifp->if_flags & IFF_DEBUG) && (nsegs > 1)) 807 if_printf(ifp, "TX buffer has %d segments\n", nsegs); 808 809 if (fcb_inserted) 810 csum_flag = TSEC_TXBD_TOE; 811 812 /* Everything is ok, now we can send buffers */ 813 for (seg = 0; seg < nsegs; seg++) { 814 tx_desc = TSEC_GET_CUR_TX_DESC(sc); 815 816 tx_desc->length = segs[seg].ds_len; 817 tx_desc->bufptr = segs[seg].ds_addr; 818 819 /* 820 * Set flags: 821 * - wrap 822 * - checksum 823 * - ready to send 824 * - transmit the CRC sequence after the last data byte 825 * - interrupt after the last buffer 826 */ 827 tx_desc->flags = 828 (tx_desc->flags & TSEC_TXBD_W) | 829 ((seg == 0) ? csum_flag : 0) | TSEC_TXBD_R | TSEC_TXBD_TC | 830 ((seg == nsegs - 1) ? TSEC_TXBD_L | TSEC_TXBD_I : 0); 831 } 832 833 /* Save mbuf and DMA mapping for release at later stage */ 834 TSEC_PUT_TX_MBUF(sc, m0); 835 TSEC_PUT_TX_MAP(sc, mapp); 836 837 return (0); 838 } 839 840 static void 841 tsec_setfilter(struct tsec_softc *sc) 842 { 843 struct ifnet *ifp; 844 uint32_t flags; 845 846 ifp = sc->tsec_ifp; 847 flags = TSEC_READ(sc, TSEC_REG_RCTRL); 848 849 /* Promiscuous mode */ 850 if (ifp->if_flags & IFF_PROMISC) 851 flags |= TSEC_RCTRL_PROM; 852 else 853 flags &= ~TSEC_RCTRL_PROM; 854 855 TSEC_WRITE(sc, TSEC_REG_RCTRL, flags); 856 } 857 858 #ifdef DEVICE_POLLING 859 static poll_handler_t tsec_poll; 860 861 static int 862 tsec_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 863 { 864 uint32_t ie; 865 struct tsec_softc *sc = ifp->if_softc; 866 int rx_npkts; 867 868 rx_npkts = 0; 869 870 TSEC_GLOBAL_LOCK(sc); 871 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 872 TSEC_GLOBAL_UNLOCK(sc); 873 return (rx_npkts); 874 } 875 876 if (cmd == POLL_AND_CHECK_STATUS) { 877 tsec_error_intr_locked(sc, count); 878 879 /* Clear all events reported */ 880 ie = TSEC_READ(sc, TSEC_REG_IEVENT); 881 TSEC_WRITE(sc, TSEC_REG_IEVENT, ie); 882 } 883 884 tsec_transmit_intr_locked(sc); 885 886 TSEC_GLOBAL_TO_RECEIVE_LOCK(sc); 887 888 rx_npkts = tsec_receive_intr_locked(sc, count); 889 890 TSEC_RECEIVE_UNLOCK(sc); 891 892 return (rx_npkts); 893 } 894 #endif /* DEVICE_POLLING */ 895 896 static int 897 tsec_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 898 { 899 struct tsec_softc *sc = ifp->if_softc; 900 struct ifreq *ifr = (struct ifreq *)data; 901 device_t dev; 902 int mask, error = 0; 903 904 dev = sc->dev; 905 906 switch (command) { 907 case SIOCSIFMTU: 908 TSEC_GLOBAL_LOCK(sc); 909 if (tsec_set_mtu(sc, ifr->ifr_mtu)) 910 ifp->if_mtu = ifr->ifr_mtu; 911 else 912 error = EINVAL; 913 TSEC_GLOBAL_UNLOCK(sc); 914 break; 915 case SIOCSIFFLAGS: 916 TSEC_GLOBAL_LOCK(sc); 917 if (ifp->if_flags & IFF_UP) { 918 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 919 if ((sc->tsec_if_flags ^ ifp->if_flags) & 920 IFF_PROMISC) 921 tsec_setfilter(sc); 922 923 if ((sc->tsec_if_flags ^ ifp->if_flags) & 924 IFF_ALLMULTI) 925 tsec_setup_multicast(sc); 926 } else 927 tsec_init_locked(sc); 928 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) 929 tsec_stop(sc); 930 931 sc->tsec_if_flags = ifp->if_flags; 932 TSEC_GLOBAL_UNLOCK(sc); 933 break; 934 case SIOCADDMULTI: 935 case SIOCDELMULTI: 936 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 937 TSEC_GLOBAL_LOCK(sc); 938 tsec_setup_multicast(sc); 939 TSEC_GLOBAL_UNLOCK(sc); 940 } 941 case SIOCGIFMEDIA: 942 case SIOCSIFMEDIA: 943 error = ifmedia_ioctl(ifp, ifr, &sc->tsec_mii->mii_media, 944 command); 945 break; 946 case SIOCSIFCAP: 947 mask = ifp->if_capenable ^ ifr->ifr_reqcap; 948 if ((mask & IFCAP_HWCSUM) && sc->is_etsec) { 949 TSEC_GLOBAL_LOCK(sc); 950 ifp->if_capenable &= ~IFCAP_HWCSUM; 951 ifp->if_capenable |= IFCAP_HWCSUM & ifr->ifr_reqcap; 952 tsec_offload_setup(sc); 953 TSEC_GLOBAL_UNLOCK(sc); 954 } 955 #ifdef DEVICE_POLLING 956 if (mask & IFCAP_POLLING) { 957 if (ifr->ifr_reqcap & IFCAP_POLLING) { 958 error = ether_poll_register(tsec_poll, ifp); 959 if (error) 960 return (error); 961 962 TSEC_GLOBAL_LOCK(sc); 963 /* Disable interrupts */ 964 tsec_intrs_ctl(sc, 0); 965 ifp->if_capenable |= IFCAP_POLLING; 966 TSEC_GLOBAL_UNLOCK(sc); 967 } else { 968 error = ether_poll_deregister(ifp); 969 TSEC_GLOBAL_LOCK(sc); 970 /* Enable interrupts */ 971 tsec_intrs_ctl(sc, 1); 972 ifp->if_capenable &= ~IFCAP_POLLING; 973 TSEC_GLOBAL_UNLOCK(sc); 974 } 975 } 976 #endif 977 break; 978 979 default: 980 error = ether_ioctl(ifp, command, data); 981 } 982 983 /* Flush buffers if not empty */ 984 if (ifp->if_flags & IFF_UP) 985 tsec_start(ifp); 986 return (error); 987 } 988 989 static int 990 tsec_ifmedia_upd(struct ifnet *ifp) 991 { 992 struct tsec_softc *sc = ifp->if_softc; 993 struct mii_data *mii; 994 995 TSEC_TRANSMIT_LOCK(sc); 996 997 mii = sc->tsec_mii; 998 mii_mediachg(mii); 999 1000 TSEC_TRANSMIT_UNLOCK(sc); 1001 return (0); 1002 } 1003 1004 static void 1005 tsec_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 1006 { 1007 struct tsec_softc *sc = ifp->if_softc; 1008 struct mii_data *mii; 1009 1010 TSEC_TRANSMIT_LOCK(sc); 1011 1012 mii = sc->tsec_mii; 1013 mii_pollstat(mii); 1014 1015 ifmr->ifm_active = mii->mii_media_active; 1016 ifmr->ifm_status = mii->mii_media_status; 1017 1018 TSEC_TRANSMIT_UNLOCK(sc); 1019 } 1020 1021 static int 1022 tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map, struct mbuf **mbufp, 1023 uint32_t *paddr) 1024 { 1025 struct mbuf *new_mbuf; 1026 bus_dma_segment_t seg[1]; 1027 int error, nsegs; 1028 1029 KASSERT(mbufp != NULL, ("NULL mbuf pointer!")); 1030 1031 new_mbuf = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MCLBYTES); 1032 if (new_mbuf == NULL) 1033 return (ENOBUFS); 1034 new_mbuf->m_len = new_mbuf->m_pkthdr.len = new_mbuf->m_ext.ext_size; 1035 1036 if (*mbufp) { 1037 bus_dmamap_sync(tag, map, BUS_DMASYNC_POSTREAD); 1038 bus_dmamap_unload(tag, map); 1039 } 1040 1041 error = bus_dmamap_load_mbuf_sg(tag, map, new_mbuf, seg, &nsegs, 1042 BUS_DMA_NOWAIT); 1043 KASSERT(nsegs == 1, ("Too many segments returned!")); 1044 if (nsegs != 1 || error) 1045 panic("tsec_new_rxbuf(): nsegs(%d), error(%d)", nsegs, error); 1046 1047 #if 0 1048 if (error) { 1049 printf("tsec: bus_dmamap_load_mbuf_sg() returned: %d!\n", 1050 error); 1051 m_freem(new_mbuf); 1052 return (ENOBUFS); 1053 } 1054 #endif 1055 1056 #if 0 1057 KASSERT(((seg->ds_addr) & (TSEC_RXBUFFER_ALIGNMENT-1)) == 0, 1058 ("Wrong alignment of RX buffer!")); 1059 #endif 1060 bus_dmamap_sync(tag, map, BUS_DMASYNC_PREREAD); 1061 1062 (*mbufp) = new_mbuf; 1063 (*paddr) = seg->ds_addr; 1064 return (0); 1065 } 1066 1067 static void 1068 tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1069 { 1070 u_int32_t *paddr; 1071 1072 KASSERT(nseg == 1, ("wrong number of segments, should be 1")); 1073 paddr = arg; 1074 *paddr = segs->ds_addr; 1075 } 1076 1077 static int 1078 tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag, bus_dmamap_t *dmap, 1079 bus_size_t dsize, void **vaddr, void *raddr, const char *dname) 1080 { 1081 int error; 1082 1083 /* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */ 1084 error = bus_dma_tag_create(NULL, /* parent */ 1085 PAGE_SIZE, 0, /* alignment, boundary */ 1086 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1087 BUS_SPACE_MAXADDR, /* highaddr */ 1088 NULL, NULL, /* filtfunc, filtfuncarg */ 1089 dsize, 1, /* maxsize, nsegments */ 1090 dsize, 0, /* maxsegsz, flags */ 1091 NULL, NULL, /* lockfunc, lockfuncarg */ 1092 dtag); /* dmat */ 1093 1094 if (error) { 1095 device_printf(dev, "failed to allocate busdma %s tag\n", 1096 dname); 1097 (*vaddr) = NULL; 1098 return (ENXIO); 1099 } 1100 1101 error = bus_dmamem_alloc(*dtag, vaddr, BUS_DMA_NOWAIT | BUS_DMA_ZERO, 1102 dmap); 1103 if (error) { 1104 device_printf(dev, "failed to allocate %s DMA safe memory\n", 1105 dname); 1106 bus_dma_tag_destroy(*dtag); 1107 (*vaddr) = NULL; 1108 return (ENXIO); 1109 } 1110 1111 error = bus_dmamap_load(*dtag, *dmap, *vaddr, dsize, 1112 tsec_map_dma_addr, raddr, BUS_DMA_NOWAIT); 1113 if (error) { 1114 device_printf(dev, "cannot get address of the %s " 1115 "descriptors\n", dname); 1116 bus_dmamem_free(*dtag, *vaddr, *dmap); 1117 bus_dma_tag_destroy(*dtag); 1118 (*vaddr) = NULL; 1119 return (ENXIO); 1120 } 1121 1122 return (0); 1123 } 1124 1125 static void 1126 tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr) 1127 { 1128 1129 if (vaddr == NULL) 1130 return; 1131 1132 /* Unmap descriptors from DMA memory */ 1133 bus_dmamap_sync(dtag, dmap, BUS_DMASYNC_POSTREAD | 1134 BUS_DMASYNC_POSTWRITE); 1135 bus_dmamap_unload(dtag, dmap); 1136 1137 /* Free descriptors memory */ 1138 bus_dmamem_free(dtag, vaddr, dmap); 1139 1140 /* Destroy descriptors tag */ 1141 bus_dma_tag_destroy(dtag); 1142 } 1143 1144 static void 1145 tsec_free_dma(struct tsec_softc *sc) 1146 { 1147 int i; 1148 1149 /* Free TX maps */ 1150 for (i = 0; i < TSEC_TX_NUM_DESC; i++) 1151 if (sc->tx_map_data[i] != NULL) 1152 bus_dmamap_destroy(sc->tsec_tx_mtag, 1153 sc->tx_map_data[i]); 1154 /* Destroy tag for TX mbufs */ 1155 bus_dma_tag_destroy(sc->tsec_tx_mtag); 1156 1157 /* Free RX mbufs and maps */ 1158 for (i = 0; i < TSEC_RX_NUM_DESC; i++) { 1159 if (sc->rx_data[i].mbuf) { 1160 /* Unload buffer from DMA */ 1161 bus_dmamap_sync(sc->tsec_rx_mtag, sc->rx_data[i].map, 1162 BUS_DMASYNC_POSTREAD); 1163 bus_dmamap_unload(sc->tsec_rx_mtag, 1164 sc->rx_data[i].map); 1165 1166 /* Free buffer */ 1167 m_freem(sc->rx_data[i].mbuf); 1168 } 1169 /* Destroy map for this buffer */ 1170 if (sc->rx_data[i].map != NULL) 1171 bus_dmamap_destroy(sc->tsec_rx_mtag, 1172 sc->rx_data[i].map); 1173 } 1174 /* Destroy tag for RX mbufs */ 1175 bus_dma_tag_destroy(sc->tsec_rx_mtag); 1176 1177 /* Unload TX/RX descriptors */ 1178 tsec_free_dma_desc(sc->tsec_tx_dtag, sc->tsec_tx_dmap, 1179 sc->tsec_tx_vaddr); 1180 tsec_free_dma_desc(sc->tsec_rx_dtag, sc->tsec_rx_dmap, 1181 sc->tsec_rx_vaddr); 1182 } 1183 1184 static void 1185 tsec_stop(struct tsec_softc *sc) 1186 { 1187 struct ifnet *ifp; 1188 struct mbuf *m0; 1189 bus_dmamap_t *mapp; 1190 uint32_t tmpval; 1191 1192 TSEC_GLOBAL_LOCK_ASSERT(sc); 1193 1194 ifp = sc->tsec_ifp; 1195 1196 /* Disable interface and watchdog timer */ 1197 callout_stop(&sc->tsec_callout); 1198 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 1199 sc->tsec_watchdog = 0; 1200 1201 /* Disable all interrupts and stop DMA */ 1202 tsec_intrs_ctl(sc, 0); 1203 tsec_dma_ctl(sc, 0); 1204 1205 /* Remove pending data from TX queue */ 1206 while (!TSEC_EMPTYQ_TX_MBUF(sc)) { 1207 m0 = TSEC_GET_TX_MBUF(sc); 1208 mapp = TSEC_GET_TX_MAP(sc); 1209 1210 bus_dmamap_sync(sc->tsec_tx_mtag, *mapp, 1211 BUS_DMASYNC_POSTWRITE); 1212 bus_dmamap_unload(sc->tsec_tx_mtag, *mapp); 1213 1214 TSEC_FREE_TX_MAP(sc, mapp); 1215 m_freem(m0); 1216 } 1217 1218 /* Disable RX and TX */ 1219 tmpval = TSEC_READ(sc, TSEC_REG_MACCFG1); 1220 tmpval &= ~(TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN); 1221 TSEC_WRITE(sc, TSEC_REG_MACCFG1, tmpval); 1222 DELAY(10); 1223 } 1224 1225 static void 1226 tsec_tick(void *arg) 1227 { 1228 struct tsec_softc *sc = arg; 1229 struct ifnet *ifp; 1230 int link; 1231 1232 TSEC_GLOBAL_LOCK(sc); 1233 1234 tsec_watchdog(sc); 1235 1236 ifp = sc->tsec_ifp; 1237 link = sc->tsec_link; 1238 1239 mii_tick(sc->tsec_mii); 1240 1241 if (link == 0 && sc->tsec_link == 1 && 1242 (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))) 1243 tsec_start_locked(ifp); 1244 1245 /* Schedule another timeout one second from now. */ 1246 callout_reset(&sc->tsec_callout, hz, tsec_tick, sc); 1247 1248 TSEC_GLOBAL_UNLOCK(sc); 1249 } 1250 1251 /* 1252 * This is the core RX routine. It replenishes mbufs in the descriptor and 1253 * sends data which have been dma'ed into host memory to upper layer. 1254 * 1255 * Loops at most count times if count is > 0, or until done if count < 0. 1256 */ 1257 static int 1258 tsec_receive_intr_locked(struct tsec_softc *sc, int count) 1259 { 1260 struct tsec_desc *rx_desc; 1261 struct ifnet *ifp; 1262 struct rx_data_type *rx_data; 1263 struct mbuf *m; 1264 device_t dev; 1265 uint32_t i; 1266 int c, rx_npkts; 1267 uint16_t flags; 1268 1269 TSEC_RECEIVE_LOCK_ASSERT(sc); 1270 1271 ifp = sc->tsec_ifp; 1272 rx_data = sc->rx_data; 1273 dev = sc->dev; 1274 rx_npkts = 0; 1275 1276 bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap, 1277 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1278 1279 for (c = 0; ; c++) { 1280 if (count >= 0 && count-- == 0) 1281 break; 1282 1283 rx_desc = TSEC_GET_CUR_RX_DESC(sc); 1284 flags = rx_desc->flags; 1285 1286 /* Check if there is anything to receive */ 1287 if ((flags & TSEC_RXBD_E) || (c >= TSEC_RX_NUM_DESC)) { 1288 /* 1289 * Avoid generating another interrupt 1290 */ 1291 if (flags & TSEC_RXBD_E) 1292 TSEC_WRITE(sc, TSEC_REG_IEVENT, 1293 TSEC_IEVENT_RXB | TSEC_IEVENT_RXF); 1294 /* 1295 * We didn't consume current descriptor and have to 1296 * return it to the queue 1297 */ 1298 TSEC_BACK_CUR_RX_DESC(sc); 1299 break; 1300 } 1301 1302 if (flags & (TSEC_RXBD_LG | TSEC_RXBD_SH | TSEC_RXBD_NO | 1303 TSEC_RXBD_CR | TSEC_RXBD_OV | TSEC_RXBD_TR)) { 1304 1305 rx_desc->length = 0; 1306 rx_desc->flags = (rx_desc->flags & 1307 ~TSEC_RXBD_ZEROONINIT) | TSEC_RXBD_E | TSEC_RXBD_I; 1308 1309 if (sc->frame != NULL) { 1310 m_free(sc->frame); 1311 sc->frame = NULL; 1312 } 1313 1314 continue; 1315 } 1316 1317 /* Ok... process frame */ 1318 i = TSEC_GET_CUR_RX_DESC_CNT(sc); 1319 m = rx_data[i].mbuf; 1320 m->m_len = rx_desc->length; 1321 1322 if (sc->frame != NULL) { 1323 if ((flags & TSEC_RXBD_L) != 0) 1324 m->m_len -= m_length(sc->frame, NULL); 1325 1326 m->m_flags &= ~M_PKTHDR; 1327 m_cat(sc->frame, m); 1328 } else { 1329 sc->frame = m; 1330 } 1331 1332 m = NULL; 1333 1334 if ((flags & TSEC_RXBD_L) != 0) { 1335 m = sc->frame; 1336 sc->frame = NULL; 1337 } 1338 1339 if (tsec_new_rxbuf(sc->tsec_rx_mtag, rx_data[i].map, 1340 &rx_data[i].mbuf, &rx_data[i].paddr)) { 1341 ifp->if_ierrors++; 1342 /* 1343 * We ran out of mbufs; didn't consume current 1344 * descriptor and have to return it to the queue. 1345 */ 1346 TSEC_BACK_CUR_RX_DESC(sc); 1347 break; 1348 } 1349 1350 /* Attach new buffer to descriptor and clear flags */ 1351 rx_desc->bufptr = rx_data[i].paddr; 1352 rx_desc->length = 0; 1353 rx_desc->flags = (rx_desc->flags & ~TSEC_RXBD_ZEROONINIT) | 1354 TSEC_RXBD_E | TSEC_RXBD_I; 1355 1356 if (m != NULL) { 1357 m->m_pkthdr.rcvif = ifp; 1358 1359 m_fixhdr(m); 1360 m_adj(m, -ETHER_CRC_LEN); 1361 1362 if (sc->is_etsec) 1363 tsec_offload_process_frame(sc, m); 1364 1365 TSEC_RECEIVE_UNLOCK(sc); 1366 (*ifp->if_input)(ifp, m); 1367 TSEC_RECEIVE_LOCK(sc); 1368 rx_npkts++; 1369 } 1370 } 1371 1372 bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap, 1373 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1374 1375 /* 1376 * Make sure TSEC receiver is not halted. 1377 * 1378 * Various conditions can stop the TSEC receiver, but not all are 1379 * signaled and handled by error interrupt, so make sure the receiver 1380 * is running. Writing to TSEC_REG_RSTAT restarts the receiver when 1381 * halted, and is harmless if already running. 1382 */ 1383 TSEC_WRITE(sc, TSEC_REG_RSTAT, TSEC_RSTAT_QHLT); 1384 return (rx_npkts); 1385 } 1386 1387 void 1388 tsec_receive_intr(void *arg) 1389 { 1390 struct tsec_softc *sc = arg; 1391 1392 TSEC_RECEIVE_LOCK(sc); 1393 1394 #ifdef DEVICE_POLLING 1395 if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) { 1396 TSEC_RECEIVE_UNLOCK(sc); 1397 return; 1398 } 1399 #endif 1400 1401 /* Confirm the interrupt was received by driver */ 1402 TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXB | TSEC_IEVENT_RXF); 1403 tsec_receive_intr_locked(sc, -1); 1404 1405 TSEC_RECEIVE_UNLOCK(sc); 1406 } 1407 1408 static void 1409 tsec_transmit_intr_locked(struct tsec_softc *sc) 1410 { 1411 struct tsec_desc *tx_desc; 1412 struct ifnet *ifp; 1413 struct mbuf *m0; 1414 bus_dmamap_t *mapp; 1415 int send = 0; 1416 1417 TSEC_TRANSMIT_LOCK_ASSERT(sc); 1418 1419 ifp = sc->tsec_ifp; 1420 1421 /* Update collision statistics */ 1422 ifp->if_collisions += TSEC_READ(sc, TSEC_REG_MON_TNCL); 1423 1424 /* Reset collision counters in hardware */ 1425 TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0); 1426 TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0); 1427 TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0); 1428 TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0); 1429 TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0); 1430 1431 bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap, 1432 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1433 1434 while (TSEC_CUR_DIFF_DIRTY_TX_DESC(sc)) { 1435 tx_desc = TSEC_GET_DIRTY_TX_DESC(sc); 1436 if (tx_desc->flags & TSEC_TXBD_R) { 1437 TSEC_BACK_DIRTY_TX_DESC(sc); 1438 break; 1439 } 1440 1441 if ((tx_desc->flags & TSEC_TXBD_L) == 0) 1442 continue; 1443 1444 /* 1445 * This is the last buf in this packet, so unmap and free it. 1446 */ 1447 m0 = TSEC_GET_TX_MBUF(sc); 1448 mapp = TSEC_GET_TX_MAP(sc); 1449 1450 bus_dmamap_sync(sc->tsec_tx_mtag, *mapp, 1451 BUS_DMASYNC_POSTWRITE); 1452 bus_dmamap_unload(sc->tsec_tx_mtag, *mapp); 1453 1454 TSEC_FREE_TX_MAP(sc, mapp); 1455 m_freem(m0); 1456 1457 ifp->if_opackets++; 1458 send = 1; 1459 } 1460 bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap, 1461 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1462 1463 if (send) { 1464 /* Now send anything that was pending */ 1465 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1466 tsec_start_locked(ifp); 1467 1468 /* Stop wathdog if all sent */ 1469 if (TSEC_EMPTYQ_TX_MBUF(sc)) 1470 sc->tsec_watchdog = 0; 1471 } 1472 } 1473 1474 void 1475 tsec_transmit_intr(void *arg) 1476 { 1477 struct tsec_softc *sc = arg; 1478 1479 TSEC_TRANSMIT_LOCK(sc); 1480 1481 #ifdef DEVICE_POLLING 1482 if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) { 1483 TSEC_TRANSMIT_UNLOCK(sc); 1484 return; 1485 } 1486 #endif 1487 /* Confirm the interrupt was received by driver */ 1488 TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_TXB | TSEC_IEVENT_TXF); 1489 tsec_transmit_intr_locked(sc); 1490 1491 TSEC_TRANSMIT_UNLOCK(sc); 1492 } 1493 1494 static void 1495 tsec_error_intr_locked(struct tsec_softc *sc, int count) 1496 { 1497 struct ifnet *ifp; 1498 uint32_t eflags; 1499 1500 TSEC_GLOBAL_LOCK_ASSERT(sc); 1501 1502 ifp = sc->tsec_ifp; 1503 1504 eflags = TSEC_READ(sc, TSEC_REG_IEVENT); 1505 1506 /* Clear events bits in hardware */ 1507 TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXC | TSEC_IEVENT_BSY | 1508 TSEC_IEVENT_EBERR | TSEC_IEVENT_MSRO | TSEC_IEVENT_BABT | 1509 TSEC_IEVENT_TXC | TSEC_IEVENT_TXE | TSEC_IEVENT_LC | 1510 TSEC_IEVENT_CRL | TSEC_IEVENT_XFUN); 1511 1512 /* Check transmitter errors */ 1513 if (eflags & TSEC_IEVENT_TXE) { 1514 ifp->if_oerrors++; 1515 1516 if (eflags & TSEC_IEVENT_LC) 1517 ifp->if_collisions++; 1518 1519 TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT); 1520 } 1521 1522 /* Check receiver errors */ 1523 if (eflags & TSEC_IEVENT_BSY) { 1524 ifp->if_ierrors++; 1525 ifp->if_iqdrops++; 1526 1527 /* Get data from RX buffers */ 1528 tsec_receive_intr_locked(sc, count); 1529 } 1530 1531 if (ifp->if_flags & IFF_DEBUG) 1532 if_printf(ifp, "tsec_error_intr(): event flags: 0x%x\n", 1533 eflags); 1534 1535 if (eflags & TSEC_IEVENT_EBERR) { 1536 if_printf(ifp, "System bus error occurred during" 1537 "DMA transaction (flags: 0x%x)\n", eflags); 1538 tsec_init_locked(sc); 1539 } 1540 1541 if (eflags & TSEC_IEVENT_BABT) 1542 ifp->if_oerrors++; 1543 1544 if (eflags & TSEC_IEVENT_BABR) 1545 ifp->if_ierrors++; 1546 } 1547 1548 void 1549 tsec_error_intr(void *arg) 1550 { 1551 struct tsec_softc *sc = arg; 1552 1553 TSEC_GLOBAL_LOCK(sc); 1554 tsec_error_intr_locked(sc, -1); 1555 TSEC_GLOBAL_UNLOCK(sc); 1556 } 1557 1558 int 1559 tsec_miibus_readreg(device_t dev, int phy, int reg) 1560 { 1561 struct tsec_softc *sc; 1562 uint32_t timeout; 1563 1564 sc = device_get_softc(dev); 1565 1566 if (sc->phyaddr != phy) 1567 return (0); 1568 1569 sc = tsec0_sc; 1570 1571 TSEC_WRITE(sc, TSEC_REG_MIIMADD, (phy << 8) | reg); 1572 TSEC_WRITE(sc, TSEC_REG_MIIMCOM, 0); 1573 TSEC_WRITE(sc, TSEC_REG_MIIMCOM, TSEC_MIIMCOM_READCYCLE); 1574 1575 timeout = TSEC_READ_RETRY; 1576 while (--timeout && TSEC_READ(sc, TSEC_REG_MIIMIND) & 1577 (TSEC_MIIMIND_NOTVALID | TSEC_MIIMIND_BUSY)) 1578 DELAY(TSEC_READ_DELAY); 1579 1580 if (timeout == 0) 1581 device_printf(dev, "Timeout while reading from PHY!\n"); 1582 1583 return (TSEC_READ(sc, TSEC_REG_MIIMSTAT)); 1584 } 1585 1586 int 1587 tsec_miibus_writereg(device_t dev, int phy, int reg, int value) 1588 { 1589 struct tsec_softc *sc; 1590 uint32_t timeout; 1591 1592 sc = device_get_softc(dev); 1593 1594 if (sc->phyaddr != phy) 1595 return (0); 1596 1597 sc = tsec0_sc; 1598 1599 TSEC_WRITE(sc, TSEC_REG_MIIMADD, (phy << 8) | reg); 1600 TSEC_WRITE(sc, TSEC_REG_MIIMCON, value); 1601 1602 timeout = TSEC_READ_RETRY; 1603 while (--timeout && (TSEC_READ(sc, TSEC_REG_MIIMIND) & 1604 TSEC_MIIMIND_BUSY)) 1605 DELAY(TSEC_READ_DELAY); 1606 1607 if (timeout == 0) 1608 device_printf(dev, "Timeout while writing to PHY!\n"); 1609 1610 return (0); 1611 } 1612 1613 void 1614 tsec_miibus_statchg(device_t dev) 1615 { 1616 struct tsec_softc *sc; 1617 struct mii_data *mii; 1618 uint32_t ecntrl, id, tmp; 1619 int link; 1620 1621 sc = device_get_softc(dev); 1622 mii = sc->tsec_mii; 1623 link = ((mii->mii_media_status & IFM_ACTIVE) ? 1 : 0); 1624 1625 tmp = TSEC_READ(sc, TSEC_REG_MACCFG2) & ~TSEC_MACCFG2_IF; 1626 1627 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) 1628 tmp |= TSEC_MACCFG2_FULLDUPLEX; 1629 else 1630 tmp &= ~TSEC_MACCFG2_FULLDUPLEX; 1631 1632 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1633 case IFM_1000_T: 1634 case IFM_1000_SX: 1635 tmp |= TSEC_MACCFG2_GMII; 1636 sc->tsec_link = link; 1637 break; 1638 case IFM_100_TX: 1639 case IFM_10_T: 1640 tmp |= TSEC_MACCFG2_MII; 1641 sc->tsec_link = link; 1642 break; 1643 case IFM_NONE: 1644 if (link) 1645 device_printf(dev, "No speed selected but link " 1646 "active!\n"); 1647 sc->tsec_link = 0; 1648 return; 1649 default: 1650 sc->tsec_link = 0; 1651 device_printf(dev, "Unknown speed (%d), link %s!\n", 1652 IFM_SUBTYPE(mii->mii_media_active), 1653 ((link) ? "up" : "down")); 1654 return; 1655 } 1656 TSEC_WRITE(sc, TSEC_REG_MACCFG2, tmp); 1657 1658 /* XXX kludge - use circumstantial evidence for reduced mode. */ 1659 id = TSEC_READ(sc, TSEC_REG_ID2); 1660 if (id & 0xffff) { 1661 ecntrl = TSEC_READ(sc, TSEC_REG_ECNTRL) & ~TSEC_ECNTRL_R100M; 1662 ecntrl |= (tmp & TSEC_MACCFG2_MII) ? TSEC_ECNTRL_R100M : 0; 1663 TSEC_WRITE(sc, TSEC_REG_ECNTRL, ecntrl); 1664 } 1665 } 1666 1667 static void 1668 tsec_add_sysctls(struct tsec_softc *sc) 1669 { 1670 struct sysctl_ctx_list *ctx; 1671 struct sysctl_oid_list *children; 1672 struct sysctl_oid *tree; 1673 1674 ctx = device_get_sysctl_ctx(sc->dev); 1675 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 1676 tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "int_coal", 1677 CTLFLAG_RD, 0, "TSEC Interrupts coalescing"); 1678 children = SYSCTL_CHILDREN(tree); 1679 1680 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_time", 1681 CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_RX, tsec_sysctl_ic_time, 1682 "I", "IC RX time threshold (0-65535)"); 1683 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_count", 1684 CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_RX, tsec_sysctl_ic_count, 1685 "I", "IC RX frame count threshold (0-255)"); 1686 1687 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_time", 1688 CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_TX, tsec_sysctl_ic_time, 1689 "I", "IC TX time threshold (0-65535)"); 1690 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_count", 1691 CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_TX, tsec_sysctl_ic_count, 1692 "I", "IC TX frame count threshold (0-255)"); 1693 } 1694 1695 /* 1696 * With Interrupt Coalescing (IC) active, a transmit/receive frame 1697 * interrupt is raised either upon: 1698 * 1699 * - threshold-defined period of time elapsed, or 1700 * - threshold-defined number of frames is received/transmitted, 1701 * whichever occurs first. 1702 * 1703 * The following sysctls regulate IC behaviour (for TX/RX separately): 1704 * 1705 * dev.tsec.<unit>.int_coal.rx_time 1706 * dev.tsec.<unit>.int_coal.rx_count 1707 * dev.tsec.<unit>.int_coal.tx_time 1708 * dev.tsec.<unit>.int_coal.tx_count 1709 * 1710 * Values: 1711 * 1712 * - 0 for either time or count disables IC on the given TX/RX path 1713 * 1714 * - count: 1-255 (expresses frame count number; note that value of 1 is 1715 * effectively IC off) 1716 * 1717 * - time: 1-65535 (value corresponds to a real time period and is 1718 * expressed in units equivalent to 64 TSEC interface clocks, i.e. one timer 1719 * threshold unit is 26.5 us, 2.56 us, or 512 ns, corresponding to 10 Mbps, 1720 * 100 Mbps, or 1Gbps, respectively. For detailed discussion consult the 1721 * TSEC reference manual. 1722 */ 1723 static int 1724 tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS) 1725 { 1726 int error; 1727 uint32_t time; 1728 struct tsec_softc *sc = (struct tsec_softc *)arg1; 1729 1730 time = (arg2 == TSEC_IC_RX) ? sc->rx_ic_time : sc->tx_ic_time; 1731 1732 error = sysctl_handle_int(oidp, &time, 0, req); 1733 if (error != 0) 1734 return (error); 1735 1736 if (time > 65535) 1737 return (EINVAL); 1738 1739 TSEC_IC_LOCK(sc); 1740 if (arg2 == TSEC_IC_RX) { 1741 sc->rx_ic_time = time; 1742 tsec_set_rxic(sc); 1743 } else { 1744 sc->tx_ic_time = time; 1745 tsec_set_txic(sc); 1746 } 1747 TSEC_IC_UNLOCK(sc); 1748 1749 return (0); 1750 } 1751 1752 static int 1753 tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS) 1754 { 1755 int error; 1756 uint32_t count; 1757 struct tsec_softc *sc = (struct tsec_softc *)arg1; 1758 1759 count = (arg2 == TSEC_IC_RX) ? sc->rx_ic_count : sc->tx_ic_count; 1760 1761 error = sysctl_handle_int(oidp, &count, 0, req); 1762 if (error != 0) 1763 return (error); 1764 1765 if (count > 255) 1766 return (EINVAL); 1767 1768 TSEC_IC_LOCK(sc); 1769 if (arg2 == TSEC_IC_RX) { 1770 sc->rx_ic_count = count; 1771 tsec_set_rxic(sc); 1772 } else { 1773 sc->tx_ic_count = count; 1774 tsec_set_txic(sc); 1775 } 1776 TSEC_IC_UNLOCK(sc); 1777 1778 return (0); 1779 } 1780 1781 static void 1782 tsec_set_rxic(struct tsec_softc *sc) 1783 { 1784 uint32_t rxic_val; 1785 1786 if (sc->rx_ic_count == 0 || sc->rx_ic_time == 0) 1787 /* Disable RX IC */ 1788 rxic_val = 0; 1789 else { 1790 rxic_val = 0x80000000; 1791 rxic_val |= (sc->rx_ic_count << 21); 1792 rxic_val |= sc->rx_ic_time; 1793 } 1794 1795 TSEC_WRITE(sc, TSEC_REG_RXIC, rxic_val); 1796 } 1797 1798 static void 1799 tsec_set_txic(struct tsec_softc *sc) 1800 { 1801 uint32_t txic_val; 1802 1803 if (sc->tx_ic_count == 0 || sc->tx_ic_time == 0) 1804 /* Disable TX IC */ 1805 txic_val = 0; 1806 else { 1807 txic_val = 0x80000000; 1808 txic_val |= (sc->tx_ic_count << 21); 1809 txic_val |= sc->tx_ic_time; 1810 } 1811 1812 TSEC_WRITE(sc, TSEC_REG_TXIC, txic_val); 1813 } 1814 1815 static void 1816 tsec_offload_setup(struct tsec_softc *sc) 1817 { 1818 struct ifnet *ifp = sc->tsec_ifp; 1819 uint32_t reg; 1820 1821 TSEC_GLOBAL_LOCK_ASSERT(sc); 1822 1823 reg = TSEC_READ(sc, TSEC_REG_TCTRL); 1824 reg |= TSEC_TCTRL_IPCSEN | TSEC_TCTRL_TUCSEN; 1825 1826 if (ifp->if_capenable & IFCAP_TXCSUM) 1827 ifp->if_hwassist = TSEC_CHECKSUM_FEATURES; 1828 else 1829 ifp->if_hwassist = 0; 1830 1831 TSEC_WRITE(sc, TSEC_REG_TCTRL, reg); 1832 1833 reg = TSEC_READ(sc, TSEC_REG_RCTRL); 1834 reg &= ~(TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN | TSEC_RCTRL_PRSDEP); 1835 reg |= TSEC_RCTRL_PRSDEP_PARSE_L2 | TSEC_RCTRL_VLEX; 1836 1837 if (ifp->if_capenable & IFCAP_RXCSUM) 1838 reg |= TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN | 1839 TSEC_RCTRL_PRSDEP_PARSE_L234; 1840 1841 TSEC_WRITE(sc, TSEC_REG_RCTRL, reg); 1842 } 1843 1844 1845 static void 1846 tsec_offload_process_frame(struct tsec_softc *sc, struct mbuf *m) 1847 { 1848 struct tsec_rx_fcb rx_fcb; 1849 int csum_flags = 0; 1850 int protocol, flags; 1851 1852 TSEC_RECEIVE_LOCK_ASSERT(sc); 1853 1854 m_copydata(m, 0, sizeof(struct tsec_rx_fcb), (caddr_t)(&rx_fcb)); 1855 flags = rx_fcb.flags; 1856 protocol = rx_fcb.protocol; 1857 1858 if (TSEC_RX_FCB_IP_CSUM_CHECKED(flags)) { 1859 csum_flags |= CSUM_IP_CHECKED; 1860 1861 if ((flags & TSEC_RX_FCB_IP_CSUM_ERROR) == 0) 1862 csum_flags |= CSUM_IP_VALID; 1863 } 1864 1865 if ((protocol == IPPROTO_TCP || protocol == IPPROTO_UDP) && 1866 TSEC_RX_FCB_TCP_UDP_CSUM_CHECKED(flags) && 1867 (flags & TSEC_RX_FCB_TCP_UDP_CSUM_ERROR) == 0) { 1868 1869 csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 1870 m->m_pkthdr.csum_data = 0xFFFF; 1871 } 1872 1873 m->m_pkthdr.csum_flags = csum_flags; 1874 1875 if (flags & TSEC_RX_FCB_VLAN) { 1876 m->m_pkthdr.ether_vtag = rx_fcb.vlan; 1877 m->m_flags |= M_VLANTAG; 1878 } 1879 1880 m_adj(m, sizeof(struct tsec_rx_fcb)); 1881 } 1882 1883 static void 1884 tsec_setup_multicast(struct tsec_softc *sc) 1885 { 1886 uint32_t hashtable[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; 1887 struct ifnet *ifp = sc->tsec_ifp; 1888 struct ifmultiaddr *ifma; 1889 uint32_t h; 1890 int i; 1891 1892 TSEC_GLOBAL_LOCK_ASSERT(sc); 1893 1894 if (ifp->if_flags & IFF_ALLMULTI) { 1895 for (i = 0; i < 8; i++) 1896 TSEC_WRITE(sc, TSEC_REG_GADDR(i), 0xFFFFFFFF); 1897 1898 return; 1899 } 1900 1901 if_maddr_rlock(ifp); 1902 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1903 1904 if (ifma->ifma_addr->sa_family != AF_LINK) 1905 continue; 1906 1907 h = (ether_crc32_be(LLADDR((struct sockaddr_dl *) 1908 ifma->ifma_addr), ETHER_ADDR_LEN) >> 24) & 0xFF; 1909 1910 hashtable[(h >> 5)] |= 1 << (0x1F - (h & 0x1F)); 1911 } 1912 if_maddr_runlock(ifp); 1913 1914 for (i = 0; i < 8; i++) 1915 TSEC_WRITE(sc, TSEC_REG_GADDR(i), hashtable[i]); 1916 } 1917 1918 static int 1919 tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu) 1920 { 1921 1922 mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN; 1923 1924 TSEC_GLOBAL_LOCK_ASSERT(sc); 1925 1926 if (mtu >= TSEC_MIN_FRAME_SIZE && mtu <= TSEC_MAX_FRAME_SIZE) { 1927 TSEC_WRITE(sc, TSEC_REG_MAXFRM, mtu); 1928 return (mtu); 1929 } 1930 1931 return (0); 1932 } 1933